JP2002020823A - Metal matrix composite material and its production method - Google Patents

Metal matrix composite material and its production method

Info

Publication number
JP2002020823A
JP2002020823A JP2000210712A JP2000210712A JP2002020823A JP 2002020823 A JP2002020823 A JP 2002020823A JP 2000210712 A JP2000210712 A JP 2000210712A JP 2000210712 A JP2000210712 A JP 2000210712A JP 2002020823 A JP2002020823 A JP 2002020823A
Authority
JP
Japan
Prior art keywords
metal
particles
dispersed
composite material
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210712A
Other languages
Japanese (ja)
Inventor
Kazusane Otake
和実 大竹
Kazuaki Sato
和明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000210712A priority Critical patent/JP2002020823A/en
Publication of JP2002020823A publication Critical patent/JP2002020823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal matrix composite material in which the limitation by the crystal structure of dispersed grains as a crystal grain refining agent is remarkably relaxed, and matrix material metals in a wide range can be applied and to provide its production method. SOLUTION: In this metal matrix composite material in which grains are dispersed into a metal matrix material, the dispersed grains have crystal structure different from that of the matrix material metal, and the difference between at least one of the crystal lattice spacing between the dispersed grains and the lattice constant of the matrix material metal is <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属基材中に粒子
が分散している金属基複合材料およびその製造方法に関
する。
[0001] The present invention relates to a metal-based composite material in which particles are dispersed in a metal substrate, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車の低燃費化、高性能化のためには
軽量化が必要であり、鉄系部品をアルミニウム系部品に
置き換える研究開発が進められている。その際、アルミ
ニウム系材料は鉄系材料に比べて強度が劣るため、高強
度化が必要になる。しかし、一般に材料は強度の上昇に
伴い延性が低下するため、所定部品形状への塑性加工が
困難になり、高強度アルミニウム系部品で鉄系部品を置
換できる対象は限られている。
2. Description of the Related Art In order to reduce the fuel consumption and enhance the performance of automobiles, it is necessary to reduce the weight. Research and development for replacing iron-based parts with aluminum-based parts are being pursued. At this time, since the strength of the aluminum-based material is lower than that of the iron-based material, it is necessary to increase the strength. However, in general, the ductility of a material is reduced with an increase in strength, so that plastic working into a predetermined component shape becomes difficult, and there are only a limited number of objects that can replace a high-strength aluminum-based component with an iron-based component.

【0003】そこで、アルミニウム系部品で置換できる
対象を拡大するために、結晶粒の微細化により延性を向
上させることが重要になる。従来、アルミニウム系鋳造
材料の高強度化の手段として、アルミニウムまたはアル
ミニウム合金の基材中に強化材としてTiC粒子等を分
散させる分散強化法が知られている(例えば、特開昭6
3−83239号公報、特許第2734891号)。
Therefore, in order to expand the range of objects that can be replaced with aluminum-based parts, it is important to improve ductility by making crystal grains finer. Conventionally, as a means for increasing the strength of an aluminum-based casting material, a dispersion strengthening method in which TiC particles or the like as a reinforcing material is dispersed in a base material of aluminum or an aluminum alloy is known (for example, see Japanese Unexamined Patent Publication No.
3-83239, Japanese Patent No. 2734891).

【0004】一方、アルミニウム系鋳造材料の結晶粒微
細化の手段として、鋳造時に溶湯中に結晶粒微細化剤と
してTiC粒子等を添加することが行われている(例え
ば、特開平10−204555号公報)。このように、
TiC粒子等は強化材として作用すると同時に結晶粒微
細化剤としても作用するため、強度と延性とを同時に向
上させる手段として極めて有用である。
On the other hand, as means for refining the crystal grains of an aluminum-based casting material, TiC particles or the like are added as a crystal grain refining agent to a molten metal during casting (for example, Japanese Patent Application Laid-Open No. 10-204555). Gazette). in this way,
Since TiC particles and the like act both as a reinforcing material and as a crystal grain refiner, they are extremely useful as a means for simultaneously improving strength and ductility.

【0005】ここで、強化材かつ結晶粒微細化剤として
作用するためには粒子が十分に微細であることが必要で
ある。しかし、微細粒子を粉末の状態で基材金属の溶湯
中に直接取り込ませることは困難である。そのため、上
記いずれの従来技術においても、先ず基材金属中にその
場生成(in-situ 生成)により微細粒子を生成・分散さ
せた成形体を形成し、この成形体を基材金属の別の溶湯
中に装入することにより、成形体の基材金属を溶解させ
ると同時に微細粒子を溶湯中に分散させ、凝固させるこ
とにより最終的な分散強化複合材料を得ている。
Here, the particles must be sufficiently fine in order to act as a reinforcing material and a grain refiner. However, it is difficult to directly incorporate the fine particles in the form of powder into the molten metal of the base metal. Therefore, in any of the above prior arts, first, a molded body in which fine particles are generated and dispersed by in-situ generation (in-situ generation) in a base metal is formed, and this molded body is separated into another base metal. By charging the molten metal in the molten metal, the base metal of the molded body is dissolved, and at the same time, fine particles are dispersed in the molten metal and solidified to obtain a final dispersion-reinforced composite material.

【0006】このように、その場生成により微細粒子を
生成させることが前提となるため、強化作用と結晶粒微
細化作用とを発現する微細粒子の化学組成によって、適
用可能な基材金属の化学組成も必然的に制限を受ける。
加えて、従来の知見では、結晶粒微細化作用を発現する
ためには、分散させる粒子が基材金属と同じ結晶構造を
有することが必要であるとされており、更に適用対象が
限定されていた。
As described above, it is premised that fine particles are generated by in-situ generation. Therefore, the chemical composition of the applicable base metal can be determined by the chemical composition of the fine particles exhibiting the strengthening action and the crystal grain refining action. The composition is necessarily limited.
In addition, according to conventional knowledge, it is necessary that the particles to be dispersed have the same crystal structure as that of the base metal in order to exert a crystal grain refining action, and the application target is further limited. Was.

【0007】[0007]

【発明が解決しようとする課題】本発明は、結晶粒微細
化剤としての分散粒子の結晶構造による限定を大幅に緩
和して、広範な基材金属を適用できる金属基複合材料お
よびその製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a metal matrix composite material to which a wide range of base metals can be applied, by greatly reducing the crystal structure of dispersed particles as a grain refiner, and a method for producing the same. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の金属基複合材料は、金属基材中に粒子が
分散している金属基複合材料において、該分散粒子が該
基材金属と異なる結晶構造を有し、該分散粒子の結晶格
子面間隔の少なくとも一つと、該基材金属の格子定数と
の差が10%以内であることを特徴とする。
Means for Solving the Problems In order to achieve the above object, a metal matrix composite material of the present invention is a metal matrix composite material in which particles are dispersed in a metal base material, wherein the dispersed particles are the base material. It has a crystal structure different from that of the material metal, and a difference between at least one of the crystal lattice spacings of the dispersed particles and the lattice constant of the base metal is within 10%.

【0009】典型的には、前記基材金属がAlまたはA
l合金から成り、該分散粒子がMo(Al,Si)2
ら成る。本発明の金属基複合材料を製造する方法は、金
属基材中に粒子が分散している金属基複合材料の製造方
法であって、基材金属の粉末と、分散粒子を構成する各
元素の粉末との圧粉成形体を形成する工程、上記成形体
に基材金属の第1の溶湯を含浸する工程、上記含浸済の
成形体を熱処理することにより、該成形体中に、結晶格
子面間隔の少なくとも一つと、該基材金属の格子定数と
の差が10%以内である分散粒子をその場生成させる工
程、上記生成した分散粒子を含む成形体を該基材金属の
第2の溶湯中に装入することにより、該成形体中の分散
粒子を該第2の溶湯中に分散させる工程、および上記第
2の溶湯を凝固させる工程、を含むことを特徴とする。
[0009] Typically, the base metal is Al or A
1 and the dispersed particles are made of Mo (Al, Si) 2 . The method for producing a metal-based composite material of the present invention is a method for producing a metal-based composite material in which particles are dispersed in a metal substrate, and a powder of the substrate metal, and each element constituting the dispersed particles. Forming a green compact with the powder, impregnating the compact with the first molten metal of the base metal, and subjecting the impregnated compact to a heat treatment to form a crystal lattice plane in the compact. A step of generating in-situ dispersed particles in which a difference between at least one of the intervals and the lattice constant of the base metal is within 10%, and forming a compact containing the generated dispersed particles into a second molten metal of the base metal The method is characterized by including a step of dispersing the dispersed particles in the molded body in the second molten metal and a step of solidifying the second molten metal.

【0010】[0010]

【発明の実施の形態】本発明者は、その場生成による種
々の粒子を分散させた金属基複合材料について、結晶粒
微細化作用を調べた結果、従来の認識とは全く異なり、
分散粒子が基材金属と同じ結晶構造でなくとも、分散粒
子の結晶格子面間隔の少なくとも一つと、該基材金属の
格子定数との差が10%以内であれば、基材と同じ結晶
構造の分散粒子と同等の結晶粒微細化作用を発現するこ
とを新規に見出して本発明を完成させた。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of examining the crystal grain refining effect of a metal matrix composite material in which various particles are dispersed by in-situ generation, the present inventors have completely different from the conventional recognition.
Even if the dispersed particles do not have the same crystal structure as the base metal, if the difference between at least one of the crystal lattice spacings of the dispersed particles and the lattice constant of the base metal is within 10%, the same crystal structure as the base metal is used. The present inventors have newly found that a crystal grain refining action equivalent to that of the dispersed particles of the present invention is exhibited, thereby completing the present invention.

【0011】これにより、その場生成粒子に対応した基
材金属の組成限定が大幅に緩和され、広範な金属基複合
材料に対して結晶粒微細化作用の発現が可能になり、鉄
系材料をアルミニウム系材料に置換できる適用対象が大
幅に拡大される。
[0011] Thereby, the composition limitation of the base metal corresponding to the in-situ generated particles is greatly relaxed, and the crystal grain refining action can be exerted on a wide range of metal-based composite materials. The applications that can be replaced with aluminum-based materials are greatly expanded.

【0012】[0012]

【実施例】結晶粒の微細化の主要因である異質凝固核に
ついては未だ十分に解明されておらず、どのような粒子
が凝固核となるかは推定できない。そこで本発明者は、
その場(in-situ)生成により種々の炭化物、硼化物、酸
化物、窒化物の微粒子(以下「in-situ 粒子」と略称)
を作製し、これを分散させたアルミニウム基複合材料に
ついて結晶粒微細化作用を調べた。
EXAMPLES The heterogeneous solidification nuclei, which are the main factors in the refinement of crystal grains, have not yet been sufficiently elucidated, and it is not possible to estimate what particles will be solidification nuclei. Therefore, the present inventor
Fine particles of various carbides, borides, oxides, and nitrides by in-situ generation (hereinafter abbreviated as "in-situ particles")
Was prepared, and the effect of crystal grain refinement was examined on an aluminum-based composite material in which this was dispersed.

【0013】図1に、アルミニウム基複合材料の製造工
程(1)〜(4)を示す。工程(1)において、生成さ
せるin-situ 粒子の種類に応じて、それぞれ図中に示し
た原料粉末を用いて圧粉成形体を作製した。工程(2)
において、成形体を750℃のAl溶湯中に30秒間浸
漬して、空隙部にAl溶湯を含浸させた(炭化物、硼化
物についてのみ実施)。
FIG. 1 shows steps (1) to (4) for producing an aluminum-based composite material. In the step (1), a green compact was produced using the raw material powders shown in the figure according to the type of in-situ particles to be generated. Step (2)
In the above, the molded body was immersed in a 750 ° C. molten aluminum for 30 seconds to impregnate the gap with the molten aluminum (implemented only for carbides and borides).

【0014】工程(3)において、上記含浸済の各成形
体に、昇温速度5℃/min 、保持温度800〜1500
℃、Ar雰囲気の熱処理を施し、それぞれin-situ 粒子
を生成させた。反応後の組織をX線回折および走査電子
顕微鏡(SEM)により観察して生成相を同定した。な
お、いずれの成形体についても、in-situ 粒子の体積率
は25 vol%とした。
In step (3), each of the impregnated compacts is heated at a rate of 5 ° C./min and maintained at a temperature of 800 to 1500.
A heat treatment was performed in an Ar atmosphere at ℃ to generate in-situ particles. The structure after the reaction was observed by X-ray diffraction and scanning electron microscope (SEM) to identify the generated phase. The volume ratio of the in-situ particles was set to 25 vol% in each of the molded bodies.

【0015】表1に、in-situ 粒子の種類および粒径、
原料粉末の種類および粒径、反応生成過程をまとめて示
す。
Table 1 shows the types and particle sizes of in-situ particles,
The types and particle sizes of the raw material powders and the reaction generation process are shown together.

【0016】[0016]

【表1】 生成したin-situ 粒子の粒径は0.2〜2μm であっ
た。この粒径は、in-situ 生成よらずに粒子粉末を溶湯
に添加して得られる分散粒子の最小粒径が10μm 程度
であるのに比べて、非常に微細である。また、一般に、
in-situ 粒子は原料粉末の粒径や形状に影響されるが、
炭化物(TiC,TaC,HfC,ZrC)および硼化
物(ZrB2 ,TiB2 )は、原料粉末よりもはるかに
微細な粒子が生成した。一方、Mo(Al,Si)2
AlN,Al2 3 の粒径は、原料粉末とほぼ同等であ
った。この相違は、表1中に示したように前者が遷移化
合物の生成を経由して間接的に最終化合物が生成するの
に対して、後者は原料粉末から直接最終化合物が生成す
るという、生成過程の相違と対応している。
[Table 1] The particle size of the generated in-situ particles was 0.2 to 2 μm. This particle size is much finer than the minimum particle size of the dispersed particles obtained by adding the particle powder to the molten metal without in-situ generation, which is about 10 μm. Also, in general,
In-situ particles are affected by the particle size and shape of the raw material powder,
Carbides (TiC, TaC, HfC, ZrC) and borides (ZrB 2 , TiB 2 ) produced much finer particles than the raw material powder. On the other hand, Mo (Al, Si) 2 ,
The particle diameters of AlN and Al 2 O 3 were almost equal to those of the raw material powder. The difference is that, as shown in Table 1, the former is indirectly producing the final compound via the production of the transition compound, while the latter is that the final compound is produced directly from the raw material powder. Corresponds to the difference.

【0017】最後に、工程(4)において、上記in-sit
u 粒子を含む成形体を750℃のAl−4.5%Cu合
金溶湯に添加し、5分間攪拌した。これにより、成形体
のAlは合金溶湯中に溶解し、成形体中のin-situ 粒子
が合金溶湯中に分散した。その後、溶湯温度750℃に
てJIS4号舟型に鋳造して、凝固後に取り出し、アル
ミニウム基複合材料を得た。なお、アルミニウム基複合
材料中の各化合物粒子の分散量は1 vol%とした。
Finally, in step (4), the in-sit
The compact containing the u particles was added to a molten Al-4.5% Cu alloy at 750 ° C and stirred for 5 minutes. As a result, Al of the compact was dissolved in the molten alloy, and in-situ particles in the compact were dispersed in the molten alloy. Thereafter, it was cast into a JIS No. 4 boat at a melt temperature of 750 ° C., taken out after solidification, and an aluminum-based composite material was obtained. The dispersion amount of each compound particle in the aluminum-based composite material was 1 vol%.

【0018】表2に、上記のアルミニウム基複合材料に
ついて、平均結晶粒径を測定した結果を、粒子無添加の
場合(同表中、「in-situ 粒子」の欄に「Al」と表
示)と比較して示す。
Table 2 shows the results of the measurement of the average crystal grain size of the above-mentioned aluminum-based composite material, in the case where no particles were added (in the table, "Al" is shown in the column of "in-situ particles"). Shown in comparison with.

【0019】[0019]

【表2】 同表に示したように、TiC粒子、TaC粒子、Mo
(Al,Si)2 粒子の添加により、結晶粒が著しく微
細化した(同表中「○」で表示)。これに対して、Ti
2 粒子、ZrC粒子、HfC粒子、ZrB2 粒子では
微細化の効果は少なく(同表中「△」で表示)、更にA
2 3 粒子、AlN粒子では微細化の効果はほとんど
認められなかった(同表中「×」で表示)。
[Table 2] As shown in the table, TiC particles, TaC particles, Mo
With the addition of the (Al, Si) 2 particles, the crystal grains were remarkably refined (indicated by “○” in the same table). On the other hand, Ti
B 2 particles, ZrC particles, HfC particles, and ZrB 2 particles have little effect of miniaturization (indicated by “△” in the same table).
l 2 O 3 particles, the effect of miniaturization in the AlN particles was hardly observed (display in the same table, "×").

【0020】表2には、基材Alとin-situ 粒子につい
て結晶構造および格子定数(または特定の格子面間隔)
も併せて示す。表2に示した結晶粒径を、Alの格子定
数に対する各in-situ 粒子の格子定数(あるいは格子面
間隔)のずれに対してプロットしたのが図2である。同
図に示したように、Alに対するin-situ 粒子の格子定
数(格子面間隔)のずれが10%以内であれば、結晶構
造によらず、顕著な結晶粒微細化効果が得られることが
分かる。
Table 2 shows the crystal structure and lattice constant (or specific lattice spacing) of the Al substrate and the in-situ particles.
Are also shown. FIG. 2 is a graph in which the crystal grain diameters shown in Table 2 are plotted with respect to the shift of the lattice constant (or lattice spacing) of each in-situ particle with respect to the lattice constant of Al. As shown in the figure, if the deviation of the lattice constant (lattice spacing) of in-situ particles with respect to Al is within 10%, a remarkable crystal grain refinement effect can be obtained regardless of the crystal structure. I understand.

【0021】特に、Mo(Al,Si)2 粒子は基材金
属であるAlの結晶構造が面心立方であるのに対して、
これとは異なる六方晶の結晶構造を有するにもかかわら
ず、格子面(100)の間隔が、Alの格子定数に対し
て99.8%と非常に近い値であるため、Alと同じく
面心立方の結晶構造を有するTiC粒子、TaC粒子と
同等の結晶粒微細化効果を発現することができる。これ
は、基材金属と微細化剤粒子とが同じ結晶構造でなくて
はならないという従来の認識と覆す、全く新規な知見で
ある。
In particular, Mo (Al, Si) 2 particles have a face-centered cubic crystal structure of Al as a base metal,
Despite having a hexagonal crystal structure different from this, the spacing of the lattice plane (100) is very close to 99.8% with respect to the lattice constant of Al. A crystal grain refining effect equivalent to that of TiC particles and TaC particles having a cubic crystal structure can be exhibited. This is a completely new finding that contradicts the conventional perception that the base metal and the refiner particles must have the same crystal structure.

【0022】[0022]

【発明の効果】本発明によれば、結晶粒微細化剤として
の分散粒子の結晶構造による限定を大幅に緩和して、広
範な基材金属を適用できる金属基複合材料およびその製
造方法が提供される。
According to the present invention, there is provided a metal matrix composite material to which a wide range of base metals can be applied by greatly alleviating the limitations imposed by the crystal structure of dispersed particles as a grain refiner, and a method for producing the same. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明によりAl基複合材料を製造す
る方法を示す工程図である。
FIG. 1 is a process chart showing a method for producing an Al-based composite material according to the present invention.

【図2】図2は、Alの格子定数に対する種々のin-sit
u 粒子の格子定数(格子面間隔)のずれと、各in-situ
粒子を添加したAl基複合材料の結晶粒径との関係を示
すグラフである。
FIG. 2 shows various in-sit against the lattice constant of Al.
u The deviation of the lattice constant (lattice spacing) of the particles and each in-situ
5 is a graph showing the relationship between the particle size and the crystal grain size of an Al-based composite material to which particles are added.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 627 C22F 1/00 627 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 627 C22F 1/00 627

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属基材中に粒子が分散している金属基
複合材料において、該分散粒子が該基材金属と異なる結
晶構造を有し、該分散粒子の結晶格子面間隔の少なくと
も一つと、該基材金属の格子定数との差が10%以内で
あることを特徴とする金属基複合材料。
1. A metal matrix composite material in which particles are dispersed in a metal substrate, wherein the dispersed particles have a crystal structure different from that of the substrate metal, and have at least one of crystal lattice spacings of the dispersed particles. A metal-based composite material, wherein the difference from the lattice constant of the base metal is within 10%.
【請求項2】 前記基材金属がAlまたはAl合金から
成り、該分散粒子がMo(Al,Si)2 から成ること
を特徴とする請求項1記載の金属基複合材料。
2. The metal-based composite material according to claim 1, wherein the base metal is made of Al or an Al alloy, and the dispersed particles are made of Mo (Al, Si) 2 .
【請求項3】 金属基材中に粒子が分散している金属基
複合材料の製造方法であって、 基材金属の粉末と、分散粒子を構成する各元素の粉末と
の圧粉成形体を形成する工程、 上記成形体に基材金属の第1の溶湯を含浸する工程、 上記含浸済の成形体を熱処理することにより、該成形体
中に、結晶格子面間隔の少なくとも一つと、該基材金属
の格子定数との差が10%以内である分散粒子をその場
生成させる工程、 上記生成した分散粒子を含む成形体を該基材金属の第2
の溶湯中に装入することにより、該成形体中の分散粒子
を該第2の溶湯中に分散させる工程、および上記第2の
溶湯を凝固させる工程、を含むことを特徴とする金属基
複合材料の製造方法。
3. A method for producing a metal matrix composite material in which particles are dispersed in a metal base material, comprising: forming a green compact of a base metal powder and a powder of each element constituting the dispersed particles. Forming, impregnating the molded body with the first molten metal of the base metal, and heat-treating the impregnated molded body, so that at least one of the crystal lattice plane spacing and the base In-situ generation of dispersed particles having a difference from the lattice constant of the material metal of 10% or less;
A metal-based composite, comprising: dispersing the dispersed particles in the molded body in the second molten metal by charging the molten metal into the second molten metal; and solidifying the second molten metal. Material manufacturing method.
JP2000210712A 2000-07-06 2000-07-06 Metal matrix composite material and its production method Pending JP2002020823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210712A JP2002020823A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210712A JP2002020823A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Publications (1)

Publication Number Publication Date
JP2002020823A true JP2002020823A (en) 2002-01-23

Family

ID=18706941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210712A Pending JP2002020823A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Country Status (1)

Country Link
JP (1) JP2002020823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328301A (en) * 2014-07-18 2015-02-04 河南科技大学 Preparation method of particular-reinforced molybdenum-based composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328301A (en) * 2014-07-18 2015-02-04 河南科技大学 Preparation method of particular-reinforced molybdenum-based composite material
CN104328301B (en) * 2014-07-18 2016-08-31 河南科技大学 A kind of preparation method of particle-reinforced molybdenum-base composite material

Similar Documents

Publication Publication Date Title
JP5826219B2 (en) Method for making a metal article having other additive components without melting
RU2329122C2 (en) Method of items production from metal alloys without melting
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
US20170292174A1 (en) Aluminum alloys having iron, silicon, vanadium and copper, and with a high volume of ceramic phase therein
CN107429332A (en) Aluminium alloy containing iron, silicon, vanadium and copper
EP2385884A2 (en) A method for forming high strength aluminum alloys containing l12 intermetallic dispersoids
CN101080504A (en) Titanium alloy microstructural refinement method and high temperature, high strain rate superplastic forming of titanium alloys
JP5035717B2 (en) Superplastic magnesium alloy manufacturing method from grain boundary precipitation type magnesium alloy scrap
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
JP2002020823A (en) Metal matrix composite material and its production method
JP2002020822A (en) Metal matrix composite material and its production method
JPH07268510A (en) High-strength al alloy and its production
JP2001200322A (en) Metal matrix composite and producing method therefor
JP2000144281A (en) Production of metal matrix composite material
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JPH0987778A (en) Production of magnesium base composite material
JP2005068469A (en) Magnesium-based composite material and manufacturing method therefor
JPH06228720A (en) Production of member made of magnesium alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH032337A (en) Manufacture of aluminum alloy composite material
JPH0570857A (en) Intermetallic compound phase dispersed metal matrix composite and its manufacture
JPH09194966A (en) Production of metal-containing compound and the compound
JPH0867929A (en) Production of aluminum alloy and its powder
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof