JP2002018437A - Treating method and treating device of water containing calcium and silica - Google Patents

Treating method and treating device of water containing calcium and silica

Info

Publication number
JP2002018437A
JP2002018437A JP2001127946A JP2001127946A JP2002018437A JP 2002018437 A JP2002018437 A JP 2002018437A JP 2001127946 A JP2001127946 A JP 2001127946A JP 2001127946 A JP2001127946 A JP 2001127946A JP 2002018437 A JP2002018437 A JP 2002018437A
Authority
JP
Japan
Prior art keywords
water
treatment
membrane
silica
containing calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127946A
Other languages
Japanese (ja)
Other versions
JP3870712B2 (en
Inventor
Naoto Ichiyanagi
直人 一柳
Koji Nakamura
幸二 中村
Hirotoshi Tsuruguchi
博敏 鶴口
Nobutoki Arai
伸説 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001127946A priority Critical patent/JP3870712B2/en
Publication of JP2002018437A publication Critical patent/JP2002018437A/en
Application granted granted Critical
Publication of JP3870712B2 publication Critical patent/JP3870712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To reutilize a blow water as a replenishment water of a circulation cooling water system by stably and cheaply treating the blow water with a less amount of chemical used and simple treatment equipment and to stably carry out a filtration film treatment and a subsequent RO film treatment for a long period even if it is water containing calcium and silica (may be water other than the circulation cooling water). SOLUTION: After the circulation cooling water is subjected to a decarbonation treatment by a decarbonation tower 2 under a condition of pH 3-6, it is subjected to a deionization treatment by an RO film device 5 under the condition of pH 3-6. After water, to be treated, containing calcium and silica is subjected to a filtration film treatment under the condition of pH 3-6, it is subjected to a reverse osmosis film treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカルシウム及びシリ
カを含む被処理水、特に循環冷却水の処理方法及び処理
装置に係り、特にpH3〜6の条件下で脱イオン処理す
る工程を有した循環冷却水の処理方法及び処理装置に関
する。また、本発明は、pH3〜6の条件下で逆浸透膜
処理する脱イオン工程を有した水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating water to be treated containing calcium and silica, particularly circulating cooling water, and more particularly to circulating cooling having a step of deionizing under pH 3-6 conditions. The present invention relates to a method and an apparatus for treating water. Further, the present invention relates to a water treatment method having a deionization step of performing a reverse osmosis membrane treatment under conditions of pH 3 to 6.

【0002】[0002]

【従来の技術】循環冷却水系においては、系内のスケー
ル成分の濃縮によるスケール障害を防止するために冷却
塔から系内の水をブロー水として排出し、このブロー水
量に見合う水量の水を補給水として補給している。この
ブロー水は、循環冷却水系の6〜8倍の高濃縮運転によ
り、硬度成分やシリカ等のスケール成分が既に析出限界
にまで濃縮された水である。このため、一般的には、こ
れを回収して再利用することはなされていなかったが、
逆浸透(RO)膜分離装置(以下「RO膜装置」と称
す。)で脱塩して回収、再利用する方法も提案されてい
る(特開平2−95493号公報、特開平4−2508
80号公報)。
2. Description of the Related Art In a circulating cooling water system, water in the system is discharged as blow water from a cooling tower in order to prevent scale disturbance due to concentration of scale components in the system, and water is supplied in an amount corresponding to the blow water amount. Replenished as water. The blow water is water in which a hardness component and a scale component such as silica have already been concentrated to the precipitation limit by a high concentration operation 6 to 8 times that of the circulating cooling water system. For this reason, it has not generally been collected and reused,
A method of desalting, recovering, and reusing salt using a reverse osmosis (RO) membrane separation device (hereinafter referred to as “RO membrane device”) has also been proposed (JP-A-2-95493, JP-A-4-2508).
No. 80).

【0003】しかしながら、冷却塔から排出されたブロ
ー水を直接RO膜装置で処理すると、RO膜装置内での
スケール成分の濃縮により、RO膜面に直ちにスケール
が発生し、運転を継続することができなくなる。
However, if the blow water discharged from the cooling tower is directly processed by the RO membrane device, scale components are immediately generated on the RO membrane surface due to concentration of scale components in the RO membrane device, and the operation may be continued. become unable.

【0004】この問題を解決するために、ブロー水から
硬度成分を除去するための軟化装置をRO膜装置の前段
に設けることが考えられる。即ち、ブロー水をまず軟化
装置で処理し、カルシウムやマグネシウム等のスケール
成分を除去した後、アルカリを添加してシリカ溶解度の
高い高アルカリ条件にpH調整した後、RO膜装置で脱
塩処理すれば、スケール障害を防止して安定に運転を継
続することができる。
In order to solve this problem, it is conceivable to provide a softening device for removing a hardness component from blow water before the RO membrane device. That is, the blow water is first treated with a softening device to remove scale components such as calcium and magnesium, and then alkali is added to adjust the pH to a high alkali condition having a high silica solubility, and then subjected to a desalination treatment with a RO membrane device. If this is the case, it is possible to prevent the scale failure and continue the operation stably.

【0005】[0005]

【発明が解決しようとする課題】しかし、軟化装置によ
る軟化処理と、高アルカリ条件でのRO膜装置による処
理との組み合わせでは、軟化処理に要するイオン交換樹
脂コスト及び再生薬品コスト、高アルカリ条件とするた
めのpH調整及びその後の再中和に要する薬品コストが
嵩み、また、装置設備も複雑で設備コストも高くなるた
め、ブロー水の処理に要する費用が高くつくという欠点
がある。
However, in the combination of the softening treatment by the softening device and the treatment by the RO membrane device under the high alkali condition, the cost of the ion exchange resin and the regenerated chemical required for the softening process, the high alkali condition, However, there are disadvantages that the cost of chemicals required for pH adjustment and subsequent re-neutralization increases, and the equipment cost is high because the equipment is complicated and the equipment cost is high.

【0006】本発明は上記従来の問題点を解決し、少な
い薬品使用量と簡易な処理設備でブロー水を安定かつ安
価に処理し、循環冷却水系の補給水としての再利用を可
能とする循環冷却水の処理方法及び処理装置を提供する
ことを目的とするものであり、pH3〜6の条件下で脱
イオン処理する工程を有した循環冷却水の処理方法及び
処理装置を提供することを第1の目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and uses a small amount of chemicals and simple processing equipment to stably and inexpensively treat blow water, thereby enabling recycling as replenishment water for a circulating cooling water system. It is an object of the present invention to provide a method and an apparatus for treating cooling water, and to provide a method and an apparatus for treating circulating cooling water having a step of performing deionization under conditions of pH 3 to 6. This is the purpose of 1.

【0007】また、本発明は、このpH3〜6の条件下
で脱イオン処理する工程により、ブロー水以外の水をも
処理しうる水処理方法を提供することを第2の目的とす
る。
A second object of the present invention is to provide a water treatment method capable of treating water other than blow water by the step of deionizing under the condition of pH 3 to 6.

【0008】[0008]

【課題を解決するための手段】本発明のカルシウム及び
シリカを含む被処理水の処理方法は、カルシウム及びシ
リカを含む被処理水をpH3〜6の条件下で脱炭酸処理
した後、更にpH3〜6の条件下で脱イオン処理するこ
とを特徴とする。
According to the method for treating water to be treated containing calcium and silica according to the present invention, the water to be treated containing calcium and silica is subjected to decarboxylation treatment under conditions of pH 3 to 6, and then to pH 3 to 6. The deionization treatment is performed under the conditions of 6.

【0009】本発明のカルシウム及びシリカを含む被処
理水の処理装置は、酸添加手段、脱炭酸処理手段、脱イ
オン処理手段が配設されると共に、該脱炭酸処理手段及
び該脱イオン処理手段に導入される被処理水をpH3〜
6に調整するためのpH調整手段を設けてなることを特
徴とする。
The apparatus for treating water to be treated containing calcium and silica according to the present invention includes an acid addition means, a decarboxylation means, and a deionization means, and the decarbonation means and the deionization means. The water to be treated introduced into the
6, wherein a pH adjusting means for adjusting the pH to 6 is provided.

【0010】RO膜装置等の脱イオン処理手段の前段
で、カルシウム及びシリカを含む被処理水をpH3〜6
の弱酸性で脱炭酸処理することにより、効果的に水中の
炭酸イオン、重炭酸イオンを炭酸ガスとして除去するこ
とができ、後段のRO膜装置等の脱イオン処理手段での
スケール障害の最も大きな要因となる炭酸カルシウム等
の炭酸塩スケールの析出を有効に防止することが可能と
なる。更に、脱イオン処理手段、例えば、RO膜装置内
では、なお残留するシリカがRO膜分離により濃縮され
るが、pH3〜6の弱酸性でRO膜処理するため、シリ
カの濃度が100mg/L以上、特に300〜800m
g/Lになってもシリカによるスケール障害を防止して
安定して長期間運転することが可能となる。
Before the deionizing means such as an RO membrane device, the water to be treated containing calcium and silica is pH 3-6.
Carbon dioxide and bicarbonate ions in water can be effectively removed as carbon dioxide gas by performing decarbonation treatment with weak acidity, and the largest scale obstacle in deionization treatment means such as RO membrane equipment at the subsequent stage It becomes possible to effectively prevent precipitation of carbonate scale such as calcium carbonate, which is a factor. Furthermore, in the deionization treatment means, for example, in the RO membrane apparatus, the silica which still remains is concentrated by RO membrane separation. However, since the RO membrane treatment is carried out with a weak acidic pH of 3 to 6, the silica concentration is 100 mg / L or more. , Especially 300-800m
Even at g / L, scale failure due to silica is prevented and stable long-term operation is possible.

【0011】本発明において、脱イオン処理する水は、
脱イオン処理手段でのスケール障害を確実に防止するた
めに、スケール防止剤が添加されていることが好まし
い。
In the present invention, the water to be deionized is
It is preferable that a scale inhibitor is added in order to surely prevent scale disturbance in the deionizing means.

【0012】本発明においては、脱イオン処理手段での
目詰まりや閉塞を防止するため、脱イオン処理する水
は、懸濁物質除去処理されていることが好ましい。
In the present invention, in order to prevent clogging and clogging in the deionizing means, the water to be deionized is preferably subjected to a suspended substance removing treatment.

【0013】ところで、本発明者らは、上記のカルシウ
ム及びシリカを含む被処理水の処理方法及び装置を用い
た水処理について種々検討を重ねたところ、上記の脱炭
酸処理を行わない場合でも、脱イオン処理のためのRO
膜装置でのスケール発生を防止して安定運転(脱イオン
処理運転)を継続できる場合があることを見出した。
The present inventors have conducted various studies on water treatment using the above-mentioned method and apparatus for treating water containing calcium and silica, and found that even if the above-mentioned decarboxylation treatment is not carried out, RO for deionization treatment
It has been found that there is a case where stable operation (deionization treatment operation) can be continued by preventing generation of scale in the membrane device.

【0014】即ち、カルシウム及びシリカを含む水(循
環冷却水に限定されない。)をpH3〜6の条件下で膜
濾過した後、RO膜装置で脱イオン処理すると、RO膜
装置でのスケール発生が防止され、長期にわたり安定し
て脱イオン処理できることが見出された。
That is, when water containing calcium and silica (not limited to circulating cooling water) is subjected to membrane filtration under the condition of pH 3 to 6, and then deionized by an RO membrane device, scale is generated in the RO membrane device. It has been found that deionization can be prevented and can be stably performed over a long period of time.

【0015】本発明の水処理方法は、かかる知見に基づ
いて創案されたものであり、カルシウム及びシリカを含
む被処理水をpH3〜6の条件下で膜濾過処理した後、
逆浸透膜処理することを特徴とするものである。
[0015] The water treatment method of the present invention has been devised on the basis of such findings, and after subjecting water to be treated containing calcium and silica to a membrane filtration treatment under the condition of pH 3 to 6,
It is characterized by performing reverse osmosis membrane treatment.

【0016】そして本発明のカルシウム及びシリカを含
む被処理水の水処理方法と水処理装置は特に循環冷却水
の処理に好適に用いることができる。
The method and apparatus for treating water to be treated containing calcium and silica according to the present invention can be suitably used particularly for treating circulating cooling water.

【0017】かかる本発明の水処理方法にあっては、酸
添加等によって被処理水のpHを3〜6とすることによ
り、水中の微生物代謝物や微細粒子、コロイダル物質が
凝集して比較的大きな粒子状となり、これが膜濾過によ
り効率的に除去される。
In the water treatment method of the present invention, by setting the pH of the water to be treated to 3 to 6 by adding an acid or the like, microbial metabolites, fine particles, and colloidal substances in the water are aggregated and relatively dispersed. It becomes large particles, which are efficiently removed by membrane filtration.

【0018】例えば、pH調整をしない冷却水(pH
8.6、25℃)を0.45μmミリポアフィルターで
500mmHgの減圧濾過した場合、1Lの水を濾過す
るために要する濾過時間は415秒であるが、塩酸を加
えてpH5.0に調整した冷却水で同様の濾過を行う
と、1Lの水の濾過時間は251秒と大幅に短縮され
る。
For example, cooling water without pH adjustment (pH
8.6, 25 ° C.) is filtered through a 0.45 μm Millipore filter under reduced pressure of 500 mmHg. The filtration time required to filter 1 L of water is 415 seconds, but the pH is adjusted to 5.0 by adding hydrochloric acid and cooled. When the same filtration is performed with water, the filtration time of 1 L of water is greatly reduced to 251 seconds.

【0019】これは、冷却水中の微生物代謝物や微細粒
子、コロイダル物質が自己凝集し、ミリポアフィルター
表面で捕捉された結果である。
This is the result of the microbial metabolites, fine particles and colloidal substances in the cooling water self-aggregating and being captured on the surface of the Millipore filter.

【0020】一般に、冷却水中の有機物は、補給水すな
わち自然水、河川水、井水、市水、工水由来の天然有機
物、微生物代謝物、そして冷却水に添加される冷却水薬
品等と考えられる。このうち、天然有機物や微生物代謝
物である蛋白質等はpH3〜6に等電点を持つ物質が多
い。また、懸濁物質をその等電点付近とすると凝集する
等電点凝集現象はよく知られている。従って、pH3〜
6に調整することで、冷却水中の微生物代謝物や微細粒
子、コロイダル物質が自己凝集し、ミリポアフィルター
表面で効率的に捕捉されるようになる。
Generally, the organic matter in the cooling water is considered to be makeup water, ie, natural water, river water, well water, city water, natural organic matter derived from industrial water, microbial metabolites, and cooling water chemicals added to the cooling water. Can be Among them, many of natural organic substances and proteins, which are metabolites of microorganisms, have an isoelectric point at pH 3 to 6. Also, the isoelectric point aggregation phenomenon in which a suspended substance is aggregated when its isoelectric point is near the isoelectric point is well known. Therefore, pH 3 ~
By adjusting to 6, the metabolites of microbes, fine particles, and colloidal substances in the cooling water self-aggregate and are efficiently captured on the surface of the Millipore filter.

【0021】また、この被処理水は、pHを3〜6と酸
性にしたものであることから、RO膜濃縮水が、カルシ
ウムを全硬度で1000mg/L as CaCO
上、シリカ100mg/L以上となるように濃縮しても
炭酸カルシウムスケールの発生及びシリカによるスケー
ル障害が抑制される。このような作用機構により、カル
シウム及びシリカを含む水(循環冷却水以外の水でもよ
い。)であっても、長期にわたり安定して膜濾過処理及
びRO膜処理することができる。
Further, since the water to be treated is an acid having a pH of 3 to 6, the RO membrane concentrated water contains calcium in a total hardness of 1000 mg / L as CaCO 3 or more and silica 100 mg / L or more. The concentration of calcium carbonate scale and the scale hindrance due to silica are suppressed even when the concentration is made such that With such an action mechanism, even with water containing calcium and silica (water other than circulating cooling water may be used), membrane filtration and RO membrane treatment can be stably performed over a long period of time.

【0022】そして、本発明の方法で処理することによ
り、RO膜濃縮水をカルシウム全硬度2000〜500
0mg/L as CaCO、シリカ300〜800m
g/Lまで濃縮することが可能となった。
Then, the RO membrane concentrated water is treated with the method of the present invention so that the calcium total hardness is 2000 to 500.
0 mg / L as CaCO 3 , silica 300 to 800 m
It became possible to concentrate to g / L.

【0023】この水処理方法においても、被処理水にス
ケール防止剤及び/又はスライム防止剤を添加した後、
膜濾過を行うことが好ましい。
In this water treatment method, a scale inhibitor and / or an anti-slime agent is added to the water to be treated.
Preferably, membrane filtration is performed.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0025】まず、図1を参照して本発明のカルシウム
及びシリカを含む被処理水である循環冷却水の処理方法
及び処理装置の実施の形態を説明する。
First, an embodiment of a method and apparatus for treating circulating cooling water, which is water to be treated containing calcium and silica, according to the present invention will be described with reference to FIG.

【0026】図1は本発明の循環冷却水の処理方法及び
処理装置の実施の形態を示す系統図である。図中、1は
ストレーナ、2は脱炭酸塔であり、入口にpH計2Aを
備える。3は膜濾過装置、4は中間槽であり、pH計4
Aとレベルスイッチ4Bを備える。5はRO膜装置であ
る。V〜Vは開閉弁を示す。
FIG. 1 is a system diagram showing an embodiment of a method and an apparatus for treating circulating cooling water according to the present invention. In the figure, 1 is a strainer, 2 is a decarbonation tower, and has a pH meter 2A at the inlet. 3 is a membrane filtration device, 4 is an intermediate tank, and a pH meter 4
A and a level switch 4B. Reference numeral 5 denotes an RO membrane device. V 1 to V 5 indicate on-off valves.

【0027】冷却塔からのブロー水は、ストレーナ1で
除塵された後、スライム防止剤とpH調整のためのHC
l等の酸が添加され、その後脱炭酸塔2で脱炭酸処理さ
れる。
After the blow water from the cooling tower is dust-removed by the strainer 1, the slime inhibitor and the HC for pH adjustment are removed.
Then, an acid such as 1 is added, followed by decarbonation treatment in the decarbonation tower 2.

【0028】ここでスライム防止剤としては、次亜塩素
酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガ
ス、クロラミン、塩素化イソシアヌル酸塩などの塩素
剤、ジブロモヒダントインなどの臭素剤、DBNPA
(ジブロモニトリロプロピオンアシド)、MIT(メチ
ルイソチアゾロン)などの有機剤が適用できる。
Examples of the slime inhibitor include hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine and chlorinated isocyanurate, bromine agents such as dibromohydantoin, DBNPA
Organic agents such as (dibromonitrilopropionacid) and MIT (methylisothiazolone) can be applied.

【0029】なお、冷却水には熱交換器由来の銅、鉄な
どの重金属イオンが含まれている。酸化作用を持つ次亜
塩素酸塩と重金属イオンの存在下で酢酸セルロース系R
O膜が促進劣化を受けることがある。また、ポリアミド
系RO膜は次亜塩素酸塩との接触で劣化する。従って、
スライム防止剤としては有機剤が好ましい。次亜塩素酸
塩は膜劣化の原因になる可能性が高いため、できる限り
適用を避け、適用する場合には残留塩素を除去した後、
RO膜装置に通水するのが好ましい。
The cooling water contains heavy metal ions such as copper and iron from the heat exchanger. Cellulose acetate R in the presence of oxidizing hypochlorite and heavy metal ions
The O film may undergo accelerated deterioration. Further, the polyamide RO film is deteriorated by contact with hypochlorite. Therefore,
Organic agents are preferred as slime inhibitors. Hypochlorite is highly likely to cause membrane degradation, so avoid using it as much as possible, and if applicable, remove residual chlorine.
Preferably, water is passed through the RO membrane device.

【0030】スライム防止剤は一般に循環冷却水に添加
されていることから、スライム防止剤の添加は必ずしも
必要とされないが、処理系内のスライム障害を防止する
ためには、スライム防止剤を2〜10mg/L程度添加
することが望ましい。
Since the slime inhibitor is generally added to the circulating cooling water, it is not always necessary to add the slime inhibitor. However, in order to prevent slime damage in the treatment system, two or more slime inhibitors are used. It is desirable to add about 10 mg / L.

【0031】脱炭酸塔2の入口でのpH調整は、pHが
3〜6、好ましくはpHが4.5〜5.5の範囲となる
ように行う。このような酸性条件とすることにより、ブ
ロー水中のMアルカリ成分、即ち炭酸イオン(CO
2−)や重炭酸イオン(HCO )を炭酸ガスに変換
して脱炭酸塔2で効率的に除去し、後段のRO膜装置5
での炭酸成分に起因するスケール障害を有効に防止する
ことができると共に、RO膜装置5を透過する炭酸成分
を低減して処理水の水質を向上することができる。この
脱炭酸効率の面からはpHが低い方が望ましいが、過度
にpHが低いと、脱炭酸塔2の流出水のpHが下がり過
ぎ、RO膜装置5の前段においてpHを再調整する必要
が生じたり、腐食の問題が生じるため、調整pHはpH
3〜6、好ましくは4.5〜5.5とする。
The pH at the inlet of the decarbonation tower 2 is adjusted by adjusting the pH
3 to 6, preferably pH 4.5 to 5.5
Do so. Under such acidic conditions,
M alkaline component in raw water, namely, carbonate ion (CO3
2-) And bicarbonate ions (HCO 3 ) To carbon dioxide
And efficiently removed by the decarbonation tower 2, and the RO membrane device 5
Effectively prevent scale disturbance caused by carbonic acid components
And the carbonic acid component permeating the RO membrane device 5
And the quality of the treated water can be improved. this
A low pH is desirable in terms of decarboxylation efficiency, but excessive
If the pH is too low, the pH of the effluent of the
It is necessary to readjust the pH before the RO membrane device 5
PH may be adjusted or corrosion problem may occur.
3 to 6, preferably 4.5 to 5.5.

【0032】脱炭酸塔2の流出水は、ポンプPにより
懸濁物質除去手段としての膜濾過装置3に導入され、膜
濾過により、水中のSS(懸濁物質)が除去される。こ
の膜濾過装置3は、RO膜装置5の膜汚染の原因となる
水中の濁質やコロイダル成分を除去するためのものであ
り、MF(精密濾過)膜、UF(限界濾過)膜等、好ま
しくはUF膜を用いることができ、その膜型式にも特に
制限はなく、中空糸型、スパイラル型等の膜濾過装置を
採用することができる。また、濾過方式にも制限はな
く、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過
のいずれの方式も適用可能である。
The effluent water decarbonation tower 2 by a pump P 1 is introduced into the membrane filtering device 3 as a suspending substance removing device, by membrane filtration, water SS (suspended solids) are removed. The membrane filtration device 3 is for removing turbidity and colloidal components in water that cause membrane contamination of the RO membrane device 5, and is preferably a MF (microfiltration) membrane, a UF (ultrafiltration) membrane, or the like. Can use a UF membrane, and there is no particular limitation on the membrane type, and a membrane filtration device such as a hollow fiber type or a spiral type can be employed. The filtration method is not limited, and any of internal pressure filtration, external pressure filtration, cross-flow filtration, and total filtration can be used.

【0033】この膜濾過装置3の濃縮水は脱炭酸塔2に
返送され、透過水は必要に応じてpH調整剤、スケール
防止剤が添加された後、中間槽4に貯留される。
The concentrated water of the membrane filtration device 3 is returned to the decarbonation tower 2, and the permeated water is stored in the intermediate tank 4 after adding a pH adjuster and a scale inhibitor as required.

【0034】この膜濾過装置3では、膜の目詰りによる
膜性能の低下を防止するために定期的に逆洗を行う必要
がある。膜濾過時には、弁V,V,Vを開、弁V
,Vを閉として脱炭酸処理水を導入し、濃縮水及び
透過水を取り出すが、逆洗時には、弁V,V,V
を閉、弁V,Vを開として、逆洗空気を膜濾過装置
3の膜の透過側から逆流させ、逆洗排水を系外へ排出す
る。なお、この逆洗の間、ポンプPからの脱炭酸処理
水は脱炭酸塔2に返送する。
In the membrane filtration device 3, it is necessary to periodically perform backwashing in order to prevent a decrease in membrane performance due to clogging of the membrane. During membrane filtration, the valves V 1 , V 3 , V 5 are opened,
The 2, V 4 introduces decarbonated water is closed, but taken out retentate and permeate, during backwashing, the valve V 1, V 3, V 5
Is closed, the valves V 2 and V 4 are opened, and backwash air flows back from the permeate side of the membrane of the membrane filtration device 3 to discharge backwash wastewater to the outside of the system. Incidentally, during the backwash, decarbonated water from the pump P 1 is returned to decarbonation tower 2.

【0035】RO膜装置5の入口側でのpH調整は、シ
リカによるスケール障害を防止するために、pH3〜
6、好ましくは4.5〜5.5となるように行う。脱炭
酸処理して得られる脱炭酸処理水は、脱炭酸処理前に比
較してpHが変動する。このため、この中間槽4の入口
側では必要に応じてpH調整剤として塩酸、硫酸、硝酸
などの酸やNaOH、KOHなどのアルカリを添加す
る。RO膜装置5におけるスケール障害防止の面から
は、この調整pHは酸性にすることが好ましいが、過度
に調整pHが低いと機器や配管材質の腐食の原因となる
ので、上記pH範囲とする必要がある。
The pH adjustment at the inlet side of the RO membrane device 5 is performed at pH 3 to 3 in order to prevent scale disturbance due to silica.
6, preferably 4.5 to 5.5. The pH of the decarbonated water obtained by the decarboxylation treatment fluctuates as compared to before the decarboxylation treatment. For this reason, an acid such as hydrochloric acid, sulfuric acid or nitric acid, or an alkali such as NaOH or KOH is added as a pH adjuster on the inlet side of the intermediate tank 4 as necessary. From the viewpoint of preventing scale failure in the RO membrane device 5, it is preferable that the adjusted pH is acidic. However, if the adjusted pH is excessively low, it causes corrosion of equipment and piping materials. There is.

【0036】スケール防止剤は、例えばホスホン酸系、
ポリリン酸系、ポリアクリル酸系、ポリアクリルアミド
系等のスケール防止剤を用いることができるが、有機系
のスケール防止剤はRO膜装置でのファウリングの原因
となることがあるため、ホスホン酸系、ポリリン酸系の
スケール防止剤が好適に用いられる。
The scale inhibitor is, for example, a phosphonic acid type,
A polyphosphoric acid type, polyacrylic acid type, polyacrylamide type, etc. scale inhibitor can be used. However, since an organic scale inhibitor may cause fouling in an RO membrane device, a phosphonic acid type can be used. A polyphosphoric acid-based scale inhibitor is preferably used.

【0037】前述の如く、ブロー水等の循環冷却水に
は、既にスケール防止剤が添加されていることから、こ
のスケール防止剤の添加は必ずしも必要とされないが、
1〜20mg/L程度の添加により、RO膜装置5内で
のスケール生成をより確実に防止することができ好まし
い。なお、スケール防止剤は、RO膜装置5の前段で添
加されていれば良く、RO膜装置5の入口部に限らず、
脱炭酸塔2の入口側又は出口側その他、その添加箇所に
は特に制限はない。
As described above, since the scale inhibitor is already added to the circulating cooling water such as blow water, the addition of the scale inhibitor is not necessarily required.
The addition of about 1 to 20 mg / L is preferable because it can more reliably prevent scale formation in the RO membrane device 5. It is sufficient that the scale inhibitor is added before the RO membrane device 5 and is not limited to the inlet of the RO membrane device 5.
There is no particular limitation on the inlet side or outlet side of the decarbonation tower 2 and other places where the carbon dioxide is added.

【0038】中間槽4内の水はポンプPによりRO膜
装置5に導入され、RO膜処理され、濃縮水と透過水が
それぞれ系外へ排出される。
The water intermediate tank 4 is introduced into the RO membrane apparatus 5 by a pump P 2, it is RO membrane treatment, the permeate and concentrated water is discharged to the respective outside of the system.

【0039】このRO膜装置5のRO膜の種類として
は、特に制限はなく、処理する循環冷却水の水質(循環
冷却水系に供給される原水水質や循環冷却水系での濃縮
倍率)によって適宜決定されるが、脱塩率については8
5%以上、特に90%以上のものが好ましい。脱塩率が
これよりも悪いと、脱イオン効率が悪く、良好な水質の
処理水(透過水)を得ることができない。
The type of the RO membrane of the RO membrane device 5 is not particularly limited, and is appropriately determined depending on the quality of the circulating cooling water to be treated (the quality of raw water supplied to the circulating cooling water system and the concentration ratio in the circulating cooling water system). But the desalination rate is 8
It is preferably at least 5%, particularly preferably at least 90%. If the rate of desalination is lower than this, the deionization efficiency is poor and treated water (permeated water) of good water quality cannot be obtained.

【0040】なお、図1に示す装置において、膜濾過装
置3の逆洗排水、RO膜装置5の濃縮水及び透過水は、
必要に応じてpH調整された後系外へ排出される。
In the apparatus shown in FIG. 1, the backwash drainage of the membrane filtration device 3 and the concentrated water and permeated water of the RO membrane device 5 are:
After the pH is adjusted as required, it is discharged out of the system.

【0041】図1に示す装置は本発明の実施の形態の一
例であって、本発明はその要旨を超えない限り、何ら図
示のものに限定されるものではない。
The apparatus shown in FIG. 1 is an example of the embodiment of the present invention, and the present invention is not limited to the one shown in the drawings unless it exceeds the gist.

【0042】酸添加手段としては、被処理水導入ライン
やライン中に設けたラインミキサに直接或いは、別途設
けたpH調整槽に、酸を薬注ポンプ等により添加するこ
となどを挙げることができる。ここで使用される酸は特
に限定されるものではなく、塩酸、硫酸、硝酸などの無
機酸を好適に用いることができる。
Examples of the acid addition means include adding an acid to a treated water introduction line or a line mixer provided in the line directly or to a separately provided pH adjusting tank by a chemical injection pump or the like. . The acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid can be suitably used.

【0043】脱炭酸処理手段としては、通常の炭酸ガス
除去手段を用いることができ、脱炭酸塔等の他、脱気膜
や曝気塔などを採用することができる。
As the decarbonation treatment means, ordinary carbon dioxide gas removing means can be used, and in addition to a decarbonation tower or the like, a degassing membrane or an aeration tower can be adopted.

【0044】また、脱イオン処理手段としては、RO膜
装置の他、イオン交換樹脂や電気透析装置、連続式電気
脱イオン装置などを使用することができるが、冷却水は
通常塩濃度が高いこと、更に、処理水質の要求水質の点
で、RO膜装置を用いるのが最も好ましく、他の処理手
段は効率が悪いので不適当である。
As the deionizing means, an ion exchange resin, an electrodialyzer, a continuous electric deionizer or the like can be used in addition to the RO membrane device, but the cooling water usually has a high salt concentration. Further, from the viewpoint of the required water quality of the treated water, it is most preferable to use an RO membrane device, and other treatment means are inadequate because of their low efficiency.

【0045】pH調整手段としては、本実施例では脱炭
酸塔2の入口に酸添加手段を設け、脱炭酸塔2とRO膜
装置5との間にpH調整剤添加手段を設け、脱炭酸塔入
口側及びRO膜装置入口側のそれぞれで、各薬剤の添加
量を自動或いは手動によって調整することで実施してい
る。しかし、RO膜装置5の入口側のpH調整剤添加手
段を省略して、脱炭酸塔2の入口側での酸添加のみによ
り、脱炭酸塔2の入口側及びRO膜装置5の入口側のp
Hを共に上記pH範囲に収まるよう調整することも可能
である。
As the pH adjusting means, in this embodiment, an acid adding means is provided at the inlet of the decarbonating tower 2, and a pH adjusting agent adding means is provided between the decarbonating tower 2 and the RO membrane device 5. In each of the inlet side and the RO membrane device inlet side, the amount of each chemical added is adjusted automatically or manually. However, the pH adjusting agent addition means on the inlet side of the RO membrane device 5 is omitted, and only the acid addition on the inlet side of the decarbonation tower 2 allows the inlet side of the decarbonation tower 2 and the inlet side of the RO membrane device 5 to be added. p
It is also possible to adjust both H to fall within the above pH range.

【0046】SS除去手段としては、特に制限はなく、
膜濾過装置の他、カートリッジフィルタ等を用いること
もできる。
The SS removing means is not particularly limited.
In addition to the membrane filtration device, a cartridge filter or the like can be used.

【0047】このSS除去手段は、RO膜装置等の脱イ
オン処理手段の前段に設ければ良く、脱炭酸処理手段の
前でも後でも良い。図1に示す如く、脱炭酸処理手段で
ある脱炭酸塔と脱イオン処理手段であるRO膜装置との
間に設けた場合には、スケールの生成し易い循環冷却水
がそのまま流入することによる膜濾過装置等のSS除去
手段でのスケール障害の問題が解消されるという利点が
ある。
The SS removing means may be provided before the deionizing means such as an RO membrane device, and may be provided before or after the decarbonating means. As shown in FIG. 1, when provided between a decarbonation tower as a decarbonation treatment means and an RO membrane device as a deionization treatment means, the membrane is formed by flowing circulating cooling water that easily produces scale as it is. There is an advantage that the problem of scale disturbance in SS removal means such as a filtration device is solved.

【0048】また、脱炭酸処理手段の前段にSS除去手
段を設けた場合には、膜濾過装置等のSS除去手段の逆
洗排水等として系外へ排出される水量分のpH調整剤を
節減することができ、また、pH調整前の水が導入され
ることで、SS除去手段の構成材料を耐酸性のものにす
る必要がなくなるという利点がある。
When the SS removing means is provided before the decarbonation treatment means, the amount of the pH adjuster corresponding to the amount of water discharged to the outside of the system as backwashing drainage of the SS removing means such as a membrane filtration device can be reduced. In addition, by introducing water before pH adjustment, there is an advantage that it is not necessary to make the constituent material of the SS removing means acid-resistant.

【0049】このSS除去手段は、被処理水中のSSが
少ない場合には、これを省略することができるが、通常
の場合、後段のRO膜装置の安定運転のためには、これ
をRO膜装置の前段側に設けてSSを除去するのが好ま
しい。
This SS removing means can be omitted if the SS in the water to be treated is small, but in the normal case, it is necessary to use the RO film for stable operation of the RO membrane device at the subsequent stage. It is preferable to provide SS at the front side of the apparatus to remove SS.

【0050】なお、図1においては、冷却塔のブロー水
を原水として処理を行っているが、本発明で対象とする
被処理水はブロー水に限らず、本発明では循環冷却水系
の循環配管から循環冷却水の一部又は全部を引き抜いて
本発明に従って処理した後当該循環冷却水系に戻すよう
にしても良い。また、循環冷却水に限らず、カルシウム
及びシリカを含む被処理水であれば自然水、河川水、井
水、市水、工水にも適用可能である。
In FIG. 1, the processing is performed using the blow water of the cooling tower as raw water. However, the water to be treated in the present invention is not limited to the blow water, and in the present invention, the circulating piping of the circulating cooling water system is used. Alternatively, some or all of the circulating cooling water may be withdrawn and treated according to the present invention, and then returned to the circulating cooling water system. Further, the present invention is not limited to the circulating cooling water, and can be applied to natural water, river water, well water, city water, and industrial water as long as the water to be treated contains calcium and silica.

【0051】次に、図2を参照して本発明の水処理方法
の実施の形態を説明する。
Next, an embodiment of the water treatment method of the present invention will be described with reference to FIG.

【0052】図2は本発明の水処理方法の実施の形態を
示す系統図である。図中、11は濾過原水槽であり、p
H計11Aを備える。12は膜濾過装置、13は濾過水
槽、14はRO膜装置である。V〜V12は開閉弁を
示す。
FIG. 2 is a system diagram showing an embodiment of the water treatment method of the present invention. In the figure, 11 is a raw water tank for filtration, p
An H meter 11A is provided. 12 is a membrane filtration device, 13 is a filtration water tank, and 14 is an RO membrane device. V 6 ~V 12 shows the on-off valve.

【0053】冷却塔からのブロー水等の被処理水は、濾
過原水槽11に導入され、この濾過原水槽11でスライ
ム防止剤及びスケール防止剤とpH調整のためのHCl
等の酸が添加され、撹拌空気で均一に混合撹拌される。
なお、被処理水はその濾過原水槽11に導入してもよい
が、土砂、落ち葉などの大きな浮遊物の流入を防止する
ために、Y型ストレーナー等の簡易な濾過手段を設け、
これらを除去した後、濾過原水槽11に導入することが
好ましい。
The water to be treated, such as blow water from the cooling tower, is introduced into a raw water tank for filtration 11 where the slime inhibitor and the scale inhibitor and HCl for pH adjustment are added.
Are mixed and uniformly stirred with stirring air.
The water to be treated may be introduced into the filtration raw water tank 11, but in order to prevent inflow of large suspended matters such as earth and sand, fallen leaves, a simple filtration means such as a Y-type strainer is provided.
After removing these, it is preferable to introduce into the raw water tank 11 for filtration.

【0054】循環冷却水は一般にpH8〜9であるた
め、本発明では、酸、好ましくはHCl、HSO
の鉱酸を添加してpH3〜6、好ましくは4.5〜5.
5に調整する。このpH調整のための酸は、膜濾過装置
12の前段で添加すれば良く、濾過原水槽11に限ら
ず、給水又は送水のための配管に添加しても良いが、均
一に混合してpHを安定させるために濾過原水槽11
に、濾過原水槽11のpH計11Aの測定値に連動して
添加するのが好ましい。
Since the circulating cooling water generally has a pH of 8 to 9, in the present invention, an acid, preferably a mineral acid such as HCl or H 2 SO 4 is added to the solution to adjust the pH to 3 to 6, preferably 4.5 to 5.5.
Adjust to 5. The acid for adjusting the pH may be added at the previous stage of the membrane filtration device 12, and may be added not only to the raw water tank 11 but also to a pipe for water supply or water supply. Raw water tank 11 to stabilize
It is preferable to add the pH value to the raw water tank 11 in conjunction with the measured value of the pH meter 11A.

【0055】スケール防止剤としては、前述のホスホン
酸系、ポリアクリル酸系などが適用できるが、有機系の
スケール防止剤はRO膜装置でのファウリング原因とな
ることがあるため、ホスホン酸系、ポリリン酸系のスケ
ール防止剤を用いるのが好ましい。なお、前述の如く、
循環冷却水には既にスケール防止剤が添加されているの
で、本システムでのスケール防止剤の添加は必ずしも必
要ではないが、効果を確実なものにするためにごく少
量、例えば1〜50mg/L程度好ましくは1〜10m
g/Lを添加することが好ましい。即ち、スケール防止
剤はpHが変動した場合、処理の安定化に寄与するた
め、これを添加することが望ましい。
As the scale inhibitor, the above-mentioned phosphonic acid type, polyacrylic acid type and the like can be applied. However, since the organic type scale inhibitor may cause fouling in the RO membrane apparatus, the phosphonic acid type is used. It is preferable to use a polyphosphoric acid-based scale inhibitor. In addition, as mentioned above,
Since the scale inhibitor is already added to the circulating cooling water, the addition of the scale inhibitor in the present system is not always necessary, but a very small amount, for example, 1 to 50 mg / L, is required to ensure the effect. Preferably about 1 to 10m
It is preferable to add g / L. That is, when the pH changes, the scale inhibitor contributes to the stabilization of the treatment, and thus it is desirable to add it.

【0056】スライム防止剤としては、前述の如く、次
亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、
塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの
塩素剤、ジブロモヒダントインなどの臭素剤、DBNP
A、MITなどの有機剤が採用できるが、前記と同様の
理由からスライム防止剤としては有機剤が好ましい。な
お、循環冷却水には既にスライム防止剤が添加されてい
るので、スケール防止剤についても、その添加は必ずし
も必要ではない。しかし、スライム防止剤は消費、分解
され易いため、効果を確実なものにするためにごく少
量、例えば0.1〜10mg/L程度特に0.5〜5m
g/L程度添加するのが好ましい。
Examples of the slime inhibitor include a hypochlorite such as sodium hypochlorite (NaClO), as described above.
Chlorine agents such as chlorine gas, chloramine, chlorinated isocyanurate, bromine agents such as dibromohydantoin, DBNP
Organic agents such as A and MIT can be employed, but organic agents are preferable as the slime inhibitor for the same reason as described above. Since the slime inhibitor has already been added to the circulating cooling water, the addition of the scale inhibitor is not always necessary. However, since the slime inhibitor is easily consumed and decomposed, a very small amount, for example, about 0.1 to 10 mg / L, particularly about 0.5 to 5 m, is required to ensure the effect.
It is preferable to add about g / L.

【0057】図2においては、濾過原水槽11が空気撹
拌されている。この撹拌は必ずしも必要とされるもので
はないが、添加薬剤を均一に混合するためには、撹拌を
行うことが望ましい。濾過原水槽11での撹拌は、槽内
に気液界面を多く発生させて、水中の炭酸ガスを大気中
に放散させ易くするという効果もあり、好ましい。撹拌
手段としては特に制限はなく、空気撹拌の他、機械撹
拌、水流撹拌等であっても良いが、空気撹拌が簡便であ
る。
In FIG. 2, the raw water tank 11 is agitated by air. This stirring is not always necessary, but it is desirable to perform stirring in order to uniformly mix the added drug. Stirring in the raw filtration water tank 11 has an effect of generating a large amount of gas-liquid interface in the tank and facilitating the emission of carbon dioxide gas in water into the atmosphere, which is preferable. The stirring means is not particularly limited, and may be mechanical stirring, water stirring, or the like in addition to air stirring, but air stirring is simple.

【0058】濾過原水槽11でpH調整されると共に、
スケール防止剤及びスライム防止剤が添加された水は、
ポンプPにより膜濾過装置12に導入され、膜濾過に
より、水中のSS(懸濁物質)が除去される。この膜濾
過装置12は、RO膜装置14の膜汚染の原因となる水
中の濁質やコロイダル成分を除去するためのものであ
り、MF膜、UF膜等、好ましくはUF膜を用いること
ができ、その膜型式にも特に制限はなく、中空糸型、ス
パイラル型等の膜濾過装置を採用することができる。ま
た、濾過方式にも制限はなく、内圧濾過、外圧濾過、ク
ロスフロー濾過、全量濾過のいずれの方式も適用可能で
ある。
The pH is adjusted in the raw water tank 11, and
The water to which the scale inhibitor and the slime inhibitor are added,
The pump P 3 is introduced into the membrane filtering device 12, by membrane filtration, water SS (suspended solids) are removed. The membrane filtration device 12 is for removing turbidity and colloidal components in water that cause membrane contamination of the RO membrane device 14, and can use an MF membrane, a UF membrane, or the like, preferably a UF membrane. The type of the membrane is not particularly limited, and a hollow fiber type, a spiral type, or the like may be used. The filtration method is not limited, and any of internal pressure filtration, external pressure filtration, cross-flow filtration, and total filtration can be used.

【0059】この膜濾過装置12の濃縮水は濾過原水槽
11に返送され、透過水は濾過水槽13に送給される。
The concentrated water from the membrane filtration device 12 is returned to the raw filtration water tank 11, and the permeated water is supplied to the filtration water tank 13.

【0060】この膜濾過装置12では、膜の目詰りによ
る膜性能の低下を防止するために定期的に逆洗を行う必
要がある。膜濾過時には、弁V,V,Vを開、弁
,V10を閉として濾過原水槽11の水を導入し、
濃縮水及び透過水を取り出すが、逆洗時には、弁V
を閉、弁V,V10を開として、ポンプPから
の濾過原水と共に、逆洗空気を膜濾過装置12の膜の原
水側から導入し、逆洗排水を系外へ排出する。この逆洗
排水は、アルカリ剤を添加してpHを中性にした後放流
する。
In the membrane filtration device 12, it is necessary to perform regular backwashing in order to prevent a decrease in membrane performance due to clogging of the membrane. At the time of membrane filtration, the valves V 6 , V 7 , V 8 are opened, the valves V 9 , V 10 are closed, and water in the filtration raw water tank 11 is introduced.
Concentrated water and permeated water are taken out, but at the time of back washing, valves V 7 and
The V 8 closed, the valve V 9, V 10 is opened, the filtration of raw water from the pump P 3, by introducing a backwashing air from the raw water side of the membrane of the membrane filtering device 12, for discharging the backwash effluent out of the system . This backwash wastewater is discharged after neutralizing the pH by adding an alkaline agent.

【0061】本発明ではpH3〜6に調整した水を膜濾
過するため、前述の如く、この膜濾過装置12での膜濾
過性が著しく向上し、短時間で効率的な濾過を行える。
In the present invention, since the water adjusted to pH 3 to 6 is subjected to membrane filtration, as described above, the membrane filtration performance of the membrane filtration device 12 is significantly improved, and efficient filtration can be performed in a short time.

【0062】濾過水槽13の水はポンプPによりRO
膜装置14に導入されてRO膜処理され、透過水は必要
に応じてpH調整され、処理水として取り出される。R
O膜処理の濃縮水の一部は濾過水槽13に循環され、残
部はアルカリ剤が添加されてpH中性に調整された後、
放流される。この濃縮水の循環水量と放流水量は、弁V
とVの開度で調整される。
[0062] water filtration water tank 13 RO by the pump P 4
It is introduced into the membrane device 14 and subjected to RO membrane treatment. The pH of the permeated water is adjusted as required, and the permeated water is taken out as treated water. R
A part of the concentrated water of the O membrane treatment is circulated to the filtration water tank 13, and the rest is adjusted to pH neutral by adding an alkaline agent,
Released. The amount of circulating water and the amount of discharged water of this concentrated water are determined by the valve V
It is adjusted by the opening of 8 and V 9.

【0063】このRO膜装置5のRO膜の種類として
は、特に制限はなく、処理する循環冷却水の水質(循環
冷却水系に供給される原水水質や循環冷却水系での濃縮
倍率)によって適宜決定される。膜材質としては、酢酸
セルロース系、ポリアミド系等を用いることができ、脱
塩率については85%以上、特に90%以上のものが好
ましい。脱塩率がこれよりも低いと、脱イオン効率が悪
く、良好な水質の処理水(透過水)を得ることができな
い。
The type of the RO membrane of the RO membrane device 5 is not particularly limited, and is appropriately determined according to the quality of the circulating cooling water to be treated (the quality of raw water supplied to the circulating cooling water system and the concentration ratio in the circulating cooling water system). Is done. As the film material, a cellulose acetate type, a polyamide type, or the like can be used, and the desalting rate is preferably 85% or more, particularly preferably 90% or more. If the desalting rate is lower than this, the deionization efficiency is poor, and it is not possible to obtain treated water (permeated water) with good water quality.

【0064】本発明の水処理方法は、循環冷却水の処理
に好適に使用することができるが、カルシウム及びシリ
カを含む水であれば、自然水、河川水、井水、市水、工
水等にも適用可能である。カルシウム及びシリカスケー
ルを防止して安定にRO膜処理する本発明の効果を顕著
に得る上で、被処理水としては、カルシウムを全硬度で
30mg/L as CaCO以上、例えば100〜70
0mg/L、シリカを30mg/L以上、例えば50〜
150mg/L含む水が好適である。
The water treatment method of the present invention can be suitably used for treatment of circulating cooling water. However, any water containing calcium and silica can be used as natural water, river water, well water, city water, industrial water, or the like. And so on. In order to remarkably obtain the effect of the present invention of stably treating the RO film by preventing calcium and silica scale, the water to be treated may be calcium having a total hardness of 30 mg / L as CaCO 3 or more, for example, 100 to 70.
0 mg / L, silica is 30 mg / L or more, for example, 50 to 50 mg / L.
Water containing 150 mg / L is preferred.

【0065】そして、RO膜処理では、濃縮水はカルシ
ウムを全硬度で1000mg/L as CaCO以上、
例えば2000〜5000mg/L、シリカを100m
g/L以上、例えば300〜800mg/L以上で濃縮
運転することが好ましい。
In the RO membrane treatment, the concentrated water contains calcium in a total hardness of 1000 mg / L as CaCO 3 or more.
For example, 2000-5000 mg / L, 100 m of silica
It is preferable to perform the concentration operation at g / L or more, for example, 300 to 800 mg / L or more.

【0066】なお、本発明の水処理方法では、炭酸ガス
が残留し処理水(RO膜装置の透過水)の水質が若干低
下する(電気伝導率が大きくなる)傾向があるが、炭酸
ガスについては、前述の如く、濾過原水槽の撹拌で一部
除去することが可能であり、要求水質を十分に満足する
処理水を得ることができる。また、本発明の水処理方法
では、脱炭酸塔や脱気膜などの脱炭酸処理手段を用いて
も良い。
In the water treatment method of the present invention, carbon dioxide gas remains and the quality of treated water (permeated water of the RO membrane device) tends to slightly decrease (electric conductivity increases). Can be partially removed by stirring the raw water tank as described above, and treated water sufficiently satisfying the required water quality can be obtained. In the water treatment method of the present invention, a decarbonation means such as a decarbonation tower or a degassing membrane may be used.

【0067】[0067]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0068】実施例1 図1に示す装置により、冷却塔のブロー水(pH8.6
〜8.7,全硬度:約500mg/L as CaC
,シリカ:約100mg/L)を0.4m/hr
の処理量で処理した。
Example 1 Using the apparatus shown in FIG. 1, blow water (pH 8.6)
~ 8.7, total hardness: about 500mg / L as CaC
O 3 , silica: about 100 mg / L) to 0.4 m 3 / hr
The processing amount of

【0069】各装置の仕様は次の通りであり、脱炭酸塔
の入口において、スライム防止剤として12%NaCl
O溶液を5mg/L添加すると共に、HClを添加して
脱炭酸塔入口での被処理水をpH4.9±0.2に調整
した。
The specifications of each device are as follows. At the inlet of the decarbonation tower, 12% NaCl was used as a slime inhibitor.
O solution was added at 5 mg / L, and HCl was added to adjust the water to be treated at the inlet of the decarbonation tower to pH 4.9 ± 0.2.

【0070】また、RO膜処理する水には必要に応じて
NaOH等を添加してpH4.9±0.2に調整すると
共にスケール防止剤としてホスホン酸系スケール防止剤
を20mg/L添加した。 ストレーナ:バケット型,80メッシュ 脱炭酸塔 :直径200mm,高さ2700mm 膜濾過装置:0.2μmMF膜 RO膜装置:4インチRO膜(脱塩率94%)1本 運転圧力1.8〜2.1MPa
Further, the pH of the water for RO membrane treatment was adjusted to 4.9 ± 0.2 by adding NaOH or the like, if necessary, and a phosphonic acid-based scale inhibitor was added as a scale inhibitor at 20 mg / L. Strainer: bucket type, 80 mesh Decarbonation tower: diameter 200 mm, height 2700 mm Membrane filtration device: 0.2 μm F membrane RO membrane device: one 4-inch RO membrane (94% desalination rate) Operating pressure 1.8 to 2. 1MPa

【0071】その結果、RO膜装置の透過水量は約2L
/minで100時間の連続運転後も殆ど透過水量の低
下を引き起こすことなく、安定な処理が可能であった。
As a result, the amount of permeated water of the RO membrane device was about 2 L
Even after 100 hours of continuous operation at / min, stable treatment was possible with almost no decrease in the amount of permeated water.

【0072】なお、RO膜装置の給水、濃縮水及び透過
水(処理水)の水質は表1に示す通りであり、補給水と
して再利用可能な水を得ることができた。
The water quality of the feed water, concentrated water and permeated water (treated water) of the RO membrane device is as shown in Table 1, and reusable water could be obtained as makeup water.

【0073】比較例1 実施例1の状態から脱酸塔入口のHCl添加を中止した
ところ、RO膜装置における透過水量は、HCl添加時
の2L/minから、約20時間後には1.5L/mi
nに大幅に低下し、その後2〜3時間で透過水量は1L
/minとなり、運転を継続することができなくなっ
た。
Comparative Example 1 When the addition of HCl at the inlet of the deoxidizing tower was stopped from the state of Example 1, the amount of permeated water in the RO membrane apparatus was changed from 2 L / min at the time of adding HCl to 1.5 L / min after about 20 hours. mi
n, and after 2 to 3 hours, the amount of permeated water is 1L
/ Min, and the operation could not be continued.

【0074】[0074]

【表1】 [Table 1]

【0075】実施例2 図2に示す装置により、冷却塔のブロー水(pH8.7
〜8.8,全硬度:約500mg/L as CaC
,シリカ:約100mg/L)を0.3m/hr
の処理量で処理した。
Example 2 Using the apparatus shown in FIG. 2, blow water (pH 8.7)
~ 8.8, total hardness: about 500mg / L as CaC
O 3 , silica: about 100 mg / L) to 0.3 m 3 / hr
The processing amount of

【0076】各装置の仕様は次の通りである。なお、p
H調整の酸にはHClを使用し、pH4.5〜5.5に
調整した。スケール防止剤にはホスホン酸系スケール防
止剤4mg/Lを、スライム防止剤にはメチルイソチア
ゾロン系スライム防止剤1mg/Lを濾過原水槽に添加
した。 濾過原水槽:容量200L、撹拌は原水流撹拌 膜濾過装置:公称孔径0.02μm、外圧濾過型中空糸
膜(クラレ(株)SF−3100−PV)1本 濾過水槽 :容量100L RO膜装置:合成高分子系スパイラル型RO膜(脱塩率
99%)(栗田工業(株)KROA98−4HP)1本 運転圧力1.3〜1.4MPa、水回収率80%
The specifications of each device are as follows. Note that p
HCl was used as an acid for adjusting H, and the pH was adjusted to 4.5 to 5.5. 4 mg / L of a phosphonic acid-based scale inhibitor as a scale inhibitor and 1 mg / L of a methylisothiazolone-based slime inhibitor as a slime inhibitor were added to a raw water filtration tank. Filtration raw water tank: 200 L capacity, raw water flow stirring Membrane filtration device: Nominal pore diameter 0.02 μm, external pressure filtration type hollow fiber membrane (Kuraray Co., Ltd. SF-3100-PV) 1 Filtration water tank: 100 L RO membrane device: Synthetic polymer-based spiral RO membrane (99% desalting rate) (KROTA 98-4HP, Kurita Water Industries Co., Ltd.) Operating pressure: 1.3-1.4 MPa, water recovery rate: 80%

【0077】その結果、RO膜装置は透過水量約28L
/minで17日間安定した運転が可能であり、スケー
ル障害やスライム障害は発生しなかった。なお、RO膜
装置の給水、濃縮水及び透過水の水質は表2に示す通り
であり、補給水として再利用可能な水を得ることができ
た。
As a result, the RO membrane device has a permeated water volume of about 28 L
At / min, stable operation was possible for 17 days, and no scale failure or slime failure occurred. The quality of water supplied, concentrated water, and permeated water of the RO membrane device is as shown in Table 2, and reusable water was obtained as makeup water.

【0078】比較例2 実施例2において、HClによるpH調整値を6.2〜
7.0としたこと以外は同様にして処理を行った。
Comparative Example 2 In Example 2, the pH adjusted by HCl was adjusted to 6.2 to
The processing was performed in the same manner except that 7.0 was set.

【0079】その結果、17時間後にはRO膜装置の透
過水量は1.0L/minまで低下し、透過水質も悪化
した。RO膜装置の給水、濃縮水及び透過水の水質は表
2に示す通りであった。
As a result, after 17 hours, the amount of permeated water of the RO membrane device was reduced to 1.0 L / min, and the quality of permeated water was also deteriorated. The water quality of the feed water, concentrated water and permeated water of the RO membrane device was as shown in Table 2.

【0080】実施例3 実施例2において、全硬度約600mg/L as CaC
、シリカ約130mg/Lの冷却水ブロー水を用い
て、HClによるpH調整値を約4程度にしたこと以外
は同様にして処理を行った。表2に示す如く、本実施例
においても実施例1と同様安定した処理が可能であっ
た。
Example 3 In Example 2, the total hardness was about 600 mg / L as CaC.
The treatment was performed in the same manner except that the pH adjusted value with HCl was adjusted to about 4 by using cooling water blow water of about 130 mg / L of O 3 and silica. As shown in Table 2, stable processing was possible in this example as in Example 1.

【0081】[0081]

【表2】 [Table 2]

【0082】この結果から、単に膜濾過水をRO膜処理
するだけでは、安定処理を継続し得ないことがわかる。
From the results, it can be understood that the stable treatment cannot be continued simply by treating the membrane filtered water with the RO membrane.

【0083】また、比較例2において、透過水量の低下
は炭酸カルシウムの析出をきっかけとしたシリカスケー
ル析出が原因と考えられる。比較例2の実験の後に膜エ
レメントを解体し、SEM−EDX分析を行った結果、
膜表面は粉末状の析出物で覆われており、この析出物は
ほぼ100%シリカであった。
In Comparative Example 2, the decrease in the amount of permeated water is considered to be caused by the precipitation of silica scale triggered by the precipitation of calcium carbonate. As a result of disassembling the membrane element after the experiment of Comparative Example 2 and performing SEM-EDX analysis,
The film surface was covered with a powdery precipitate, which was almost 100% silica.

【0084】[0084]

【発明の効果】以上詳述した通り、本発明の循環冷却水
等のカルシウム及びシリカを含む被処理水の処理方法及
び処理装置によれば、被処理水をpH3〜6の条件下で
脱炭酸処理した後、pH3〜6の条件下で脱イオン処理
することにより、従来、回収、再利用されずに排水とし
て排出されていた循環冷却水系の冷却塔のブロー水等
を、多量の薬品を必要とすることなく、簡易な装置で安
定かつ安価に処理して再利用することが可能となり、循
環冷却水系の補給水量を大幅に低減することが可能とな
る。
As described above in detail, according to the method and apparatus for treating water to be treated containing calcium and silica such as circulating cooling water of the present invention, the water to be treated is decarbonated under the condition of pH 3 to 6. After the treatment, a large amount of chemicals are required by performing deionization treatment under the condition of pH 3 to 6, which removes the blow water from the cooling tower of the circulating cooling water system, which was conventionally discharged as wastewater without being collected and reused. It is possible to stably and inexpensively treat and reuse the waste water with a simple device, and to significantly reduce the amount of makeup water in the circulating cooling water system.

【0085】また、本発明の水処理方法によれば、カル
シウム及びシリカを含む水をpH3〜6の条件下で膜濾
過処理した後、RO膜処理することにより、より簡素な
システムでRO膜装置のスケール障害を防止して長期に
わたり安定な水処理運転を行うことが可能となる。
Further, according to the water treatment method of the present invention, the water containing calcium and silica is subjected to membrane filtration under the condition of pH 3 to 6, and then subjected to RO membrane treatment, so that the RO membrane apparatus can be provided with a simpler system. It is possible to perform a stable water treatment operation for a long period of time by preventing scale disturbance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の循環冷却水の処理方法及び処理装置の
実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method and an apparatus for treating circulating cooling water of the present invention.

【図2】本発明の水処理方法の実施の形態を示す系統図
である。
FIG. 2 is a system diagram showing an embodiment of the water treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 ストレーナ 2 脱炭酸塔 3 膜濾過装置 4 中間槽 5 RO膜装置 11 濾過原水槽 12 膜濾過装置 13 濾過水槽 14 RO膜装置 DESCRIPTION OF SYMBOLS 1 Strainer 2 Decarbonation tower 3 Membrane filtration device 4 Intermediate tank 5 RO membrane device 11 Filtration raw water tank 12 Membrane filtration device 13 Filtration water tank 14 RO membrane device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531K 531N 531P 532 532C 532D 532H 560 560E 1/58 1/58 H 5/00 610 5/00 610F 620 620C 5/10 620 5/10 620A 620B (72)発明者 鶴口 博敏 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 新井 伸説 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D006 GA03 GA06 GA07 HA01 HA61 KA02 KA52 KA56 KA57 KD23 KD24 KD30 MA01 MA04 PB07 PB23 4D038 AA05 AB57 BA04 BB13 BB17──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531K 531N 531P 532 532C 532D 532H 560 560E 1/58 1/58 H 5 / 00 610 5/00 610F 620 620C 5/10 620 5/10 620A 620B (72) Inventor Hirotoshi Tsuruguchi 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd. (72) Inventor Noshinori Arai F-term (reference) 4-7 Nishi Shinjuku 3-chome, Shinjuku-ku, Tokyo 4D006 GA03 GA06 GA07 HA01 HA61 KA02 KA52 KA56 KA57 KD23 KD24 KD30 MA01 MA04 PB07 PB23 4D038 AA05 AB57 BA04 BB13 BB17

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 カルシウム及びシリカを含む被処理水を
pH3〜6の条件下で脱炭酸処理した後、更にpH3〜
6の条件下で脱イオン処理することを特徴とする水処理
方法。
Claims: 1. A water to be treated containing calcium and silica is subjected to a decarboxylation treatment under a condition of a pH of 3 to 6, and then a pH of 3 to 6.
6. A water treatment method, comprising performing a deionization treatment under the conditions of 6.
【請求項2】 カルシウム及びシリカを含む被処理水に
スケール防止剤を添加することを特徴とする請求項1の
水処理方法。
2. The water treatment method according to claim 1, wherein a scale inhibitor is added to the water to be treated containing calcium and silica.
【請求項3】 脱イオン処理する前に、懸濁物質除去処
理を行うことを特徴とする請求項1又は2に記載の水処
理方法。
3. The water treatment method according to claim 1, wherein a suspended substance removal treatment is performed before the deionization treatment.
【請求項4】 カルシウム及びシリカを含む被処理水の
処理装置であって、酸添加手段、脱炭酸処理手段、脱イ
オン処理手段が配設されると共に、該脱炭酸処理手段及
び該脱イオン処理手段に導入される被処理水をpH3〜
6に調整するためのpH調整手段を設けてなる水処理装
置。
4. An apparatus for treating water to be treated containing calcium and silica, comprising an acid addition means, a decarbonation treatment means, and a deionization treatment means, wherein said decarbonation treatment means and said deionization treatment are provided. The water to be treated introduced into the means has a pH of 3 to
A water treatment apparatus provided with a pH adjusting means for adjusting the pH to 6.
【請求項5】 更にスケール防止剤添加手段を設けたこ
とを特徴とする請求項4の水処理装置。
5. The water treatment apparatus according to claim 4, further comprising means for adding a scale inhibitor.
【請求項6】 更に脱イオン処理手段よりも前段に懸濁
物質除去手段を設けたことを特徴とする請求項4又は5
に記載の水処理装置。
6. The apparatus according to claim 4, further comprising means for removing suspended substances prior to the deionizing means.
A water treatment apparatus according to item 1.
【請求項7】 カルシウム及びシリカを含む被処理水を
pH3〜6の条件下で膜濾過処理した後、逆浸透膜処理
することを特徴とする水処理方法。
7. A water treatment method comprising subjecting water to be treated containing calcium and silica to membrane filtration under conditions of pH 3 to 6, followed by reverse osmosis membrane treatment.
【請求項8】 前記被処理水にスケール防止剤及び/又
はスライム防止剤を添加した後、膜濾過処理することを
特徴とする請求項7に記載の水処理方法。
8. The water treatment method according to claim 7, wherein the water to be treated is added with a scale inhibitor and / or a slime inhibitor and then subjected to a membrane filtration treatment.
【請求項9】 カルシウム及びシリカを含む被処理水が
循環冷却水である請求項1,2,3,7又は8に記載の
水処理方法。
9. The water treatment method according to claim 1, wherein the water to be treated containing calcium and silica is circulating cooling water.
【請求項10】 カルシウム及びシリカを含む被処理水
が循環冷却水である請求項4,5又は6に記載の水処理
方法。
10. The water treatment method according to claim 4, wherein the water to be treated containing calcium and silica is circulating cooling water.
JP2001127946A 2000-05-02 2001-04-25 Circulating cooling water treatment method and treatment apparatus Expired - Fee Related JP3870712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127946A JP3870712B2 (en) 2000-05-02 2001-04-25 Circulating cooling water treatment method and treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-133658 2000-05-02
JP2000133658 2000-05-02
JP2001127946A JP3870712B2 (en) 2000-05-02 2001-04-25 Circulating cooling water treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2002018437A true JP2002018437A (en) 2002-01-22
JP3870712B2 JP3870712B2 (en) 2007-01-24

Family

ID=26591436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127946A Expired - Fee Related JP3870712B2 (en) 2000-05-02 2001-04-25 Circulating cooling water treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3870712B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2003275761A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Treating method and treating apparatus for cooling water
WO2006009185A1 (en) * 2004-07-16 2006-01-26 Kurita Water Industries Ltd. Desilicating apparatus and method of desilicating
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
WO2007148954A1 (en) 2006-06-21 2007-12-27 Diaz Gonzales Alcocer Juan Jor Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
KR100853205B1 (en) 2007-03-15 2008-08-20 제주특별자치도개발공사 Method for preparation of drinking-water containing vanadium in high concentration and apparatus therefor
JP2008229599A (en) * 2007-03-19 2008-10-02 Koshimizucho Nogyo Kyodo Kumiai Drainage treatment method in potato starch production process
JP2011156483A (en) * 2010-02-01 2011-08-18 Asahi Kasei Chemicals Corp Water recovery system
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
JP2012200696A (en) * 2011-03-28 2012-10-22 Panasonic Corp Desalting method and desalting apparatus
WO2015001886A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
WO2015178161A1 (en) * 2014-05-19 2015-11-26 栗田工業株式会社 Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water
FR3025509A1 (en) * 2014-09-05 2016-03-11 Degremont PRE-TREATMENT OF HOT WATER
JP2016180517A (en) * 2015-03-23 2016-10-13 ダイセン・メンブレン・システムズ株式会社 Operation method of cooling system
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2016193417A (en) * 2015-04-01 2016-11-17 栗田工業株式会社 Method and device for injecting chemical into open-type circulating cooling water system
WO2019088304A1 (en) * 2017-11-06 2019-05-09 Wota株式会社 Water purification system
CN112340872A (en) * 2020-09-29 2021-02-09 中核四0四有限公司 Method for improving alkalinity removal effect of single-stage reverse osmosis desalination process
US11130694B2 (en) 2015-07-09 2021-09-28 Kurita Water Industries Ltd. Recovery method for discharged cooling water
TWI757581B (en) * 2018-03-14 2022-03-11 日商栗田工業股份有限公司 water treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987993A (en) * 2015-05-27 2016-10-05 庞浩辉 Automatic integrated device integrating water purifier and water quality detector

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method
JP2003275761A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Treating method and treating apparatus for cooling water
WO2006009185A1 (en) * 2004-07-16 2006-01-26 Kurita Water Industries Ltd. Desilicating apparatus and method of desilicating
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
WO2007148954A1 (en) 2006-06-21 2007-12-27 Diaz Gonzales Alcocer Juan Jor Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
KR100853205B1 (en) 2007-03-15 2008-08-20 제주특별자치도개발공사 Method for preparation of drinking-water containing vanadium in high concentration and apparatus therefor
JP2008229599A (en) * 2007-03-19 2008-10-02 Koshimizucho Nogyo Kyodo Kumiai Drainage treatment method in potato starch production process
JP2011156483A (en) * 2010-02-01 2011-08-18 Asahi Kasei Chemicals Corp Water recovery system
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
JP2012200696A (en) * 2011-03-28 2012-10-22 Panasonic Corp Desalting method and desalting apparatus
EP3002257A4 (en) * 2013-07-05 2016-06-22 Mitsubishi Heavy Ind Ltd Water treatment method, and water treatment system
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
CN105358492A (en) * 2013-07-05 2016-02-24 三菱重工业株式会社 Water treatment method, and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
EP3002257A1 (en) * 2013-07-05 2016-04-06 Mitsubishi Heavy Industries, Ltd. Water treatment method, and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
WO2015001886A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
EP3002259A4 (en) * 2013-07-05 2016-08-03 Mitsubishi Heavy Ind Ltd Water treatment method, and water treatment system
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
JP6038318B2 (en) * 2013-07-05 2016-12-07 三菱重工業株式会社 Water treatment system and method, cooling facility, power generation facility
AU2014285449B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
JP2015217353A (en) * 2014-05-19 2015-12-07 栗田工業株式会社 Concentration adjustment method of cooling water treatment agent in circulating cooling water system, recovery system of discharged cooling water, and water treatment facility
CN106414344A (en) * 2014-05-19 2017-02-15 栗田工业株式会社 Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water
WO2015178161A1 (en) * 2014-05-19 2015-11-26 栗田工業株式会社 Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water
CN106715337A (en) * 2014-09-05 2017-05-24 苏伊士国际公司 Pre-treatment of supersaturated warm water
WO2016035030A3 (en) * 2014-09-05 2016-05-26 Degremont Pre-treatment of supersaturated warm water
FR3025509A1 (en) * 2014-09-05 2016-03-11 Degremont PRE-TREATMENT OF HOT WATER
JP2016180517A (en) * 2015-03-23 2016-10-13 ダイセン・メンブレン・システムズ株式会社 Operation method of cooling system
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2016193417A (en) * 2015-04-01 2016-11-17 栗田工業株式会社 Method and device for injecting chemical into open-type circulating cooling water system
US11130694B2 (en) 2015-07-09 2021-09-28 Kurita Water Industries Ltd. Recovery method for discharged cooling water
WO2019088304A1 (en) * 2017-11-06 2019-05-09 Wota株式会社 Water purification system
JPWO2019088304A1 (en) * 2017-11-06 2020-11-26 Wota株式会社 Water purification system
JP7122761B2 (en) 2017-11-06 2022-08-22 Wota株式会社 water purification system
TWI757581B (en) * 2018-03-14 2022-03-11 日商栗田工業股份有限公司 water treatment device
CN112340872A (en) * 2020-09-29 2021-02-09 中核四0四有限公司 Method for improving alkalinity removal effect of single-stage reverse osmosis desalination process

Also Published As

Publication number Publication date
JP3870712B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP2002018437A (en) Treating method and treating device of water containing calcium and silica
JP5567468B2 (en) Method and apparatus for treating organic wastewater
JP2003300069A (en) Fresh water generating method and fresh water generator
JP4241684B2 (en) Membrane module cleaning method
JP2008229418A (en) Method and apparatus for industrial water treatment
US20190135671A1 (en) Systems and Methods for Multi-Stage Fluid Separation
JP3903746B2 (en) Circulating cooling water treatment method
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP2001191086A (en) Water treating apparatus
JP3788145B2 (en) Water treatment method and water treatment apparatus
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
JP3137831B2 (en) Membrane processing equipment
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP4576760B2 (en) Circulating cooling water treatment method
JP4187316B2 (en) Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method
JP2010091125A (en) Water heater
CN114538693B (en) Cleaning agent regeneration method for rust-proof surface cleaning process
JP2011056411A (en) System and method for desalination of water to be treated
JP5237164B2 (en) Filtration membrane cleaning method
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP2005246158A (en) Method and system for desalinating seawater
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JPH11277060A (en) Apparatus for treating water containing manganese
JP7074156B2 (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3870712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees