JP2002011339A - High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid - Google Patents

High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid

Info

Publication number
JP2002011339A
JP2002011339A JP2000195382A JP2000195382A JP2002011339A JP 2002011339 A JP2002011339 A JP 2002011339A JP 2000195382 A JP2000195382 A JP 2000195382A JP 2000195382 A JP2000195382 A JP 2000195382A JP 2002011339 A JP2002011339 A JP 2002011339A
Authority
JP
Japan
Prior art keywords
flow path
fluid
reaction
temperature
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000195382A
Other languages
Japanese (ja)
Inventor
Satoshi Hirata
悟史 平田
Keiichi Komai
啓一 駒井
Noriaki Izumi
憲明 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000195382A priority Critical patent/JP2002011339A/en
Publication of JP2002011339A publication Critical patent/JP2002011339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently perform chemical reaction in a fluid under a supercrytical/ subcritical condition. SOLUTION: A reaction container 10 is divided into an inside flow channel 14 and an outside flow channel 16 by a partition wall member 12 and a fluid flows through the inside flow channel 14 upwardly from the bottom part of the inside flow channel 14 to enter the outside flow channel 16 to flow through the outside flow channel 16 downwardly. A fluid becoming a solvent of reaction is heated under pressure to be supplied to the supply pipe 36 of the inside flow channel, and a reaction material and a reagent regulating a reaction speed are supplied to a supply pipe 48 to perform chemical reaction in the inside flow channel 14. A fluid of which the temperature is lower than that of the fluid in the flow channel is supplied to the gap between the inside flow channel 14 and the outside flow channel 16 to lower the temperature of the fluid. During the flow of the fluid through the outside flow channel 16, the reaction product dissolved in the fluid is precipitated and the precipitated substance is dissolved in the fluid. The gas generated by reaction is recovered from an upper outflow port 62. The fluid used in the reaction is recovered from a lower outflow port 76 while held under pressure to be circulated and used. The reaction product is recovered from a bottom outflow port 82.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界及び/又は
亜臨界条件の流体中で、物質の化学反応を行うプロセス
に使用して好適な高温高圧反応容器による反応方法及び
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction method and apparatus using a high-temperature high-pressure reactor suitable for use in a process for performing a chemical reaction of a substance in a fluid under supercritical and / or subcritical conditions. .

【0002】[0002]

【従来の技術】超臨界条件及び/又は亜臨界条件の流体
中で行われる物質の化学反応の一例として、超臨界条件
の水によってPCB、ダイオキシン類などの有害有機化
合物、下水汚泥、焼却灰などの有機性廃棄物を酸化分解
処理するプロセスがある。また、他の例として、超臨界
条件又は亜臨界条件の水によって石炭、バイオマスなど
の有機化合物を分解し、水素、メタン、エタン、一酸化
炭素などのガスと、低分子化合物を回収するプロセスが
ある。また、他の例として、超臨界条件の水によってプ
ラスチック、樹脂等を分解し、水素、メタン、エタン、
一酸化炭素などのガスと、化学工業原料又は燃料となる
モノマーを回収するプロセスがある。また、他の例とし
て、触媒、溶剤に濃硫酸を使用することなく、超臨界条
件の水の中で、シクロヘキサンからナイロン繊維の原料
であるε−カプロラクタムを合成するプロセスがある。
また、他の例として、超臨界条件のメタノール中で、樹
脂を生成、再合成反応するプロセスがある。
2. Description of the Related Art As an example of a chemical reaction of a substance performed in a fluid under supercritical and / or subcritical conditions, harmful organic compounds such as PCBs and dioxins, sewage sludge, incinerated ash, etc. are produced by supercritical water. There is a process of oxidatively decomposing organic waste. Another example is a process in which organic compounds such as coal and biomass are decomposed by supercritical or subcritical water to recover gases such as hydrogen, methane, ethane, and carbon monoxide, and low molecular compounds. is there. As another example, plastics, resins, etc. are decomposed by water under supercritical conditions, and hydrogen, methane, ethane,
There is a process for recovering a gas such as carbon monoxide and a monomer used as a raw material or fuel for the chemical industry. Another example is a process for synthesizing ε-caprolactam, which is a raw material of nylon fibers, from cyclohexane in water under supercritical conditions without using concentrated sulfuric acid as a catalyst and a solvent.
Further, as another example, there is a process in which a resin is formed and resynthesized in methanol under supercritical conditions.

【0003】ここに例示したものの他に、超臨界条件及
び/又は亜臨界条件の流体中で行われる物質の化学反応
としては、さまざまなものが考えられる。なお、超臨界
条件とは、物質ごとに決まっている臨界点の温度、圧力
よりも、温度、圧力ともに又はいずれか一方が高い条件
にあることをいう。例えば、水の超臨界条件は、温度3
74℃以上、圧力22.1MPa以上の温度、圧力を満た
す条件を指す。また、亜臨界条件とは、物質ごとに決ま
っている超臨界条件よりも、温度、圧力の両方、又はい
ずれか一方が、超臨界条件よりも低い場合の条件を指
す。例えば、温度が臨界点温度より0〜30℃、圧力が
臨界点圧力より0〜5MPa低い条件を、亜臨界状態とい
う。
[0003] In addition to those exemplified here, various chemical reactions of substances performed in a fluid under supercritical and / or subcritical conditions can be considered. Note that the supercritical condition means that the temperature and / or the pressure are higher than the temperature and the pressure at the critical point determined for each substance. For example, the supercritical condition of water is temperature 3
It refers to conditions that satisfy the temperature and pressure of 74 ° C. or higher and the pressure of 22.1 MPa or higher. The subcritical condition refers to a condition in which both or one of the temperature and the pressure is lower than the supercritical condition, which is determined for each substance. For example, a condition in which the temperature is 0 to 30 ° C. below the critical point temperature and the pressure is 0 to 5 MPa lower than the critical point pressure is called a subcritical state.

【0004】有害有機化合物の分解処理においては、2
00〜300℃程度の温度、10MPa程度の熱水中に、
酸化剤として空気もしくは酸素を送り込んで行う湿式酸
化法が一般的に行われている。しかし、下水汚泥、PC
B、ダイオキシン類など、難分解性の有機化合物の場合
は、短時間に十分な分解が得られないことが問題となっ
ていた。このような分解の程度に係る問題点を改善する
方法として、水の超臨界条件(温度374℃以上、圧力
22.1MPa以上)で酸化剤を作用させて分解する超臨
界水酸化法が近年注目され、技術開発が進められてい
る。その一例として、特公平1−38532号公報に超
臨界水酸化法の技術が開示されている。また、この分解
処理に用いる容器装置としては、特開平7−31398
7号公報、特開平10−15566号公報、特開平10
−137775号公報をはじめとしたさまざまな形状の
容器が開示されている。超臨界水を用いる酸化反応で問
題となるのは、高温高圧容器の内側の材質である。すな
わち、高温高圧容器内側の材質には、超臨界温度に耐え
る耐熱性、超臨界圧力に耐える耐圧性、及び容器内部で
起こる酸化反応に対する耐腐蝕性が同時に要求され、イ
ンコネル等の耐熱材料の表面に、アルミナ、窒化ケイ
素、炭化ケイ素等のセラミックスの溶射もしくはライニ
ング等を施すことにより、耐蝕層を形成することが行わ
れている。
In the decomposition treatment of harmful organic compounds, 2
In hot water of about 10MPa at a temperature of about 00 to 300 ° C,
A wet oxidation method in which air or oxygen is supplied as an oxidizing agent is generally performed. However, sewage sludge, PC
In the case of hardly decomposable organic compounds such as B and dioxins, there has been a problem that sufficient decomposition cannot be obtained in a short time. In recent years, as a method for improving such a problem relating to the degree of decomposition, a supercritical water oxidation method in which an oxidizing agent is acted on under supercritical conditions of water (temperature of 374 ° C. or more, pressure of 22.1 MPa or more) to decompose is attracting attention. The technology is being developed. As an example, Japanese Patent Publication No. 38532/1993 discloses a technique of a supercritical water oxidation method. Further, as a container device used for this decomposition treatment, JP-A-7-31398
7, JP-A-10-15566, JP-A-10-15
Various shapes of containers are disclosed, such as Japanese Patent Publication No. 137775. The problem with the oxidation reaction using supercritical water is the material inside the high-temperature and high-pressure vessel. In other words, the material inside the high-temperature and high-pressure container is required to have heat resistance to withstand supercritical temperature, pressure resistance to withstand supercritical pressure, and corrosion resistance to oxidation reaction occurring inside the container at the same time. A corrosion-resistant layer is formed by spraying or lining ceramics such as alumina, silicon nitride, and silicon carbide.

【0005】超臨界条件又は亜臨界条件の水によって石
炭を分解して軽質化するとともに、水素を生産するプロ
セスについては、特開平10−237456号公報にそ
の方法、特開平10−237458号公報に基本的なプ
ロセスが開示されているものの、プロセスに用いる高温
高圧容器についてはほとんど開示されていない。また、
超臨界条件又は亜臨界条件の水によってバイオマス、有
機性廃棄物を分解して、水素、メタン、エタン、一酸化
炭素などのガスや、低分子化合物を生成するプロセスに
ついても、基本的なプロセスは開示されているものの、
高温高圧容器に関してはほとんど開示されていない。
A process for decomposing coal by supercritical or subcritical water to lighten it and producing hydrogen is described in Japanese Patent Application Laid-Open No. Hei 10-237456 and a method disclosed in Japanese Patent Application Laid-Open No. Hei 10-237458. Although the basic process is disclosed, there is little disclosure about the high-temperature and high-pressure vessel used in the process. Also,
The basic processes for decomposing biomass and organic waste with water at supercritical or subcritical conditions to produce gases such as hydrogen, methane, ethane, and carbon monoxide, and low-molecular compounds are also basic processes. Although disclosed,
Almost no disclosure is made of high-temperature and high-pressure containers.

【0006】また、従来の技術として、超臨界条件の水
によってプラスチック、樹脂等を分解し、水素、メタ
ン、エタン、一酸化炭素などのガスと、化学工業原料又
は燃料となるモノマーを回収するプロセスにおいては、
基本的なプロセスは開示されているものの、プロセスに
用いる高温高圧反応容器についてはほとんど開示されて
いない。また、触媒、溶剤に濃硫酸を使用することな
く、超臨界条件の水の中で、シクロヘキサンからナイロ
ン繊維の原料であるε−カプロラクタムを合成するプロ
セスについても、基本的なプロセスは開示されているも
のの、プロセスに用いる高温高圧反応容器についてはほ
とんど開示されていない。また、超臨界条件のメタノー
ル中で、樹脂を生成、再合成反応するプロセスについて
も、基本的なプロセスは開示されているものの、プロセ
スに用いる高温高圧反応容器についてはほとんど開示さ
れていない。
[0006] Further, as a conventional technique, a process of decomposing plastics, resins and the like with water under supercritical conditions to recover a gas such as hydrogen, methane, ethane, carbon monoxide and a monomer used as a raw material or fuel for the chemical industry. In
Although the basic process is disclosed, little is disclosed about the high-temperature and high-pressure reactor used in the process. Also, a basic process is disclosed for a process for synthesizing ε-caprolactam which is a raw material of nylon fiber from cyclohexane in water under supercritical conditions without using concentrated sulfuric acid as a catalyst and a solvent. However, there is almost no disclosure about a high-temperature and high-pressure reactor used in the process. Further, as for the process of producing and resynthesizing a resin in methanol under supercritical conditions, a basic process is disclosed, but a high-temperature and high-pressure reactor used in the process is hardly disclosed.

【0007】[0007]

【発明が解決しようとする課題】特開平7−31398
7号公報、特開平10−15566号公報、特開平10
−137775号公報をはじめとした、有害有機化合物
の超臨界水酸化に用いるための容器装置では、耐圧容器
の内側を構成するすべての部材に、耐熱性、耐圧性、耐
腐蝕性が要求されるため、高温高圧反応容器製作におけ
る材料選択の幅が狭い上に、製品原価が高くなり、一方
で、容器寿命も短いという問題がある。
Problems to be Solved by the Invention
7, JP-A-10-15566, JP-A-10-15
In a container device for use in supercritical water oxidation of harmful organic compounds, such as that of JP-137775, all members constituting the inside of a pressure-resistant container are required to have heat resistance, pressure resistance, and corrosion resistance. Therefore, there is a problem that the material selection in the production of the high-temperature and high-pressure reaction vessel is narrow, the product cost is high, and the life of the vessel is short.

【0008】特開平7−313987号公報、特開平1
0−15566号公報、特開平10−137775号公
報をはじめとした連続操作が可能な高温高圧反応容器装
置では、ポンプ等による流体、反応材料の供給による押
出し流れによって、流体、反応材料、反応生成物などが
容器の中を一方向に流れて行く。これは高温高圧反応を
行わせるために、外部からエネルギーを与えなければな
らないということであり、運転に必要なコストが増大す
るという問題がある。また、特開平10−15566号
公報の装置では、高温高圧反応容器中に超臨界領域とそ
れより温度が低い亜臨界領域を持つが、亜臨界領域は容
器の外壁を冷却水で冷やすことにより流体の温度を下げ
て創出している。また、特公平6−20487号公報の
装置も、高温高圧反応容器中に超臨界領域と、それより
温度が低い亜臨界領域を持つが、亜臨界領域は容器内を
通るパイプに冷却水を循環させることによって流体の温
度を下げて創出している。これらの方法では、高温高圧
反応容器装置の構造が複雑になり、装置の価格上昇につ
ながるとともに、装置の保守点検が困難となる。また、
特開平10−15566号公報の装置では、高温高圧反
応容器の上部を超臨界領域、下部を亜臨界領域としてい
るが、反応容器内で両領域を区分するための構造物がな
いため、容器内部で流体の対流や伝熱が起こり、2つの
領域を設けることは実質的には困難である。
[0008] JP-A-7-313987, JP-A-1
In a high-temperature and high-pressure reaction vessel apparatus capable of continuous operation, such as that disclosed in Japanese Patent Application Laid-Open No. 0-15566 and Japanese Patent Application Laid-Open No. H10-137775, a fluid, a reaction material, and a reaction product are generated by an extrusion flow by supplying a fluid and a reaction material by a pump or the like. Objects flow in one direction in the container. This means that energy must be externally applied in order to carry out the high-temperature and high-pressure reaction, and there is a problem that the cost required for operation increases. In the apparatus disclosed in Japanese Patent Application Laid-Open No. H10-15566, a high-temperature high-pressure reaction vessel has a supercritical region and a subcritical region having a lower temperature. The subcritical region is formed by cooling the outer wall of the container with cooling water. Is created by lowering the temperature. The device disclosed in Japanese Patent Publication No. 6-20487 also has a supercritical region and a subcritical region having a lower temperature in a high-temperature and high-pressure reactor, and the subcritical region circulates cooling water through a pipe passing through the container. By doing so, the temperature of the fluid is lowered and created. In these methods, the structure of the high-temperature and high-pressure reaction vessel device becomes complicated, which leads to an increase in the price of the device, and also makes maintenance and inspection of the device difficult. Also,
In the apparatus disclosed in Japanese Patent Application Laid-Open No. H10-15566, the upper part of the high-temperature and high-pressure reactor is a supercritical region, and the lower part is a subcritical region. Then, convection and heat transfer of the fluid occur, and it is substantially difficult to provide two regions.

【0009】特開平7−313987号公報、特開平1
0−15566号公報、特開平10−137775号公
報をはじめとした連続操作が可能な高温高圧反応容器で
は、溶媒となる流体の循環使用については述べられてお
らず、反応に用いる流体は高温高圧反応容器の入口です
べて加熱、加圧を行う必要がある。これらの装置で、溶
媒となる流体を循環使用する場合も、高温高圧反応容器
の入口で加熱、加圧が必要となる。このため、加熱、加
圧に要するエネルギーが多く必要となり、循環使用しな
い場合は、それに加えて溶媒となる流体の使用量が増大
するという問題がある。また、特公平6−20487号
公報記載の装置は、高温高圧流体を用いた抽出プロセ
ス、すなわち、コーヒー豆、紅茶からのカフェイン抽
出、ホップ、香辛料エキスの抽出、タバコ葉からのニコ
チンの抽出への適用を目的としたもので、本発明のよう
に化学反応を主たる目的とした容器装置とは明らかに異
なる。
JP-A-7-313987, JP-A-1
In the high-temperature and high-pressure reactor capable of continuous operation, such as Japanese Patent Application Laid-Open No. 0-15566 and Japanese Patent Application Laid-Open No. Hei 10-137775, there is no description about the circulating use of a fluid serving as a solvent. It is necessary to heat and pressurize all at the inlet of the reaction vessel. Even when a fluid serving as a solvent is circulated and used in these apparatuses, heating and pressurization are required at the inlet of the high-temperature and high-pressure reaction vessel. For this reason, a large amount of energy is required for heating and pressurizing, and when not used in circulation, there is a problem that the amount of use of a fluid as a solvent increases. Further, the apparatus described in Japanese Patent Publication No. 6-20487 discloses an extraction process using a high-temperature and high-pressure fluid, that is, extraction of caffeine from coffee beans and tea, extraction of hops and spice extracts, and extraction of nicotine from tobacco leaves. This is clearly different from a container device mainly intended for a chemical reaction as in the present invention.

【0010】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、有害有機化合物の分解に用いる従
来の高温高圧反応容器における上述したような問題点を
解決するとともに、有害有機化合物の分解以外の目的で
行われる超臨界及び/又は亜臨界条件の流体中での物質
の化学反応を行うプロセスに使用して好適な高温高圧反
応容器による反応方法及び装置を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to solve the above-mentioned problems in a conventional high-temperature and high-pressure reactor used for decomposing harmful organic compounds, and to provide a harmful organic compound. It is an object of the present invention to provide a reaction method and apparatus using a high-temperature and high-pressure reaction vessel suitable for use in a process of performing a chemical reaction of a substance in a fluid under supercritical and / or subcritical conditions performed for a purpose other than the decomposition of water.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の超臨界・亜臨界流体を用いる高温高圧反
応方法は、筒状の外壁部材の上下を蓋部材で施蓋して反
応容器を形成し、反応容器内に筒状の隔壁部材を設け
て、隔壁部材の一端部を一方の蓋部材に固定して反応容
器内を隔壁部材により内側流路と外側流路とに分け、隔
壁部材の他端部と他方の蓋部材との間に設けられた間隙
で内側流路と外側流路とが連通するようにした高温高圧
反応容器を用いて、内側流路が超臨界又は亜臨界領域と
なるように、一方の蓋部材側から内側流路に加圧・加温
された流体を供給し、この超臨界又は亜臨界領域に反応
材料を含む流体を供給して化学反応を行い、内側流路内
を流れる反応流体を他方の蓋部材側で反転させて外側流
路に移送し、外側流路が内側流路よりも温度が低い領域
となるように外側流路で流体の温度を下げて、外側流路
内を一方の蓋部材側に向かって流れる流体から反応生成
物を回収するように構成されている。
In order to achieve the above-mentioned object, a high-temperature and high-pressure reaction method using a supercritical / subcritical fluid according to the present invention comprises covering a cylindrical outer wall member with upper and lower lid members. Forming a reaction vessel, providing a cylindrical partition member in the reaction vessel, fixing one end of the partition member to one lid member and dividing the inside of the reaction vessel into an inner flow path and an outer flow path by the partition member. Using a high-temperature and high-pressure reaction vessel in which the inner flow path and the outer flow path communicate with each other at a gap provided between the other end of the partition member and the other lid member, the inner flow path is supercritical or A pressurized and heated fluid is supplied from one lid member side to the inner flow path so as to be in a subcritical region, and a fluid containing a reaction material is supplied to the supercritical or subcritical region to perform a chemical reaction. Then, the reaction fluid flowing in the inner flow path is reversed on the other lid member side and transferred to the outer flow path, The temperature of the fluid is lowered in the outer flow path so that the temperature is lower than that of the inner flow path, and the reaction product is recovered from the fluid flowing in the outer flow path toward one of the lid members. Have been.

【0012】上記の本発明の方法において、外側流路の
冷却のために冷却用の高圧流体を内側流路と外側流路の
間から供給することが好ましい。高温高圧反応容器に温
度の低い流体を添加することで流体の温度を下げている
ので、高温高圧反応容器の構造が単純化され、装置価格
の低減につながるとともに、装置の保守点検が容易とな
る。なお、外側流路内の温度を調節するために、高温高
圧反応容器内部に設置したパイプに冷却水を流す、及び
/又は容器の外壁を冷却水で冷やすという方法も採用す
ることができる。また、上記の本発明の方法において、
高温高圧反応に用いる流体を外側流路から回収して高圧
に保持したまま再び内側流路に供給し循環使用すること
が好ましい。高温高圧流体の温度を若干下げるだけで、
圧力は維持したまま反応容器外に取り出すので、循環使
用する場合、加圧、加温に要するエネルギーを大幅に減
らすことができる。また、循環使用することで溶媒とな
る流体の使用量を大幅に減らすことができる。なお、本
発明において、溶媒となる流体を循環使用しないことも
もちろん可能である。
In the above method of the present invention, it is preferable to supply a high-pressure cooling fluid from between the inner flow path and the outer flow path for cooling the outer flow path. Since the temperature of the fluid is lowered by adding a low-temperature fluid to the high-temperature and high-pressure reaction vessel, the structure of the high-temperature and high-pressure reaction vessel is simplified, which leads to a reduction in the cost of the apparatus and facilitates maintenance and inspection of the apparatus. . In addition, in order to adjust the temperature in the outer channel, a method of flowing cooling water through a pipe installed inside the high-temperature and high-pressure reaction vessel and / or cooling the outer wall of the vessel with the cooling water can also be adopted. In the method of the present invention,
It is preferable that the fluid used for the high-temperature and high-pressure reaction is recovered from the outer channel, supplied to the inner channel again while maintaining the high pressure, and circulated. Just lower the temperature of the high-temperature and high-pressure fluid,
Since it is taken out of the reaction vessel while maintaining the pressure, the energy required for pressurization and heating can be greatly reduced in the case of circulating use. In addition, the amount of fluid used as a solvent can be significantly reduced by circulating the fluid. In the present invention, it is of course possible not to use a fluid as a solvent in circulation.

【0013】本発明の超臨界・亜臨界流体を用いる高温
高圧反応装置は、筒状の外壁部材の上下を蓋部材で気密
に施蓋して反応容器を形成し、反応容器内に筒状の隔壁
部材を設けて、隔壁部材の一端部を一方の蓋部材に固定
して反応容器内を隔壁部材により内側流路と外側流路と
に分け、隔壁部材の他端部と他方の蓋部材との間に設け
られた間隙で内側流路と外側流路とが連通し、内側流路
が超臨界又は亜臨界領域となるように内側流路の一方の
蓋部材側に加圧・加温された流体の供給手段を接続し、
内側流路の一方の蓋部材側に反応材料を含む流体の供給
手段を接続して超臨界又は亜臨界領域で化学反応が進行
するようにし、反応流体が内側流路から他方の蓋部材側
で反転して外側流路に移送されるようにし、外側流路を
内側流路よりも温度が低い領域として、外側流路の一方
の蓋部材側に反応生成物の回収手段を接続したことを特
徴としている。
In the high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to the present invention, the upper and lower portions of the cylindrical outer wall member are hermetically covered with lid members to form a reaction container, and the cylindrical cylindrical member is formed in the reaction container. A partition member is provided, one end of the partition member is fixed to one lid member, and the inside of the reaction vessel is divided into an inner flow path and an outer flow path by the partition member, and the other end of the partition member and the other lid member. The inner flow path and the outer flow path communicate with each other at a gap provided therebetween, and the inner flow path is pressurized and heated on one lid member side of the inner flow path so as to be in a supercritical or subcritical region. Connected fluid supply means,
A supply means for a fluid containing a reaction material is connected to one lid member side of the inner flow path so that a chemical reaction proceeds in a supercritical or subcritical region, and the reaction fluid flows from the inner flow path to the other lid member side. Inverted and transferred to the outer flow path, the outer flow path is a region having a lower temperature than the inner flow path, and a reaction product recovery means is connected to one lid member side of the outer flow path. And

【0014】上記の本発明の装置において、反応容器を
構成する部材のうち外壁部材及び上下の蓋部材で耐圧容
器を形成し、超臨界又は亜臨界領域と接しない外壁部材
及び蓋部材を超臨界又は亜臨界状態を得るための温度ま
での耐熱性を要しない部材とすることができる。本発明
では、超臨界又は亜臨界領域は外壁及び、上蓋、下蓋の
いずれかの一部とは接しないため、これらの部材に超臨
界又は亜臨界状態を得るための温度までの耐熱性を要し
ない。このことによって、高温高圧反応容器製作におけ
る材料選択の幅が広がり、製品原価の低減、容器寿命の
延長が図られる。また、上記の本発明の装置において、
反応容器を構成する部材のうち隔壁部材を耐圧容器と同
程度の耐圧性を要しない部材とすることができる。本発
明では、隔壁部材については耐圧性を要せず、アルミ
ナ、窒化ケイ素、炭化ケイ素等のセラミックス等のみで
構成することが可能である。また、本発明における隔壁
部材は、断熱性の高い方が好ましいが、耐圧性を考慮し
なくてもよいことから材料選択の自由度が広がり、製品
原価の低減に寄与できる。
In the above-mentioned apparatus of the present invention, the pressure vessel is formed by the outer wall member and the upper and lower lid members among the members constituting the reaction vessel, and the outer wall member and the lid member which are not in contact with the supercritical or subcritical region are supercritical. Alternatively, a member that does not require heat resistance up to a temperature for obtaining a subcritical state can be obtained. In the present invention, since the supercritical or subcritical region does not contact the outer wall and any part of the upper lid and the lower lid, these members have heat resistance up to a temperature for obtaining a supercritical or subcritical state. No need. As a result, the range of material selection in the production of a high-temperature and high-pressure reactor can be expanded, the product cost can be reduced, and the life of the vessel can be extended. Further, in the above device of the present invention,
Among the members constituting the reaction vessel, the partition member may be a member that does not require the same pressure resistance as the pressure-resistant container. In the present invention, the partition member does not need to have pressure resistance, and can be made of only ceramics such as alumina, silicon nitride, and silicon carbide. In addition, the partition member in the present invention preferably has a high heat insulating property. However, since it is not necessary to consider the pressure resistance, the degree of freedom in material selection is increased, which can contribute to a reduction in product cost.

【0015】また、これらの本発明の装置において、外
側流路の冷却のために、内側流路と外側流路との境目近
傍の蓋部材側に冷却用の高圧流体の供給手段を接続した
構成とすることが好ましい。また、これらの本発明の装
置において、外側流路の上流側となる蓋部材側に内側流
路内の反応で発生した気体状物質の回収手段を接続した
構成とすることができる。
Further, in these apparatuses of the present invention, in order to cool the outer flow path, a supply means for a high-pressure fluid for cooling is connected to the lid member near the boundary between the inner flow path and the outer flow path. It is preferable that Further, in these apparatuses of the present invention, a structure in which a means for recovering gaseous substances generated by a reaction in the inner flow path can be connected to the lid member on the upstream side of the outer flow path.

【0016】また、これらの本発明の方法及び装置にお
いて、内側流路内で発熱を伴う化学反応を行わせること
ができる。この場合、流体の比重の温度依存性を利用し
て、内側流路内で起こる自己発熱により比重の軽い流体
は上昇することによる自然対流を、反応容器内での反応
流体の移送手段の一部又は全部とすることができる。化
学反応に伴う発熱による対流を流体の流れの駆動力の一
部又は全部とすることにより、外部から与えるエネルギ
ー量を減らし、運転に必要なコストを低減させることが
できる。また、これらの本発明の装置において、主たる
反応流体を供給手段により内側流路から供給することに
よる押出し流れを、反応容器内での反応流体の移送手段
の一部又は全部とすることができる。また、冷却に用い
る流体を供給手段により内側流路と外側流路の間から供
給することによる押出し流れを、反応容器内での反応流
体の移送手段の一部又は全部とすることができる。この
ように、溶媒となる流体、反応材料、反応生成物を高温
高圧反応容器内で一方向に移動させるために、ポンプ等
による流体、反応材料の供給による押出し流れを用いる
こともできる。
Further, in the method and the apparatus of the present invention, a chemical reaction involving heat generation can be performed in the inner channel. In this case, utilizing the temperature dependency of the specific gravity of the fluid, natural convection due to the rise of the light specific gravity due to self-heating that occurs in the inner flow path is part of the reaction fluid transfer means in the reaction vessel. Or all. By using the convection generated by the heat generated by the chemical reaction as part or all of the driving force of the fluid flow, the amount of energy given from the outside can be reduced, and the cost required for operation can be reduced. Further, in these apparatuses of the present invention, the extruded flow by supplying the main reaction fluid from the inner flow path by the supply means can be used as part or all of the reaction fluid transfer means in the reaction vessel. Further, the extruded flow by supplying the fluid used for cooling from between the inner flow path and the outer flow path by the supply means can be used as part or all of the reaction fluid transfer means in the reaction vessel. As described above, in order to move a fluid to be a solvent, a reaction material, and a reaction product in one direction in a high-temperature and high-pressure reaction vessel, a fluid by a pump or the like and an extrusion flow by supply of a reaction material can be used.

【0017】また、これらの本発明の装置において、外
側流路の冷却のために、冷却水を循環させるための冷却
水循環手段(パイプなど)を外側流路内に設けることも
できる。また、外側流路の冷却のために、外壁部材の外
側に外壁を冷却するための冷却手段(水冷ジャケットな
ど)を設けることもできる。また、これらの本発明の装
置において、超臨界又は亜臨界領域である内側流路と、
それよりも温度が低い領域である外側流路との境目にお
ける流路幅(管径)が、高温高圧反応条件に応じて調節
可能となるようにすることが好ましい。本発明では、高
温高圧反応容器内部での流体の速度、温度に応じて、内
側流路と外側流路との境目における流路幅(管径)を調
節することができるので、温度の異なる2つの領域を作
ることが可能となる。また、これらの本発明の装置にお
いて、外側流路の下流側に高温高圧反応に用いた流体の
回収手段を接続し、この回収手段で回収された流体が高
圧に保持されたまま内側流路の供給手段から反応容器に
戻され循環使用できるようにすることが好ましい。な
お、本発明の装置で、溶媒となる流体を循環使用しない
ことももちろん可能である。
In these devices of the present invention, a cooling water circulating means (such as a pipe) for circulating cooling water may be provided in the outer flow passage for cooling the outer flow passage. In addition, a cooling means (such as a water-cooling jacket) for cooling the outer wall may be provided outside the outer wall member for cooling the outer channel. Further, in these devices of the present invention, the inner flow path is a supercritical or subcritical region,
It is preferable that the channel width (tube diameter) at the boundary with the outer channel, which is a lower temperature region, can be adjusted according to the high-temperature and high-pressure reaction conditions. In the present invention, the flow path width (tube diameter) at the boundary between the inner flow path and the outer flow path can be adjusted according to the speed and temperature of the fluid inside the high-temperature high-pressure reaction vessel. It is possible to create one area. Further, in these devices of the present invention, a recovery means for the fluid used for the high-temperature and high-pressure reaction is connected to the downstream side of the outer flow path, and the fluid recovered by the recovery means is kept at a high pressure while the inner flow path is kept at a high pressure. It is preferable that the supply means returns to the reaction vessel so that it can be recycled. In the apparatus of the present invention, it is of course possible not to circulate and use a fluid as a solvent.

【0018】上記の本発明の装置を用いて、超臨界条件
の水によって、反応材料であるPCB、ダイオキシン類
などの有害有機化合物、又は下水汚泥、焼却灰などの有
機性廃棄物を酸化分解処理することができる。また、上
記の本発明の装置を用いて、超臨界条件又は亜臨界条件
の水によって、反応材料である石炭、バイオマスなどの
有機化合物を分解し、水素、メタン、エタン、一酸化炭
素などのガスと、低分子化合物を回収することができ
る。また、上記の本発明の装置を用いて、超臨界条件の
流体によって、反応材料であるプラスチック、樹脂等を
分解し、水素、メタン、エタン、一酸化炭素などのガス
と、化学工業原料又は燃料となるモノマーを回収するこ
とができる。また、上記の本発明の装置を用いて、超臨
界条件の流体の中で、反応材料である有機化合物の重合
反応により高分子化合物を合成することができる。ま
た、上記の本発明の装置を用いて、超臨界条件の流体に
よって、有機化合物混合流体からその構成成分である有
機化合物を抽出することも可能である。
Using the apparatus of the present invention described above, harmful organic compounds such as PCB and dioxins, or organic wastes such as sewage sludge and incinerated ash are oxidatively decomposed by water under supercritical conditions. can do. In addition, using the above-described apparatus of the present invention, water in supercritical or subcritical conditions is used to decompose organic compounds such as coal and biomass as reaction materials, and to generate gas such as hydrogen, methane, ethane, and carbon monoxide. Then, a low molecular compound can be recovered. Further, using the above-described apparatus of the present invention, a fluid under supercritical conditions is used to decompose plastics, resins, and the like, which are reactive materials, to produce a gas such as hydrogen, methane, ethane, or carbon monoxide, and a chemical industrial raw material or fuel. Can be recovered. Further, by using the above-described apparatus of the present invention, a polymer compound can be synthesized by a polymerization reaction of an organic compound as a reaction material in a fluid under supercritical conditions. Further, by using the above-described apparatus of the present invention, it is also possible to extract an organic compound as a constituent component from an organic compound mixed fluid by a fluid under supercritical conditions.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明は下記の実施の形態に何ら限定さ
れるものではなく、適宜変更して実施することが可能な
ものである。図1、図2は、本発明の実施の第1形態に
よる超臨界・亜臨界流体を用いる高温高圧反応装置の概
略構成を示している。図1、図2に示すように、10は
装置の要部である円筒状の高温高圧反応容器で、容器内
に設けた円筒状の隔壁部材12により、内側流路14と
外側流路16に分けられている。なお、高温高圧反応容
器10及び隔壁部材12のいずれも円筒形状に限定され
るものではない。内側流路14と外側流路16はつなが
っており、流体が内側流路14から外側流路16に向か
って流れる。具体的には、外壁部材18、上蓋部材2
0、下蓋部材22で高温高圧反応容器10の本体が形成
され、隔壁部材12の下側が下蓋部材22に固定され、
隔壁部材12の上側と上蓋部材20との間は隙間が設け
られ流体の流路24となっている。流体は内側流路14
の底部から内側流路14内を上に向かって流れ、外側流
路16に入ったのち、外側流路16内を下に向かって流
れる。なお、高温高圧反応容器の構成として、上下が逆
の装置とすることも可能である。この場合は、上蓋部材
が下蓋、下蓋部材が上蓋となり、流体は内側流路の上部
から内側流路内を下に向かって流れ、外側流路に入った
のち、外側流路内を上に向かって流れることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments and can be implemented with appropriate modifications. . 1 and 2 show a schematic configuration of a high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to a first embodiment of the present invention. As shown in FIGS. 1 and 2, reference numeral 10 denotes a cylindrical high-temperature and high-pressure reaction vessel, which is a main part of the apparatus, and which is formed in an inner flow path 14 and an outer flow path 16 by a cylindrical partition member 12 provided in the vessel. Divided. In addition, neither the high-temperature high-pressure reactor 10 nor the partition member 12 is limited to a cylindrical shape. The inner flow path 14 and the outer flow path 16 are connected, and fluid flows from the inner flow path 14 to the outer flow path 16. Specifically, the outer wall member 18, the upper lid member 2
0, the main body of the high-temperature and high-pressure reaction vessel 10 is formed by the lower lid member 22, and the lower side of the partition member 12 is fixed to the lower lid member 22,
A gap is provided between the upper side of the partition wall member 12 and the upper lid member 20 to serve as a fluid flow path 24. Fluid flows into the inner flow path 14
Flows upward from the bottom of the inner flow path 14 into the inner flow path 14, enters the outer flow path 16, and then flows downward in the outer flow path 16. The high-temperature high-pressure reaction vessel may be configured so that the apparatus is upside down. In this case, the upper lid member becomes the lower lid, and the lower lid member becomes the upper lid. The fluid flows downward from the upper part of the inner flow path into the inner flow path, enters the outer flow path, and then flows upward in the outer flow path. Will flow towards.

【0020】高温高圧反応容器10を構成する外壁部材
18、上蓋部材20、下蓋部材22は耐圧材料からなる
が、隔壁部材12は非耐圧材料又は耐圧材料からなる。
例えば、隔壁部材12をアルミナ、窒化ケイ素、炭化ケ
イ素等のセラミックス等のみで構成して非耐圧材料とす
ることが可能である。また、高温高圧反応容器10の外
壁部材18、隔壁部材12、上蓋部材20、下蓋部材2
2はいずれも断熱材料からなり、隔壁部材12は特に断
熱性の高い材料からなる。さらに、内側流路14内の超
臨界又は亜臨界領域は外壁部材18とは接しないため、
これらの部材に超臨界又は亜臨界状態を得るための温度
までの耐熱性を要しない。
The outer wall member 18, the upper lid member 20, and the lower lid member 22 constituting the high-temperature high-pressure reactor 10 are made of a pressure-resistant material, while the partition member 12 is made of a non-pressure-resistant material or a pressure-resistant material.
For example, the partition member 12 may be made of only ceramics such as alumina, silicon nitride, silicon carbide, or the like to be a non-pressure-resistant material. Further, the outer wall member 18, the partition member 12, the upper lid member 20, and the lower lid member 2 of the high-temperature high-pressure reaction vessel 10.
2 are made of a heat insulating material, and the partition member 12 is made of a material having a particularly high heat insulating property. Further, since the supercritical or subcritical region in the inner channel 14 does not contact the outer wall member 18,
These members do not need heat resistance up to a temperature for obtaining a supercritical or subcritical state.

【0021】内側流路14の底部には、反応容器の内側
流路14に、流体(主として水で、一部触媒を加える場
合もある)を加圧、加温して供給するための第1供給手
段Aが設けられている。第1供給手段Aは、一例とし
て、流体タンク26、閉止弁28、加圧供給ポンプ3
0、逆止弁32、ヒーター34、供給管36からなる。
また、内側流路14の底部には、反応容器の内側流路1
4に、反応材料、反応速度を調節するための試薬(触媒
など)を加圧、加温して供給するための第2供給手段B
が設けられている。第2供給手段Bは、一例として、複
数の流体タンク38、閉止弁40、加圧供給ポンプ4
2、逆止弁44、ヒーター46、供給管48からなる。
また、内側流路14と外側流路16との間の流路24の
近傍には、反応容器の内側流路14と外側流路16の中
間位置に、流路内の流体よりも温度の低い流体を加圧、
加温して供給するための第3供給手段Cが設けられてい
る。第3供給手段Cは、流体タンク50、閉止弁52、
加圧供給ポンプ54、逆止弁56、ヒーター58、供給
管60からなる。
A first portion for pressurizing and heating a fluid (mainly water, and in some cases adding a catalyst) to the inner channel 14 of the reaction vessel is provided at the bottom of the inner channel 14. Supply means A is provided. The first supply means A includes, for example, a fluid tank 26, a shutoff valve 28, a pressurized supply pump 3
0, a check valve 32, a heater 34, and a supply pipe 36.
In addition, the inner flow path 1 of the reaction vessel is provided at the bottom of the inner flow path 14.
4. Second supply means B for supplying a reaction material and a reagent (eg, a catalyst) for adjusting the reaction rate by pressurizing and heating.
Is provided. The second supply means B includes, for example, a plurality of fluid tanks 38, a shutoff valve 40, a pressurized supply pump 4
2. It comprises a check valve 44, a heater 46, and a supply pipe 48.
In the vicinity of the flow path 24 between the inner flow path 14 and the outer flow path 16, a temperature lower than that of the fluid in the flow path is provided at an intermediate position between the inner flow path 14 and the outer flow path 16 of the reaction vessel. Pressurized fluid,
Third supply means C for heating and supplying is provided. The third supply means C includes a fluid tank 50, a shutoff valve 52,
It comprises a pressurized supply pump 54, a check valve 56, a heater 58, and a supply pipe 60.

【0022】また、反応容器の外側流路16の最上部に
は、反応で生成した気体を回収するための第1流出機構
Dが設けられている。第1流出機構Dは、上部流出孔6
2、冷却器64、減圧弁66、ドレンタンク68、気体
貯蔵用タンク70、閉止弁72、74からなる。また、
反応容器の外側流路16の下部には、主として溶媒とな
る流体を回収するための第2流出機構Eが設けられてい
る。第2流出機構Eは、下部流出孔76、流体タンク2
6、閉止弁78、減圧弁80からなる。また、反応容器
の外側流路16の底部には、主として反応生成物、未反
応物、残渣を含んだ流体を回収するための第3流出機構
Fが設けられている。第3流出機構Fは、底部流出孔8
2、閉止弁84、冷却器86、気液分離器88、減圧弁
90、閉止弁92からなる。
A first outflow mechanism D for recovering a gas generated by the reaction is provided at the uppermost portion of the outer flow path 16 of the reaction vessel. The first outflow mechanism D includes an upper outflow hole 6
2. Consists of a cooler 64, a pressure reducing valve 66, a drain tank 68, a gas storage tank 70, and shutoff valves 72 and 74. Also,
A second outflow mechanism E for recovering a fluid mainly serving as a solvent is provided below the outer channel 16 of the reaction vessel. The second outflow mechanism E includes a lower outflow hole 76, a fluid tank 2
6. It comprises a closing valve 78 and a pressure reducing valve 80. In addition, a third outflow mechanism F for recovering a fluid containing mainly reaction products, unreacted substances, and residues is provided at the bottom of the outer channel 16 of the reaction vessel. The third outflow mechanism F includes a bottom outflow hole 8.
2. It comprises a closing valve 84, a cooler 86, a gas-liquid separator 88, a pressure reducing valve 90, and a closing valve 92.

【0023】なお、特公平6−20487号公報記載の
装置は、高温高圧流体を用いた抽出プロセス、すなわ
ち、コーヒー豆、紅茶からのカフェイン抽出、ホップ、
香辛料エキスの抽出、タバコ葉からのニコチンの抽出へ
の適用を目的としたもので、本発明のように化学反応を
主たる目的とした容器装置とは明らかに異なる。さら
に、上記公報記載の発明では高温高圧容器内に加熱手段
としてのヒーターを設置して流体を加温しているが、本
発明では高温高圧容器内には加熱手段はなく、第1供給
手段A及び/又は第2供給手段Bに設置したヒーターに
より流体等を加熱するか、及び/又は内側流路内で起こ
る化学反応による発熱を利用しているという点で、上記
公報記載の発明とは明らかに異なる。
The apparatus described in Japanese Patent Publication No. 6-20487 discloses an extraction process using a high-temperature and high-pressure fluid, that is, caffeine extraction from coffee beans and tea, hops,
It is intended to be applied to the extraction of spice extract and the extraction of nicotine from tobacco leaves, and is clearly different from the container device mainly intended for chemical reaction as in the present invention. Further, in the invention described in the above publication, a heater as a heating means is installed in the high-temperature and high-pressure vessel to heat the fluid, but in the present invention, there is no heating means in the high-temperature and high-pressure vessel, and the first supply means A And / or heating a fluid or the like by a heater installed in the second supply means B, and / or utilizing heat generated by a chemical reaction occurring in the inner flow path. Different.

【0024】つぎに、本実施の形態における作用等につ
いて説明する。内側流路14の供給管36に、加圧供給
ポンプ30、ヒーター34によって加圧、加温され超臨
界条件に昇温、昇圧された高温高圧流体(例えば、超臨
界水)が反応の溶媒として供給される。また、内側流路
14の供給管48に、加圧供給ポンプ42、ヒーター4
6によって昇温、昇圧された反応材料、反応の速度を調
節するための試薬(触媒など)が供給される。内側流路
14内は化学反応が起こるために好適な条件となってお
り、化学反応が進行し生成物が生じる。内側流路14を
流れる間に所要の化学反応が進行し、反応生成物を含ん
だ流体は、反応に伴う発熱による対流及び/又は流体供
給による押出し流れによって内側流路14内を上昇す
る。このように、流体の比重の温度依存性を利用して、
内側流路内で起こる自己発熱により比重の軽い流体は上
昇することによる自然対流を、反応流体の移送手段と
し、必要に応じて従来技術と同様にポンプ等による流
体、反応材料の供給による押出し流れを用いる。
Next, the operation and the like in this embodiment will be described. A high-temperature, high-pressure fluid (for example, supercritical water) pressurized and heated by the pressurized supply pump 30 and the heater 34 to the supply pipe 36 of the inner flow path 14 and heated to a supercritical condition and then pressurized as a reaction solvent. Supplied. A pressurized supply pump 42 and a heater 4 are connected to a supply pipe 48 of the inner flow path 14.
A reaction material whose temperature has been raised and pressurized by 6 and a reagent (such as a catalyst) for adjusting the reaction speed are supplied. The inside of the inner flow path 14 is under suitable conditions for a chemical reaction to occur, and the chemical reaction proceeds to produce a product. A required chemical reaction proceeds while flowing through the inner flow path 14, and the fluid containing the reaction product rises in the inner flow path 14 by convection due to heat generated by the reaction and / or extrusion flow by fluid supply. Thus, utilizing the temperature dependence of the specific gravity of the fluid,
The natural convection caused by the rise of the fluid having a low specific gravity due to the self-heating that occurs in the inner flow path is used as a means for transporting the reaction fluid, and, if necessary, an extrusion flow by supplying a fluid or a reaction material by a pump or the like as in the related art. Is used.

【0025】内側流路14と外側流路16の境界点付近
(流路24)において、内側流路14の流体より若干温
度が低く、かつ内側流路14の流体と同じ圧力の流体
(例えば、加圧冷水)を加えることにより、及び/又は
内側流路14と外側流路16における流体の熱交換によ
って、外側流路16では亜臨界状態又はそれ以下の温度
となり、流体への溶質の溶解度が大きく変化する。すな
わち、超臨界流体中とそれより温度が低い流体中では、
極性物質と非極性物質で溶媒への溶解度が逆転する。こ
の性質を利用することによって、外側流路16を流れる
間にそれまで流体に溶解していた反応生成物、反応残
渣、触媒を析出させるとともに、析出していた物質を流
体中に溶解させる。なお、図1に示すように、内側流路
14と外側流路16の中間位置に、加圧供給ポンプ5
4、ヒーター58によって加圧、加温された冷却用流体
が供給される場合や、図2に示すように、それに加え
て、外壁部材18の外側に水冷ジャケット94を設けて
外側流路16の温度を下げる場合がある。96は冷却水
タンク、98は冷却水循環用ポンプである。また、図示
は省略しているが、外側流路16内にパイプ(伝熱管)
等を設置し、パイプ内に冷却水を循環させて外側流路1
6の温度を下げる場合がある。また、内側流路14と外
側流路16との境目における流路24の幅(管径)を高
温高圧反応条件に応じて調節する場合もある。流路24
の幅(管径)を調節する手段としては、一例として、じ
ゃま板等を隔壁部材12又は/及び上蓋部材20に設置
することが挙げられる。
In the vicinity of the boundary between the inner flow path 14 and the outer flow path 16 (flow path 24), a fluid having a temperature slightly lower than that of the fluid in the inner flow path 14 and having the same pressure as the fluid in the inner flow path 14 (for example, (Pressurized cold water) and / or heat exchange of the fluid in the inner flow path 14 and the outer flow path 16 causes the outer flow path 16 to reach a subcritical state or lower in temperature, thereby increasing the solubility of the solute in the fluid. It changes greatly. That is, in a supercritical fluid and a fluid with a lower temperature,
The solubility of the polar and non-polar substances in the solvent is reversed. By utilizing this property, the reaction product, the reaction residue, and the catalyst which have been dissolved in the fluid up to that time while flowing through the outer flow path 16 are deposited, and the deposited substance is dissolved in the fluid. As shown in FIG. 1, the pressurized supply pump 5 is provided at an intermediate position between the inner flow path 14 and the outer flow path 16.
4. When the cooling fluid pressurized and heated by the heater 58 is supplied, or as shown in FIG. 2, in addition to the above, a water cooling jacket 94 is provided outside the outer wall member 18 to form the outer flow path 16. May lower the temperature. Reference numeral 96 denotes a cooling water tank, and 98 denotes a cooling water circulation pump. Although not shown, a pipe (heat transfer tube) is provided in the outer passage 16.
Is installed, and cooling water is circulated in the pipe to make the outer channel 1
6 may be lowered. In some cases, the width (diameter) of the flow path 24 at the boundary between the inner flow path 14 and the outer flow path 16 is adjusted according to the high-temperature and high-pressure reaction conditions. Channel 24
As an example of the means for adjusting the width (diameter of the pipe), a baffle plate or the like may be provided on the partition member 12 and / or the upper lid member 20.

【0026】内側流路14内の反応で発生した気体状物
質は上部流出孔62より回収され、例えば、冷却器64
で冷却された後、ドレン等を除去して気体状物質が回収
される。なお、反応によっては気体が発生しない場合等
もあり、この場合は第1流出機構Dを設けない構成とす
ることも可能である。また、反応に用いた流体は圧力を
維持したまま下部流出孔76より回収されて流体タンク
26に戻され、その一部が前記の第1供給手段Aによっ
て内側流路14に循環される。また、反応生成物、残渣
等を多く含んだ流体は底部流出孔82から回収され、例
えば、冷却器86で冷却された後、気液分離器88で反
応生成物等が分離される。
The gaseous substances generated by the reaction in the inner flow path 14 are recovered from the upper outlet 62 and, for example, a cooler 64
After the cooling, the gaseous substance is recovered by removing the drain and the like. In some cases, no gas is generated depending on the reaction. In this case, the first outflow mechanism D may not be provided. The fluid used for the reaction is recovered from the lower outlet 76 while maintaining the pressure, and returned to the fluid tank 26, and a part of the fluid is circulated to the inner flow path 14 by the first supply means A. Further, a fluid containing a large amount of reaction products, residues, and the like is recovered from the bottom outlet hole 82, and is cooled by, for example, a cooler 86, and then separated by a gas-liquid separator 88.

【0027】例えば、本実施形態の装置を用いて、第1
供給手段Aにより超臨界条件の水(温度374℃以上、
圧力22.1MPa以上)を内側流路14に供給し、第2
供給手段BによりPCB、ダイオキシン類などの有害有
機化合物、下水汚泥、焼却灰などの有機性廃棄物を酸化
剤、触媒とともに内側流路14に供給し、内側流路14
内で酸化分解反応を行わせ、第1流出機構Dにより主と
して気体状の分解生成物を回収し、第3流出機構Fによ
り主として液体状、固体状の分解生成物等を回収し、第
2流出機構Eで水を回収して循環使用することができ
る。また、本実施形態の装置を用いて、第1供給手段A
により超臨界条件又は亜臨界条件の水を内側流路14に
供給し、第2供給手段Bにより石炭、バイオマスなどの
有機化合物を触媒とともに内側流路14に供給し、内側
流路14内で分解反応を行わせ、第1流出機構Dにより
水素、メタン、エタン、一酸化炭素などのガスを回収
し、第3流出機構Fにより低分子化合物等を回収し、第
2流出機構Eで水を回収して循環使用することができ
る。また、本実施形態の装置を用いて、第1供給手段A
により超臨界条件の水を内側流路14に供給し、第2供
給手段Bによりプラスチック、樹脂等を触媒とともに内
側流路14に供給し、内側流路14内で分解反応を行わ
せ、第1流出機構Dにより水素、メタン、エタン、一酸
化炭素などのガスを回収し、第3流出機構Fにより化学
工業原料又は燃料となるモノマー等を回収し、第2流出
機構Eで水を回収して循環使用することができる。
For example, using the apparatus of this embodiment,
Water under supercritical conditions (temperature 374 ° C. or higher,
Pressure of 22.1 MPa or more) to the inner flow path 14,
The supply means B supplies harmful organic compounds such as PCBs and dioxins, organic wastes such as sewage sludge and incinerated ash to the inner flow path 14 together with an oxidizing agent and a catalyst.
The first outflow mechanism D collects mainly gaseous decomposition products, the third outflow mechanism F collects mainly liquid and solid decomposition products, and the second outflow mechanism The water can be recovered by the mechanism E and recycled. Further, using the apparatus of the present embodiment, the first supply means A
To supply water under supercritical or subcritical conditions to the inner flow path 14, and to supply organic compounds such as coal and biomass to the inner flow path 14 together with the catalyst by the second supply means B, and decompose in the inner flow path 14. The reaction is performed, gas such as hydrogen, methane, ethane, carbon monoxide, etc. is recovered by the first outflow mechanism D, low molecular weight compounds are recovered by the third outflow mechanism F, and water is recovered by the second outflow mechanism E It can be used for circulation. Further, using the apparatus of the present embodiment, the first supply means A
Supplies water under supercritical conditions to the inner flow path 14, supplies plastic, resin, and the like to the inner flow path 14 together with a catalyst by the second supply means B, and causes a decomposition reaction to take place in the inner flow path 14. Gases such as hydrogen, methane, ethane, and carbon monoxide are collected by the outflow mechanism D, chemical industry raw materials or fuel monomers are recovered by the third outflow mechanism F, and water is recovered by the second outflow mechanism E. Can be used cyclically.

【0028】また、本実施形態の装置を用いて、第1供
給手段Aにより超臨界条件の水を内側流路14に供給
し、第2供給手段Bによりシクロヘキサンを内側流路1
4に供給し、内側流路14内で合成反応を行わせ、第1
流出機構Dにより気体状物質を回収し、第3流出機構F
によりε−カプロラクタム等を回収し、第2流出機構E
で水を回収して循環使用することができる。また、本実
施形態の装置を用いて、第1供給手段Aにより超臨界条
件のメタノールを内側流路14に供給し、第2供給手段
Bにより有機化合物又は樹脂を触媒とともに内側流路1
4に供給し、内側流路14内で重合反応又は再合成反応
を行わせ、第1流出機構Dにより気体状物質を回収し、
第3流出機構Fにより樹脂等を回収し、第2流出機構E
でメタノールを回収して循環使用することができる。
Further, using the apparatus of this embodiment, water under supercritical conditions is supplied to the inner flow path 14 by the first supply means A, and cyclohexane is supplied to the inner flow path 1 by the second supply means B.
4 to cause a synthesis reaction in the inner flow path 14,
The gaseous substance is recovered by the outflow mechanism D, and the third outflow mechanism F
Recovers ε-caprolactam and the like by the second outflow mechanism E
The water can be collected and recycled. Further, using the apparatus of the present embodiment, the first supply means A supplies methanol under supercritical conditions to the inner flow path 14, and the second supply means B supplies the organic compound or resin together with the catalyst to the inner flow path 1.
4 to cause a polymerization reaction or a resynthesis reaction in the inner flow path 14, and recover gaseous substances by the first outflow mechanism D.
The resin and the like are collected by the third outflow mechanism F, and the second outflow mechanism E is recovered.
To recover methanol for recycling.

【0029】[0029]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 有害有機化合物の分解に用いる従来の高温高圧
反応容器における問題点を解決するとともに、有害有機
化合物の分解以外の目的で行われる超臨界及び/又は亜
臨界条件の流体中での物質の化学反応を行うプロセスに
使用して好適な高温高圧反応容器による反応方法及び装
置を提供することができる。 (2) 本発明の高温高圧反応容器では、超臨界又は亜
臨界領域は外壁部材や上蓋部材とは接しないため、耐圧
容器を形成する部材に超臨界又は亜臨界状態を得るため
の温度までの耐熱性を要しない。このことによって、高
温高圧反応容器の製作における材料選択の幅が広がり、
製品原価の低減、容器寿命の延長が図られる。 (3) 本発明の高温高圧反応容器では、隔壁部材につ
いては耐圧性を要せず、アルミナ、窒化ケイ素、炭化ケ
イ素等のセラミックス等のみで構成することが可能であ
る。また、本発明における隔壁部材は、断熱性の高い方
が好ましいが、耐圧性を考慮しなくてもよいことから材
料選択の自由度が広がり、製品原価の低減に寄与でき
る。 (4) 本発明の高温高圧反応容器では、超臨界点近傍
における流体の比重の温度依存性を利用して、内側流路
内で起こる自己発熱により比重の軽い流体は上昇するこ
とによる自然対流を、流体の流れの駆動力の一部又は全
部とすることにより、外部から与えるエネルギー量を減
らし、運転に必要なコストを低減させることができる。 (5) 本発明の高温高圧反応容器では、内側流路と外
側流路の間に温度の低い流体を添加することで、外側流
路内の流体の温度を下げているので、高温高圧反応容器
の構造が単純化され、装置の価格低減につながるととも
に、装置の保守点検が容易となる。 (6) 高温高圧反応容器内部での流体の速度、温度に
応じて、内側流路と外側流路との境目における流路幅
(管径)を調節することができるので、温度の異なる2
つの領域を作ることが可能となる。 (7) 本発明の高温高圧反応容器では、高温高圧流体
の温度を若干下げるだけで、圧力は維持したまま反応容
器外に取り出すので、循環使用する場合、加圧、加温に
要するエネルギーを大幅に減らすことができる。また、
循環使用することで溶媒となる流体の使用量を大幅に減
らすことができる。
As described above, the present invention has the following effects. (1) To solve the problems in the conventional high-temperature and high-pressure reaction vessel used for decomposing harmful organic compounds, and to reduce the substance in a fluid under supercritical and / or subcritical conditions performed for a purpose other than the decomposition of harmful organic compounds. A reaction method and apparatus using a high-temperature and high-pressure reaction vessel suitable for use in a process for performing a chemical reaction can be provided. (2) In the high-temperature and high-pressure reaction vessel of the present invention, the supercritical or subcritical region does not come into contact with the outer wall member or the upper lid member, and thus the temperature of the member forming the pressure-resistant vessel is reduced to a supercritical or subcritical state. Does not require heat resistance. This expands the range of material selection in the production of high-temperature high-pressure reactors,
Product cost is reduced and container life is extended. (3) In the high-temperature and high-pressure reaction vessel of the present invention, the partition member does not need to have pressure resistance, and can be made of only ceramics such as alumina, silicon nitride, and silicon carbide. In addition, the partition member in the present invention preferably has a high heat insulating property. However, since it is not necessary to consider the pressure resistance, the degree of freedom in material selection is increased, which can contribute to a reduction in product cost. (4) In the high-temperature and high-pressure reaction vessel of the present invention, utilizing the temperature dependence of the specific gravity of the fluid in the vicinity of the supercritical point, the self-heating that occurs in the inner flow path causes the fluid having a low specific gravity to rise due to natural convection. By using part or all of the driving force of the fluid flow, the amount of energy given from the outside can be reduced, and the cost required for operation can be reduced. (5) In the high-temperature and high-pressure reactor of the present invention, the temperature of the fluid in the outer channel is reduced by adding a low-temperature fluid between the inner channel and the outer channel. Is simplified, which leads to a reduction in the cost of the device and facilitates maintenance and inspection of the device. (6) The flow path width (tube diameter) at the boundary between the inner flow path and the outer flow path can be adjusted in accordance with the velocity and temperature of the fluid inside the high-temperature high-pressure reaction vessel, so that the temperatures 2
It is possible to create one area. (7) In the high-temperature and high-pressure reactor of the present invention, the temperature of the high-temperature and high-pressure fluid is slightly lowered, and the fluid is taken out of the reactor while maintaining the pressure. Can be reduced to Also,
By circulating, the amount of fluid used as a solvent can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態による超臨界・亜臨界
流体を用いる高温高圧反応装置の一例を示す概略構成断
面説明図である。
FIG. 1 is a schematic sectional view showing an example of a high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to a first embodiment of the present invention.

【図2】本発明の実施の第1形態による超臨界・亜臨界
流体を用いる高温高圧反応装置の他の例を示す概略構成
断面説明図である。
FIG. 2 is a schematic sectional view showing another example of a high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 高温高圧反応容器 12 隔壁部材 14 内側流路 16 外側流路 18 外壁部材 20 上蓋部材 22 下蓋部材 24 流路 26、38、50 流体タンク 28、40、52、72、74、78、84、92 閉
止弁 30、42、54 加圧供給ポンプ 32、44、56 逆止弁 34、46、58 ヒーター 36、48、60 供給管 62 上部流出孔 64、86 冷却器 66、80、90 減圧弁 68 ドレンタンク 70 気体貯蔵用タンク 76 下部流出孔 82 底部流出孔 88 気液分離器 94 水冷ジャケット 96 冷却水タンク 98 冷却水循環用ポンプ A 第1供給手段 B 第2供給手段 C 第3供給手段 D 第1流出機構 E 第2流出機構 F 第3流出機構
DESCRIPTION OF SYMBOLS 10 High-temperature high-pressure reaction container 12 Partition member 14 Inner flow path 16 Outer flow path 18 Outer wall member 20 Upper lid member 22 Lower lid member 24 Flow path 26, 38, 50 Fluid tank 28, 40, 52, 72, 74, 78, 84, 92 shut-off valve 30, 42, 54 pressurized supply pump 32, 44, 56 check valve 34, 46, 58 heater 36, 48, 60 supply pipe 62 upper outlet hole 64, 86 cooler 66, 80, 90 pressure reducing valve 68 Drain tank 70 Gas storage tank 76 Lower outlet hole 82 Bottom outlet hole 88 Gas-liquid separator 94 Water cooling jacket 96 Cooling water tank 98 Cooling water circulation pump A First supply means B Second supply means C Third supply means D First Outflow mechanism E Second outflow mechanism F Third outflow mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和泉 憲明 神戸市中央区東川崎町3丁目1番1号 川 崎重工業株式会社神戸工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Noriaki Izumi 3-1-1, Higashikawasakicho, Chuo-ku, Kobe Kawasaki Heavy Industries, Ltd. Kobe Plant

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 筒状の外壁部材の上下を蓋部材で施蓋し
て反応容器を形成し、反応容器内に筒状の隔壁部材を設
けて、隔壁部材の一端部を一方の蓋部材に固定して反応
容器内を隔壁部材により内側流路と外側流路とに分け、
隔壁部材の他端部と他方の蓋部材との間に設けられた間
隙で内側流路と外側流路とが連通するようにした高温高
圧反応容器を用いて、内側流路が超臨界又は亜臨界領域
となるように、一方の蓋部材側から内側流路に加圧・加
温された流体を供給し、この超臨界又は亜臨界領域に反
応材料を含む流体を供給して化学反応を行い、内側流路
内を流れる反応流体を他方の蓋部材側で反転させて外側
流路に移送し、外側流路が内側流路よりも温度が低い領
域となるように外側流路で流体の温度を下げて、外側流
路内を一方の蓋部材側に向かって流れる流体から反応生
成物を回収することを特徴とする超臨界・亜臨界流体を
用いる高温高圧反応方法。
1. A reaction container is formed by covering the top and bottom of a cylindrical outer wall member with a lid member, a cylindrical partition member is provided in the reaction container, and one end of the partition member is attached to one lid member. The inside of the reaction vessel is fixed and divided into an inner flow path and an outer flow path by a partition member,
The inner flow path is supercritical or subcritical using a high-temperature and high-pressure reaction vessel in which the inner flow path and the outer flow path communicate with each other at a gap provided between the other end of the partition member and the other lid member. A pressurized and heated fluid is supplied from one lid member side to the inner flow path so as to be in a critical region, and a fluid containing a reaction material is supplied to the supercritical or subcritical region to perform a chemical reaction. Then, the reaction fluid flowing in the inner flow path is inverted on the other lid member side and transferred to the outer flow path, and the temperature of the fluid in the outer flow path is set so that the outer flow path is a region having a lower temperature than the inner flow path. A high-temperature and high-pressure reaction method using a supercritical / subcritical fluid, wherein a reaction product is recovered from a fluid flowing toward the one lid member side in the outer flow path by lowering the pressure.
【請求項2】 外側流路の冷却のために冷却用の高圧流
体を内側流路と外側流路の間から供給する請求項1記載
の超臨界・亜臨界流体を用いる高温高圧反応方法。
2. The high-temperature and high-pressure reaction method using a supercritical / subcritical fluid according to claim 1, wherein a high-pressure fluid for cooling is supplied between the inner channel and the outer channel for cooling the outer channel.
【請求項3】 高温高圧反応に用いる流体を外側流路か
ら回収して高圧に保持したまま再び内側流路に供給し循
環使用する請求項1又は2記載の超臨界・亜臨界流体を
用いる高温高圧反応方法。
3. The high-temperature using supercritical / subcritical fluid according to claim 1, wherein the fluid used for the high-temperature high-pressure reaction is recovered from the outer channel, supplied to the inner channel again while maintaining the high pressure, and circulated for use. High pressure reaction method.
【請求項4】 内側流路内で発熱を伴う化学反応を行う
請求項1、2又は3記載の超臨界・亜臨界流体を用いる
高温高圧反応方法。
4. The high-temperature and high-pressure reaction method using a supercritical / subcritical fluid according to claim 1, wherein a chemical reaction involving heat generation is performed in the inner flow path.
【請求項5】 超臨界条件の水によって、反応材料であ
るPCB、ダイオキシン類などの有害有機化合物、又は
下水汚泥、焼却灰などの有機性廃棄物を酸化分解処理す
る請求項1、2又は3記載の超臨界・亜臨界流体を用い
る高温高圧反応方法。
5. The oxidative decomposition treatment of harmful organic compounds such as PCB and dioxins, or organic wastes such as sewage sludge and incinerated ash, using water under supercritical conditions. A high-temperature and high-pressure reaction method using the supercritical / subcritical fluid described in the above.
【請求項6】 超臨界条件又は亜臨界条件の水によっ
て、反応材料である石炭、バイオマスなどの有機化合物
を分解し、水素、メタン、エタン、一酸化炭素などのガ
スと、低分子化合物を回収する請求項1、2又は3記載
の超臨界・亜臨界流体を用いる高温高圧反応方法。
6. Supercritical or subcritical water decomposes organic compounds such as coal and biomass as reaction materials and recovers gas such as hydrogen, methane, ethane and carbon monoxide and low molecular compounds. A high-temperature and high-pressure reaction method using the supercritical / subcritical fluid according to claim 1, 2 or 3.
【請求項7】 超臨界条件の流体によって、反応材料で
あるプラスチック、樹脂等を分解し、水素、メタン、エ
タン、一酸化炭素などのガスと、化学工業原料又は燃料
となるモノマーを回収する請求項1、2又は3記載の超
臨界・亜臨界流体を用いる高温高圧反応方法。
7. A method for recovering gases such as hydrogen, methane, ethane, and carbon monoxide, and a monomer used as a raw material for a chemical industry or a fuel, by decomposing plastics, resins, and the like as reaction materials by a fluid under supercritical conditions. Item 4. A high-temperature and high-pressure reaction method using the supercritical / subcritical fluid according to item 1, 2 or 3.
【請求項8】 超臨界条件の流体の中で、反応材料であ
る有機化合物の重合反応により高分子化合物を合成する
請求項1、2又は3記載の超臨界・亜臨界流体を用いる
高温高圧反応方法。
8. A high-temperature and high-pressure reaction using a supercritical / subcritical fluid according to claim 1, wherein a polymer compound is synthesized by a polymerization reaction of an organic compound as a reaction material in a fluid under supercritical conditions. Method.
【請求項9】 超臨界条件の流体によって、有機化合物
混合流体からその構成成分である有機化合物を抽出する
請求項1、2又は3記載の超臨界・亜臨界流体を用いる
高温高圧反応方法。
9. The high-temperature and high-pressure reaction method using a supercritical / subcritical fluid according to claim 1, wherein an organic compound as a component thereof is extracted from the organic compound mixed fluid by a fluid under supercritical conditions.
【請求項10】 筒状の外壁部材の上下を蓋部材で気密
に施蓋して反応容器を形成し、反応容器内に筒状の隔壁
部材を設けて、隔壁部材の一端部を一方の蓋部材に固定
して反応容器内を隔壁部材により内側流路と外側流路と
に分け、隔壁部材の他端部と他方の蓋部材との間に設け
られた間隙で内側流路と外側流路とが連通し、内側流路
が超臨界又は亜臨界領域となるように内側流路の一方の
蓋部材側に加圧・加温された流体の供給手段を接続し、
内側流路の一方の蓋部材側に反応材料を含む流体の供給
手段を接続して超臨界又は亜臨界領域で化学反応が進行
するようにし、反応流体が内側流路から他方の蓋部材側
で反転して外側流路に移送されるようにし、外側流路を
内側流路よりも温度が低い領域として、外側流路の一方
の蓋部材側に反応生成物の回収手段を接続したことを特
徴とする超臨界・亜臨界流体を用いる高温高圧反応装
置。
10. A reaction container is formed by airtightly covering the top and bottom of a cylindrical outer wall member with a lid member, a cylindrical partition member is provided in the reaction container, and one end of the partition member is connected to one lid. The inside of the reaction vessel is fixed to a member and divided into an inner flow path and an outer flow path by a partition member, and an inner flow path and an outer flow path are formed by a gap provided between the other end of the partition member and the other lid member. Is connected to the supply means of the pressurized and heated fluid to one lid member side of the inner flow path so that the inner flow path is in a supercritical or subcritical region,
A supply means for a fluid containing a reaction material is connected to one lid member side of the inner flow path so that a chemical reaction proceeds in a supercritical or subcritical region, and the reaction fluid flows from the inner flow path to the other lid member side. Inverted and transferred to the outer flow path, the outer flow path is a region having a lower temperature than the inner flow path, and a reaction product recovery means is connected to one lid member side of the outer flow path. High-temperature and high-pressure reactor using supercritical and subcritical fluids.
【請求項11】 反応容器を構成する部材のうち外壁部
材及び上下の蓋部材で耐圧容器を形成し、超臨界又は亜
臨界領域と接しない外壁部材及び蓋部材を超臨界又は亜
臨界状態を得るための温度までの耐熱性を要しない部材
とする請求項10記載の超臨界・亜臨界流体を用いる高
温高圧反応装置。
11. A pressure-resistant container is formed by an outer wall member and upper and lower lid members among members constituting a reaction container, and a supercritical or subcritical state is obtained for an outer wall member and a lid member that are not in contact with a supercritical or subcritical region. The high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to claim 10, wherein the member does not require heat resistance up to a temperature for the reaction.
【請求項12】 反応容器を構成する部材のうち隔壁部
材を耐圧容器と同程度の耐圧性を要しない部材とする請
求項11記載の超臨界・亜臨界流体を用いる高温高圧反
応装置。
12. The high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to claim 11, wherein among the members constituting the reaction vessel, the partition member does not require the same pressure resistance as the pressure vessel.
【請求項13】 外側流路の冷却のために、内側流路と
外側流路との境目近傍の蓋部材側に冷却用の高圧流体の
供給手段を接続した請求項10、11又は12記載の超
臨界・亜臨界流体を用いる高温高圧反応装置。
13. The high pressure fluid supply means for cooling is connected to the lid member near the boundary between the inner flow path and the outer flow path for cooling the outer flow path. High temperature and high pressure reactor using supercritical and subcritical fluids.
【請求項14】 外側流路の上流側となる蓋部材側に内
側流路内の反応で発生した気体状物質の回収手段を接続
した請求項10〜13のいずれかに記載の超臨界・亜臨
界流体を用いる高温高圧反応装置。
14. The supercritical / subcritical apparatus according to claim 10, wherein a means for collecting gaseous substances generated by a reaction in the inner flow path is connected to the lid member side, which is an upstream side of the outer flow path. High-temperature high-pressure reactor using a critical fluid.
【請求項15】 内側流路内で発熱を伴う化学反応が行
われるようにした請求項10〜14のいずれかに記載の
超臨界・亜臨界流体を用いる高温高圧反応装置。
15. The high-temperature and high-pressure reactor using a supercritical / subcritical fluid according to claim 10, wherein a chemical reaction involving heat generation is performed in the inner flow path.
【請求項16】 流体の比重の温度依存性を利用して、
内側流路内で起こる自己発熱により比重の軽い流体は上
昇することによる自然対流を、反応容器内での反応流体
の移送手段の一部又は全部とした請求項15記載の超臨
界・亜臨界流体を用いる高温高圧反応装置。
16. Using the temperature dependence of the specific gravity of the fluid,
16. The supercritical / subcritical fluid according to claim 15, wherein natural convection caused by rising of the fluid having a low specific gravity due to self-heating occurring in the inner flow path is used as a part or all of the reaction fluid transfer means in the reaction vessel. High-temperature high-pressure reactor.
【請求項17】 主たる反応流体を供給手段により内側
流路から供給することによる押出し流れを、反応容器内
での反応流体の移送手段の一部又は全部とした請求項1
0〜16のいずれかに記載の超臨界・亜臨界流体を用い
る高温高圧反応装置。
17. An extruding flow by supplying a main reaction fluid from an inner flow path by a supply means is used as a part or all of a reaction fluid transfer means in a reaction vessel.
A high-temperature and high-pressure reactor using the supercritical / subcritical fluid according to any one of 0 to 16.
【請求項18】 冷却に用いる流体を供給手段により内
側流路と外側流路の間から供給することによる押出し流
れを、反応容器内での反応流体の移送手段の一部又は全
部とした請求項13〜17のいずれかに記載の超臨界・
亜臨界流体を用いる高温高圧反応装置。
18. An extruding flow by supplying a fluid used for cooling from between an inner flow path and an outer flow path by a supply means is a part or all of a reaction fluid transfer means in a reaction vessel. Supercritical fluid according to any of 13 to 17
High-temperature high-pressure reactor using subcritical fluid.
【請求項19】 外側流路の冷却のために、冷却水を循
環させるための冷却水循環手段を外側流路内に設けた請
求項10〜18のいずれかに記載の超臨界・亜臨界流体
を用いる高温高圧反応装置。
19. The supercritical / subcritical fluid according to claim 10, wherein cooling water circulation means for circulating cooling water is provided in the outer flow path for cooling the outer flow path. High-temperature high-pressure reactor used.
【請求項20】 外側流路の冷却のために、外壁部材の
外側に外壁を冷却するための冷却手段を設けた請求項1
0〜18のいずれかに記載の超臨界・亜臨界流体を用い
る高温高圧反応装置。
20. A cooling means for cooling the outer wall outside the outer wall member for cooling the outer channel.
A high-temperature and high-pressure reactor using the supercritical / subcritical fluid according to any one of 0 to 18.
【請求項21】 超臨界又は亜臨界領域である内側流路
と、それよりも温度が低い領域である外側流路との境目
における流路幅が、高温高圧反応条件に応じて調節可能
となるようにした請求項10〜20のいずれかに記載の
超臨界・亜臨界流体を用いる高温高圧反応装置。
21. A channel width at a boundary between an inner channel that is a supercritical or subcritical region and an outer channel that is a region having a lower temperature than the inner channel can be adjusted according to high-temperature and high-pressure reaction conditions. A high-temperature and high-pressure reactor using the supercritical / subcritical fluid according to claim 10.
【請求項22】 外側流路の下流側に高温高圧反応に用
いた流体の回収手段を接続し、この回収手段で回収され
た流体が高圧に保持されたまま内側流路の供給手段から
反応容器に戻され循環使用できるようにした請求項10
〜21のいずれかに記載の超臨界・亜臨界流体を用いる
高温高圧反応装置。
22. A means for recovering the fluid used for the high-temperature and high-pressure reaction is connected to the downstream side of the outer flow path, and while the fluid recovered by the recovery means is kept at a high pressure, the reaction vessel is supplied from the supply means of the inner flow path to the reaction vessel. Claim 10 which is recirculated and made available for circulation
22. A high-temperature and high-pressure reactor using the supercritical / subcritical fluid according to any one of claims 21 to 21.
JP2000195382A 2000-06-29 2000-06-29 High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid Pending JP2002011339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195382A JP2002011339A (en) 2000-06-29 2000-06-29 High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195382A JP2002011339A (en) 2000-06-29 2000-06-29 High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid

Publications (1)

Publication Number Publication Date
JP2002011339A true JP2002011339A (en) 2002-01-15

Family

ID=18694049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195382A Pending JP2002011339A (en) 2000-06-29 2000-06-29 High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid

Country Status (1)

Country Link
JP (1) JP2002011339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532821A (en) * 2002-07-18 2005-11-04 ファセックス・コーポレーション Reduction of components in tobacco
WO2008143078A1 (en) * 2007-05-22 2008-11-27 Tohoku Techno Arch Co., Ltd. Supercritical water biomass combustion boiler
KR20170121724A (en) * 2017-08-30 2017-11-02 전북대학교산학협력단 Adjustable sorption experimental reactor
CN114804277A (en) * 2022-04-29 2022-07-29 西安交通大学 Continuous sub/supercritical hydrothermal regeneration activated carbon reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532821A (en) * 2002-07-18 2005-11-04 ファセックス・コーポレーション Reduction of components in tobacco
JP4821024B2 (en) * 2002-07-18 2011-11-24 ファセックス・コーポレーション Reduction of components in tobacco
WO2008143078A1 (en) * 2007-05-22 2008-11-27 Tohoku Techno Arch Co., Ltd. Supercritical water biomass combustion boiler
KR20170121724A (en) * 2017-08-30 2017-11-02 전북대학교산학협력단 Adjustable sorption experimental reactor
KR102004458B1 (en) 2017-08-30 2019-07-26 전북대학교산학협력단 Adjustable sorption experimental reactor
CN114804277A (en) * 2022-04-29 2022-07-29 西安交通大学 Continuous sub/supercritical hydrothermal regeneration activated carbon reactor
CN114804277B (en) * 2022-04-29 2024-03-22 西安交通大学 Continuous subcritical/supercritical hydrothermal regenerated active carbon reactor

Similar Documents

Publication Publication Date Title
JP2657255B2 (en) Method of performing chemical reaction in supercritical state
JP3273118B2 (en) High pressure processing equipment
US6709601B2 (en) Hydrothermal treatment system and method
JPS5944347B2 (en) Method and apparatus for heat treating organic carbonaceous materials under pressure
JP2018108588A (en) Multi reactor system in which pressure is adjusted
US10287224B2 (en) Method and apparatus for producing methanol with hydrocarbon recycling
CN101166714B (en) Apparatus for urea synthesis
WO2019040277A1 (en) Supercritical water oxidation systems for energy recovery and use thereof
KR100240571B1 (en) Improved urea synthesis process and apparatus therefor
JP2002011339A (en) High temperature high pressure reaction method and apparatus using supercrytical/subcritical fluid
SU1360589A3 (en) Installation for producing liquid products from coal
JP4481193B2 (en) Product packaging material processing method and processing apparatus
US8361175B2 (en) Method and device for converting biomass into gaseous products
US8506765B2 (en) Device and method for thermal decomposition of organic materials
JP2010222547A (en) Waste polymer liquefaction plant
WO2021204608A1 (en) Gasification of organic waste streams
KR100912336B1 (en) Combined type supercritical water oxidation apparatus
JP2004290819A (en) High-temperature and high-pressure treatment apparatus
US20080051476A1 (en) Alcohol production means
JP2001187753A (en) Plant for synthesizing oxygen-containing hydrocarbon
CN104870412A (en) Method and apparatus for providing oxygenated hydrocarbons
JPH10277570A (en) Super-critical water reaction apparatus
Benmakhlouf et al. Applications of Supercritical Water in Waste Treatment and Valorization: A Review. Energies 2023, 16, 2081
CN117643833A (en) Supercritical carbon dioxide microfluidic high-pressure synthesis system and method
JPH1095984A (en) Oil recovery from waste plastic