JP2002001096A - Method for producing chain-like metal colloidal dispersion - Google Patents

Method for producing chain-like metal colloidal dispersion

Info

Publication number
JP2002001096A
JP2002001096A JP2000188078A JP2000188078A JP2002001096A JP 2002001096 A JP2002001096 A JP 2002001096A JP 2000188078 A JP2000188078 A JP 2000188078A JP 2000188078 A JP2000188078 A JP 2000188078A JP 2002001096 A JP2002001096 A JP 2002001096A
Authority
JP
Japan
Prior art keywords
metal
chain
fine particles
producing
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000188078A
Other languages
Japanese (ja)
Inventor
Takahiro Moto
隆裕 本
Kokichi Waki
幸吉 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000188078A priority Critical patent/JP2002001096A/en
Publication of JP2002001096A publication Critical patent/JP2002001096A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metal colloidal dispersion used to form a low-reflecting transparent conductive film having such a good conductivity as to correspond to a surface resistivity in the range of 100-2,000 Ω/(square), being excellent in antistatic properties and electromagnetic wave shielding properties and excellent in antireflection properties, mechanical properties, staining resistance, and productivity, and being usable in the form stuck to a face panel. SOLUTION: There is provided a method for producing a chain-like metal colloidal dispersion comprising adding a metal compound comprising a metal smaller than the metal of metal microparticles in ionization tendency to a colloid dispersion of the metal microparticles and reacting the metal compound in the presence of a reducing agent to bond the metal microparticles to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた導電性を有
する機能性層を生成し得る鎖状金属コロイド分散液の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chain metal colloidal dispersion capable of forming a functional layer having excellent conductivity.

【0002】[0002]

【従来の技術】TVブラウン管やコンピュータディスプ
レイとして用いられている陰極線管やプラズマディスプ
レーは、フェースパネル面に発生する静電気により埃が
付着して視認性が低下する他、電磁波を輻射して周囲に
悪影響を及ぼすなどの問題点を有している。また、陰極
線管のフラット化等により、反射防止機能が必要となっ
ている。また、フェースパネル面は手が触れたり、汚れ
を落とすことにより、擦り傷が発生しやすい問題があ
る。
2. Description of the Related Art In a cathode ray tube or a plasma display used as a TV cathode ray tube or a computer display, dust adheres due to static electricity generated on a face panel surface, thereby lowering visibility, and radiating electromagnetic waves to adversely affect surroundings. And the like. Further, the flattening of the cathode ray tube or the like requires an antireflection function. Further, there is a problem that the face panel surface is liable to be scratched by touching or removing dirt.

【0003】帯電防止、電磁波遮蔽および反射防止を目
的として、銀等の金属あるいはITO等の導電性金属酸
化物を蒸着・スパッタ等で導電性層をフェースパネル面
に直接形成させる方法が提案されているが、膜形成には
真空処理や高温処理が必要であり、製造費が高価になっ
たり、生産性に問題がある。また、ゾル−ゲル法による
塗布方式の導電性薄膜の形成法も提案されているが(羽
生等,National Technical Rep
ort 40,No.1,(1994)90)、高温処
理が必要であり,透明基材であるプラスチックフィルム
上やハードコート上への積層は基材の変質が起こること
により,基材として使用できる素材が限定されてしま
う。
For the purpose of preventing static electricity, shielding electromagnetic waves and preventing reflection, a method has been proposed in which a conductive layer is formed directly on the face panel surface by vapor deposition or sputtering of a metal such as silver or a conductive metal oxide such as ITO. However, vacuum processing or high-temperature processing is required for film formation, which increases the manufacturing cost and has a problem in productivity. In addition, a method of forming a conductive thin film by a coating method using a sol-gel method has been proposed (Hanyu et al., National Technical Rep.
ort 40, no. 1, (1994) 90), a high-temperature treatment is required, and the lamination on a plastic film or a hard coat, which is a transparent substrate, is limited in the material that can be used as the substrate due to deterioration of the substrate. I will.

【0004】導電性酸化物微粒子やコロイドを分散させ
た透明導電性塗料も提案されているが(特開平6−34
4489号公報、特開平7−268251号公報)、得
られた透明導電性層の導電性が低い。さらに導電性を上
げるために、金属微粒子からなる透明導電膜が提案され
ているが(特開平9−55175号公報、特開平10−
188681号公報)、導電性がまだ十分ではない。
[0004] A transparent conductive paint in which conductive oxide fine particles and colloids are dispersed has also been proposed (JP-A-6-34).
4489, JP-A-7-268251), and the obtained transparent conductive layer has low conductivity. In order to further increase the conductivity, a transparent conductive film made of fine metal particles has been proposed (JP-A-9-55175, JP-A-10-55175).
188681), the conductivity is not yet sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、表面
抵抗が100〜2000Ω/□の範囲にあり良好な導電
性を有して帯電防止性及び電磁波遮蔽性に優れ、しかも
反射防止性、機械特性、防汚性、生産性にも優れ、フェ
ースパネルに貼り付けて使用可能な低反射透明導電性フ
ィルムの形成に用いられる金属コロイド分散液の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a surface resistance in the range of 100 to 2000 Ω / □, good conductivity, excellent antistatic properties and electromagnetic wave shielding properties, and antireflection properties. An object of the present invention is to provide a method for producing a metal colloid dispersion liquid which is excellent in mechanical properties, antifouling property, and productivity and is used for forming a low-reflection transparent conductive film that can be used by being attached to a face panel.

【0006】[0006]

【課題を解決するための手段】本発明によれば、下記構
成の鎖状金属コロイド分散液の製造方法が提供されて、
本発明の上記目的が達成される。 1.金属微粒子コロイド分散液中に該金属微粒子の金属
よりもイオン化傾向の小さい金属からなる金属化合物を
添加した後、還元剤を添加して反応を行い、金属微粒子
を互いに結合させることを特徴とする鎖状金属コロイド
分散液の製造方法。 2.還元剤を添加して反応を行い、金属微粒子を互いに
結合させた後、限外ろ過法により不純物を取り除くこと
を特徴とする上記1に記載の鎖状金属コロイド分散液の
製造方法。 3.限外ろ過法により不純物を取り除いた後、濃縮を行
うことを特徴とする上記2に記載の鎖状金属コロイド分
散液の製造方法。 4.ポリビニルアルコール、ポリビニルピロリドン、ゼ
ラチン、クエン酸及びクエン酸塩から選択される少なく
とも一つを前記金属微粒子コロイド溶液に、又は前記金
属化合物添加後の溶液に、又は前記還元剤添加後の溶液
に添加することを特徴とする上記1〜3のいずれかに記
載の鎖状金属コロイド分散液の製造方法。 5.金属化合物を添加後、10分間以上経た後72時間
以内に還元剤を添加することを特徴とする上記1〜4の
いずれかにに記載の鎖状金属コロイド分散液の製造方
法。 6.金属微粒子の平均粒径が3〜30nmであることを
特徴とする上記1〜5のいずれかに記載の鎖状金属コロ
イド分散液の製造方法。 7.金属微粒子が銀微粒子及び銅微粒子の少なくともい
ずれかであり、かつ金属化合物がパラジウム、白金及び
金の錯塩から選択される少なくとも1種であることを特
徴とする上記1〜6のいずれかに記載の鎖状金属コロイ
ド分散液の製造方法。 8.還元剤が、硫酸第一鉄、クエン酸三ナトリウム、酒
石酸、水素化ホウ素ナトリウム、及びジ亜リン酸ナトリ
ウムから選択される少なくとも1種であることを特徴と
する上記1〜7のいずれかに記載の鎖状金属コロイド分
散液の製造方法。
According to the present invention, there is provided a method for producing a chain metal colloidal dispersion having the following constitution,
The above object of the present invention is achieved. 1. A chain comprising adding a metal compound composed of a metal having a smaller ionization tendency than the metal of the metal fine particles to the colloidal dispersion of metal fine particles, and then adding a reducing agent to cause a reaction to bind the metal fine particles to each other. For producing a colloidal metal colloid dispersion. 2. 2. The method for producing a chain metal colloid dispersion according to the above item 1, wherein after a reaction is performed by adding a reducing agent to bind the metal fine particles to each other, impurities are removed by ultrafiltration. 3. 3. The method for producing a chain metal colloid dispersion according to the above item 2, wherein the concentration is performed after removing impurities by ultrafiltration. 4. At least one selected from polyvinyl alcohol, polyvinylpyrrolidone, gelatin, citric acid and citrate is added to the metal fine particle colloid solution, or to the solution after addition of the metal compound, or to the solution after addition of the reducing agent. 4. The method for producing a chain metal colloid dispersion according to any one of the above 1 to 3, wherein 5. 5. The method for producing a chain metal colloid dispersion according to any one of the above items 1 to 4, wherein the reducing agent is added within 72 hours after 10 minutes or more after the addition of the metal compound. 6. 6. The method for producing a chain metal colloid dispersion according to any one of the above 1 to 5, wherein the metal fine particles have an average particle diameter of 3 to 30 nm. 7. 7. The method according to any of 1 to 6, wherein the metal fine particles are at least one of silver fine particles and copper fine particles, and the metal compound is at least one selected from complex salts of palladium, platinum and gold. A method for producing a chain metal colloid dispersion. 8. The reducing agent is at least one selected from ferrous sulfate, trisodium citrate, tartaric acid, sodium borohydride, and sodium diphosphite, any one of the above items 1 to 7, wherein A method for producing a chain metal colloid dispersion liquid.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を詳し
く説明する。本発明の方法で製造される鎖状金属コロイ
ド分散液の分散質である鎖状金属コロイドは、少なくと
も1種以上の金属からなる。鎖状金属コロイドの平均主
鎖長と平均太さとの比(平均主鎖長対平均太さ)は、好
ましくは5以上、より好ましくは5〜50である。ま
た、平均太さは、好ましくは2nm以上、より好ましく
は2〜30nmである。平均主鎖長と平均太さの比が3
程度以下ではもはや鎖状とは言えない。また、平均太さ
が1nm以下の鎖状金属コロイドは、鎖状のものは形成
されない。これは、安定性に乏しいためと推定される。
鎖状金属コロイドは、分岐していてもよく、分岐鎖の合
計長さが最も短くなるように主鎖を設定する。
Embodiments of the present invention will be described below in detail. The chain metal colloid, which is a dispersoid of the chain metal colloid dispersion produced by the method of the present invention, comprises at least one or more metals. The ratio (average main chain length to average thickness) of the average main chain length to the average thickness of the chain metal colloid is preferably 5 or more, more preferably 5 to 50. Further, the average thickness is preferably 2 nm or more, more preferably 2 to 30 nm. The ratio of average main chain length to average thickness is 3
Below this level, it is no longer chain-like. In addition, a chain-shaped metal colloid having an average thickness of 1 nm or less is not formed as a chain. This is presumed to be due to poor stability.
The chain metal colloid may be branched, and the main chain is set so that the total length of the branched chains is the shortest.

【0008】鎖状金属コロイドを透明導電性膜の作成に
使用する場合、その平均太さが2nm未満であると、コ
ロイド自体の導電性が低くなり、目的を達成しうる程度
の低抵抗値を有する導電性膜を得ることができない。平
均太さが30nmを越えると、金属による光の吸収が大
きくなり、このために導電性膜の光透過率が低下すると
同時にヘイズが大きくなる。このような導電性膜を、陰
極線管の前面板として用いると、表示画像の解像度が低
下する。コロイドの主鎖長が太さの5倍を下回る場合、
導電性膜を作成した際に、コロイド同士の接合が多くな
り、目的を達成しうる程度の低抵抗値を得ることができ
ない。また、50倍を越えると凝集しやすくなり液の安
定性が悪くなる。また、導電性膜のヘイズも大きくな
る。以上のような好ましい平均主鎖長と平均太さの比及
び平均太さを有する鎖状金属コロイドを得るためには、
金属微粒子の平均粒径が3〜30nmの範囲にあること
が好ましい。
When the chain metal colloid is used for forming a transparent conductive film, if the average thickness is less than 2 nm, the conductivity of the colloid itself becomes low, and a low resistance value enough to achieve the purpose is obtained. Cannot be obtained. When the average thickness exceeds 30 nm, the absorption of light by the metal increases, and therefore, the light transmittance of the conductive film decreases and the haze increases. When such a conductive film is used as a front plate of a cathode ray tube, the resolution of a displayed image is reduced. If the main chain length of the colloid is less than 5 times the thickness,
When a conductive film is formed, the bonding between colloids increases, and a low resistance value that can achieve the purpose cannot be obtained. On the other hand, if it exceeds 50 times, it is easy to aggregate and the stability of the liquid is deteriorated. Further, the haze of the conductive film also increases. In order to obtain a chain metal colloid having a preferred average main chain length and average thickness ratio and average thickness as described above,
The average particle diameter of the metal fine particles is preferably in the range of 3 to 30 nm.

【0009】本発明において使用できる金属微粒子は公
知の方法によって得ることができ、、単独金属微粒子で
あっても複合金属微粒子でもかまわない。導電性が高い
という点で、銀微粒子、銅微粒子、及び銀と銅の複合微
粒子などが優れている。
The metal fine particles usable in the present invention can be obtained by a known method, and may be single metal fine particles or composite metal fine particles. From the viewpoint of high conductivity, silver fine particles, copper fine particles, composite fine particles of silver and copper, and the like are excellent.

【0010】金属微粒子コロイド分散液は、上記金属微
粒子を媒質とし、媒体としての溶媒は、水を主溶媒とし
て、これに炭素数1〜5のアルコール類、炭素数2〜5
のエステル類、炭素数2〜5のケトン類、炭素数2〜5
のエーテル類等の有機溶媒が水に対して30重量%以下
混合されていてもよい。媒体としては水が好ましい。金
属微粒子コロイド分散液中の金属微粒子の濃度は、鎖状
の形成しやすさの観点から、好ましくは0.01〜10
重量%、より好ましくは0.1〜3重量%である。
[0010] The colloidal dispersion liquid of fine metal particles uses the above-mentioned fine metal particles as a medium, and the solvent as a medium is water as a main solvent to which alcohols having 1 to 5 carbon atoms and 2 to 5 carbon atoms are added.
Esters, ketones having 2 to 5 carbon atoms, 2 to 5 carbon atoms
Or less than 30% by weight of an organic solvent such as ethers may be mixed with water. Water is preferred as the medium. The concentration of the metal fine particles in the metal fine particle colloidal dispersion is preferably 0.01 to 10 from the viewpoint of easy formation of a chain.
%, More preferably 0.1 to 3% by weight.

【0011】金属微粒子コロイド分散液は、それ自体公
知の方法で調製することができる。例えば、金属化合物
を水・アルコール混合液中、窒素雰囲気下で加熱還流す
ることで還元する方法、あるいは、金属化合物水溶液を
還元剤で還元することにより調製することができる。
The metal fine particle colloidal dispersion can be prepared by a method known per se. For example, it can be prepared by reducing the metal compound by heating and refluxing in a water / alcohol mixture under a nitrogen atmosphere, or by reducing an aqueous metal compound solution with a reducing agent.

【0012】本発明において用いられる金属化合物は、
金属微粒子同士の結合を促進する金属を供給する役割を
はたすもので、金属微粒子の金属よりもイオン化傾向の
小さい金属のイオンから構成される金属化合物である。
また、該金属化合物は、金属微粒子コロイド分散液に可
溶であることが好ましい。このような金属化合物を用い
ることにより、還元剤を添加する前に、金属微粒子の金
属と金属化合物の金属イオンとの間で酸化・還元反応が
起き、金属微粒子の金属がイオン化するとともに金属化
合物の金属イオンが金属化して金属微粒子上に蓄積しす
る。そして還元剤の添加により金属微粒子の金属イオン
化したものと残存している金属化合物由来の金属イオン
がともに還元され、金属微粒子を結合しやすくしてい
る。特に、Pd、PtあるいはAuの錯塩が金属微粒子
の結合効果が優れている。上記錯塩の具体例としては、
(NH42[PdCl4]、K2[PdCl4]、K2[P
dCl6]、Na2[PdCl4]、Na2[PdC
6]、Li2[PdCl4]、K2[PdBr4]、(N
42[PtCl4]、K2[PtCl4]、K2[PtC
6]、K2[Pt(CN)4]・3H2O、Pt(N
34Cl2、[Pt(NH34](NO32、(N
4)AuCl4、K[AuCl4]・2H2O、Na[A
uCl4]・2H2O等を挙げることができる。なかで
も、Na2[PdCl4]、K2[PtCl4]が特に好ま
しい。金属化合物は1種単独であるいは2種以上を組み
合わせて用いることができる。
The metal compound used in the present invention is
A metal compound that serves to supply a metal that promotes bonding between metal fine particles, and is a metal compound composed of ions of a metal having a lower ionization tendency than the metal of the metal fine particles.
The metal compound is preferably soluble in a colloidal dispersion of fine metal particles. By using such a metal compound, an oxidation / reduction reaction occurs between the metal of the metal fine particles and the metal ion of the metal compound before the reducing agent is added, whereby the metal of the metal fine particles is ionized and the metal compound is reduced. The metal ions are metallized and accumulate on the metal fine particles. The addition of the reducing agent reduces both the metal ions of the metal fine particles and the remaining metal ions derived from the metal compound, thereby facilitating the bonding of the metal fine particles. In particular, a complex salt of Pd, Pt, or Au is excellent in binding effect of metal fine particles. Specific examples of the above complex salts include:
(NH 4 ) 2 [PdCl 4 ], K 2 [PdCl 4 ], K 2 [P
dCl 6 ], Na 2 [PdCl 4 ], Na 2 [PdC
l 6 ], Li 2 [PdCl 4 ], K 2 [PdBr 4 ], (N
H 4 ) 2 [PtCl 4 ], K 2 [PtCl 4 ], K 2 [PtC
l 6 ], K 2 [Pt (CN) 4 ] · 3H 2 O, Pt (N
H 3) 4 Cl 2, [ Pt (NH 3) 4] (NO 3) 2, (N
H 4) AuCl 4, K [ AuCl 4] · 2H 2 O, Na [A
uCl 4 ] · 2H 2 O. Of these, Na 2 [PdCl 4 ] and K 2 [PtCl 4 ] are particularly preferred. The metal compounds can be used alone or in combination of two or more.

【0013】上記金属化合物は、金属微粒子100重量
部に対して、金属相当で好ましくは0.1〜50重量
部、より好ましくは1〜30重量部用いられる。なお、
金属微粒子コロイド分散液に金属化合物を添加するとき
にあるいはその後に、必要に応じて該金属微粒子と同一
あるいは別種の金属微粒子(以下、この金属微粒子を
「さらなる金属微粒子」ともいう)を添加、分散させて
もよい。
The metal compound is preferably used in an amount of 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight, corresponding to the metal, based on 100 parts by weight of the metal fine particles. In addition,
When or after adding a metal compound to the metal fine particle colloid dispersion liquid, if necessary, the same or different kind of metal fine particles (hereinafter, also referred to as “further metal fine particles”) are added and dispersed. May be.

【0014】本発明において用いられる還元剤は、金属
化合物の金属イオンを還元できるものであればよい。特
に硫酸第一鉄、水素化ホウ素ナトリウム、ジ亜リン酸ナ
トリウムが優れている。また、クエン酸三ナトリウム、
酒石酸も3次元凝集を発生させにくく好ましい。これら
の還元剤は、1種単独であるいは2種以上を組み合わせ
て用いることができる。還元剤の添加量は、金属化合物
に対して、好ましくは0.01〜2倍モル相当、より好
ましくは0.1〜0.5倍モル相当である。
The reducing agent used in the present invention may be any one that can reduce the metal ions of the metal compound. In particular, ferrous sulfate, sodium borohydride, and sodium diphosphite are excellent. Also, trisodium citrate,
Tartaric acid is also preferred because it hardly causes three-dimensional aggregation. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent to be added is preferably 0.01 to 2 moles, more preferably 0.1 to 0.5 moles, based on the metal compound.

【0015】還元剤の添加は、金属微粒子コロイド分散
液中に金属化合物を添加後あるいは必要に応じて添加さ
れるさらなる金属微粒子を添加後、撹拌を十分に行い、
金属微粒子に金属化合物及びさらなる金属微粒子が均一
に分散し吸着するまで10分間以上時間を置くことが望
ましい。10分間未満では3次元凝集が発生しやすい。
また、製造効率から72時間以内に還元剤を添加するこ
とが望ましい。
The addition of the reducing agent is carried out after the addition of the metal compound to the metal fine particle colloidal dispersion or after the addition of additional metal fine particles as required,
It is desirable to allow 10 minutes or more for the metal compound and further metal fine particles to be uniformly dispersed and adsorbed on the metal fine particles. If the time is less than 10 minutes, three-dimensional aggregation is likely to occur.
Also, it is desirable to add the reducing agent within 72 hours from the manufacturing efficiency.

【0016】反応は、撹拌下に、0〜70℃、特には1
0〜50℃の温度で、10分〜72時間、特には15分
〜48時間行うことが好ましい。
The reaction is carried out under stirring at 0 to 70 ° C., in particular at 1 to 70 ° C.
It is preferably performed at a temperature of 0 to 50 ° C for 10 minutes to 72 hours, particularly 15 minutes to 48 hours.

【0017】本発明の方法においては、反応に金属化合
物や還元剤などを用いるので、生じた鎖状金属コロイド
を長期間安定に使用するためには、反応により得られた
鎖状金属コロイド分散液から不純物を取り除くことが好
ましい。不純物を取り除くには、既知の方法が使用でき
るが、特に限外ろ過によって不純物を取り除くことが望
ましい。加えて、限外ろ過操作で鎖状金属コロイド同士
の結合を進ませ、鎖状金属コロイドの主鎖長を長くする
ことができる。限外ろ過で用いられる装置としては、ろ
過膜として特に制限はなく、分画分子量が大きすぎてコ
ロイドが詰まってしまわなければよい。
In the method of the present invention, since a metal compound or a reducing agent is used in the reaction, the chain metal colloid dispersion obtained by the reaction must be used to stably use the resulting chain metal colloid for a long period of time. It is preferable to remove impurities from. Known methods can be used to remove impurities, but it is particularly desirable to remove impurities by ultrafiltration. In addition, the chain | strand metal colloid can be made to bond together by an ultrafiltration operation, and the main chain length of a chain metal colloid can be lengthened. The device used in ultrafiltration is not particularly limited as a filtration membrane, and it is sufficient that the molecular weight cut off is too large and the colloid is not clogged.

【0018】上記したように、反応により得られた鎖状
金属コロイド分散液から限外ろ過法によって不純物を取
り除くことが望ましい。しかし、この処理により金属コ
ロイド分散質が水で希釈されて低濃度となるので、所望
の濃度まで濃縮操作を行うことが望ましい。また、この
濃縮操作でも鎖状金属コロイド同士の結合を進ませ、鎖
状金属コロイドの主鎖長を長くすることができる。
As described above, it is desirable to remove impurities from the chain metal colloidal dispersion obtained by the reaction by ultrafiltration. However, since the metal colloid dispersoid is diluted with water to a low concentration by this treatment, it is desirable to perform a concentration operation to a desired concentration. Further, even in this concentration operation, the bonding between the chain-like metal colloids is advanced, and the main chain length of the chain-like metal colloid can be lengthened.

【0019】本発明の方法では、反応の際に鎖状に金属
微粒子が結合する以外に生じる好ましからざる三次元凝
集をなくすために、分散安定剤の存在下に反応を行うこ
とが好ましい。分散安定剤としては、既知のものが使用
できる。なかでも、ポリビニルアルコール、ポリビニル
ピロリドン、ゼラチン、クエン酸及びクエン酸塩が分散
安定性に優れている。クエン酸塩としては、水中で解離
性のよいものであれば、特に限定はなくナトリウム塩、
カリウム塩などが使用できる。これら分散剤は、1種単
独であるいは2種以上を組み合わせて用いることができ
る。分散安定剤の量は、分散安定性と鎖状金属コロイド
の生成のバランスから、金属微粒子と金属化合物の合計
金属重量あたり1〜40重量%が好ましく、10〜40
重量%が特に好ましい。
In the method of the present invention, it is preferable to carry out the reaction in the presence of a dispersion stabilizer in order to eliminate undesired three-dimensional agglomeration that occurs in the reaction other than the binding of metal fine particles in a chain. Known dispersion stabilizers can be used. Among them, polyvinyl alcohol, polyvinylpyrrolidone, gelatin, citric acid and citrate have excellent dispersion stability. The citrate is not particularly limited as long as it has a good dissociation property in water, and a sodium salt,
Potassium salts and the like can be used. These dispersants can be used alone or in combination of two or more. The amount of the dispersion stabilizer is preferably from 1 to 40% by weight, and more preferably from 10 to 40% by weight based on the total weight of the metal fine particles and the metal compound, from the balance between the dispersion stability and the formation of the chain metal colloid.
% By weight is particularly preferred.

【0020】本発明の方法で製造される分散液中の鎖状
金属コロイドの太さ、主鎖長等は、金属微粒子コロイド
分散液の金属微粒子の平均粒径、安定剤の添加、反応温
度によりを制御することができる。安定剤を添加するこ
とにより、鎖状金属コロイドを細く、短くすることがで
き、また反応温度を高くすることで長くすることができ
る。但し、あまり高すぎると分断されてしまうことがあ
る。
The thickness, main chain length, and the like of the chain metal colloid in the dispersion produced by the method of the present invention depend on the average particle diameter of the metal fine particles in the metal fine particle colloid dispersion, the addition of a stabilizer, and the reaction temperature. Can be controlled. By adding a stabilizer, the chain metal colloid can be made thinner and shorter, and can be made longer by increasing the reaction temperature. However, if it is too high, it may be divided.

【0021】[0021]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0022】〔金属微粒子コロイド分散液の調製〕本実
施例、比較例で用いた金属微粒子コロイド分散液は以下
の方法で調製した。 (金属微粒子コロイド分散液(A−1))メタノール・
水混合溶媒(メタノール40重量部/水60重量部)に
あらかじめポリビニルアルコールを金属1重量部当り
0.01重量部加え、金属微粒子が金属換算で2重量%
になるように硝酸銀を加えて、次いで還流器付フラスコ
で90℃で窒素雰囲気下5時間加熱し、還流をとめ、こ
れをさらに加熱しながらメタノールを除去し、水を加え
て所定の濃度に調整した。
[Preparation of Metal Particle Colloid Dispersion] The metal particle colloid dispersion used in the present examples and comparative examples was prepared by the following method. (Metal fine particle colloidal dispersion (A-1)) methanol
To a water mixed solvent (40 parts by weight of methanol / 60 parts by weight of water), polyvinyl alcohol was added in advance at 0.01 part by weight per 1 part by weight of metal, and the metal fine particles were 2% by weight in terms of metal.
Then, the mixture was heated at 90 ° C. for 5 hours in a nitrogen atmosphere in a flask equipped with a reflux condenser to stop reflux. The methanol was removed while further heating the mixture, and water was added to adjust the concentration to a predetermined value. did.

【0023】(金属微粒子コロイド分散液(A−2))
30重量%のクエン酸ナトリウム水溶液300ccに3
0重量%の硫酸第一鉄を50cc加え混合し、窒素雰囲
気下で温度を20℃に保ち、激しく攪拌しながら10%
硝酸銀を50cc添加し反応させ、これを限外ろ過器を
使って不純物を除き、水を加えて所定の濃度に調製し
た。
(Colloidal Dispersion of Metal Fine Particles (A-2))
3 in 300 cc of 30% by weight aqueous sodium citrate solution
50% by weight of 0% by weight of ferrous sulfate was added and mixed, and the temperature was maintained at 20 ° C. under a nitrogen atmosphere.
The reaction was performed by adding 50 cc of silver nitrate, removing the impurities using an ultrafilter, and adjusting the concentration to a predetermined concentration by adding water.

【0024】(金属微粒子コロイド分散液(A−3))
温度を1℃に保って反応した以外は、金属微粒子コロイ
ド分散液(A−2)と同様にして調製した。 (金属微粒子コロイド分散液(A−4))温度を35℃
に保ち、反応した以外は、金属微粒子コロイド分散液
(A−2)と同様にして調製した。
(Colloidal Dispersion of Metal Fine Particles (A-3))
It was prepared in the same manner as the metal fine particle colloidal dispersion (A-2) except that the reaction was carried out while maintaining the temperature at 1 ° C. (Metal fine particle colloidal dispersion liquid (A-4))
And prepared in the same manner as for the metal fine particle colloidal dispersion (A-2) except that the reaction was carried out.

【0025】(金属微粒子コロイド分散液(A−5))
温度を55℃に保ち、反応させる以外は、金属微粒子コ
ロイド分散液(A−2)と同様にして調製した。 (金属微粒子コロイド分散液(A−6))硝酸銀を硝酸
銅に変えて反応した以外は、金属微粒子コロイド分散液
(A−2)と同様にして調製した。
(Metal Fine Particle Colloid Dispersion (A-5))
It was prepared in the same manner as in the metal fine particle colloidal dispersion liquid (A-2) except that the temperature was kept at 55 ° C and the reaction was carried out. (Metal Fine Particle Colloid Dispersion (A-6)) A metal fine particle colloid dispersion (A-2) was prepared in the same manner as the metal fine particle colloid dispersion (A-2) except that silver nitrate was changed to copper nitrate and reacted.

【0026】以上の調製された金属微粒子コロイド分散
液(A−1)〜(A−6)の組成及び物性を表1に示
す。
Table 1 shows the compositions and physical properties of the prepared metal fine particle colloidal dispersions (A-1) to (A-6).

【0027】〔鎖状金属コロイド分散液の調製〕 (実施例1)本例の鎖状金属コロイド分散液(B−1:
実施例1)は、調製した上記金属微粒子コロイド分散液
(A−1)を窒素雰囲気下で温度を1℃に保ち、撹拌し
ながら、銀微粒子とパラジウム微粒子の重量比が9:1
となるようにNa2[PdCl4](パラジウム錯体)水
溶液を加え混合し反応させ、これにポリビニルアルコー
ルを金属1重量部当り0.01重量部となるように加
え、Na2[PdCl4]水溶液添加1時間後に3重量%
の硫酸第一鉄(還元剤)をパラジウムの0.2倍モル相
当加え反応させ、これを限外ろ過器を使って不純物を除
き、所定の濃度に減圧濃縮して調製した。
[Preparation of Chain Metal Colloid Dispersion] (Example 1) The chain metal colloid dispersion (B-1:
In Example 1), the weight ratio of the silver fine particles to the palladium fine particles was 9: 1 while stirring the prepared metal fine particle colloid dispersion liquid (A-1) at a temperature of 1 ° C. in a nitrogen atmosphere and stirring.
And Na 2 was [PdCl 4] (palladium complex) solution was added mixture was reacted as becomes, which polyvinyl alcohol was added so that the metal 1 part by weight per 0.01 parts by weight, Na 2 [PdCl 4] aqueous 3% by weight 1 hour after addition
Of ferrous sulfate (reducing agent) was added at a concentration equivalent to 0.2 times the molar amount of palladium, and the mixture was reacted by using an ultrafilter to remove impurities and concentrated under reduced pressure to a predetermined concentration.

【0028】(実施例2)本例の鎖状金属コロイド分散
液(B−2)は、金属微粒子コロイド分散液(A−1)
を金属微粒子コロイド分散液(A−2)に変える以外は
鎖状金属コロイド分散液(B−1:実施例1)と同様に
して調製した。
(Example 2) The chain metal colloid dispersion (B-2) of this example is a metal fine particle colloid dispersion (A-1).
Was prepared in the same manner as in the case of the chain metal colloid dispersion (B-1: Example 1) except that the above was changed to a metal fine particle colloid dispersion (A-2).

【0029】(実施例3)本例の鎖状金属コロイド分散
液(B−3:実施例3)は、Na2[PdCl4]水溶液
をK2[PtCl4]水溶液に変える以外は鎖状金属コロ
イド分散液(B−2:実施例2)と同様にして調製した。
Example 3 A chain metal colloidal dispersion (B-3: Example 3) of this example is a chain metal colloid dispersion except that an aqueous solution of Na 2 [PdCl 4 ] is changed to an aqueous solution of K 2 [PtCl 4 ]. It was prepared in the same manner as in the colloidal dispersion (B-2: Example 2).

【0030】(実施例4)本例の鎖状金属コロイド分散
液(B−4)は、Na2[PdCl4]水溶液をHAuC
4水溶液に変える以外は鎖状金属コロイド分散液(B
−2:実施例2)と同様にして調製した。
Example 4 A chain metal colloidal dispersion (B-4) of this example was prepared by adding an aqueous solution of Na 2 [PdCl 4 ] to HAuC.
l 4 except for changing the aqueous solution of the chain metal colloidal dispersion (B
-2: Prepared in the same manner as in Example 2).

【0031】(実施例5)本例の鎖状金属コロイド分散
液(B−5)は、金属微粒子コロイド分散液(A−1)
を金属微粒子コロイド分散液(A−3)に変える以外は
鎖状金属コロイド分散液(B−1)と同様にして調製し
た。
(Example 5) The chain metal colloidal dispersion (B-5) of this example is a metal fine particle colloidal dispersion (A-1).
Was prepared in the same manner as for the chain metal colloid dispersion (B-1) except that the above was changed to a metal fine particle colloid dispersion (A-3).

【0032】(実施例6)本例の鎖状金属コロイド分散
液(B−6)は、金属微粒子コロイド分散液(A−1)
を金属微粒子コロイド分散液(A−4)に変える以外は
鎖状金属コロイド分散液(B−1)と同様にして調製し
た。
(Example 6) The colloidal metal colloidal dispersion (B-6) of this example was prepared by using a metal fine particle colloidal dispersion (A-1).
Was prepared in the same manner as in the case of the chain metal colloid dispersion (B-1) except that the above was changed to a metal fine particle colloid dispersion (A-4).

【0033】(実施例7)本例の鎖状金属コロイド分散
液(B−7)は、金属微粒子コロイド分散液(A−1)
を金属微粒子コロイド分散液(A−6)に変える以外は
鎖状金属コロイド分散液(B−1)と同様にして調製し
た。
(Example 7) The colloidal dispersion liquid of metal chain (B-7) of this example is a dispersion liquid of metal fine particle colloid (A-1).
Was prepared in the same manner as the chain metal colloid dispersion (B-1) except that the above was changed to a metal fine particle colloid dispersion (A-6).

【0034】(比較例1)本例の金属コロイド分散液
(B'−1)は、調製した上記金属微粒子コロイド分散
液(A−1)にポリビニルアルコールをパラジウム金属
1重量部当り0.01重量部となるように加え、これに
銀微粒子とパラジウム微粒子の重量比が9:1となるよ
うに硝酸パラジウム水溶液を加え、次いで還流器付フラ
スコで90℃で窒素雰囲気下5時間加熱し、還流をと
め、さらに加熱しながらメタノールを除去し、水を加え
て表2に示される濃度に調整した。
Comparative Example 1 The metal colloid dispersion (B'-1) of this example was prepared by adding polyvinyl alcohol to the prepared metal fine particle colloid dispersion (A-1) in an amount of 0.01 part by weight per 1 part by weight of palladium metal. Parts, and an aqueous solution of palladium nitrate was added thereto such that the weight ratio of the silver fine particles to the palladium fine particles was 9: 1. Then, the mixture was heated at 90 ° C. in a flask equipped with a reflux device under a nitrogen atmosphere for 5 hours to reflux. The methanol was removed while heating, and the concentration was adjusted to the one shown in Table 2 by adding water.

【0035】(比較例2)本例の金属コロイド分散液
(B'−2)は、金属微粒子コロイド分散液(A−1)
を金属微粒子コロイド分散液(A−5)に変える以外は
鎖状金属コロイド分散液(B−1)と同様にして調製し
た。
(Comparative Example 2) The metal colloid dispersion liquid (B'-2) of this example is a metal fine particle colloid dispersion liquid (A-1).
Was prepared in the same manner as the chain metal colloid dispersion liquid (B-1) except that the above was changed to a metal fine particle colloid dispersion liquid (A-5).

【0036】(比較例3)本例の金属コロイド分散液
(B'−3)は、実施例1において還元剤を添加しない
で金属コロイド分散液を調製した。
Comparative Example 3 The metal colloid dispersion (B'-3) of this example was prepared in the same manner as in Example 1 except that no reducing agent was added.

【0037】上述した調製法にしたがって作成した金属
コロイドのTEM観察結果からその平均粒径あるいは平
均太さ及び平均主鎖長を読み取り、表2に示した。比較
例1、3のように、還元剤を用いずに調製された金属コ
ロイド分散液は鎖状の分散質を有していない。本発明の
実施例1〜7では、鎖状の分散質が形成している。実施
例1、2、5、6、7からは、金属微粒子の平均粒径が
3〜30nmのものが鎖状の分散質を形成していること
がわかる。また、実施例2、3および4から金属化合物
としてPd、PtあるいはAuの錯塩が好ましいことが
分かる。比較例2は、金属微粒子の平均粒径が65nm
と30nmを大きく越えているので、鎖状金属コロイド
分散液を形成しない。比較例2は、使用する金属微粒子
コロイド分散液(A−5)は金属微粒子の平均粒径が6
5nmと大きく、表面の割合が小さい。Na2[PdC
4]の添加により、銀イオン化する量が少なくなり、
そのため鎖を形成するために必要な銀イオンが不足し
て、鎖の形成ができなかったものと推定される。
The average particle size or average thickness and average main chain length of the metal colloid prepared according to the above-mentioned preparation method were read from the TEM observation results, and are shown in Table 2. As in Comparative Examples 1 and 3, the metal colloid dispersions prepared without using a reducing agent do not have a chain dispersoid. In Examples 1 to 7 of the present invention, a chain dispersoid is formed. From Examples 1, 2, 5, 6, and 7, it can be seen that the metal fine particles having an average particle size of 3 to 30 nm form chain-like dispersoids. Examples 2, 3 and 4 show that Pd, Pt or Au complex salts are preferable as the metal compound. In Comparative Example 2, the average particle diameter of the metal fine particles was 65 nm.
Therefore, no chain metal colloid dispersion liquid is formed. In Comparative Example 2, the metal fine particle colloidal dispersion (A-5) used had an average particle diameter of 6
As large as 5 nm, the ratio of the surface is small. Na 2 [PdC
l 4 ], the amount of silver ionization decreases,
It is presumed that silver ions required to form a chain were insufficient, and a chain could not be formed.

【0038】(実施例8〜11)これらの例の金属コロ
イド分散液(B−8〜B−11)は、還元剤を硫酸第一
鉄から、クエン酸三ナトリウム、酒石酸、水素化ホウ素
ナトリウム、ジ亜リン酸ナトリウムにそれぞれ変える以
外は、鎖状金属コロイド分散液(B−1:実施例1)と
同様にして調製した。実施例8〜11のサンプルは、実
施例1と同様に鎖状の分散質を有する鎖状金属コロイド
が形成されていることがTEM観察から分かった。
Examples 8 to 11 The metal colloid dispersions (B-8 to B-11) of these examples were prepared by changing the reducing agent from ferrous sulfate to trisodium citrate, tartaric acid, sodium borohydride, It was prepared in the same manner as the chain metal colloid dispersion liquid (B-1: Example 1) except that sodium diphosphite was used. TEM observation revealed that the samples of Examples 8 to 11 had chain metal colloids having chain dispersoids as in Example 1.

【0039】(実施例12〜14)これらの例の金属コ
ロイド分散液(B−12〜B−14)は、Na2[Pd
Cl4]水溶液を添加1時間後に硫酸第一鉄を加えると
ころを10分後、10時間後、72時間後にそれぞれ変
える以外は鎖状金属コロイド分散液(B−2:実施例
2)と同様にして調製した。
(Examples 12 to 14) The metal colloid dispersions (B-12 to B-14) of these examples were prepared using Na 2 [Pd
Cl 4 ] aqueous solution (B-2: Example 2) except that ferrous sulfate was added 1 hour after the addition of the aqueous solution, and then changed after 10 minutes, 10 hours, and 72 hours. Prepared.

【0040】実施例12〜14のサンプルは、実施例2
と同様に鎖状の分散質を有する鎖状金属コロイドが形成
されていることがTEM観察から分かった。
The samples of Examples 12 to 14 are the same as those of Example 2.
It was found from the TEM observation that a chain metal colloid having a chain dispersoid was formed in the same manner as in Example 1.

【0041】(実施例15〜17)これらの例の鎖状金
属コロイド分散液(B−15〜B−17)は分散安定剤
をポリビニールアルコールから、ポリビニルピロリド
ン、ゼラチン、クエン酸三ナトリウムにそれぞれ変える
以外は金属コロイド分散液(B−2:実施例2)と同様
にして調製した。実施例15〜17のサンプルは、実施
例2と同様に鎖状の分散質を有する鎖状金属コロイドが
形成されていることがTEM観察から分かった。
(Examples 15 to 17) The chain metal colloidal dispersions (B-15 to B-17) of these examples were prepared by dispersing a dispersion stabilizer from polyvinyl alcohol, polyvinylpyrrolidone, gelatin and trisodium citrate, respectively. The preparation was carried out in the same manner as in the metal colloid dispersion liquid (B-2: Example 2) except for changing. It was found from the TEM observation that the samples of Examples 15 to 17 had chain metal colloids having chain dispersoids as in Example 2.

【0042】(実施例18)本例の鎖状金属コロイド分
散液(B−18)は、金属コロイド分散液(B−6:実
施例6)を調製する過程において、硫酸第一鉄をPdの
0.2倍モル相当加え反応させて調製した。
(Example 18) In the process of preparing a metal colloid dispersion (B-6: Example 6), ferrous sulfate was converted to Pd in the process of preparing a metal colloid dispersion (B-18). It was prepared by adding 0.2-fold molar equivalent and reacting.

【0043】(実施例19)本例の鎖状金属コロイド分
散液(B−19)は、金属コロイド分散液(B−6:実
施例6)を調製する過程において、硫酸第一鉄をPdの
0.2倍モル相当加え反応させ、これを限外ろ過器を使
って不純物を除いて調製した。
(Example 19) In the process of preparing a metal colloid dispersion (B-6: Example 6), ferrous sulfate was converted to Pd in the process of preparing a metal colloid dispersion (B-19). Equivalent to 0.2-fold molar reaction was performed, and this was prepared by removing impurities using an ultrafilter.

【0044】実施例18と19に記述した調製法にした
がって作成した金属コロイドのTEM観察結果からその
平均粒径あるいは平均太さ及び平均主鎖長を読み取り、
その結果を表2に示した。実施例18、19の金属コロ
イドの平均太さは実施例6の金属コロイドのそれと比べ
て変わらないが、平均主鎖長はともに短くなっている。
限外ろ過器を使用しなかった実施例18の金属コロイド
が最も短く、限外ろ過器を使用したが濃縮していない実
施例19の金属コロイドが次に短く、限外ろ過器を使用
し、濃縮を行った実施例6の金属コロイドが最も長く成
長していることが分かる。
From the results of TEM observation of the metal colloids prepared according to the preparation methods described in Examples 18 and 19, the average particle size or average thickness and average main chain length were read.
The results are shown in Table 2. The average thickness of the metal colloids of Examples 18 and 19 is not different from that of the metal colloid of Example 6, but the average main chain length is shorter.
The metal colloid of Example 18 which did not use an ultrafilter was the shortest, the metal colloid of Example 19 which used an ultrafilter but was not concentrated was the next shortest, and used an ultrafilter. It can be seen that the concentrated metal colloid of Example 6 grew the longest.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】(低反射透明導電性積層フィルムの作製)
ポリエチレンテレフタレートフィルムにワイヤーバーを
用いてハードコート塗布液を塗布・乾燥後、紫外線照射
しハードコート層を作製した。コロナ処理を施した後、
上記鎖状金属コロイド液をイソプロパノールで希釈した
塗布液をワイヤーバーで塗布量が70mg/m2になる
ように塗布、乾燥した。次いで、反射防止層を膜厚70
nmになるように塗布・乾燥し、紫外線照射した。さら
に、防汚層用塗布液を同様にワイヤーバーで塗布し乾燥
・熱処理を行った。
(Preparation of Low Reflective Transparent Conductive Laminated Film)
A hard coat coating solution was applied to the polyethylene terephthalate film using a wire bar, dried, and then irradiated with ultraviolet rays to form a hard coat layer. After performing corona treatment,
The coating solution obtained by diluting the chain metal colloid solution with isopropanol was applied using a wire bar so that the application amount was 70 mg / m 2 , and dried. Next, an antireflection layer having a film thickness of 70
It was applied to a thickness of nm, dried, and irradiated with ultraviolet rays. Further, the coating solution for the antifouling layer was similarly applied with a wire bar, and dried and heat-treated.

【0048】作製した試料を以下に示す方法で評価し
た。本発明試料は透過率58〜62%、ヘイズ1.0%
以下と光学特性が極めて良好で、100〜2000Ω/
□の範囲に含まれる適切な表面低効率、1%以下の優れ
た平均反射率を有する低反射透明導電性積層フィルムで
あることが分かった。
The prepared sample was evaluated by the following method. The sample of the present invention has a transmittance of 58 to 62% and a haze of 1.0%.
The optical characteristics are extremely good as follows: 100 to 2000 Ω /
It was found to be a low-reflection transparent conductive laminated film having an appropriate surface low efficiency falling within the range of □ and an excellent average reflectance of 1% or less.

【0049】(1)表面抵抗率 4端子法表面抵抗率計(三菱油化(株)製「ロレスタF
P」)により測定した。 (2)透過率・ヘイズ ヘイズメーター(日本電色工業(株)製 MODEL
1001DP)を用いて測定した。 (3)平均反射率 分光光度計(日本分光(株)製)を用いて、450〜6
50nmの波長領域における入射光5°における正反射
の平均反射率を評価した。
(1) Surface resistivity Four-terminal method surface resistivity meter (Loresta F manufactured by Mitsubishi Yuka Co., Ltd.)
P "). (2) Haze haze meter (Model manufactured by Nippon Denshoku Industries Co., Ltd.)
1001DP). (3) Average reflectance 450 to 6 using a spectrophotometer (manufactured by JASCO Corporation)
The average reflectance of specular reflection at 5 ° of incident light in a wavelength region of 50 nm was evaluated.

【0050】[0050]

【発明の効果】本発明の方法により製造された鎖状金属
コロイド分散液から、CRTやPDP、FED等のフラ
ットパネルディスプレイ等の前面板などに用いられる帯
電防止性、電磁波遮蔽性、導電性に優れた機能性膜を形
成することができる。
The chain metal colloidal dispersion produced by the method of the present invention can be used to improve the antistatic properties, electromagnetic wave shielding properties, and conductivity used for front panels of flat panel displays such as CRTs, PDPs and FEDs. An excellent functional film can be formed.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2K009 AA15 CC02 CC09 CC14 CC34 EE00 EE03 4G065 AA04 AB35X AB38X BA07 CA13 DA09 EA03 FA01 4J038 AA011 HA061 KA06 NA20 PB09 PC03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2K009 AA15 CC02 CC09 CC14 CC34 EE00 EE03 4G065 AA04 AB35X AB38X BA07 CA13 DA09 EA03 FA01 4J038 AA011 HA061 KA06 NA20 PB09 PC03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属微粒子コロイド分散液中に該金属微
粒子の金属よりもイオン化傾向の小さい金属からなる金
属化合物を添加した後、還元剤を添加して反応を行い、
金属微粒子を互いに結合させることを特徴とする鎖状金
属コロイド分散液の製造方法。
Claims 1. A metal compound comprising a metal having a smaller ionization tendency than the metal of the metal fine particles is added to the metal fine particle colloidal dispersion, and then a reducing agent is added to carry out the reaction.
A method for producing a chain metal colloid dispersion, comprising bonding metal fine particles to each other.
【請求項2】 還元剤を添加して反応を行い、金属微粒
子を互いに結合させた後、限外ろ過法により不純物を取
り除くことを特徴とする請求項1に記載の鎖状金属コロ
イド分散液の製造方法。
2. The chain metal colloid dispersion liquid according to claim 1, wherein after the metal fine particles are bonded to each other by adding a reducing agent to carry out a reaction, impurities are removed by an ultrafiltration method. Production method.
【請求項3】 限外ろ過法により不純物を取り除いた
後、濃縮を行うことを特徴とする請求項2に記載の鎖状
金属コロイド分散液の製造方法。
3. The method for producing a chain metal colloid dispersion according to claim 2, wherein the concentration is performed after removing impurities by an ultrafiltration method.
【請求項4】 ポリビニルアルコール、ポリビニルピロ
リドン、ゼラチン、クエン酸及びクエン酸塩から選択さ
れる少なくとも一つを前記金属微粒子コロイド溶液に、
又は前記金属化合物添加後の溶液に、又は前記還元剤添
加後の溶液に添加することを特徴とする請求項1〜3の
いずれかに記載の鎖状金属コロイド分散液の製造方法。
4. A method in which at least one selected from polyvinyl alcohol, polyvinylpyrrolidone, gelatin, citric acid and citrate is added to the metal fine particle colloid solution,
The method for producing a chain metal colloid dispersion according to any one of claims 1 to 3, wherein the dispersion is added to the solution after the addition of the metal compound or to the solution after the addition of the reducing agent.
【請求項5】 金属化合物を添加後、10分間以上経た
後72時間以内に還元剤を添加することを特徴とする請
求項1〜4のいずれかにに記載の鎖状金属コロイド分散
液の製造方法。
5. The chain metal colloid dispersion according to claim 1, wherein the reducing agent is added within 72 hours after 10 minutes or more after the addition of the metal compound. Method.
【請求項6】 金属微粒子の平均粒径が3〜30nmで
あることを特徴とする請求項1〜5のいずれかに記載の
鎖状金属コロイド分散液の製造方法。
6. The method for producing a chain metal colloid dispersion according to claim 1, wherein the average particle diameter of the metal fine particles is 3 to 30 nm.
【請求項7】 金属微粒子が銀微粒子及び銅微粒子の少
なくともいずれかであり、かつ金属化合物がパラジウ
ム、白金及び金の錯塩から選択される少なくとも1種で
あることを特徴とする請求項1〜6のいずれかに記載の
鎖状金属コロイド分散液の製造方法。
7. The method according to claim 1, wherein the metal fine particles are at least one of silver fine particles and copper fine particles, and the metal compound is at least one selected from palladium, platinum and gold complex salts. The method for producing a chain metal colloid dispersion according to any one of the above.
【請求項8】 還元剤が、硫酸第一鉄、クエン酸三ナト
リウム、酒石酸、水素化ホウ素ナトリウム、及びジ亜リ
ン酸ナトリウムから選択される少なくとも1種であるこ
とを特徴とする請求項1〜7のいずれかに記載の鎖状金
属コロイド分散液の製造方法。
8. The method according to claim 1, wherein the reducing agent is at least one selected from ferrous sulfate, trisodium citrate, tartaric acid, sodium borohydride, and sodium diphosphite. 8. The method for producing a chain metal colloid dispersion according to any one of items 7 to 7.
JP2000188078A 2000-06-22 2000-06-22 Method for producing chain-like metal colloidal dispersion Pending JP2002001096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188078A JP2002001096A (en) 2000-06-22 2000-06-22 Method for producing chain-like metal colloidal dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188078A JP2002001096A (en) 2000-06-22 2000-06-22 Method for producing chain-like metal colloidal dispersion

Publications (1)

Publication Number Publication Date
JP2002001096A true JP2002001096A (en) 2002-01-08

Family

ID=18687930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188078A Pending JP2002001096A (en) 2000-06-22 2000-06-22 Method for producing chain-like metal colloidal dispersion

Country Status (1)

Country Link
JP (1) JP2002001096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5306760B2 (en) Transparent conductor, touch panel, and solar cell panel
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
KR100621050B1 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP5638935B2 (en) Metal fine particle dispersion, transparent conductive film forming coating liquid, and substrate with transparent conductive film
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP2000090737A (en) Conductive membrane and coating liquid for forming conductive membrane
JP5649932B2 (en) Method for producing metal-coated metal oxide fine particles and metal-coated metal oxide fine particles
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP2003342602A (en) Indium based metal fine particle and its manufacturing method, and coating liquid for forming transparent and conductive film containing indium based metal fine particle, base material provided with transparent and conductive film and display device
JP2002001096A (en) Method for producing chain-like metal colloidal dispersion
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2001279304A (en) Chain-shaped metallic colloid dispersed liquid and its production method
JP2006032197A (en) Transparent bilayer film and its manufacturing method
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP2004241354A (en) Conductor
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JPH1112608A (en) Manufacture of composite particle having core-cell structure, the composite particle obtained by the manufacture and its application
JP4232575B2 (en) Transparent conductive layer forming coating liquid, transparent conductive film and transparent conductive substrate