JP2001506799A - Method for improving power density of lithium secondary battery and anode (negative electrode) - Google Patents

Method for improving power density of lithium secondary battery and anode (negative electrode)

Info

Publication number
JP2001506799A
JP2001506799A JP52822998A JP52822998A JP2001506799A JP 2001506799 A JP2001506799 A JP 2001506799A JP 52822998 A JP52822998 A JP 52822998A JP 52822998 A JP52822998 A JP 52822998A JP 2001506799 A JP2001506799 A JP 2001506799A
Authority
JP
Japan
Prior art keywords
anode
lithium
borate
battery
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP52822998A
Other languages
Japanese (ja)
Inventor
ヴインテルベルク,フランツ,ダブリュ.
フンドルプ,ベント
ニールセン,デニス,ダブリュ.
Original Assignee
デイロ トレーディング アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デイロ トレーディング アクチエンゲゼルシャフト filed Critical デイロ トレーディング アクチエンゲゼルシャフト
Publication of JP2001506799A publication Critical patent/JP2001506799A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 本発明はリチウム二次電池、特に固形ポリマーの溶液を含有する電池の出力密度改善方法及びそのアノードに関する。これはホウ酸エステル及び/又はホウ酸誘導体又はその化合物を添加剤として使用することで達成される。特に対応する錯体のリチウム化合物を添加する。また、本発明は電池、特にリチウム・イオン二次電池、固形ポリマーの溶液を有する電池に使用するアノードを含むもので、アノードはホウ酸エステル及び/又はホウ酸エステル誘導体又はその化合物を添加剤としてアノード内に含有する。   (57) [Summary] The present invention relates to a method for improving power density of a lithium secondary battery, particularly a battery containing a solution of a solid polymer, and an anode thereof. This is achieved by using boric acid esters and / or boric acid derivatives or compounds thereof as additives. In particular, a lithium compound of the corresponding complex is added. Further, the present invention includes an anode used for a battery, particularly a lithium ion secondary battery, and a battery having a solution of a solid polymer. It is contained in the anode.

Description

【発明の詳細な説明】 リチウム二次電池の出力密度改善方法およびアノード(負極) 本発明は、リチウム二次電池、特に固体ポリマーの溶液を含むものの出力密度 の改善方法およびアノードに関する。 電池構成又はその他の構成では、材料利用率の改善が市場の需要に対応できる ように必要とされている。二次電池でのアノード材からカソード(正極)材への 電荷輸送が好ましくは電解質により又は電解質溶液により行うときは、事実、任 意の物質が一定の電位で輸送できることになる。従って、正電荷のイオンも電解 質により負電荷の電極に輸送される。アニオンについても同様のことが逆にあて はまる。 電解質の電流密度は次式で表わされる。 i=LE(Δφ+Σii r・Δμi) (1) 式中、LEは電解質溶液の電導度、Δφはアノード材とカソード材の電位差、ti r は輸送種iの還元輸送係数、Δμiはアノード材とカソード材間での種iの化学 ポテンシャルの差を意味する。 当然アノード中の物質はすべて希釈されるので、Δμiはゼロに近くなり、こ れは式(1)で説明される通常の電池ではオームの第1法則の相当するものとな る。 系に許容されるものよりも高い電圧が存在することがある。これは危険又は損 傷に結びつくので、予防回避する必要がある。 最後に、ポリマー結合は不都合なものと考えられ、アニオンは固定化されない 。 リチウム輸送能は不充分である。 従って、本発明の目的は好ましくはリチウム二次電池用であって出力密度を改 善し、同時に運転の信頼性を確実にし、オームの第1法則からの積極的な逸脱を 達成し、塩の消耗を減少させ、サイクル数又はサイクル強度を増加させることが できる添加剤を提供することにある。更に、上記の改善を実施する目的でプロセ ス工程を改善する。 これらの目的は特許請求項に記載の特徴によって達成され、これに基づきホウ 酸エステル及び/又はホウ酸エステル誘導体又はこれらの化合物を添加剤として 用いてリチウム二次電池、特に固形ポリマーの溶液を含有する電池の出力密度を 改善するものである。 上記の添加剤は云わゆる塩の消耗を減少させ(図3)、リチウム輸送能を向上 させ、オームの第1法則からの積極的逸脱を行う(図4)。またこれにより電池 系のサイクル強度が増加し、同じく特定電位での出力密度が改善される。使用さ れた電池系の図を参照のこと。 好ましくは、ホウ酸エステル及び/又はホウ酸エステル誘導体は以下のリチウ ム錯化合物が用いられる。 式中、残基R1、R2は芳香族基及び/又は脂肪族基であり、式IIIのMは遷移金 属であり、シクロペンタジエニル基はHの代りにフッ素を含有してもよい。 遷移金属は当然その原子が不完全d殻を有する元素又はかかる不完全d殻を有 する1つ又はそれ以上のカチオンを形成する元素である。従って、IUPACの 推奨表記法に基づけば、遷移金属は第4周期に原子番号が21〜30のSc〜Z nの元素、第5周期に原子番号が39〜48のY〜Cdの元素、第6周期に4f 殻が充満したランタノイド系を含む原子番号が57〜80のLa〜Hgの元素、 最後に第7周期に原子番号が89〜103のLrまでのアクチノイド系を含む。 好ましくは、ホウ酸エステルを用いる。 残基により電気化学的安定性と有機溶媒への溶解性が得られる。残基は大きく 又かさばっているので、負電荷の分布がおこり、従ってLi+のイオン対又は錯 体種の形成は極めて少く、有機溶媒は塩を溶解状態又は解離状態で含有する。 本発明の添加剤は好ましくはアノードに添加する。 本発明の添加剤は>0〜20重量%、好ましくは5〜15重量%の量で添加す る。 本発明のアノード、特にリチウム二次電池で用いるアノード及び固体ポリマー の溶液を含有するアノードは、その近くにホウ酸エステル及び/若しくはホウ酸 エステル誘導体又はこれらの化合物を添加剤として含有する。 これにより、比較的高電流が低設定電位で流れ、系の安定化、サイクル数の向 上又はサイクル強度の増加という効果が特に得られる。 アノードはリチウムイオン及び/又はリチウムを挿入できる材料、溶媒及び/ 又はポリマー結合剤中に溶解した電導性塩、及び/又は電導性カーボン・ブラッ ク及び/又は添加剤とから成る。 添加剤としてホウ酸エステル及び/又はホウ酸エステル誘導体のリチウム化合 物を以下の錯体の形で含有するアノードが特に好ましい。 好ましくは、かかる添加剤はアノード中に0よりも多く20重量%まで、好ま しくは5〜15重量%の量で含有される。 添付図面を参照しながら、本発明を以下に更に詳細に説明する。図面は以下の ことを示す。 図1は、電池、例えばLiC/PEO、リチウム塩/LiMn25のリチリウ ム・イオン電池の模式断面図であり、塩の消耗はなく、極めて短時間に極めて小 さい電流が流れる。(理想的な事例)。 図2は、同一の系の模式断面図であるが、図1とは対照的であり、曲線は大電 流を用いたときの挙動を示す。 図3も同一の系の模式断面図であるが、グラフは小電流及び大電流条件下での 挙動を示し、塩の消耗はない。 図4は、小電流、中電流、大電流条件下での傾向を曲線として示したものであ る。 図5は図4で示した曲線であるが、理想的な事例としてアニオンを固定化した ものである。 図6は、酸化ポリエチレン(PEO)を用いた場合のサイクル強度の増加に関 する模式説明曲線を示す。 図7は、添加剤を用いたときのオームの第1法則からの積極的な逸脱を示すも ので、積極的逸脱のないグラフと対比してある。 図8は、添加剤を用いた場合と用いない場合のアノード/電解質/カソードを 模式的に示す。 図9は、下記の実施例の結果を示す電流・電圧図である。 図1に模式的に示す配置では、短時間サイクルで電流が極めて小さい場合には 、塩の消耗がない。これは特に図1に模式的に示すリチウム・イオン電池であり 、理想条件下ではアニオンは固定化されない。このため、勾配のない小電流のみ が得られる。図2はリチウム・イオン電池にもとづく同一系での大電流の場合の 条件を示す。ここでは塩の局所的消耗を生じる。リチウム・イオンは質量平衡の 影響で移動するので、その濃度は近似的に一定である(A)。 アニオンは正極で電解質に向って移動する。電極により供給されるアニオンは ないので、濃度勾配(B)が生ずる。コーラウシュの法則により、イオン伝導度 は電解質濃度で左右される。濃度が低いほど、伝導度は低くなる。更に、濃度勾 配が生ずると伝導度勾配(C)が生じ、電解質伝導度が減少すると局所的電解質 抵抗が増加する。その結果、局所的電解抵抗の増加は電位低下を必然的に伴う( D)。 図3に示すように、本発明ではアニオンは電解質のポリマー母材内に固定化さ れる。 このように、塩の消耗効果及びその結果としての電位低下の問題なく、大電流 と小電流の両方が利用でき、また図5は固定化イオンを用いた理想的事例での傾 向をグラフにしたものである。 図4は中電流、大電流についての傾向をグラフにまとめたものである。 図5に示す固定化アニオンの理想的事例を実施例として以下に詳述する。 アニオンは機械的に固定化されていないが、アニオンの輸送能はリチウムの輸 送能に較べて極めて小さい。 アニオンが機械的に固定化されているときは、錯化定数は極めて高く、リチウ ム輸送能は低下する。また、アニオンとリチウム間の錯化定数が高いので、全体 の伝導率も低下する。 アニオンが化学的に固定化されると、Li+とアニオン間の錯化定数は極めて 高く、反対に全体の伝導度は極めて低い。しかし、アニオン輸送能はL+輸送能 に較べて極めて小さく、アニオンとカチオン間の錯体は有意ではなく、伝導度は 高い値となる。図6は大電流が必要なときは高電位を用いる必要があるという事 実に基づくもので、電位が高いとサイクル数は小さく又はサイクル強度はむしろ 弱くなる。このことは図6でPEO溶媒を例として図示している。 更に、図6から次のことが判る。本発明では電流は電位が低下すると一定値と なり、電位範囲はPEO溶媒が安定となる領域である。本発明の物質を用いて、 電位を低下させてサイクル能を改善でき、電流は一定値に維持できる。電位を低 下させると、サイクル数が高くなり又はサイクル強度が良くなる。本発明によれ ば図1に示すリチウム・イオン電池系では、特許請求項に記載した物質をアノー ドの電解質結合剤に添加すると、電位を図6の例で示すように電流密度を低下さ せずに低下できることが判った。これは本発明の特別の利点と考えられる。 一連の試験では出力密度は向上でき、対応する証明が得られた。図7はこの事 に示すもので、オームの第1法則からの云わゆる積極的な逸脱を模式的に示すグ ラフであり、前記のリチウム・イオン電池系での通常の電池のオームの第1法則 の正常の経過を示すグラフを併せ図示したものである。 試験では、電位を一定値に固定した。次いで、添加錯体、見出された物質を添 加し、オームの第1法則からの積極的な逸脱を求めた。これは、図示したオーム の第1法則の正常の経過で得られる電流に較べて電流が大きくなることを意味す る。従って、この系の出力密度が改善される。 図8の式及び略図から、アニオンの輸送能はゼロに近くなる。即ち、化学ポテ ンシャルの差は電流密度に全然影響しないことが判る。 ホウ酸エステル誘導体のリチウム化合物を添加すると、リチウム・イオンの部 分的余剰エネルギは恒久的に正となる。この事実は電流密度の増加とリチウム輸 送能の増加に基づいている。即ち、 δt'Li+/δx>0,RT(δlnxLi/δx)>0、および Σii r・Δμi>...>0ボルト (2) これによりオームの第1法則からの積極的逸脱が達成される。 一定の電池設計と電位では、系がオームの第1法則から積極的に逸脱するとき は大電流が外部回路から得られる。即ち、これは出力密度の増加に相当する。 実施例1(比較例) リチウム−ビス〔1,2−ベンゼンジオラート(2−)−O,O’〕ホウ酸塩 (1−)(LiBSE)を用いない配合例 活物質 含有量(重量%) グラファイト(KS6型) 90.29 電導性カーボン・ブラック(スーパーP型) 4.74 テフロン結合剤 4.97 電極の総重量:13.9mg 活性KS6の重量:12.55mg(4.67mAhに相当) 実施例2 リチウム−ビス〔1,2−ベンゼンジオラート(2−)−O,O’〕ホウ酸塩 (1−)(LiBSE)を用いた配合例 活物質 重量% グラファイト(KS6型) 82.08 電導性カーボン・ブラック(スーパーP型) 4.30 テフロン結合剤 4.53 LiBSE 9.09 電極の総重量:11.3mg 活性KS6の重量:9.3mg(3.46mAhに相当) 両実施例とも、リチウム半電池中で測定を行った。活性表面は約1cm2(標 準 電解質LP30:EC:DMC(1:1);1mLiPF6:チャート速度:0 .1mV/S)。 電極は、相応する活物質を乳鉢中で混合し、ニッケル金網上に圧着した。 両配合例とも、トリガー式ポテンシオスタットを用いて図9に示すサイクリッ ク・ボルタンメトリー図(電圧・電流図)を得た。図9からカソード電流、アノ ード電流とも増加していることが結論でき、これはLiBSE系の能力(実施例 2)はLiBSEを含まない系(実施例1)に較べて増加していることを意味す る。DETAILED DESCRIPTION OF THE INVENTION         Method for improving power density of lithium secondary battery and anode (negative electrode)   The present invention relates to the power density of lithium secondary batteries, especially those containing solutions of solid polymers. And an anode.   In battery configurations or other configurations, improved material utilization can meet market demands As needed. From anode material to cathode (cathode) material in secondary battery In fact, when charge transport is preferably by electrolyte or by electrolyte solution, Any substance can be transported at a constant potential. Therefore, positively charged ions are also Transported to the negatively charged electrode depending on the quality. The same is true for anions. Addictive.   The current density of the electrolyte is expressed by the following equation.             i = LE(Δφ + Σiti r・ Δμi(1) Where LEIs the conductivity of the electrolyte solution, Δφ is the potential difference between the anode material and the cathode material, ti r Is the reduction transport coefficient of transport species i, ΔμiIs the chemistry of species i between the anode and cathode materials It means the difference in potential.   Of course, since all the material in the anode is diluted, ΔμiIs close to zero, This is equivalent to Ohm's first law in a normal battery described by the equation (1). You.   There may be higher voltages than are allowed in the system. This is a danger or loss Prevention must be avoided because it may lead to injury.   Finally, polymer binding is considered disadvantageous and anions are not immobilized . Lithium transport capacity is inadequate.   Therefore, the object of the present invention is preferably for a lithium secondary battery and the power density is improved. Good, while at the same time ensuring driving reliability, and aggressively deviating from Ohm's first law Achieving, reducing salt depletion and increasing cycle number or cycle strength It is to provide a possible additive. In addition, a process was implemented to implement the above improvements. Improve the process.   These objects are achieved by the features described in the claims, on the basis of which Acid ester and / or borate derivative or these compounds as additives Power density of lithium secondary batteries, especially batteries containing solutions of solid polymers It will improve.   The above additives reduce so-called salt consumption (Fig. 3) and improve lithium transport ability. A positive departure from Ohm's first law (FIG. 4). This also allows the battery The cycle strength of the system is increased, and the power density at a specific potential is also improved. Used Refer to the figure of the battery system.   Preferably, the borate and / or borate derivative is the following lithium Complex compounds are used. Where the residue R1, RTwoIs an aromatic and / or aliphatic group, and M in Formula III is a transition metal And the cyclopentadienyl group may contain fluorine instead of H.   The transition metal naturally has an element whose atom has an incomplete d-shell or has such an incomplete d-shell. An element that forms one or more cations. Therefore, IUPAC's Based on the recommended notation, the transition metal will have Sc-Z with atomic numbers 21-30 in the fourth period. n element, Y to Cd elements having atomic numbers 39 to 48 in the fifth period, 4f in the sixth period La to Hg elements having an atomic number of 57 to 80, including a shell-filled lanthanoid system, Finally, the seventh cycle includes actinide systems with atomic numbers from 89 to 103 up to Lr.   Preferably, a borate ester is used.   Residues provide electrochemical stability and solubility in organic solvents. The residue is large Also, because of the bulk, a negative charge distribution occurs, and thus Li+Ion pair or complex of Formation of body species is extremely low, and organic solvents contain salts in dissolved or dissociated form.   The additives of the present invention are preferably added to the anode.   The additives according to the invention are added in an amount of> 0 to 20% by weight, preferably 5 to 15% by weight. You.   Anode of the present invention, especially anode and solid polymer used in lithium secondary battery The anode containing the solution of Ester derivatives or these compounds are contained as additives.   This allows a relatively high current to flow at a low set potential, stabilizing the system and improving the number of cycles. The effect of increasing the upper or cycle strength is particularly obtained.   The anode is made of a material into which lithium ions and / or lithium can be inserted, a solvent and / or Or a conductive salt dissolved in a polymer binder and / or a conductive carbon black. And / or additives.   Lithium compound of borate and / or borate derivative as additive Anodes containing the following in the form of the following complexes are particularly preferred:  Preferably, such additives are present in the anode in an amount greater than 0 and up to 20% by weight. Or 5 to 15% by weight.   The present invention is described in further detail below with reference to the accompanying drawings. The drawing is below Indicates that   FIG. 1 shows a battery such as LiC / PEO, lithium salt / LiMn.TwoOFiveLichiriu FIG. 2 is a schematic cross-sectional view of an ion battery. Current flows. (Ideal case).   FIG. 2 is a schematic cross-sectional view of the same system, in contrast to FIG. The behavior when using flow is shown.   FIG. 3 is also a schematic cross-sectional view of the same system. It behaves without salt consumption.   FIG. 4 shows the trend under the conditions of small current, medium current, and large current as a curve. You.   FIG. 5 is the curve shown in FIG. 4, but the anion was immobilized as an ideal case. Things.   FIG. 6 shows the increase in cycle strength when polyethylene oxide (PEO) was used. FIG.   FIG. 7 shows a positive departure from Ohm's first law when using additives. Therefore, it is compared with a graph without positive deviation.   FIG. 8 shows the anode / electrolyte / cathode with and without additives. Shown schematically.   FIG. 9 is a current / voltage diagram showing the results of the following examples.   In the arrangement schematically shown in FIG. 1, when the current is extremely small in a short cycle, There is no consumption of salt. This is in particular the lithium-ion battery schematically shown in FIG. Under ideal conditions, the anions are not immobilized. For this reason, only small current without gradient Is obtained. Fig. 2 shows the case of a large current in the same system based on a lithium ion battery. Indicates conditions. Here, local depletion of the salt occurs. Lithium ions are mass balanced As it moves under the influence, its concentration is approximately constant (A).   The anions move toward the electrolyte at the positive electrode. The anion supplied by the electrode is Therefore, a concentration gradient (B) occurs. According to Kolaus' law, ionic conductivity Depends on the electrolyte concentration. The lower the concentration, the lower the conductivity. Furthermore, concentration gradient When the distribution occurs, a conductivity gradient (C) occurs, and when the electrolyte conductivity decreases, the local electrolyte Resistance increases. As a result, an increase in local electrolytic resistance necessarily involves a decrease in potential ( D).   As shown in FIG. 3, in the present invention, the anion is immobilized in the polymer matrix of the electrolyte. It is.   Thus, high currents can be achieved without the problem of salt depletion and consequent potential drop. And small currents are available, and FIG. 5 shows the ideal case using immobilized ions. The direction is graphed.   FIG. 4 is a graph summarizing the tendency for medium current and large current.   The ideal case of the immobilized anion shown in FIG. 5 will be described in detail below as an example.   The anion is not mechanically immobilized, but the anion transport capacity is Extremely small compared to transmission capacity.   When the anion is mechanically immobilized, the complexation constant is very high and Transport capacity is reduced. In addition, since the complexation constant between anion and lithium is high, overall Is also reduced.   When the anion is chemically immobilized, Li+The complexation constant between High, on the contrary, the overall conductivity is very low. However, the anion transport capacity is L+Transport capacity The complex between the anion and the cation is not significant, and the conductivity is High value. Fig. 6 shows that when a large current is required, a high potential must be used. It is based on the fact that the higher the potential, the smaller the number of cycles or the less the cycle strength. become weak. This is illustrated in FIG. 6 using a PEO solvent as an example.   Further, the following can be seen from FIG. In the present invention, the current becomes a constant value when the potential decreases. The potential range is a region where the PEO solvent is stable. Using the substance of the present invention, The cycling ability can be improved by lowering the potential, and the current can be maintained at a constant value. Lower potential When it is lowered, the number of cycles is increased or the cycle strength is improved. According to the present invention For example, in the lithium ion battery system shown in FIG. When added to the electrolyte binder, the potential decreases the current density as shown in the example of FIG. It has been found that it can be reduced without doing so. This is considered a particular advantage of the present invention.   In a series of tests the power density could be improved and the corresponding proof was obtained. Figure 7 shows this Which schematically illustrates the so-called aggressive departure from Ohm's first law. Rough, Ohm's first law of ordinary batteries in the lithium-ion battery system described above 3 also shows a graph indicating the normal course of the above.   In the test, the potential was fixed at a constant value. Next, the added complex and the substance found were added. In addition, he called for a positive departure from Ohm's first law. This is the ohm shown Means that the current is larger than the current obtained in the normal course of the first law of You. Thus, the power density of the system is improved.   From the formula and schematic diagram of FIG. 8, the transport capacity of the anion is close to zero. That is, chemical potatoes It can be seen that the difference of the initials has no effect on the current density.   When a lithium compound of a borate derivative is added, the lithium ion The fractional surplus energy is permanently positive. This fact indicates that increased current density and lithium transport Based on increased remittance. That is,     δt 'Li+ / Δx> 0, RT (δlnxLi/ Δx)> 0, and     Σiti r・ Δμi> ...> 0 volt (2) This achieves a positive departure from Ohm's first law.   With a fixed battery design and potential, when the system actively deviates from Ohm's first law Can obtain a large current from an external circuit. That is, this corresponds to an increase in power density.   Example 1 (comparative example) Lithium-bis [1,2-benzenediolate (2-)-O, O '] borate (1-) Formulation example not using (LiBSE)     Active material Content (% by weight)   Graphite (KS6 type) 90.29   4.74 Conductive carbon black (Super P type)   4.97 Teflon binder   Total weight of electrode: 13.9 mg   Weight of active KS6: 12.55 mg (equivalent to 4.67 mAh)   Example 2 Lithium-bis [1,2-benzenediolate (2-)-O, O '] borate (1-) Formulation example using (LiBSE)     Active material weight%   Graphite (KS6 type) 82.08   Conductive carbon black (Super P type) 4.30   Teflon binder 4.53   LiBSE 9.09   Total weight of electrode: 11.3 mg   Weight of active KS6: 9.3 mg (equivalent to 3.46 mAh)   In both examples, measurements were made in lithium half-cells. Active surface is about 1cmTwo(Post Associate Electrolyte LP30: EC: DMC (1: 1); 1 mLiPF6: Chart speed: 0 . 1mV / S).   The electrodes were prepared by mixing the corresponding active materials in a mortar and crimping on a nickel wire mesh.   In both examples, the cyclic potentiostat shown in FIG. A voltammogram (voltage / current diagram) was obtained. From FIG. 9, the cathode current, It can be concluded that the mode current is also increased, which is the capacity of the LiBSE system (Example 2) means that it is increased as compared with the system not containing LiBSE (Example 1). You.

【手続補正書】特許法第184条の8第1項 【提出日】平成10年12月22日(1998.12.22) 【補正内容】 請求の範囲 1. ホウ酸エステル及び/又はホウ酸エステル誘導体又はその化合物を添加剤 としてアノードに含有することを特徴とする、リチウム二次電池、特に固形ポリ マーの溶液を含有する電池の出力密度改善方法。 2. ホウ酸エステル及び/又はホウ酸エステル誘導体は下記の錯体形成リチウ ム化合物の形で存在し、 式中、残基R1、R2は芳香族及び/又は脂肪族であり、式IIIではMは遷移金属 であり、シクロペンタジエニル基はHの代りにフッ素を含有できることを特徴と する、請求項1の方法。 3. 添加剤はアノード基準で>0〜20重量%、好ましくは5〜15重量%の 量が添加されることを特徴とする、請求項1及び2の方法。 4. ホウ酸エステル及び/又はホウ酸エステル誘導体又はその化合物がアノー ド内に添加剤として含有されていることを特徴とする、リチウムポリマー電池用 の、特にリチウム二次電池及び固形ポリマーの溶液を含有する電池のアノード。 5. 下記の式のホウ酸エステル及び/又はホウ酸エステル誘導体の錯体形成リ チウム化合物を添加剤の形で含有することを特徴とする、請求項4のアノード。 6. 添加剤はアノード基準で>0〜20重量%、好ましくは5〜15重量%の 量が含有されていることを特徴とする、請求項4と5のアノード。[Procedure for Amendment] Article 184-8, Paragraph 1 of the Patent Act [Date of Submission] December 22, 1998 (December 22, 1998) [Content of Amendment] Claims 1. Boric acid ester and / or boric acid A method for improving the output density of a lithium secondary battery, particularly a battery containing a solution of a solid polymer, comprising an ester derivative or a compound thereof as an additive in an anode. 2. The borate and / or borate derivative is present in the form of the following complexed lithium compound: Wherein the residues R 1 , R 2 are aromatic and / or aliphatic, in formula III M is a transition metal, and the cyclopentadienyl group can contain fluorine instead of H, The method of claim 1. 3. The process according to claim 1, wherein the additive is added in an amount of> 0 to 20% by weight, preferably 5 to 15% by weight, based on the anode. 4. Contains a solution of a boric acid ester and / or a boric acid ester derivative or a compound thereof for a lithium polymer battery, particularly a lithium secondary battery and a solid polymer, characterized in that the borate ester or a compound thereof is contained as an additive in the anode. Battery anode. 5. The anode according to claim 4, characterized in that it contains a complexing lithium compound of a borate and / or borate derivative of the formula: in the form of an additive. 6. The anode according to claim 4, wherein the additive is present in an amount of> 0 to 20% by weight, preferably 5 to 15% by weight, based on the anode.

Claims (1)

【特許請求の範囲】 1. ホウ酸エステル及び/又はホウ酸エステル誘導体又はその化合物を添加剤 として添加することを特徴とする、リチウム二次電池、特に固形ポリマーの溶液 を有する電池の出力密度改善方法及びそのためのアノード。 2. ホウ酸エステル及び/又はホウ酸エステル誘導体は下記の式のリチウム化 合物錯体として存在し、 式中、残基R1、R2は芳香族及び/又は脂肪族であり、式IIIではMは遷移金属 であり、シクロペンタジエニル基はHの代りにフッ素を含有できることを特徴と する、請求項1の方法。 3. 添加剤はアノードに添加されることを特徴とする請求項のいずれか1つ、 又は複数の方法。 4. 添加剤は0よりも多く、20重量%まで、好ましくは5〜15重量%の量 が添加されることを特徴とする、請求項1〜3のいずれか1つ又は複数の方法。 5. アノードにホウ酸エステル及び/又はホウ酸エステル誘導体又はその化合 物を添加剤として含有することを特徴とする、電池、特にリチウム・イオン二次 電池及び固体ポリマーの溶液を有する電池に使用するアノード。 6. 下記の式の錯体化合物の形でリチウムのホウ酸エステル及び/又はホウ酸 エステル誘導体を添加剤として含有することを特徴とする、請求項5のアノード 。 7. 添加剤は0よりも多く20重量%まで、好ましくは5〜15重量%の量が 含有されることを特徴する、請求項5及び/又は6のアノード。Claims 1. An improvement in output density of a lithium secondary battery, particularly a battery having a solution of a solid polymer, characterized by adding a borate ester and / or a borate ester derivative or a compound thereof as an additive. Methods and anodes therefor. 2. The borate and / or borate derivative exists as a lithium compound complex of the formula: Wherein the residues R 1 , R 2 are aromatic and / or aliphatic, in formula III M is a transition metal, and the cyclopentadienyl group can contain fluorine instead of H, The method of claim 1. 3. The method according to claim 1, wherein the additive is added to the anode. 4. Process according to one or more of the preceding claims, characterized in that the additive is added in an amount of more than 0, up to 20% by weight, preferably 5 to 15% by weight. 5. An anode for use in a battery, particularly a lithium ion secondary battery and a battery having a solution of a solid polymer, wherein the anode contains borate and / or a borate derivative or a compound thereof as an additive. . 6. The anode according to claim 5, characterized in that it comprises as an additive a borate of lithium and / or a borate derivative in the form of a complex compound of the formula: 7. Anode according to claim 5 and / or 6, characterized in that the additive is present in an amount of more than 0 to 20% by weight, preferably 5 to 15% by weight.
JP52822998A 1996-12-23 1997-12-19 Method for improving power density of lithium secondary battery and anode (negative electrode) Pending JP2001506799A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19654057A DE19654057C2 (en) 1996-12-23 1996-12-23 Process for improving the power density of lithium secondary batteries
DE19654057.7 1996-12-23
PCT/DE1997/002974 WO1998028807A1 (en) 1996-12-23 1997-12-19 Method and anode for improving the power density of lithium secondary batteries

Publications (1)

Publication Number Publication Date
JP2001506799A true JP2001506799A (en) 2001-05-22

Family

ID=7816040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52822998A Pending JP2001506799A (en) 1996-12-23 1997-12-19 Method for improving power density of lithium secondary battery and anode (negative electrode)

Country Status (10)

Country Link
EP (1) EP0948826A1 (en)
JP (1) JP2001506799A (en)
KR (1) KR20000062304A (en)
AU (1) AU731463B2 (en)
BR (1) BR9714165A (en)
CA (1) CA2275969A1 (en)
DE (1) DE19654057C2 (en)
IL (1) IL130566A0 (en)
RU (1) RU2175798C2 (en)
WO (1) WO1998028807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064456A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery negative electrode and lithium ion secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150053A (en) * 1997-06-06 2000-11-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
DE19910968A1 (en) 1999-03-12 2000-11-09 Merck Patent Gmbh Use of additives in electrolytes for electrochemical cells
KR100553736B1 (en) * 1999-09-02 2006-02-20 삼성에스디아이 주식회사 Composition of active material for lithium secondary batteries
US7527899B2 (en) 2000-06-16 2009-05-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrolytic orthoborate salts for lithium batteries
JP2004511879A (en) 2000-06-16 2004-04-15 アリゾナ ボード オブ リージェンツ, ア ボディ コーポレイト アクティング オン ビハーフ オブ アリゾナ ステート ユニバーシティ Conductive polymer composition for lithium battery
KR20020023145A (en) 2000-09-21 2002-03-28 가나이 쓰도무 Organic borate lithium compounds and nonaqueous electrolytes using the same
CN102964369B (en) * 2012-10-24 2016-04-06 中国科学院青岛生物能源与过程研究所 One class in polymer type boric acid ester lithium salts and its preparation method and application
CN104183867B (en) * 2014-08-12 2018-06-19 中国科学院青岛生物能源与过程研究所 A kind of single ion conductor nano-particle reinforcement lithium battery diaphragm or method for preparing polymer electrolytes and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195120A (en) * 1978-11-03 1980-03-25 P. R. Mallory & Co. Inc. Hydrogen evolution inhibitors for cells having zinc anodes
JPH0448709A (en) * 1990-06-15 1992-02-18 Japan Carlit Co Ltd:The Manufacture of solid electrolytic capacitor
EP0682817A1 (en) * 1993-02-12 1995-11-22 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
DE4316104A1 (en) * 1993-05-13 1994-11-17 Manfred Wuehr Electrolyte for use in a galvanic cell
EP0907217B1 (en) * 1993-06-18 2006-02-15 Hitachi Maxell Ltd. Organic electrolytic solution cell
JP3208243B2 (en) * 1993-11-18 2001-09-10 三洋電機株式会社 Non-aqueous battery
US5597663A (en) * 1995-05-30 1997-01-28 Motorola, Inc. Low temperature molten lithium salt electrolytes for electrochemical cells
DE19633027A1 (en) * 1996-08-16 1998-02-19 Merck Patent Gmbh Process for the production of new lithium borate complexes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064456A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery negative electrode and lithium ion secondary battery

Also Published As

Publication number Publication date
EP0948826A1 (en) 1999-10-13
IL130566A0 (en) 2000-06-01
DE19654057A1 (en) 1998-06-25
AU731463B2 (en) 2001-03-29
WO1998028807A1 (en) 1998-07-02
DE19654057C2 (en) 2001-06-21
BR9714165A (en) 2002-01-02
CA2275969A1 (en) 1998-07-02
RU2175798C2 (en) 2001-11-10
AU5748498A (en) 1998-07-17
KR20000062304A (en) 2000-10-25

Similar Documents

Publication Publication Date Title
Komaba et al. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn (II) for lithium-ion batteries
CA1066768A (en) Electrochemical cell with cathode-active materials of layered compounds
CA1066763A (en) Metal-halogen electrochemical cell
US7582380B1 (en) Lithium-ion cell with a wide operating temperature range
CN104766994B (en) Battery
Xu et al. Li Plating Regulation on Fast‐Charging Graphite Anodes by a Triglyme‐LiNO3 Synergistic Electrolyte Additive
DE2841895A1 (en) ELECTROCHEMICAL CELL AND ELECTROLYTE FOR USE
WO2012133556A1 (en) Electrolyte solution for lithium secondary batteries, and lithium secondary battery
CN112563570B (en) Lithium ion battery non-aqueous electrolyte of three-salt system and lithium ion battery
CN104733785B (en) Battery
EP3267518B1 (en) Battery, battery pack and uninterruptible power supply
CN106328950A (en) Positive electrode material and battery
CN111244530B (en) Electrolyte for alloy negative electrode material lithium battery and application thereof
JP2001506799A (en) Method for improving power density of lithium secondary battery and anode (negative electrode)
Li et al. Conquering poor reversibility of zinc powder electrode through in-situ surface engineering towards long-life zinc-ion batteries
US7824800B1 (en) Lithium-ion cell with a wide operating temperature range
Yu et al. Solid electrolyte interphase-ization of Mg2+-blocking layers for lithium ions in anode-free rechargeable lithium metal batteries
CN113206292B (en) Polymer-based composite solid electrolyte and preparation method and application thereof
CN113140800B (en) Preparation method of lithium ion battery electrolyte and secondary battery containing electrolyte
CN104934634B (en) Battery
CN113540408A (en) Sodium-storage hard carbon cathode based on embedding-electroplating mixed mechanism and preparation method thereof
Lau et al. Lipophilic additives for highly concentrated electrolytes in lithium-sulfur batteries
EP0997543A1 (en) Nanostructure alloy anodes, process for their preparation and lithium batteries comprising said anodes
Zhao et al. Compatibility between Lithium Bis (oxalate) borate‐Based Electrolytes and a LiFe0. 6Mn0. 4PO4/C Cathode for Lithium‐Ion Batteries
US8877025B2 (en) Combinatorial material screening method for an electrochemical cell