JP2001502467A - Inert cathode for selective oxygen reduction and its preparation - Google Patents

Inert cathode for selective oxygen reduction and its preparation

Info

Publication number
JP2001502467A
JP2001502467A JP10518835A JP51883598A JP2001502467A JP 2001502467 A JP2001502467 A JP 2001502467A JP 10518835 A JP10518835 A JP 10518835A JP 51883598 A JP51883598 A JP 51883598A JP 2001502467 A JP2001502467 A JP 2001502467A
Authority
JP
Japan
Prior art keywords
cathode
boiling point
inert cathode
solvent
clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10518835A
Other languages
Japanese (ja)
Other versions
JP4235986B2 (en
Inventor
アロンゾ―ヴァンテ ニコラス
Original Assignee
ハーン―マイトネル―インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハーン―マイトネル―インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ハーン―マイトネル―インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of JP2001502467A publication Critical patent/JP2001502467A/en
Application granted granted Critical
Publication of JP4235986B2 publication Critical patent/JP4235986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】 燃料電池のために、触媒作用をする薄い表面被覆を有する酸素還元用の不活性陰極が好適である。燃料としてのメタノールの存在下に、この被覆は、付加的に、遷移金属カルコゲニドからの半導性クラスター物質を有するが、粉末形又は薄層形で不充分にのみ得ることのできる選択的特性を有すべきである。この所望の触媒的及び選択的特性は、本発明による不活性の陰極を提供し、その薄い表面被覆は、コロイド分散性で均一に分布された前記種類のクラスターよりなり、その製造は、高い選択的及び触媒的作用密度を有する極めて低い被覆度のためのng−範囲の最少物質使用量のみを必要とする。この被覆は、溶剤中にクラスター混合物を安定剤と一緒に含有するコロイド中に浸漬することにより生じる。このコロイドの施与の後に、溶剤及び安定剤を熱処理により除去する。   (57) [Summary] For fuel cells, an inert cathode for oxygen reduction having a thin catalytic surface coating is preferred. In the presence of methanol as a fuel, this coating additionally has a semiconductive cluster material from transition metal chalcogenides, but has the selective property of being able to obtain only poorly in powdered or thin layer form. Should have. This desired catalytic and selective properties provide an inert cathode according to the invention, whose thin surface coating consists of colloidally disperse and uniformly distributed clusters of the kind described above, whose production is highly selective. Only minimal material usage in the ng-range is required for very low coverages with catalytic and catalytic densities. This coating results from immersion in a colloid containing the cluster mixture together with a stabilizer in a solvent. After application of the colloid, the solvent and the stabilizer are removed by heat treatment.

Description

【発明の詳細な説明】 選択的酸素還元用の不活性陰極及びその製法 本発明は、少なくとも1種の遷移金属及びカルコゲンからの半導性クラスター をベースとする選択的に作用する触媒物質製の薄い表面被覆を有する、メタノー ル−燃料電池中での多電子トランスファーによる電気化学的エネルギー変換のた めの、酸性媒体中の選択的酸素還元用不活性陰極及びその製法に関する。 放射なしの燃料電池技術を用いて、熱生産を介する迂回なしに電流を有効かつ 環境認容性に得ることができる。燃料電池は、連続的に燃料−酸化反応の化学的 エネルギー変化を電気エネルギーに変換する電気化学的電池である。この際、多 電子トランスファーがこのエネルギー変換のための物理的基本を成す。陽極で、 燃料分子が電子放出下に酸化され、陰極で電子の吸収下に酸化剤の還元が行われ る。陽極及び陰極で形成されたイオンは、電解液中の閉電流回路で電極の方に移 動して、そこで一緒になって水及び二酸化炭素を生じる。この場合に、電解質酸 の使用は、汚染性炭酸塩形成に対して自然の保護を形成する。 技術水準 高いエネルギー密度を有する無害な燃料としての単純メタノールの使用は、8 0〜120℃の低い温度範 囲内での燃料電池の作動を可能とする。しかしながら、この際に起こるメタノー ル−クロスオーバーは問題がある。陰極用に従来最も頻繁に使用された触媒物質 は、白金であり、これは、メタノールに比べても広い触媒反応可能性を有するが 、白金電極の有毒化の危険をも有する。従って、かつ白金の場合の高い材料コス トの故に、新しい選択的に作用する触媒物質が強く望まれている。ここで、カル コゲン原子のマトリックス中に包埋されている遷移金属の半導性のクラスター化 合物に行き当たった。このいわゆる”シェブレル相構造”を有するクラスター化 合物は、選択的作用を示し、即ち、これはメタノールを酸化も還元もせず、酸素 のみを還元する。これにより、メタノールを陰極から遠ざけるための高価で、信 頼性の低い膜の使用が省略できる。 DE 3624054A1は、燃料電池中で酸素を還元して水にするための触 媒作用を有する半導性モリブデンクラスターカルコゲニドからの不活性電極を記 載している。この混合クラスター物質は、多結晶質であり、粉砕された粉末状態 で、電極上の層厚を限定する1μm〜5μmの間の粒径を有し、従って溶剤との 混合の後に粗分散性の物質系が存在する。しかしながら、少ない液体量の施与及 び引き続く溶剤の蒸発の後の電極表面上のクラスター分布は均一ではなく、この ことはこの電極の選択的及び触媒作用的特性を悪化さ せることがありうる。 DE 3802236A1からは、如何にして、反応すべき物質(金属カルボ ニル、カルコゲン含有化合物及び不活性有機溶剤)の混合物から熱の作用下に粉 末又は薄層又は膜を製造することができ、燃料電池中の触媒作用を有する不活性 電極を得るために使用できるかを知ることができる。この金属カルコゲニドも、 多結晶質であり、溶剤中で粗分散性系をもたらす。これは、μm−範囲の直径を 有する凝集されたクラスターを有し、これは、その大きさに基づき−ここに開示 の、いずれにせよ高い物質使用量での噴霧熱分解析出の方法にもかかわらず−電 極上の表面被覆中での均一な分布をもたらさず、場所的に異なる触媒作用及び選 択作用を限定することがありうる。この際に、被覆の層厚は、クラスターの大き さにより下方に限定される。 このような触媒物質の製造はコストがかかり、1100℃付近の高温範囲での み可能である。従って、類似の特性を有する物質を製造するために、他の方法が 求められた。 本発明の出発点である技術水準は、前記の一般的詳述に基づき、O.Solorza-F eria等の論文”Novel Low-Temperature Synthesis of Semiconducting Transiti on Metal Chalcogenide Electrocatalyst for Multielectron Charge Transfer: Molecular Oxygen Reduct ion.,“Electrochimica Acta,Vol.39,No.11/12(1994),pp.1647-1653から構成さ れる。この論文から、式: (Ru1-xMoxySeOz (0.02<x<0.04、1<y<3、z≒2y)の半導性クラスター物質が、 金属カルボニルRu3(CO12)及びMo(CO)6及びセレンの混合物から、溶 剤としてのキシレン中での湿式化学−有機低温合成により得ることができること が判る。生じた混合クラスターは、2種の遷移金属及び1種のカルコゲンをベー スとしている。これらは、不活性陰極の表面被覆のために、粉末又は薄層(<0 .5μm)の形で提供することができる。この出現形でのクラスター物質は、白 金と匹敵する酸性媒体中での酸素還元に関する電気触媒作用活性を有し、選択的 に反応する。しかしながら、この際に、この特性は、被覆中の個々のクラスター のパッキン密度により限定され、このパッキン密度は、凝集されたクラスターを 有する粉末としての又は狭い隣接クラスターを有する薄層としての出現形により 限定され、このクラスターのその作用に逆方向の妨害をもたらしうる。 従って、本発明の基礎となっている問題は、酸性メタノール溶液中の酸素還元 の選択性及び触媒反応を公知の出現形の物質に比べて更に改善する作用をする、 選択的に作用する触媒物質からなるこのような表面被覆を有する不活性陰極を提 供することである。 この目的は、本発明により、薄い表面被覆が、コロイド分散性の均一分布での 個々のクラスターから有効陰極表面積1cm2当たりng−範囲の低い物質使用 量により得られる被覆度を有することにより達成される。 個々のクラスターのこのような分布により、これは、逆に妨害することなしに 、その完全な触媒作用及び選択的活性を発揮することができる。個々のクラスタ ーのこの活性化は、高い作用密度を生ぜしめる。この場合に、触媒反応可能性は 、なお前記の出現形での物質のそれを越える。本発明のコロイド分散性の、即ち 、均一な出現像でのnm−範囲(例えば3〜4nm)の粒径を有する個々のクラ スターの非常に微細に分布された配置は、陰極を触媒毒及びこれに伴う活性の低 下に対して有効に保護する。高価な膜は不必要である。酸素還元時のこの改善さ れた選択性及びそれに伴う長時間安定性と一緒になって、例えば6〜7nmのみ の層厚が必要であるその薄い表面被覆を有する本発明の陰極は、従って、粉末又 は薄層でのより厚い被覆に比べて利点を有する。更に、陰極表面の僅かな被覆度 をもたらす個々のクラスターの広空間分布により、必要な物質使用量も相応して 僅かであり、ng−範囲(例えば3.1ng)である。更に、この触媒物質は、 非常に熱安定であるので、熱処理を実施することができる。 後の実施に先立ち、この位置で既に、本発明による陰極の前記の有利な特性は 、それ自体、簡単に合成できるコロイド溶液としての触媒物質の出現形により可 能になることが認められる。従って、電気触媒活性のための特別誂え生成物を提 供することができる。 半導性遷移金属、殊にモリブデン(Mo)、タングステン(W)、ルチウム( Ru)、オスミウム(Os)、コバルト(Co)、ロジウム(Rh)及びイリジ ウム(Ir)並びにカルコゲン 硫黄(S)、セレン(Se)、殊に赤色セレン 及びテルル(Te)がコロイド分散性クラスター分布を有する触媒物質の基礎と なっている。これらの元素から、それぞれ、酸素(O)の関与下に二元クラスタ ー及び三元混合クラスターを得ることができる。 本発明による不活性陰極の1態様によれば、遷移金属がルテニウム(Ru)で あり、カルコケンが硫黄(S)又はセレン(Se)であり、このクラスターが、 0.5〜2の範囲内のルテニウム(Ru)対カルコゲン(S、Se)のモル比( x)を有する際に、有利である。このようなクラスターは、電解質酸に対して特 別な抵抗を有し、合成時に、硫黄及び赤色セレンの場合には8環−構造により、 特別に製造好適な特性を提供する。 もう一つの本発明の態様によれば、遷移金属としてのルテニウム(Ru)及び カルコゲンとしてのセレン (Se)を有するクラスターが化学量論的な形(Ru)nSe(この際、nは1. 5〜2、殊に1.7である)で存在する場合に特に好適である。触媒物質として のこの化学量論的構造を有するクラスターは、高い触媒活性及び選択活性の要求 を特別に優れて満足する。 本発明による陰極は、触媒的及び選択的に高活性の物質からなる薄い表面被覆 により、化学的侵害に対して有効に保護されて、白金又は類似貴金属又は化合物 を用いるる高価な陰極構造を必要としない。従って、この発明の遂行により、陰 極が多孔性で導電性の支持体を有することができる。この多孔性は、この反応の ための高い陰極比表面積に作用する。この支持体は、殊にカーボンブラック−又 はノーリット−型−炭素からの適切な価格の基質であってよく、これは、燃料電 池中のガス拡散電極中での使用のために特に好適である。ガス拡散電極は、1つ の疎水性層及び1つの親水性層及びこの間の反応性固体層を有して3相に構成さ れている。慣用の基質、例えばガラス化された炭素−又はインジウム−錫−酸化 物(ITO)−基質の使用が同様に可能である。 アルカリ性電解質を有する燃料電池では、アルカリ溶液中で炭酸塩を生じさせ る二酸化炭素による電解質の不純化が起こり得る。これにより、この電解質の導 電性及び電極の寿命が低下する。従って、燃料電池を、酸性媒体を用いて、殊に 本発明の1態様により、液 状電解質として最も屡々使用される硫酸を用いて構成することが最も好適である 。燐酸の使用も同様に可能であるが、これは高温(300℃)でのみ導電性であ る。 直接メタノール−燃料電池は、大気圧又は過圧時に、かつ80〜100℃の操 作温度で作動する。エネルギーの多いメタノールは、水素取得のために、リフォ ーマーターを介する迂回なしに直接分解される。従って、この発明のも一つの態 様では、このメタノール−燃料電池を直接燃料電池として構成する場合が好適で ある。 選択的酸素還元のための前記の不活性陰極を製造する方法は、本発明により、 nm−範囲の薄い表面被覆を得るために、陰極の多孔性支持体を、コロイド溶液 の形の触媒物質中に浸漬させ、引き続き室温で乾燥させ、その後、200〜30 0℃、殊に208℃の温度で熱処理することを特徴とする。このようなプロセス は、装置及び経費の点で多大のコストを要せずに実施可能であり、既に1回の処 置で、最良の結果が得られる。コロイド状触媒物質中への浸漬により、陰極表面 は一様に液状表面被覆を備える。殊に乾燥プロセスの促進のために真空中でも行 われるこの被覆の乾燥の後に、このコロイドの固体成分は、コロイド分散性で均 一な分布で支持体上に固定されている。なお存在する不純物は、次いで、熱処理 工程で、この触媒物質を害 することなしに、簡単に蒸発させることができる。 この場合に、発明のもう一つの態様によれば、コロイド溶液を、クラスターが 、長鎖状安定剤の適当な量の添加下に、コロイド分散性の均一な分布で有機溶剤 中に浮遊するように構成するのが有利であり、この際、安定剤の沸点(Tss)は 溶剤の沸点(Tsl)よりも上である。このようなコロイド溶液を用いて、必要な クラスター物質を特別誂えで提供することができる。溶剤は、支持体物質である 。長鎖状安定剤は、クラスターへの積層によりそれが集塊して粉末になることを 阻止する。その使用量は、溶剤中のクラスター起源に依存して、個々の成分のモ ル比を介して確かめることができる。この変換反応は、溶剤の沸点(Tsl)では 、殆ど使用成分に無関係に起こる。溶剤の沸点(Tsl)よりも上である安定剤の 沸点(Tss)の状態は、安定剤及びクラスターの微細分布に影響することなしに 、溶剤の除去可能性を保証する。安定剤は熱処理工程で初めて除去されるので、 陰極表面上にはなおコロイド分散性で均一に分布されたクラスターのみが存在し 、堅固な被覆を形成する。 コロイド溶液の製造は、この発明の遂行時に、特に簡単かつ経済的に有利に溶 剤の沸点(Tsl)の範囲内で、湿式化学−有機合成により行うことができる。こ の製造法は、粉末形又は薄層形の公知触媒物質の製造法と同様に行なわれる。こ れは、溶剤中に1種以上 の金属カルボニルを1種のカルコゲンと一緒に入れることに基づく。本発明では 、なおこれに安定剤を加える。 金属カルボニルM(複数の金属カルボニルの組み合わせとしても)のパレット は、嵩張っており、殊に、 ・M(CO)6(M=Mo、W) ・M3(CO)12(M=Ru、Os) ・M4(CO)12(M=Co、Rh、Ir) ・M6(CO)16(M=Co、Rh、Ir) を含有する。 カルコゲンのパレットは、X=Se、Te、Sを包含する。ここで、8−環− カルコゲン、例えば赤色セレン及び硫黄が、その純度により、合成のための特に 良好な特性を惹起する。 有機溶剤としては、 ・トルエン C65CH3 Tsl=111℃ ・キシレン C64(CH32 sl=139℃/140℃ ・メシチレンC63(CH33 sl=165℃ が好適である。 長鎖状安定剤のパレットは、同様に嵩張っている。 殊に、 が好適である。 本発明によれば、溶剤が140℃の沸点(Tsl)を有するキシレンであり、安 定剤が185℃Cの沸点(Tss)を有する1−オクタデカンチオールである場合 が特に有利である。遷移金属としてのルテニウム(Ru)及びカルコゲンとして のセレン(Se)を有するクラスターが化学量論的な形(Ru)nSe(ここで 、nは1.5〜2、殊に1.7である)で存在する、本発明による不活性陰極の前 記の更なる実施形及び208℃の温度と関連して、優れた触媒的及び選択的特性 を有する最適な陰極を得るために、全ての成分が加えられる。この際、そのコロ イド分散性の分布に基づき、有効電極表面積1cm2当たり触媒物質約3.1n gのみが必要となり、これは極めてコスト的に有利である。 次に、この触媒物質の合成を簡単に説明する: 還流冷却器を備えたフラスコ中で、溶剤キシレン(100ml)を、成分と反 応するはずの酸素を除去するためにアルゴンで10分間フラッシングする。次い で、キシレン中に、紛状セレン(18mg;22.8 μM)を140℃まで加熱することにより溶解させ、この溶液を再び室温まで冷 却させる。これに半導性の遷移金属カルボニルであるトリルテニウムドデカ−カ ルボニル(Ru3(CO)12;72.9mg;11.4μM)及び安定剤である1 −オクタデカンチオール(220mg;76.9μM)を加える。この際、安定 剤の量は、モル比6.75の際にカルボニル量の約3倍である。140℃のキシ レン−沸点(Tsl)までの約20時間にわたる加熱の後に、クラスター形成が 進行する。この反応の間にコロイドを常に撹拌し、還流冷却により冷却させる。 公知技術水準で公知であるようなクラスター形成の間の粉末又は薄層の沈着の ための基質の供給は、このコロイドの製造の際には不必要である。収率は100 %、即ち、装入された物質の全てが反応される。例えば粉末形成時に公知である ようなフラスコ内面の沈着によるロスは生じない。 形成されたクラスターは、3nm〜4nmの寸法を有する。ガラス化された炭 素基質(Glassy Carbon GC)上の6nm〜7nmの薄い層上で測定されるルーサ ーフォード・後方散乱法(RBS)による化学量論的組成は、本発明の特に有利 な実施形中に記載されているようなRu1.7Seを生じる。 図面中に、0.5M硫酸中の、ガラス化された炭素製の熱処理された複数の同 じ電極板(これらは、それ ぞれ触媒作用物質Ru1.7Seのコロイド溶液5μlからの薄い層で被覆されて いる)の電気化学的酸素還元電流の負の経過を、電極電位(NHE−標準水素電 極、標準電極)と関連させて示す。ここで、曲線に沿った垂直線は、数回行った 測定の僅かな誤差幅を表している。この経過は、メタノール1Mの添加の後には 不変のまま残り、このことは、本発明による不活性陰極の高い選択性を示唆して いる。活性範囲は、この曲線の下部直線部分にあり、メタノールの使用時には白 金のそれよりも良好であり、このことは、コロイド分散性コロイドから誘導され た均一表面被覆を有する本発明による陰極の良好な触媒特性を立証している。DETAILED DESCRIPTION OF THE INVENTION                 Inert cathode for selective oxygen reduction and its preparation   The present invention relates to a semiconductive cluster from at least one transition metal and a chalcogen. Having a thin surface coating of selectively acting catalytic material based on Of electrochemical energy conversion by multi-electron transfer in fuel cells The present invention relates to an inert cathode for selective oxygen reduction in an acidic medium and a method for producing the same.   Uses radiation-free fuel cell technology to enable current without detouring through heat production Environmental tolerance can be obtained. Fuel cells use a continuous fuel-oxidation chemical An electrochemical cell that converts energy changes into electrical energy. At this time, Electronic transfer forms the physical basis for this energy conversion. At the anode, Fuel molecules are oxidized under electron emission, and the oxidant is reduced at the cathode while absorbing electrons. You. The ions formed at the anode and cathode are transferred to the electrodes in a closed current circuit in the electrolyte. And produce together water and carbon dioxide. In this case, the electrolyte acid The use of forms a natural protection against fouling carbonate formation. Technology level   The use of simple methanol as a harmless fuel with high energy density is Low temperature range of 0 to 120 ° C The operation of the fuel cell in the enclosure is enabled. However, the methanol Ru-crossover is problematic. Previously most frequently used catalytic materials for cathodes Is platinum, which has a broader catalytic potential than methanol. Also, there is a danger of poisoning the platinum electrode. Therefore, high material cost in the case of platinum Therefore, there is a strong need for new selectively acting catalytic materials. Where Cal Semiconductive clustering of transition metals embedded in a matrix of kogen atoms I came across the compound. Clustering with this so-called “chevrel phase structure” The compound shows a selective action, i.e. it does not oxidize or reduce methanol, Only reduce. This provides a costly and reliable way to keep methanol away from the cathode. Use of a film with low reliability can be omitted.   DE 3624054 A1 describes a catalyst for reducing oxygen to water in a fuel cell. Inert electrode from semiconductive molybdenum cluster chalcogenide It is listed. This mixed cluster material is polycrystalline and in a pulverized powder state And has a particle size between 1 μm and 5 μm which limits the layer thickness on the electrode, and After mixing, a coarsely disperse material system is present. However, the application and application of small liquid volumes The cluster distribution on the electrode surface after evaporation and subsequent evaporation of the solvent is not uniform and This degrades the selective and catalytic properties of this electrode. Could be done.   DE 38 02 236 A1 describes how the substances to be reacted (metal carb Powders from a mixture of phenol, a chalcogen-containing compound and an inert organic solvent) under the action of heat. Powder or thin layer or membrane can be manufactured and has catalytic activity in fuel cell You can know what can be used to get the electrodes. This metal chalcogenide also It is polycrystalline and results in a coarsely dispersed system in the solvent. This translates to diameters in the μm range. Having aggregated clusters, which are based on their size-disclosed herein Despite the method of spray pyrolysis deposition with high substance usage in any case- It does not result in a uniform distribution in the finest surface coatings, but has a different catalytic action and selection. The selection action can be limited. At this time, the layer thickness of the coating depends on the size of the cluster. Therefore, it is limited downward.   The production of such a catalyst material is costly and in the high temperature range around 1100 ° C. Only possible. Therefore, other methods have been used to produce materials with similar properties. I was asked.   The state of the art, which is the starting point of the present invention, is based on the general description given above and is based on O.D. Solorza-F eria et al. “Novel Low-Temperature Synthesis of Semiconducting Transiti on Metal Chalcogenide Electrocatalyst for Multielectron Charge Transfer: Molecular Oxygen Reduct ion., “Electrochimica Acta, Vol. 39, No. 11/12 (1994), pp. 1647-1653 It is. From this paper, the formula:             (Ru1-xMox)ySeOz (0.02 <x <0.04, 1 <y <3, z ≒ 2y) Metal carbonyl RuThree(CO12) And Mo (CO)6From a mixture of Can be obtained by wet chemistry-organic low-temperature synthesis in xylene as an agent I understand. The resulting mixed cluster is based on two transition metals and one chalcogen. And These may be powders or thin layers (<0) due to the surface coating of the inert cathode. .5 μm). The cluster material in this appearance is white Electrocatalytic activity for oxygen reduction in acidic media comparable to gold, selective Reacts to. However, in this case, this property is dependent on the individual clusters in the coating. The packing density is limited by the packing density of By appearance as a powder with or as a thin layer with narrow adjacent clusters Limited and can cause reverse interference to its action in this cluster.   Therefore, the problem underlying the present invention is the problem of oxygen reduction in acidic methanol solutions. Acts to further improve the selectivity and catalysis of known compounds as compared to known forms of An inert cathode having such a surface coating of selectively acting catalytic material is provided. Is to provide.   The aim of this invention is to provide, according to the invention, that a thin surface coating can Effective cathode surface area 1cm from each clusterTwoUse of substances in the low ng-range This is achieved by having a degree of coverage obtained by the amount.   Due to such a distribution of individual clusters, this can be , Can exert their full catalytic and selective activity. Individual cluster This activation results in a high working density. In this case, the catalytic reaction potential is And still exceed that of the substance in its emergent form. The colloid dispersibility of the present invention, ie Individual clusters having a particle size in the nm-range (e.g. The very finely distributed arrangement of the stars reduces the cathode poisoning and the associated low activity. Effective protection against below. Expensive membranes are unnecessary. This improvement during oxygen reduction Together with the increased selectivity and the associated long-term stability, for example, only 6-7 nm The cathode of the present invention having its thin surface coating, which requires a layer thickness of Has advantages over thicker coatings with thin layers. Furthermore, a slight coverage of the cathode surface Due to the wide spatial distribution of the individual clusters resulting in Slight, ng-range (eg, 3.1 ng). In addition, this catalytic material Since it is very heat stable, a heat treatment can be performed.   Prior to a later implementation, already at this position, the advantageous properties of the cathode according to the invention are: Per se, due to the appearance of the catalyst substance as a colloidal solution that can be easily synthesized It is recognized that it will be able to work. Therefore, a customized product for electrocatalytic activity is provided. Can be offered.   Semiconducting transition metals, especially molybdenum (Mo), tungsten (W), ruthenium ( Ru), osmium (Os), cobalt (Co), rhodium (Rh) and iridium (Ir) and chalcogen sulfur (S), selenium (Se), especially red selenium And catalysts in which tellurium (Te) has a colloid-dispersible cluster distribution Has become. From these elements, respectively, a binary cluster under the participation of oxygen (O) -And ternary mixed clusters can be obtained.   According to one embodiment of the inert cathode according to the invention, the transition metal is ruthenium (Ru). The chalcogen is sulfur (S) or selenium (Se) and this cluster is Ruthenium (Ru) to chalcogen (S, Se) molar ratio in the range of 0.5-2 ( It is advantageous when having x). Such clusters are notable for electrolyte acids. With additional resistance, during synthesis, due to the 8-ring-structure in the case of sulfur and red selenium, Provides specially suitable manufacturing properties.   According to another aspect of the invention, ruthenium (Ru) as the transition metal and Selenium as chalcogen The cluster having (Se) has a stoichiometric form (Ru)nSe (where n is 1. 5-2, especially 1.7). As a catalytic substance Clusters with this stoichiometric structure require high catalytic and selective activities. Is especially excellent and satisfying.   The cathode according to the invention has a thin surface coating consisting of catalytically and selectively active substances. Is effectively protected against chemical infringement by platinum or similar noble metals or compounds No expensive cathode structure is required. Therefore, the implementation of the present invention will The poles can be porous and have a conductive support. This porosity is Acts on a high cathode specific surface area. The support may be, in particular, carbon black or May be a reasonably priced substrate from norit-type-carbon, Particularly suitable for use in gas diffusion electrodes in ponds. One gas diffusion electrode Having a hydrophobic layer, a hydrophilic layer, and a reactive solid layer between the two layers. Have been. Conventional substrates, for example vitrified carbon- or indium-tin-oxidation The use of a substrate (ITO) -substrate is likewise possible.   In fuel cells with alkaline electrolytes, carbonates are formed in alkaline solutions. Impurity of the electrolyte may be caused by carbon dioxide. This leads to the introduction of this electrolyte. The conductivity and the life of the electrodes are reduced. Therefore, fuel cells can be produced using acidic media, in particular, According to one aspect of the present invention, a liquid Most preferred is to use sulfuric acid, which is most often used as the solid electrolyte . The use of phosphoric acid is likewise possible, but is only conductive at high temperatures (300 ° C.). You.   Direct methanol fuel cells operate at atmospheric or overpressure and at 80-100 ° C. Operates at operating temperature. High-energy methanol is converted to hydrogen to obtain hydrogen. -Decomposed directly without detour through the marters. Therefore, the present invention is one aspect. In this case, it is preferable to configure the methanol-fuel cell as a direct fuel cell. is there.   The method for producing the above-mentioned inert cathode for selective oxygen reduction, according to the present invention, In order to obtain a thin surface coating in the nm-range, the porous support of the cathode is treated with a colloidal solution. And then dried at room temperature, then 200 to 30 The heat treatment is carried out at a temperature of 0 ° C., particularly 208 ° C. Such a process Can be implemented without significant costs in terms of equipment and costs, and has already been performed once. Best results are obtained. Immersion in the colloidal catalyst material allows the cathode surface Has a uniform liquid surface coating. Especially in vacuum to accelerate the drying process. After drying of the coating, the solid component of the colloid is colloidally dispersible and uniform. It is fixed on the support with a uniform distribution. The impurities present are then heat treated During the process, this catalytic substance is harmed. It can be easily evaporated without having to do it.   In this case, according to another aspect of the invention, the colloid solution is used to form With the addition of an appropriate amount of a long-chain stabilizer, the organic solvent can be uniformly dispersed in the colloid Advantageously, it is designed to float in the water, in which case the boiling point of the stabilizer (Tss) Is Solvent boiling point (TslAbove). Using such a colloid solution, The cluster material can be provided on a custom basis. Solvent is the support material . Long-chain stabilizers ensure that they are agglomerated into powder by lamination into clusters. Block. The amount used depends on the origin of the clusters in the solvent, and the Can be ascertained through the ratio. This conversion reaction depends on the boiling point of the solvent (Tsl) Occurs almost independently of the ingredients used. Solvent boiling point (Tsl) Of the stabilizer that is above Boiling point (TssState) without affecting the fine distribution of stabilizers and clusters Assures solvent removability. Since the stabilizer is removed for the first time in the heat treatment process, Only colloidally dispersed and uniformly distributed clusters still exist on the cathode surface. , Forming a firm coating.   The production of a colloidal solution is particularly simple and economically advantageous during the practice of the invention. Boiling point (Tsl) Can be carried out by wet chemical-organic synthesis. This Is carried out in the same manner as the method for producing a known catalyst substance in a powder form or a thin layer form. This This is one or more Metal carbonyl together with one chalcogen. In the present invention And still add stabilizer.   Palette of metal carbonyls M (also as a combination of multiple metal carbonyls) Is bulky, especially   ・ M (CO)6(M = Mo, W)   ・ MThree(CO)12(M = Ru, Os)   ・ MFour(CO)12(M = Co, Rh, Ir)   ・ M6(CO)16(M = Co, Rh, Ir) It contains.   The chalcogen palette includes X = Se, Te, S. Where 8-ring- Chalcogens such as red selenium and sulfur, due to their purity, are particularly suitable for synthesis. Produce good properties.   As organic solvents,   ・ Toluene C6HFiveCHThree  Tsl = 111 ° C.   ・ Xylene C6HFour(CHThree)Two                   Tsl= 139 ° C / 140 ° C   ・ Mesitylene C6HThree(CHThree)Three                   Tsl= 165 ° C Is preferred.   The pallet of long chain stabilizers is likewise bulky. In particular, Is preferred.   According to the invention, the solvent has a boiling point of 140 ° C. (TslXylene with The boiling point at 185 ° C (TssIs 1-octadecanethiol having Is particularly advantageous. Ruthenium (Ru) as a transition metal and chalcogen Of selenium (Se) in the stoichiometric form (Ru)nSe (where , N is 1.5-2, in particular 1.7) before the inert cathode according to the invention. Excellent catalytic and selective properties in connection with the further embodiment described and a temperature of 208 ° C. All components are added to obtain an optimal cathode having At this time, 1cm effective electrode surface areaTwoAbout 3.1n of catalyst material per Only g is required, which is extremely cost-effective.   The following briefly describes the synthesis of this catalytic material:   In a flask equipped with a reflux condenser, the solvent xylene (100 ml) was mixed with the components. Flush with argon for 10 minutes to remove any oxygen that might have responded. Next In xylene, powdery selenium (18 mg; 22.8) μM) was dissolved by heating to 140 ° C., and the solution was cooled again to room temperature. Let it go. In addition, tolutenium dodeca, which is a semiconducting transition metal carbonyl, Rubonil (RuThree(CO)1272.9 mg; 11.4 μM) and 1 as stabilizer Add octadecanethiol (220 mg; 76.9 μM). At this time, stable The amount of agent is about three times the amount of carbonyl at a molar ratio of 6.75. 140 ° C xy After heating for about 20 hours to the ren-boiling point (Tsl), cluster formation proceed. During this reaction the colloid is constantly stirred and cooled by reflux cooling.   Of powder or thin layer deposition during cluster formation as is known in the prior art The supply of a substrate for this is not necessary during the production of this colloid. The yield is 100 %, Ie, all of the charged substances are reacted. For example, known when forming powder Such loss due to deposition on the inner surface of the flask does not occur.   The formed clusters have dimensions between 3 nm and 4 nm. Vitrified charcoal Lusa measured on 6 nm to 7 nm thin layer on elemental substrate (Glassy Carbon GC) The stoichiometric composition by Ford-Backscattering (RBS) is a particular advantage of the present invention. Ru as described in various embodiments1.7Se occurs.   In the figure, a plurality of heat-treated virgin carbons in 0.5 M sulfuric acid are shown. Electrode plates (these are Each catalytic substance Ru1.7Coated with a thin layer from 5 μl of colloidal solution of Se The negative course of the electrochemical oxygen reduction current of the electrode potential (NHE-standard hydrogen Pole, standard electrode). Here, the vertical line along the curve went several times This shows a small error width of the measurement. This progress was observed after the addition of 1 M methanol. Remaining unchanged, which suggests the high selectivity of the inert cathode according to the invention I have. The activity range is in the lower linear portion of this curve and is white when using methanol. Better than that of gold, this is derived from colloidal dispersible colloids It demonstrates the good catalytic properties of the cathode according to the invention with a uniform surface coating.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG,ZW),EA(AM,AZ,BY,KG ,KZ,MD,RU,TJ,TM),AL,AM,AT ,AU,AZ,BA,BB,BG,BR,BY,CA, CH,CN,CU,CZ,DK,EE,ES,FI,G B,GE,GH,HU,IL,IS,JP,KE,KG ,KP,KR,KZ,LC,LK,LR,LS,LT, LU,LV,MD,MG,MK,MN,MW,MX,N O,NZ,PL,PT,RO,RU,SD,SE,SG ,SI,SK,SL,TJ,TM,TR,TT,UA, UG,US,UZ,VN,YU,ZW────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, KE, LS, MW, S D, SZ, UG, ZW), EA (AM, AZ, BY, KG) , KZ, MD, RU, TJ, TM), AL, AM, AT , AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, G B, GE, GH, HU, IL, IS, JP, KE, KG , KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N O, NZ, PL, PT, RO, RU, SD, SE, SG , SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW

Claims (1)

【特許請求の範囲】 1. 少なくとも1種の遷移金属及び1種のカルコゲンからの半導性クラスターを ベースとする、選択的に作用する触媒物質から成る薄い表面被覆を有する、メタ ノール−燃料電池中での多電子トランスファーによる電気化学的エネルギー変換 のための、酸性媒体中の選択的酸素還元用の不活性陰極において、 薄い表面被覆は、有効陰極表面積1cm2当たりng−範囲の僅かな物質使 用量により得られるコロイド分散性の均一分布での個々のクラスターからの被覆 度を有し、陰極の多孔性支持体を、有機溶剤の沸点(Tsl)の範囲内で湿式化学 −有機的に合成可能であり、そのクラスターが長鎖状安定剤(その使用量は、個 々のクラスター成分のモル比を介して確定可能である)の添加下に有機溶剤中に コロイド分散性の均一分布で浮遊するように構成されている、コロイド溶液の形 の触媒物質中に浸漬させ、この際、安定剤の沸点(Tss)は溶剤の沸点(Tsl) よりも上であり、引き続き、室温で乾燥させ、その後、200〜300℃、殊に 208℃の温度で熱処理することにより製造可能であることを特徴とする、酸性 媒体中の選択的酸素還元用の不活性陰極。 2. 遷移金属は、ルテニウム(Ru)であり、カルコゲンは硫黄(S)又はセレ ン(Se)であり、クラ スターは、0.5〜2の範囲内のルテニウム(Ru)対カルコゲン(S、Se) のモル比(x)を有する、請求項1に記載の不活性陰極。 3. 遷移金属としてのルテニウム(Ru)及びカルコゲンとしてのセレン(Se )を有するクラスターは、化学量論的な形(Ru)nSe(ここで、nは1.5〜 2、殊に1.7である)で存在する、請求項1又は2に記載の不活性陰極。 4. 陰極は多孔性で導電性の支持体を有する、請求項1から3のいずれか1項に 記載の不活性陰極。 5. その中の酸性媒体が電解液としての硫酸により得られる、メタノール−燃料 電池中で使用される、請求項1から4のいずれか1項に記載の不活性陰極。 6. 直接燃料電池として実施されるメタノール−燃料電池中で使用される、請求 項1から5のいずれか1項に記載の不活性陰極。 7. 少なくとも1種の遷移金属及び1種のカルコゲンからの半導性クラスターを ベースとする、選択的に作用する触媒物質から成る薄い表面被覆を有し、メタノ ール−燃料電池中での多電子トランスファーによる電気化学的エネルギー変換の ための、酸性媒体中の選択的酸素還元用の不活性陰極を製造する場合に、 陰極の多孔性支持体を、有機溶剤の沸点(Tsl)の範囲内で湿式化学−有機的に 合成可能であり、こ のクラスターが長鎖状安定剤の添加下に(その使用量は、個々のクラスター−成 分のモル比を介して確定可能である)、コロイド分散性の均一分布で溶剤中に浮 遊するように構成されている、コロイド溶液の形の触媒物質中に浸漬させ、この 際、安定剤の沸点(Tss)は溶剤の沸点(Tsl)よりも上にあり、引き続き、室 温で乾燥させ、その後、200〜300℃、殊に208℃の温度で熱処理するこ とを特徴とする、酸性媒体中の選択的酸素還元用の不活性陰極の製法。 8. 溶剤は140℃の沸点(Tsl)を有するキシレンであり、安定剤は、185 ℃の沸点(Tss)を有する1−オクタデカンチオールである、請求項7に記載の 不活性陰極の製法。Claims 1. In a methanol-fuel cell having a thin surface coating of a selectively acting catalytic material based on a semiconductive cluster from at least one transition metal and one chalcogen. In an inert cathode for selective oxygen reduction in an acidic medium for electrochemical energy conversion by multi-electron transfer in a thin surface coating, a small material usage in the ng-range per cm 2 of effective cathode surface area With the coverage from individual clusters in a uniform distribution of the colloid dispersibility obtained by the method described above, and the porous support of the cathode can be synthesized wet-chemically and organically within the range of the boiling point (T sl ) of the organic solvent. And the clusters are colloidally dispersible in organic solvents with the addition of long-chain stabilizers (the amount used can be determined via the molar ratio of the individual cluster components). One distribution is configured to float is immersed in the catalyst material in the form of a colloidal solution, this time, the boiling point of the stabilizer (T ss) is above a than the boiling point of the solvent (T sl), subsequently An inert cathode for selective oxygen reduction in acidic media, characterized in that it can be manufactured by drying at room temperature and then heat-treating at a temperature of 200 to 300C, in particular 208C. 2. The transition metal is ruthenium (Ru), the chalcogen is sulfur (S) or selenium (Se) and the cluster is ruthenium (Ru) versus chalcogen (S, Se) in the range of 0.5-2. The inert cathode according to claim 1, having a molar ratio (x) of 3. Clusters with ruthenium (Ru) as transition metal and selenium (Se) as chalcogen have a stoichiometric form (Ru) n Se, where n is 1.5-2, especially 1. 7. The inert cathode according to claim 1 or claim 2, wherein 4. The inert cathode according to any one of claims 1 to 3, wherein the cathode has a porous and conductive support. 5. An inert cathode as claimed in any one of claims 1 to 4 for use in methanol-fuel cells, wherein the acidic medium therein is obtained with sulfuric acid as electrolyte. 6. The inert cathode according to any one of claims 1 to 5, used in a methanol-fuel cell implemented as a direct fuel cell. 7. Multi-electron transfer in methanol-fuel cells with a thin surface coating of selectively acting catalytic material based on semiconductive clusters from at least one transition metal and one chalcogen When preparing an inert cathode for the selective oxygen reduction in an acidic medium for electrochemical energy conversion by a process, the porous support of the cathode is wet-processed within the range of the boiling point (T sl ) of the organic solvent. It can be synthesized chemically and organically, and the clusters, with the addition of long-chain stabilizers (the amount used can be determined via the molar ratios of the individual cluster components), have a uniform colloidal dispersibility. Immersed in a catalytic material in the form of a colloidal solution, which is configured to float in a solvent in a distribution, wherein the boiling point of the stabilizer (T ss ) is above the boiling point of the solvent (T sl ) And then dry at room temperature A process for preparing an inert cathode for selective oxygen reduction in an acidic medium, characterized by drying and subsequent heat treatment at a temperature of from 200 to 300C, in particular 208C. 8. The method of claim 7, wherein the solvent is xylene having a boiling point (T sl ) of 140 ° C and the stabilizer is 1-octadecanethiol having a boiling point (T ss ) of 185 ° C. .
JP51883598A 1996-10-17 1997-10-16 Inert cathode for selective oxygen reduction and its preparation Expired - Fee Related JP4235986B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19644628.7 1996-10-17
DE19644628A DE19644628C2 (en) 1996-10-17 1996-10-17 Process for the preparation of an inert cathode for selective oxygen reduction and application of the cathode produced
PCT/DE1997/002453 WO1998018171A1 (en) 1996-10-17 1997-10-16 Inert cathode for selective reduction of oxygen and a method for the production thereof

Publications (2)

Publication Number Publication Date
JP2001502467A true JP2001502467A (en) 2001-02-20
JP4235986B2 JP4235986B2 (en) 2009-03-11

Family

ID=7810135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51883598A Expired - Fee Related JP4235986B2 (en) 1996-10-17 1997-10-16 Inert cathode for selective oxygen reduction and its preparation

Country Status (6)

Country Link
EP (1) EP0947016A1 (en)
JP (1) JP4235986B2 (en)
AU (1) AU5221698A (en)
CA (1) CA2269051A1 (en)
DE (1) DE19644628C2 (en)
WO (1) WO1998018171A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317288A (en) * 2004-04-27 2005-11-10 Japan Science & Technology Agency Platinum-free sulfide type fuel cell catalyst, and manufacturing method of same
JP2007504950A (en) * 2003-05-27 2007-03-08 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Catalyst for oxygen reduction
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell
KR100728188B1 (en) * 2006-05-16 2007-06-13 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP2007157711A (en) * 2005-11-30 2007-06-21 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, method of manufacturing same, membrane-electrode assembly for fuel cell including it, and fuel cell system
KR100766977B1 (en) * 2006-03-31 2007-10-12 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2007305591A (en) * 2006-05-12 2007-11-22 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
WO2009008544A1 (en) 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, and solid polymer fuel cell using the electrode catalyst
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
WO2009035163A1 (en) 2007-09-14 2009-03-19 Toyota Jidosha Kabushiki Kaisha Fine-particle composite, process for producing the fine-particle composite, catalyst for solid polymer electrolyte fuel cell, and solid polymer electrolyte fuel cell
DE112008002145T5 (en) 2007-08-09 2010-09-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell electrode catalyst; A method of evaluating the performance of an oxygen reducing catalyst and solid polymer fuel cell comprising the fuel cell electrode catalyst
US7887972B2 (en) 2005-11-11 2011-02-15 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, method of preparing same, and membrane-electrode assembly and fuel cell comprising same
JP2012022935A (en) * 2010-07-15 2012-02-02 Toyota Motor Corp Material for air electrode catalyst of lithium air battery, air electrode for lithium air battery including the material, and lithium air battery including the air electrode
US9012107B2 (en) 2005-11-11 2015-04-21 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, method of preparing same, and membrane-electrode assembly comprising same
JP2015526843A (en) * 2012-06-22 2015-09-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Preparation method of nanoparticles for cathodic reduction of diatomic oxygen in the presence of methanol

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914680C2 (en) * 1999-03-31 2003-02-20 Joerg Mueller Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer
DE19914661C2 (en) * 1999-03-31 2002-11-14 Joerg Mueller Process for the production of an integrated interconnected polymer electrolyte membrane fuel cell
DE19914681C2 (en) * 1999-03-31 2002-07-18 Joerg Mueller Polymer electrolyte membrane Fuel cell system in microsystem technology
DE10052189B4 (en) * 2000-10-21 2007-09-06 Daimlerchrysler Ag A multilayer gas diffusion electrode of a polymer electrolyte membrane fuel cell, a membrane electrode assembly, a method of manufacturing a gas diffusion electrode and a membrane electrode assembly, and use of the membrane electrode assembly
KR100684767B1 (en) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 Catalyst for cathode used in fuel cell, membrane-electrode assembly and fuel cell system comprising same
KR100766976B1 (en) 2006-04-28 2007-10-12 삼성에스디아이 주식회사 Catalyst for cathod of fuel cell, method for preparing same, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP5056236B2 (en) * 2007-07-24 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056258B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056257B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624054A1 (en) * 1986-07-14 1988-01-21 Hahn Meitner Kernforsch Inert electrode with catalytic activity
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
DE3802236A1 (en) * 1988-01-22 1989-08-03 Hahn Meitner Kernforsch Mixture of material for producing a metal chalcogenide and use of such a mixture
WO1990005798A1 (en) * 1988-11-17 1990-05-31 Physical Sciences Inc. Electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods for using them
US5338334A (en) * 1992-01-16 1994-08-16 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504950A (en) * 2003-05-27 2007-03-08 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Catalyst for oxygen reduction
JP4855259B2 (en) * 2003-05-27 2012-01-18 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Catalyst for oxygen reduction
JP2005317288A (en) * 2004-04-27 2005-11-10 Japan Science & Technology Agency Platinum-free sulfide type fuel cell catalyst, and manufacturing method of same
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell
US8685594B2 (en) 2005-08-31 2014-04-01 Samsung Sdi Co., Ltd. Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell
US7887972B2 (en) 2005-11-11 2011-02-15 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, method of preparing same, and membrane-electrode assembly and fuel cell comprising same
US9012107B2 (en) 2005-11-11 2015-04-21 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, method of preparing same, and membrane-electrode assembly comprising same
JP2007157711A (en) * 2005-11-30 2007-06-21 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
US8053143B2 (en) 2005-11-30 2011-11-08 Samsung Sdi Co., Ltd. Supported ruthenium cathode catalyst for fuel cell
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, method of manufacturing same, membrane-electrode assembly for fuel cell including it, and fuel cell system
JP4745988B2 (en) * 2006-01-18 2011-08-10 三星エスディアイ株式会社 FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
US7923171B2 (en) 2006-01-18 2011-04-12 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system including same
KR100766977B1 (en) * 2006-03-31 2007-10-12 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
US8039173B2 (en) 2006-05-12 2011-10-18 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method for preparing the same, a membrane-electrode assembly for a fuel cell including the same, and a fuel cell system including the same
JP2007305591A (en) * 2006-05-12 2007-11-22 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
KR100728188B1 (en) * 2006-05-16 2007-06-13 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
WO2009008544A1 (en) 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, and solid polymer fuel cell using the electrode catalyst
US8383287B2 (en) 2007-07-12 2013-02-26 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same
DE112008002145T5 (en) 2007-08-09 2010-09-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell electrode catalyst; A method of evaluating the performance of an oxygen reducing catalyst and solid polymer fuel cell comprising the fuel cell electrode catalyst
DE112008002145B4 (en) 2007-08-09 2017-05-24 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst; A method of evaluating the performance of an oxygen reducing catalyst and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009035163A1 (en) 2007-09-14 2009-03-19 Toyota Jidosha Kabushiki Kaisha Fine-particle composite, process for producing the fine-particle composite, catalyst for solid polymer electrolyte fuel cell, and solid polymer electrolyte fuel cell
US9193604B2 (en) 2007-09-14 2015-11-24 Toyota Jidosha Kabushiki Kaisha Fine particle composite, method for producing the same, catalyst used for solid polymer fuel cell, and solid polymer fuel cell
JP2012022935A (en) * 2010-07-15 2012-02-02 Toyota Motor Corp Material for air electrode catalyst of lithium air battery, air electrode for lithium air battery including the material, and lithium air battery including the air electrode
JP2015526843A (en) * 2012-06-22 2015-09-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Preparation method of nanoparticles for cathodic reduction of diatomic oxygen in the presence of methanol

Also Published As

Publication number Publication date
JP4235986B2 (en) 2009-03-11
DE19644628A1 (en) 1998-04-23
CA2269051A1 (en) 1998-04-30
WO1998018171A1 (en) 1998-04-30
EP0947016A1 (en) 1999-10-06
DE19644628C2 (en) 2001-05-23
AU5221698A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
JP2001502467A (en) Inert cathode for selective oxygen reduction and its preparation
EP3053648B1 (en) Use of carbon powder in fuel cell catalyst, fuel cell catalyst with carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
US8323847B2 (en) Catalyst for a fuel cell, method of preparing the same, and membrane-electrode assembly and fuel cell system including the same
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
CN101183718B (en) Cathode catalyst for fuel cell, method of preparing same, and uses thereof
JP4986616B2 (en) Catalyst for fuel cell, supported electrode catalyst powder, fuel cell electrode, fuel cell electrolyte membrane, fuel cell, and electrochemical conversion method in fuel cell
JP2008503869A (en) Catalyst support for electrochemical fuel cells
JP4786453B2 (en) Catalyst for fuel cell cathode, membrane-electrode assembly including the same, and fuel cell system
US8252485B2 (en) Electrocatalyst compositions and processes for making and using same
US9799893B2 (en) Catalyst support for fuel cell
JP2005527957A (en) Proton conductive carbonaceous material
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
KR20000017364A (en) Catalyst layer for polymer electrolyte fuel cells
WO2010131636A1 (en) Catalyst, process for production thereof, and use thereof
US9634331B2 (en) Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors
WO2009091047A1 (en) Catalyst, process for production of the same, and use of the same
KR20180013499A (en) Fe-N-C ELECTROCATALYST, METHOD OF MANUFACTURNING THE SAME AND FUEL CELL COMPRISING Fe-N-C ELECTROCATALYST
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
Obradović et al. RuxTi1− xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation
JP5037696B2 (en) Catalyst, method for producing the same and use thereof
JP2007504624A (en) Platinum-nickel-iron fuel cell catalyst
JP5419864B2 (en) Method for producing fuel cell catalyst and fuel cell catalyst
JPH1092441A (en) Solid high molecular type fuel cell
Ozenler et al. The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20080627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080630

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080715

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080730

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080908

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees