JP2001352147A - Comb-shaped electrode and its manufacturing method - Google Patents

Comb-shaped electrode and its manufacturing method

Info

Publication number
JP2001352147A
JP2001352147A JP2000169477A JP2000169477A JP2001352147A JP 2001352147 A JP2001352147 A JP 2001352147A JP 2000169477 A JP2000169477 A JP 2000169477A JP 2000169477 A JP2000169477 A JP 2000169477A JP 2001352147 A JP2001352147 A JP 2001352147A
Authority
JP
Japan
Prior art keywords
electrode
comb
pattern
shaped electrode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000169477A
Other languages
Japanese (ja)
Inventor
Kiyotaka Shindo
進藤  清孝
Kazuhisa Okamoto
和久 岡本
Hirobumi Tanaka
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000169477A priority Critical patent/JP2001352147A/en
Publication of JP2001352147A publication Critical patent/JP2001352147A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a comb-shaped electrode in which precision in manufacturing is excellent and an electrostatic capacitance of an object to be measured can properly be measured. SOLUTION: In a comb-shaped electrode, a plurality of conductor layers 101, 102 constituting a paired electrode are formed by burying each groove with a conductor. Each groove is formed by transferring a pattern of the paired electrode to a resin 2 by use of a stamper 1 provided with a reverse pattern to a recess and projection of a pattern.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、櫛形電極及びその
製造方法に関する。
The present invention relates to a comb-shaped electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、櫛形電極は、セラミック材料や樹
脂材料の表面に櫛形パターンの開口部を有するマスクを
用いて、スパッタ,蒸着,スクリーン印刷等で形成され
る。或いは、フォトリソグラフィー法を用いてこれらの
表面に形成された銅などの金属膜をエッチングすること
により櫛形電極のパターンが形成される。これらの手法
を用いて形成される櫛形電極の各電極のライン厚みと呼
ばれる導体高さは、通常数μm以下(アスペクト比が1
以下)である。
2. Description of the Related Art Conventionally, a comb-shaped electrode is formed by sputtering, vapor deposition, screen printing, or the like using a mask having openings of a comb-shaped pattern on the surface of a ceramic material or a resin material. Alternatively, a pattern of a comb-shaped electrode is formed by etching a metal film such as copper formed on these surfaces using a photolithography method. The conductor height called the line thickness of each electrode of the comb-shaped electrode formed by using these techniques is usually several μm or less (the aspect ratio is 1 μm or less).
Below).

【0003】[0003]

【発明が解決しようとする課題】上述した手法により得
られる櫛形電極では、各電極の導体高さ(厚み)方向と長
さ方向とで形成される平面が静電容量を求める場合の面
積を構成する。
In a comb-shaped electrode obtained by the above-described method, a plane formed by a conductor height (thickness) direction and a length direction of each electrode constitutes an area for obtaining capacitance. I do.

【0004】しかしながら、上述した手法で得られる各
電極の導体高さは微少であるため、静電容量を計測する
に十分な電極間の距離に対する面積を有していなかっ
た。このため、従来の櫛形電極は、その櫛形電極に接す
る材料の電気抵抗のみが計測され、材料の比誘電率に起
因する静電容量の計測は困難であった。
However, since the conductor height of each electrode obtained by the above-described method is very small, the electrode does not have a sufficient area for the distance between the electrodes to measure the capacitance. For this reason, in the conventional comb-shaped electrode, only the electric resistance of the material in contact with the comb-shaped electrode is measured, and it is difficult to measure the capacitance caused by the relative permittivity of the material.

【0005】また、櫛形電極の小型化の要請に伴い、櫛
形電極が高密度化し、電極幅が30μm以下となる場合
には、上述した手法を採用することが困難となってい
る。この場合には、基板上にレジスト印刷、パターン露
光、現像後に無電解メッキを行って配線を高さ方向に成
長させるアディティブ法が用いられる。
[0005] Further, with the demand for miniaturization of the comb-shaped electrode, when the density of the comb-shaped electrode is increased and the electrode width is reduced to 30 µm or less, it is difficult to employ the above-described method. In this case, an additive method is used in which the wiring is grown in the height direction by performing electroless plating after resist printing, pattern exposure, and development on the substrate.

【0006】しかしながら、アディティブ法によって形
成される導体の導体高さは一般的には10μm迄は精度
がよいものの、それ以上高くすると無電解メッキのバラ
ツキにより電極長手方向での導体高さの公差が大きくな
る。その結果、電極の厚みにバラツキが生じ、電気特性
的には不安定となる。電極幅20μm以下の微細配線の
場合、高さの精度が保証できず、そのため、アディティ
ブ法で電極幅が微細で10μm以上の導体厚みの櫛形電
極パターンを作ると歩留まりが低下し、コストに跳ね返
ってしまうという問題があった。
However, although the conductor height of the conductor formed by the additive method is generally accurate up to 10 μm, if the conductor height is higher than 10 μm, the tolerance of the conductor height in the longitudinal direction of the electrode due to the variation of electroless plating. growing. As a result, the thickness of the electrode varies, and the electrical characteristics become unstable. In the case of fine wiring with an electrode width of 20 μm or less, the accuracy of the height cannot be guaranteed. Therefore, if a comb-shaped electrode pattern having a fine electrode width and a conductor thickness of 10 μm or more is formed by the additive method, the yield decreases and the cost is rebounded. There was a problem that it would.

【0007】本発明は、上記問題に鑑みなされたもので
あり、製造の精度が良く且つ適正に被測定物の比誘電率
と表面形状に依存する静電容量を計測することができる
櫛形電極及びその製造方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a comb-shaped electrode capable of accurately measuring the relative permittivity of an object to be measured and appropriately measuring the capacitance depending on the surface shape. It is an object to provide a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明は、上述した課題
を解決するため以下の構成を採用する。即ち、本発明
は、複数の導体層が1つの方向に距離をおいて並べら
れ、前記方向に隣り合う導体層同士が電極対を構成する
ようにした櫛形電極であって、前記複数の導体層は、そ
のパターンと凹凸が逆のパターンを備えたスタンパを用
いて樹脂に前記電極対のパターンを転写することにより
形成された各溝を導体で埋めることにより形成されたこ
とを特徴とする。
The present invention employs the following configuration to solve the above-mentioned problems. That is, the present invention provides a comb-shaped electrode in which a plurality of conductor layers are arranged at a distance in one direction, and the conductor layers adjacent in the direction constitute an electrode pair. Is characterized by being formed by filling each groove formed by transferring the pattern of the electrode pair to a resin using a stamper having a pattern whose pattern is opposite to that of the pattern, with a conductor.

【0009】本発明による櫛形電極によると、スタンパ
を用いて櫛形電極を形成することで、精度の良い導体高
さを有する導体層(電極対)が形成されるので、櫛形電極
による静電容量の計測が可能となる。
According to the comb-shaped electrode of the present invention, since the comb-shaped electrode is formed by using the stamper, a conductor layer (electrode pair) having a high conductor height is formed accurately. Measurement becomes possible.

【0010】本発明は、複数の導体層が1つの方向に距
離をおいて並べられ、前記方向に隣り合う導体層同士が
電極対を構成するようにした櫛形電極の製造方法であっ
て、前記複数の導体層のパターンと凹凸が逆のパターン
を備えたスタンパを用いて樹脂に前記電極対のパターン
を転写することにより、前記樹脂に複数の溝を形成する
工程と、形成された各溝を導体で埋めることにより前記
複数の導体層を形成する工程とを含むことを特徴とす
る。
The present invention relates to a method of manufacturing a comb-shaped electrode in which a plurality of conductor layers are arranged at a distance in one direction, and the conductor layers adjacent in the direction constitute an electrode pair. A step of forming a plurality of grooves in the resin by transferring the pattern of the electrode pair to the resin by using a stamper having a pattern in which the pattern of the plurality of conductor layers and the concavo-convex pattern are reversed, and forming the plurality of grooves in the resin. Forming the plurality of conductor layers by filling with a conductor.

【0011】本発明によると、スタンパを用いて櫛形電
極を形成することで、精度の良い導体高さを有する導体
層(電極)が形成されるので、櫛形電極による静電容量の
計測が可能となる。特に、導体層の幅(電極幅)が20μ
m以下の微細配線によって櫛形電極を形成する場合で
も、精度の良い電極を得ることができる。このため、微
細配線による櫛形電極でも静電容量の計測が可能とな
る。
According to the present invention, by forming a comb-shaped electrode using a stamper, a conductor layer (electrode) having an accurate conductor height is formed, so that the capacitance can be measured by the comb-shaped electrode. Become. In particular, the width of the conductor layer (electrode width) is 20μ.
Even when a comb-shaped electrode is formed with a fine wiring of m or less, a highly accurate electrode can be obtained. For this reason, the capacitance can be measured even with a comb-shaped electrode formed of fine wiring.

【0012】櫛形電極を構成する導体層のアスペクト比
は1以上であることが好ましい。このようにすると、各
導体層(電極)の導体高さが1以上のアスペクト比を有す
るので、電極対をなす各電極の向かい合う面の面積が従
来よりも大きくなる。これにより、静電容量を計測する
に十分な電極間の距離に対する面積を得ることができる
ので、被測定物の静電容量を適正に計測することができ
る。
The aspect ratio of the conductor layer constituting the comb-shaped electrode is preferably 1 or more. In this case, since the conductor height of each conductor layer (electrode) has an aspect ratio of 1 or more, the area of the facing surface of each electrode forming the electrode pair becomes larger than before. Accordingly, it is possible to obtain an area with a sufficient distance between the electrodes for measuring the capacitance, so that the capacitance of the measured object can be appropriately measured.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明の実施形態による櫛
形電極100の平面図であり、図2は、図1に示した櫛
形電極100の破線で囲まれた部分を切り出して示す斜
視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a comb-shaped electrode 100 according to an embodiment of the present invention, and FIG. 2 is a perspective view of a portion of the comb-shaped electrode 100 shown in FIG.

【0014】図1及び図2に示すように、櫛形電極10
0は、複数の平行平面板状の電極101,102(本発明
の導体層に相当)と、各電極101に接続されたリード
部104と、各電極102に接続されたリード部105
とを備えている。
As shown in FIG. 1 and FIG.
0 denotes a plurality of parallel flat plate-shaped electrodes 101 and 102 (corresponding to the conductor layer of the present invention), a lead portion 104 connected to each electrode 101, and a lead portion 105 connected to each electrode 102.
And

【0015】電極101及び電極102は、これらの平
面に直交する方向(図1ではX方向)に均等な間隔を空け
て交互に並べられ、各電極101の一方の端部は、電極
102間に入り込み、各電極102の一端は、電極10
1間に入り込んでいる。
The electrodes 101 and the electrodes 102 are alternately arranged at equal intervals in a direction perpendicular to these planes (X direction in FIG. 1). One end of each electrode 101 is located between the electrodes 102. And one end of each electrode 102 is
I'm in the middle.

【0016】そして、電極101及び電極102の平面
に直交する方向(X方向)において電極101と電極10
2とが向かい合う部分が、電極対103(電極要素)とし
て機能し、図1の破線で囲まれた部分(図2に示した部
分)が、複数の電極要素を有する静電容量計測部106
として機能する。各電極101の他端は、リード部10
4に接続されており、各電極102の他端は、リード部
105に接続されている。
The electrode 101 and the electrode 10 are arranged in a direction (X direction) orthogonal to the plane of the electrode 101 and the electrode 102.
2 functions as an electrode pair 103 (electrode element), and a part surrounded by a broken line in FIG. 1 (a part shown in FIG. 2) is a capacitance measuring unit 106 having a plurality of electrode elements.
Function as The other end of each electrode 101 is
4, and the other end of each electrode 102 is connected to a lead portion 105.

【0017】図2に示すように、静電容量計測部106
中の各電極101,102(図1にて破線で囲まれた部
分)は、同じ寸法で形成されており、長手方向長さが3
mm,幅方向長さ(導体幅)が10μm,高さ方向長さ
(導体高さ)が20μmである。即ち、各電極101,1
02のアスペクト比は1以上(ここでは2)となってい
る。
As shown in FIG. 2, the capacitance measuring unit 106
Each of the inner electrodes 101 and 102 (portions surrounded by broken lines in FIG. 1) is formed with the same dimensions and has a length of 3 in the longitudinal direction.
mm, width direction length (conductor width) is 10 μm, height direction length
(Conductor height) is 20 μm. That is, each of the electrodes 101, 1
02 has an aspect ratio of 1 or more (here, 2).

【0018】ここで、アスペクト比は、導体層の高さを
幅で除したものだが、導体層の断面が台形状の場合は、
上面と底面の幅を足して2で割ったものを導体層の幅と
する。
Here, the aspect ratio is obtained by dividing the height of the conductor layer by the width. When the cross section of the conductor layer is trapezoidal,
The width of the conductor layer is obtained by adding the widths of the top surface and the bottom surface and dividing by two.

【0019】また、電極101と電極102との距離
(配線間隔)は、夫々10μmで形成されている。また、
電極101と電極102との間の夫々は、絶縁体(例え
ば、樹脂)で満たされている。
The distance between the electrode 101 and the electrode 102
The (interconnect spacing) is formed at 10 μm each. Also,
Each space between the electrode 101 and the electrode 102 is filled with an insulator (for example, resin).

【0020】図1及び図2に示した櫛形電極100を構
成する一対の電極対103(電極要素)は、以下の式で示
される静電容量C0を計測することができる。 C0=ε0ε・(S/d) ε0:真空の誘電率 ε:静電容量の被計測物の比誘電率 S:電極要素の面積(各電極101,102の高さ方向の
面の面積) d:電極101と電極102との距離 実際には、C=C0×電極要素数で得られる静電容量が
測定される。
The pair of electrodes 103 (electrode elements) constituting the comb-shaped electrode 100 shown in FIGS. 1 and 2 can measure the capacitance C 0 represented by the following equation. C 0 = ε 0 ε · (S / d) ε 0 : Dielectric constant of vacuum ε: Specific dielectric constant of the measured object of capacitance S: Area of electrode element (surface in the height direction of each electrode 101, 102) D) Distance between the electrode 101 and the electrode 102 Actually, the capacitance obtained by C = C 0 × the number of electrode elements is measured.

【0021】ここで、上記式におけるSは、各電極10
1,102の長さ方向の長さが固定である場合には、電
極の導体高さが高い程大きくなる。この例では、導体高
さが20μmとされ、従来の櫛形電極に比べて十分に大
きく、電極101,102間の距離d(=10μm)に対
して十分に大きい。このため、被測定物の比誘電率と表
面形状とに依存する静電容量を適正に測定することがで
きる。
Here, S in the above equation represents each electrode 10
When the length in the length direction of 1,102 is fixed, the higher the conductor height of the electrode, the larger the length. In this example, the conductor height is set to 20 μm, which is sufficiently larger than the conventional comb-shaped electrode, and sufficiently larger than the distance d (= 10 μm) between the electrodes 101 and 102. Therefore, it is possible to appropriately measure the capacitance depending on the relative permittivity and the surface shape of the device under test.

【0022】従って、実施形態における櫛形電極を用い
ることにより、被測定物がフィルム状であればその伸び
縮みなどの機械的変化量を比測定物の静電容量の変化と
して測定することで検知可能となる。これにより、櫛形
電極は例えば圧力センサなどに応用できる。
Therefore, by using the comb-shaped electrode in the embodiment, if the object to be measured is in the form of a film, it can be detected by measuring the amount of mechanical change such as expansion and contraction as the change in the capacitance of the specific measurement object. Becomes Thus, the comb electrode can be applied to, for example, a pressure sensor.

【0023】図1及び図2に示した櫛形電極をポリイミ
ドフィルムに形成した結果、電極要素当たり約0.2p
F,全体として約30pFの静電容量を検出することが
できた。
As a result of forming the comb-shaped electrodes shown in FIGS. 1 and 2 on a polyimide film, about 0.2 p
F, a capacitance of about 30 pF as a whole could be detected.

【0024】次に、上述した櫛形電極100の製造方法
を説明する。図3は、櫛形電極100の製造に利用する
スタンパ1の製造プロセス(製造工程)を示す原理図であ
り、図4は、櫛形電極100の製造プロセスを示す原理
図である。
Next, a method of manufacturing the above-described comb-shaped electrode 100 will be described. FIG. 3 is a principle diagram showing a manufacturing process (manufacturing process) of the stamper 1 used for manufacturing the comb electrode 100, and FIG. 4 is a principle diagram showing a manufacturing process of the comb electrode 100.

【0025】図4において、洗浄した平面度、平行度の
よいガラス基板10にフォトレジスト11を塗布する
(a)。微細な櫛形電極100の配線パターンが描写さ
れたフォトマスク12を通してUVランプ13を用いて
露光を行い、レジスト上に配線パターンを焼き付ける
(b)。
Referring to FIG. 4, a photoresist 11 is applied to a cleaned glass substrate 10 having good flatness and parallelism (a). Exposure is performed using the UV lamp 13 through the photomask 12 on which the wiring pattern of the fine comb-shaped electrode 100 is drawn, and the wiring pattern is printed on the resist (b).

【0026】次に、フォトレジスト11の感光部11a
を除去するためにフォトレジスト11を現像し(c)、
現像された表面にスパッタまたは無電解メッキ等でメタ
ルコートを施した後、電解ニッケルメッキによりNiメ
ッキ膜14を形成し(d)、ニッケルメッキ膜14から
ガラス10を剥離、ニッケルメッキ膜14上に残留した
フォトレジスト11を除去し(e)、ニッケルメッキ膜
を金型取り付け用に外観加工してスタンパ1を得る。
Next, the photosensitive portion 11a of the photoresist 11
Develop the photoresist 11 to remove (c)
After a metal coating is applied to the developed surface by sputtering or electroless plating, a Ni plating film 14 is formed by electrolytic nickel plating (d), and the glass 10 is peeled from the nickel plating film 14, and the nickel plating film 14 is formed on the nickel plating film 14. The remaining photoresist 11 is removed (e), and the nickel plating film is externally processed for mounting on a mold to obtain the stamper 1.

【0027】以上の工程において、フォトレジストの現
像以降の工程は、光ディスク用のポリカーボネートなど
の樹脂成形基板を成形するためのスタンパーの周知の製
造プロセスと同じである。今回の場合、配線パターンの
寸法は溝の深さを20μm、配線幅10μm、配線間隔
10μm、公差はそれぞれ±1μmとして製作した。
In the above steps, the steps after the development of the photoresist are the same as the well-known manufacturing process of a stamper for forming a resin molded substrate such as polycarbonate for an optical disk. In this case, the dimensions of the wiring pattern were manufactured such that the groove depth was 20 μm, the wiring width was 10 μm, the wiring interval was 10 μm, and the tolerance was ± 1 μm.

【0028】図2において、微細な線幅を持つ櫛形フィ
ルタ100の配線パターンのネガ像が形成された(櫛形
電極の配線パターンと凹凸が逆のパターンを有する)前
述のプロセスで製造されたスタンパ1を成形用金型(図
示せず)に取り付け(a)、金型に熱硬化性エポキシ樹
脂(三井化学(株)製:商品名エポックス)を注入して
トランスファー成形を行った(b)。成形条件は、金型
型絞圧力200kg/cm2 、樹脂加圧45kg/cm
2 充填温度183℃で行った。これにより表面に配線パ
ターンが転写された所望の厚みを有する樹脂成形基板2
が得られた(c)。
In FIG. 2, a negative image of the wiring pattern of the comb filter 100 having a fine line width is formed (having a reverse pattern of the wiring pattern of the comb-shaped electrode). Was attached to a molding die (not shown) (a), and a thermosetting epoxy resin (trade name: Epox, manufactured by Mitsui Chemicals, Inc.) was injected into the die to perform transfer molding (b). Molding conditions are: mold die pressure 200 kg / cm 2, resin pressure 45 kg / cm
(2) Performed at a filling temperature of 183 ° C. Thereby, the resin molded substrate 2 having a desired thickness with the wiring pattern transferred to the surface thereof
Was obtained (c).

【0029】こうして得られた樹脂成形基板2に、この
後コーティングするメッキ膜との密着性を高めるため成
形品表面にスパッタ装置により銅スパッタを厚さ0.1
μm程度施す。そしてメッキ浴として硫酸銅メッキ液を
用意し、これに樹脂成形基板を浸漬し、メッキ液温度2
0℃〜30℃、PH1以下、電流密度2.5A/dm
2 、メッキ時間30分で電解メッキを行い全面に銅メッ
キ膜3を25μmの厚さで形成した(d)。
The resin molded substrate 2 thus obtained is
In order to improve the adhesion with the plating film to be post-coated,
Sputter copper on the surface of the molded product with a thickness of 0.1
Apply about μm. And a copper sulfate plating solution as a plating bath
Prepare, immerse the resin molded substrate in this, plating solution temperature 2
0 ° C-30 ° C, PH1 or less, current density 2.5A / dm
Two , Electroplating in 30 minutes plating time
The film 3 was formed with a thickness of 25 μm (d).

【0030】次に、樹脂成形基板2の片側全面に形成さ
れたメッキ面を定盤研磨機にてスラリーを流しながら、
加重1Kg/cm2 、回転数70rpm、研磨時間30
分にて研磨し、溝と溝の間の樹脂部分が露出するまで粗
研磨を行い銅メッキ膜3からなる配線部と樹脂からなる
絶縁部との境界を明確にした(e)。
Next, the slurry is applied to the plating surface formed on the entire surface of one side of the resin molded substrate 2 by using a platen grinder.
Weight 1 kg / cm 2 , rotation speed 70 rpm, polishing time 30
Then, rough polishing was performed until the resin portion between the grooves was exposed, and the boundary between the wiring portion made of the copper plating film 3 and the insulating portion made of the resin was clarified (e).

【0031】このようにして線幅が10μm、溝の部分
が20μmの厚さのCuメッキ膜で埋まった絶縁部と導
電部が同一平面である微細配線パターンが得られた。こ
のようにして、図1及び図2に示した櫛形電極100を
製造することができる。
In this manner, a fine wiring pattern having an insulating portion and a conductive portion in which the line width was 10 μm and the groove portion was filled with a Cu plating film having a thickness of 20 μm and which were flush with each other was obtained. Thus, the comb-shaped electrode 100 shown in FIGS. 1 and 2 can be manufactured.

【0032】上述した製造方法によると、スタンパ1を
用いることで、アディティブ法に比べて精度の高い導体
高さを有する導体を形成することができる。即ち、電極
101,102の製造精度が高い櫛形電極100を作製
することができ、静電容量の測定精度を高めることがで
きる。即ち、適正に静電容量を計測することができる。
According to the above-described manufacturing method, the use of the stamper 1 makes it possible to form a conductor having a higher conductor height than the additive method. That is, the comb-shaped electrode 100 with high manufacturing accuracy of the electrodes 101 and 102 can be manufactured, and the measurement accuracy of the capacitance can be improved. That is, the capacitance can be properly measured.

【0033】また、導体の高さを高めることで導体の長
さを抑える(導体高さを高くすることで面積Sを大きく
する)ことができるので、櫛形電極100を小型化する
ことができる。
Further, by increasing the height of the conductor, the length of the conductor can be suppressed (the area S can be increased by increasing the conductor height), so that the comb-shaped electrode 100 can be miniaturized.

【0034】[0034]

【発明の効果】本発明による櫛形電極及びその製造方法
によれば、精度が良く、且つ適正に被測定物の比誘電率
と表面形状に依存する静電容量を計測することができ
る。
According to the comb-shaped electrode and the method of manufacturing the same according to the present invention, it is possible to accurately and properly measure the capacitance depending on the relative permittivity and the surface shape of the object to be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】櫛形電極の構成図FIG. 1 is a configuration diagram of a comb-shaped electrode.

【図2】櫛形電極の構成図FIG. 2 is a configuration diagram of a comb-shaped electrode.

【図3】スタンパの製造方法の説明図FIG. 3 is an explanatory view of a method for manufacturing a stamper.

【図4】櫛形電極の製造方法の説明図FIG. 4 is an explanatory view of a method for manufacturing a comb-shaped electrode.

【符号の説明】[Explanation of symbols]

1 スタンパ 2 樹脂成形基板 3 銅メッキ膜 10 ガラス基板 11 フォトレジスト 12 フォトマスク 13 UVランプ 14 Niメッキ膜 100 櫛形電極 101,102 電極 103 電極対(電極要素) 104,105 リード部 106 静電容量計測部 DESCRIPTION OF SYMBOLS 1 Stamper 2 Resin molding board 3 Copper plating film 10 Glass substrate 11 Photoresist 12 Photomask 13 UV lamp 14 Ni plating film 100 Comb-shaped electrode 101,102 Electrode 103 Electrode pair (electrode element) 104,105 Lead part 106 Capacitance measurement Department

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 博文 東京都千代田区霞が関三丁目2番5号 三 井化学株式会社内 Fターム(参考) 2G028 AA01 AA03 BC02 CG07 CG09 HM04 HM05 HN01 MS03 5E343 AA01 AA11 BB08 BB16 BB21 BB24 BB61 BB71 DD25 DD43 DD75 ER49 GG08  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hirofumi Tanaka 3-5-2 Kasumigaseki, Chiyoda-ku, Tokyo Mitsui Chemicals, Inc. F-term (reference) 2G028 AA01 AA03 BC02 CG07 CG09 HM04 HM05 HN01 MS03 5E343 AA01 AA11 BB08 BB16 BB21 BB24 BB61 BB71 DD25 DD43 DD75 ER49 GG08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の導体層が1つの方向に距離をおいて
並べられ、前記方向に隣り合う導体層同士が電極対を構
成するようにした櫛形電極であって、 前記複数の導体層は、そのパターンと凹凸が逆のパター
ンを備えたスタンパを用いて樹脂に前記電極対のパター
ンを転写することにより形成された各溝を導体で埋める
ことにより形成されたことを特徴とする櫛形電極。
1. A comb-shaped electrode in which a plurality of conductor layers are arranged at a distance in one direction, and conductor layers adjacent to each other in the direction constitute an electrode pair. A comb-shaped electrode formed by filling each groove formed by transferring the pattern of the electrode pair to a resin using a stamper having a pattern whose pattern is opposite to that of the pattern, with a conductor.
【請求項2】複数の導体層が1つの方向に距離をおいて
並べられ、前記方向に隣り合う導体層同士が電極対を構
成するようにした櫛形電極の製造方法であって、 前記複数の導体層のパターンと凹凸が逆のパターンを備
えたスタンパを用いて樹脂に前記電極対のパターンを転
写することにより、前記樹脂に複数の溝を形成する工程
と、 形成された各溝を導体で埋めることにより前記複数の導
体層を形成する工程とを含むことを特徴とする櫛形電極
の製造方法。
2. A method for manufacturing a comb-shaped electrode, wherein a plurality of conductor layers are arranged at a distance in one direction, and the conductor layers adjacent in the direction constitute an electrode pair. Forming a plurality of grooves in the resin by transferring the pattern of the electrode pair to the resin by using a stamper having a pattern in which the concavo-convex pattern is opposite to the pattern of the conductor layer; Forming the plurality of conductor layers by filling.
JP2000169477A 2000-06-06 2000-06-06 Comb-shaped electrode and its manufacturing method Pending JP2001352147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169477A JP2001352147A (en) 2000-06-06 2000-06-06 Comb-shaped electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169477A JP2001352147A (en) 2000-06-06 2000-06-06 Comb-shaped electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001352147A true JP2001352147A (en) 2001-12-21

Family

ID=18672332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169477A Pending JP2001352147A (en) 2000-06-06 2000-06-06 Comb-shaped electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001352147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055890A2 (en) * 2004-11-17 2006-05-26 Borealis Technical Limited Surface pairs
JP2009053183A (en) * 2007-07-31 2009-03-12 Kyocera Corp Device for detecting location variation of stage and transporting device equipped with the same
JP2009288058A (en) * 2008-05-29 2009-12-10 Kyocera Corp Device for detecting position variation of stage and conveyor provided with it
WO2012029223A1 (en) * 2010-08-30 2012-03-08 株式会社日立ハイテクノロジーズ Inspection equipment and inspection method
US8574663B2 (en) * 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574663B2 (en) * 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs
WO2006055890A2 (en) * 2004-11-17 2006-05-26 Borealis Technical Limited Surface pairs
WO2006055890A3 (en) * 2004-11-17 2009-04-09 Borealis Tech Ltd Surface pairs
JP2009053183A (en) * 2007-07-31 2009-03-12 Kyocera Corp Device for detecting location variation of stage and transporting device equipped with the same
JP2009288058A (en) * 2008-05-29 2009-12-10 Kyocera Corp Device for detecting position variation of stage and conveyor provided with it
WO2012029223A1 (en) * 2010-08-30 2012-03-08 株式会社日立ハイテクノロジーズ Inspection equipment and inspection method
JP2012047653A (en) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp Inspection equipment and inspection method
US9261475B2 (en) 2010-08-30 2016-02-16 Hitachi High-Technologies Corporation Inspection equipment and inspection method

Similar Documents

Publication Publication Date Title
US4415403A (en) Method of fabricating an electrostatic print head
KR850001363B1 (en) Method for manufacturing a fine patterned thick film conductor structure
JP2001320150A (en) Wiring board by stamper and manufacturing method thereof
JP2008283131A (en) Multilayer wiring board, method of manufacturing the same, and probe apparatus
JP3851789B2 (en) Mandrel and orifice plate electroformed using the same
JP2001352147A (en) Comb-shaped electrode and its manufacturing method
JP7426560B2 (en) Method for manufacturing plating pattern plate and wiring board
JP2001347529A (en) Stamper for manufacturing circuit board and method for manufacturing stamper
CN112188732A (en) Manufacturing method of medical instrument detection plate
GB2035908A (en) Electrostatic print head and method of fabrication
US3496072A (en) Multilayer printed circuit board and method for manufacturing same
CN103687298B (en) Method for manufacturing electric film body
TWI586968B (en) Vertical probe, probe card and method for fabricating a vertical probe
US6218847B1 (en) Test pattern for use in measuring thickness of insulating layer and method for using the same
JP2705253B2 (en) Conductive pattern forming method and magnetic head manufacturing method
JP2001351448A (en) Manufacturing method of flat cable and flat cable
JP4311157B2 (en) Manufacturing method of substrate for semiconductor device
JP2003330161A (en) Manufacturing method of electronic part and electronic part using the manufacturing method
CN219659994U (en) High-frequency circuit board carbon oil pattern processing structure
KR100850221B1 (en) Manufacturing process of passivity element of insertion type
JPH10335229A (en) Mask misalignment evaluation test pattern
JPS57164413A (en) Manufacture of thin film magnetic head
JP2822793B2 (en) Magnetoresistive element and method of manufacturing the same
JP2699924B2 (en) Ceramic substrate and method of manufacturing the same
JP2005236018A (en) Minute wiring structure and manufacturing method thereof