JP2001351833A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2001351833A
JP2001351833A JP2000170721A JP2000170721A JP2001351833A JP 2001351833 A JP2001351833 A JP 2001351833A JP 2000170721 A JP2000170721 A JP 2000170721A JP 2000170721 A JP2000170721 A JP 2000170721A JP 2001351833 A JP2001351833 A JP 2001351833A
Authority
JP
Japan
Prior art keywords
layer capacitor
conductive polymer
electric double
based material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000170721A
Other languages
Japanese (ja)
Inventor
Hiroshi Tatemori
寛 舘盛
Satoshi Takase
敏 高瀬
Satoshi Maeda
郷司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000170721A priority Critical patent/JP2001351833A/en
Publication of JP2001351833A publication Critical patent/JP2001351833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To achieve large capacity of an electrical double-layer capacitor. SOLUTION: Paired polarizable electrodes are impregnated with electrolytic solution and an electric double-layer capacitor is constituted via a separator. At least one of the polarizable electrodes is constituted of a composite electrode consisting of a porous carbonic material and conductive high polymer. A total acid group amount of the porous carbonic material is >=0.40 μmol/m2 and <=4.0 μmol/m2 to a total surface area. The conductive high polymer is polyaniline or its deriative. Furthermore, the mixing ratio of the conductive high polymer and the porous carbonic material is >=5/95 and <=90/10 (weight ratio).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層キャパシ
タに関する。より詳しくは、高速充放電可能で、大容量
である電気二重層キャパシタである。例えば、携帯電
話、ICカード、ページャー等におけるメモリバックア
ップ用電源・コンピュータ、データ通信機器等における
非常用電源・ソーラ−発電システム等において低電圧で
も充電可能なエネルギー蓄積デバイス・高速充放電可能
なガソリン自動車エンジンのイグナイタ用電源・電気自
動車、電気-ガソリンハイブリッド自動車等における回
生制動エネルギーの蓄積用デバイス・交換困難な道路埋
込式点滅表示灯等の電源等に好適な電気二重層キャパシ
タに関する。
The present invention relates to an electric double layer capacitor. More specifically, it is an electric double layer capacitor which can be charged and discharged at high speed and has a large capacity. For example, power supply for memory backup in mobile phones, IC cards, pagers, etc., emergency power supply in computers, data communication equipment, etc., energy storage devices that can be charged even at low voltage in solar power generation systems, etc., gasoline vehicles that can be charged and discharged at high speed The present invention relates to a power supply for an engine igniter, a device for storing regenerative braking energy in an electric vehicle, an electric-gasoline hybrid vehicle, and the like, and an electric double layer capacitor suitable for a power supply of a flashing indicator light embedded in a road which is difficult to replace.

【0002】[0002]

【従来の技術】周知のように電気二重層キャパシタは、
一対の分極性電極と、各分極性電極の集電電極と、両分
極性電極間に介在する多孔性のセパレータとによって主
として構成されている。各分極性電極には電解液が含浸
されている。
2. Description of the Related Art As is well known, an electric double layer capacitor is:
It is mainly composed of a pair of polarizable electrodes, current collecting electrodes of each polarizable electrode, and a porous separator interposed between the polarizable electrodes. Each polarizable electrode is impregnated with an electrolytic solution.

【0003】従来では分極性電極として、活性炭または
繊維状活性炭によって構成するのを普通としているが、
これによると放電容量が小さく、そのため実際の使用に
おいて長時間にわたる放電を維持することができない欠
点がある。また内部抵抗が大きいため、大電流が取り出
せない欠点がある。
Conventionally, the polarizable electrode is usually made of activated carbon or fibrous activated carbon.
According to this, there is a disadvantage that the discharge capacity is small, so that it is impossible to maintain the discharge for a long time in actual use. Further, there is a disadvantage that a large current cannot be taken out due to a large internal resistance.

【0004】これを解決するために、特開平6−104
141号公報では電解重合法により作製した導電性高分
子膜を電気二重層キャパシタの分極性電極とする構成を
提案している。これによると従来の分極性電極を使用し
た場合よりも容量も大きく、かつ内部抵抗も小さくなる
利点があるが、必ずしも満足できるものではない。
To solve this problem, Japanese Patent Laid-Open No. 6-104 discloses
No. 141 proposes a configuration in which a conductive polymer film produced by an electrolytic polymerization method is used as a polarizable electrode of an electric double layer capacitor. According to this, there is an advantage that the capacitance is larger and the internal resistance is smaller than when a conventional polarizable electrode is used, but this is not always satisfactory.

【0005】[0005]

【発明が解決しようとする課題】本発明は、導電性高分
子化合物を分極性電極として使用する電気二重層キャパ
シタにおいて、更に高速充放電および大容量化を図るこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electric double-layer capacitor using a conductive polymer compound as a polarizable electrode, to achieve higher speed charging and discharging and a larger capacity.

【0006】[0006]

【課題を解決するための手段】本発明は、対とされた分
極性電極に電解液を含浸し、セパレータを介して構成さ
れる電気二重層キャパシタにおいて、この分極性電極の
うちの少なくとも一方を、多孔性炭素系材料と導電性高
分子化合物とからなる混合電極によって構成したことを
特徴とする。本発明で使用する分極性電極は、表面積の
大きな導電性物質(例えば粉末状又は繊維状の活性炭)
であるが、少なくとも一方は多孔性炭素系材料と導電性
高分子化合物とからなる混合電極である。本発明で使用
する多孔性炭素系材料は特に限定されず、粉末状、粒
状、繊維状、あるいは成形体状の活性炭が用いられる。
本発明で使用する導電性高分子化合物は、ポリピロー
ル、ポリアニリン、ポリチオフェン、ポリフラン、ポリ
セレノフェン、ポリイソチアナフテン、ポリフェニレン
スルフィド、ポリフェニレンオキシド、ポリアズレン、
もしくはこれらの誘導体、あるいはこれらの共重合体で
ある。これら導電性高分子類は、電解重合あるいは化学
酸化重合のいずれの重合方法を用いて合成されたもので
も好適に使用されうる。
According to the present invention, there is provided an electric double layer capacitor comprising a pair of polarizable electrodes impregnated with an electrolytic solution and having a separator interposed therebetween, wherein at least one of the polarizable electrodes is provided. And a mixed electrode composed of a porous carbon-based material and a conductive polymer compound. The polarizable electrode used in the present invention is a conductive material having a large surface area (for example, powdered or fibrous activated carbon).
At least one is a mixed electrode composed of a porous carbon-based material and a conductive polymer compound. The porous carbon-based material used in the present invention is not particularly limited, and powdered, granular, fibrous, or shaped activated carbon is used.
The conductive polymer compound used in the present invention is polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene,
Or a derivative thereof, or a copolymer thereof. As these conductive polymers, those synthesized using any polymerization method such as electrolytic polymerization or chemical oxidation polymerization can be suitably used.

【0007】多孔性炭素系材料と導電性高分子化合物と
を混合した電極によれば、導電性が向上し、高速充放電
が可能となり、また容量が増大する。
According to an electrode in which a porous carbon-based material and a conductive polymer compound are mixed, conductivity is improved, high-speed charge / discharge becomes possible, and capacity is increased.

【0008】[0008]

【発明の実施の形態】本発明で使用する導電性高分子は
次のようにして作成する。すなわち有機溶媒もしくは水
に、モノマーとドーパントを溶解させ、電解重合する。
あるいはモノマーとドーパントの溶液に酸化剤を加えて
化学酸化重合する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A conductive polymer used in the present invention is prepared as follows. That is, a monomer and a dopant are dissolved in an organic solvent or water, and electrolytic polymerization is performed.
Alternatively, an oxidizing agent is added to a solution of the monomer and the dopant to perform chemical oxidative polymerization.

【0009】ここで用いるモノマーとして、ピロール、
アニリン、チオフェン、フラン、セレノフェン、イソチ
アナフテン、フェニレンスルフィド、フェニレンオキシ
ド、アズレン、もしくはこれらの誘導体、あるいはこれ
らを複数組み合わせた(共重合体)ものが使用できる。
なかでも、アニリンおよびその誘導体が高導電性の面か
ら好ましい。
As the monomers used here, pyrrole,
Aniline, thiophene, furan, selenophene, isothianaphthene, phenylene sulfide, phenylene oxide, azulene, a derivative thereof, or a combination thereof (copolymer) can be used.
Among them, aniline and its derivatives are preferable from the viewpoint of high conductivity.

【0010】ドーパントは導電性高分子に導電性を付与
するために加えられるもので、一般に使用されているス
ルホン酸塩イオン、過塩素酸イオン、6フッ化リン酸イ
オン、4フッ化リン酸イオン、4フッ化ホウ酸イオン、
6フッ化ヒ素イオン、6フッ化アンチモン酸イオン、4
塩化アルミン酸イオン、ハロゲンイオン、リン酸イオ
ン、硫酸イオン、硝酸イオン等が利用できる。またこの
他多価アニオンも利用可能である。
The dopant is added to impart conductivity to the conductive polymer, and is generally used as a sulfonate ion, a perchlorate ion, a hexafluorophosphate ion and a tetrafluorophosphate ion. Tetrafluoroborate ion,
Arsenic hexafluoride ion, hexafluoroantimonate ion, 4
Chloroaluminate ions, halogen ions, phosphate ions, sulfate ions, nitrate ions and the like can be used. In addition, polyvalent anions can also be used.

【0011】本発明に用いられる多孔性炭素系材料は、
特に限定されず、粉末状、粒状、繊維状、あるいは成形
体状の活性炭が用いられるが、全酸性基量が全表面積に
対して0.45mmol/m2以上であるものが好ましい。
ここでいう酸性基とは、炭素材表面の水酸基、カルボキ
シル基を意味する。この全酸性基量が全表面積に対して
0.45mmol/m2以上、好ましくは0.5〜4.0mmo
l/m2の多孔質炭素系材料を用いることにより、表面積
の利用率を高めることができ、単位表面積あたり大きな
電気二重層容量が得られる。
The porous carbon-based material used in the present invention comprises:
There is no particular limitation, and powdered, granular, fibrous, or shaped activated carbon is used, but those having a total acidic group content of 0.45 mmol / m 2 or more based on the total surface area are preferred.
Here, the acidic group means a hydroxyl group or a carboxyl group on the surface of the carbon material. The total amount of the acidic groups is 0.45 mmol / m 2 or more, preferably 0.5 to 4.0 mmo, based on the total surface area.
By using a l / m 2 porous carbon-based material, the utilization factor of the surface area can be increased, and a large electric double layer capacity per unit surface area can be obtained.

【0012】電気二重層キャパシタの対をなす両分極性
電極として、ともに導電性高分子混合電極を用いてもよ
いし、また一方のみを利用してもよい。その場合他方の
分極性電極は、表面積の大きな導電性物質(例えば粉末
状又は繊維状の活性炭)を使用するとよい。混合電極を
作製するのに用いた多孔性炭素系材料も好適に使用され
得る。
As a pair of bipolar electrodes of the electric double layer capacitor, a conductive polymer mixed electrode may be used, or only one of them may be used. In that case, the other polarizable electrode may use a conductive substance having a large surface area (for example, powdered or fibrous activated carbon). The porous carbon-based material used for producing the mixed electrode can also be suitably used.

【0013】本発明で得られる導電性高分子混合電極中
の導電性高分子と多孔性炭素系材料の混合比率は、任意
の値を取りうるが、好ましくは導電性高分子/多孔性炭
素系材料=5/95〜90/10(重量比)、より好ま
しくは10/90〜70/30である。導電性高分子が
5wt%未満では充分な容量増加効果が見られず、70
wt%を超えると特に両分極性電極に用いた場合に内部
抵抗が高くなり好ましくない。
The mixing ratio of the conductive polymer and the porous carbon-based material in the conductive polymer-mixed electrode obtained by the present invention can take any value, but is preferably a conductive polymer / porous carbon-based material. Material = 5/95 to 90/10 (weight ratio), more preferably 10/90 to 70/30. If the amount of the conductive polymer is less than 5 wt%, a sufficient capacity increasing effect is not seen,
If the content is more than wt%, the internal resistance becomes high, especially when used for a bipolar electrode, which is not preferable.

【0014】分極性電極およびセパレータに含浸させる
電解液としては、水もしくは有機溶媒(カーボネート
類、アルコール類、ニトリル類、アミド類、エーテル類
などの単独または混合物)に電解質を溶解したものが利
用できる。
As the electrolytic solution to be impregnated into the polarizable electrode and the separator, a solution obtained by dissolving an electrolyte in water or an organic solvent (single or a mixture of carbonates, alcohols, nitriles, amides, ethers, etc.) can be used. .

【0015】電解質としては、プロトン、アルカリ金属
イオン、4級アンモニウムイオン、4級ホスホニウムイ
オンなどの単独あるいは複数のカチオンと、スルホン酸
イオン、過塩素酸イオン、6フッ化ヒ素イオン、ハロゲ
ンイオン、リン酸イオン、硫酸イオン、硝酸イオンの単
独あるいは複数のアニオンを組み合せたものがよい。
The electrolyte includes one or more cations such as a proton, an alkali metal ion, a quaternary ammonium ion, and a quaternary phosphonium ion, a sulfonate ion, a perchlorate ion, an arsenic hexafluoride ion, a halogen ion, and a phosphorus ion. It is preferable to use an acid ion, a sulfate ion, or a nitrate ion alone or in combination of a plurality of anions.

【0016】セパレータは両分極性電極の電気的な短絡
を防ぎ、電気化学的に安定でイオン透過性が大きく、あ
る程度の機械強度を備えた、絶縁性の多孔体であればよ
い。具体的には、不織布あるいは多孔性のポリプロピレ
ンフィルム、ポリエチレンフィルムなどが利用できる。
The separator may be an insulating porous material that prevents electrical short circuit between the bipolar electrodes, is electrochemically stable, has high ion permeability, and has some mechanical strength. Specifically, a nonwoven fabric or a porous polypropylene film, polyethylene film, or the like can be used.

【0017】本発明における分極性電極を成型する方法
は、通常知られている方法を適用することが可能であ
る。すなわち、結着剤を1〜数10%加えて良く混合した
後、金型に入れ、加圧成型したり、必要に応じては加圧
成型時に熱を加えることも可能である。
As a method of molding the polarizable electrode in the present invention, a generally known method can be applied. That is, after adding 1 to several tens of percent of the binder and mixing well, the mixture is placed in a mold and subjected to pressure molding, or if necessary, heat can be applied at the time of pressure molding.

【0018】結着剤としては、ポリフッ化ビニリデン、
フルオロオレフィン共重合体、カルボキシメチルセルロ
ース、ポリビニルピロリドン、ポリビニルアルコール、
ポリアクリル酸、及びポリイミドのいずれかが好まし
い。
Examples of the binder include polyvinylidene fluoride,
Fluoroolefin copolymer, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol,
Either polyacrylic acid or polyimide is preferred.

【0019】また、電極成型時に、導電剤を添加し、電
極の抵抗を低下させても良い。これは、分極性電極の内
部抵抗を低下させることによって、効率よく電荷を取り
出すためである。
Further, a conductive agent may be added at the time of molding the electrode to lower the resistance of the electrode. This is to reduce the internal resistance of the polarizable electrode to efficiently extract electric charges.

【0020】導電剤としては、カーボンブラック、天然
黒鉛、人造黒鉛、金属ファイバ、酸化チタン、酸化ルテ
ニウム等が使用できる。特にカーボンブラックの一種で
あるケッチェンブラック又はアセチレンブラックは、少
量でも効果が大きく好ましい。
As the conductive agent, carbon black, natural graphite, artificial graphite, metal fiber, titanium oxide, ruthenium oxide and the like can be used. In particular, ketjen black or acetylene black, which is a kind of carbon black, is preferable because it has a large effect even in a small amount.

【0021】[0021]

【実施例】図1に本発明の実施例による電気二重層キャ
パシタの構成を示す。1,2は正極および負極として対
をなす分極性電極、3は両分極性電極1,2間に介在す
るセパレータ、4は集電用のカーボンプラスチックフィ
ルム、5は絶縁性樹脂である。
FIG. 1 shows the configuration of an electric double layer capacitor according to an embodiment of the present invention. Reference numerals 1 and 2 denote a pair of polarizable electrodes as a positive electrode and a negative electrode, 3 a separator interposed between the two polarizable electrodes 1 and 4, 4 a carbon plastic film for current collection, and 5 an insulating resin.

【0022】両分極性電極1,2のうちの少なくとも一
方は本発明による導電性高分子混合電極により構成され
ている。一方が導電性高分子複合電極である場合、他方
は活性炭の層を利用するとよい。
At least one of the bipolar electrodes 1 and 2 is constituted by a conductive polymer mixed electrode according to the present invention. When one is a conductive polymer composite electrode, the other may use a layer of activated carbon.

【0023】次に実施例で用いた材料を示す。Next, the materials used in the examples are shown.

【0024】<多孔性炭素系材料>表面積が900m2
/g、全酸性基量が2.2mmol/m2の粉末状活性炭
<Porous carbon-based material> The surface area is 900 m 2
/ G, powdered activated carbon having a total acidic group content of 2.2 mmol / m 2

【0025】<導電性高分子1>0.5(モル/リット
ル)のアニリンを含む1.0(モル/リットル)の硫酸
水溶液70mlに白金電極を浸し、10mA/cm2
定電流で電荷量300C/cm2まで電解重合した。電
極に析出したポリアニリンを剥離し、水洗・乾燥したと
ころ1.08g得られた。
<Conductive Polymer 1> A platinum electrode was immersed in 70 ml of a 1.0 (mol / l) aqueous sulfuric acid solution containing 0.5 (mol / l) aniline, and the charge amount was changed at a constant current of 10 mA / cm 2. Electrolytic polymerization was performed up to 300 C / cm 2 . The polyaniline deposited on the electrode was peeled off, washed with water and dried to obtain 1.08 g.

【0026】<導電性高分子2>0.4(モル/リット
ル)のアニリンを含む0.4(モル/リットル)の硫酸
水溶液100mlを−2℃に冷却し、過硫酸アンモニウ
ム9.13gを添加して1時間化学酸化重合を行った。
析出したポリアニリンを濾別し、水洗・乾燥したとこ
ろ、3.7g得られた。
<Conductive polymer 2> 100 ml of a 0.4 (mol / l) aqueous sulfuric acid solution containing 0.4 (mol / l) aniline was cooled to -2 ° C, and 9.13 g of ammonium persulfate was added. For one hour.
The precipitated polyaniline was separated by filtration, washed with water and dried to obtain 3.7 g.

【0027】<導電剤>ライオン株式会社製ケッチェン
ブラックEC―DJ―600
<Conductive Agent> Ketjen Black EC-DJ-600 manufactured by Lion Corporation

【0028】<結着剤>Polysciences社製ポリフッ化ビ
ニリデン(MW120,000)
<Binder> Polyvinylidene fluoride manufactured by Polysciences (MW120,000)

【0029】[0029]

【実施例1】(多孔性炭素系材料)/(導電性高分子
1)/(導電剤)/(結着剤)を64/16/10/1
0の比率で混合し、これを80mgとって直径13mm
の型に入れ約10MPaで圧粉成型した。これを正極と
し、負極には(多孔性炭素系材料)/(導電剤)/(結
着剤)を80/10/10の比率で混合し同様に圧粉成
型したものを、セパレータとしてポリプロピレン多孔膜
をそれぞれ使用した。そして電解液として、2(モル/
リットル)の硫酸水溶液を用いて、図1に示すような電
気二重層キャパシタを構成した。これを使用した電極材
重量あたり15mA/gの電流密度で定電流充放電を行
い、放電曲線より直流静電容量を求め、電極材重量あた
りの容量を算出した。また放電初期の電圧降下(IRド
ロップ)より内部抵抗を算出した。得られたキャパシタ
の比静電容量は52F/g、内部抵抗は12.2Ωであ
った。
Example 1 (porous carbon-based material) / (conductive polymer 1) / (conductive agent) / (binder) was 64/16/10/1
Mix at a ratio of 0, take 80 mg of this, and add 13 mm in diameter.
And pressed at about 10 MPa. This was used as a positive electrode, and the negative electrode was mixed with (porous carbon-based material) / (conductive agent) / (binder) at a ratio of 80/10/10 and similarly compacted. Each membrane was used. And 2 (mol /
1) of an aqueous sulfuric acid solution to form an electric double layer capacitor as shown in FIG. Using this, constant current charge / discharge was performed at a current density of 15 mA / g per electrode material weight, a DC capacitance was obtained from a discharge curve, and a capacity per electrode material weight was calculated. The internal resistance was calculated from the voltage drop (IR drop) at the beginning of discharge. The specific capacitance of the obtained capacitor was 52 F / g, and the internal resistance was 12.2 Ω.

【0030】[0030]

【実施例2】導電性高分子1を実施例1と同様に混合・
圧粉成型したものを、キャパシタの正負両極に用いる以
外は実施例1と同様に実験を行った。得られたキャパシ
タの比静電容量は64F/g、内部抵抗は17.9Ωで
あった。
Example 2 The conductive polymer 1 was mixed and mixed in the same manner as in Example 1.
An experiment was carried out in the same manner as in Example 1 except that the powder compact was used for both positive and negative electrodes of the capacitor. The specific capacitance of the obtained capacitor was 64 F / g, and the internal resistance was 17.9Ω.

【0031】[0031]

【実施例3】(多孔性炭素系材料)/(導電性高分子
1)/(導電剤)/(結着剤)を48/32/10/1
0の比率で混合したものを用いる以外は、実施例1と同
様に実験を行った。得られたキャパシタの比静電容量は
54F/g、内部抵抗は19.9Ωであった。
Example 3 The ratio of (porous carbon-based material) / (conductive polymer 1) / (conductive agent) / (binder) was 48/32/10/1.
An experiment was performed in the same manner as in Example 1 except that a mixture of 0 was used. The specific capacitance of the obtained capacitor was 54 F / g, and the internal resistance was 19.9Ω.

【0032】[0032]

【実施例4】(多孔性炭素系材料)/(導電性高分子
1)/(導電剤)/(結着剤)を48/32/10/1
0の比率で混合したものを用いる以外は、実施例2と同
様に実験を行った。得られたキャパシタの比静電容量は
76F/g、内部抵抗は15.3Ωであった。
Embodiment 4 The ratio of (porous carbon-based material) / (conductive polymer 1) / (conductive agent) / (binder) was 48/32/10/1.
An experiment was performed in the same manner as in Example 2, except that a mixture of 0 was used. The specific capacitance of the obtained capacitor was 76 F / g, and the internal resistance was 15.3 Ω.

【0033】[0033]

【実施例5】(多孔性炭素系材料)/(導電性高分子
1)/(導電剤)/(結着剤)を20/60/10/1
0の比率で混合したものを用いる以外は、実施例1と同
様に実験を行った。得られたキャパシタの比静電容量は
57F/g、内部抵抗は15.1Ωであった。
Example 5 (porous carbon-based material) / (conductive polymer 1) / (conductive agent) / (binder) was 20/60/10/1
An experiment was performed in the same manner as in Example 1 except that a mixture of 0 was used. The specific capacitance of the obtained capacitor was 57 F / g, and the internal resistance was 15.1 Ω.

【0034】[0034]

【実施例6】導電性高分子2を実施例1と同様に混合・
圧粉成型したものを、キャパシタの正極に用いる以外は
実施例1と同様に実験を行った。得られたキャパシタの
比静電容量は48F/g、内部抵抗は31.8Ωであっ
た。
Embodiment 6 The conductive polymer 2 was mixed and mixed in the same manner as in Embodiment 1.
An experiment was conducted in the same manner as in Example 1 except that the compacted product was used as a positive electrode of a capacitor. The specific capacitance of the obtained capacitor was 48 F / g, and the internal resistance was 31.8Ω.

【0035】[0035]

【比較例1】(多孔性炭素系材料)/(導電剤)/(結
着剤)を80/10/10の比率で混合したものを、キ
ャパシタの正負両極に用いる以外は実施例1と同様に実
験を行った。得られたキャパシタの比静電容量は44F
/g、内部抵抗は13.0Ωであった。
Comparative Example 1 Same as Example 1 except that a mixture of (porous carbon-based material) / (conductive agent) / (binder) at a ratio of 80/10/10 was used for both positive and negative electrodes of a capacitor. The experiment was performed. The specific capacitance of the obtained capacitor is 44F
/ G, and the internal resistance was 13.0Ω.

【0036】[0036]

【比較例2】(多孔性炭素系材料)/(導電性高分子
1)/(導電剤)/(結着剤)を20/60/10/1
0の比率で混合したものを用いる以外は、実施例2と同
様に実験を行った。得られたキャパシタの比静電容量は
93F/g、内部抵抗は36.7Ωであった。
Comparative Example 2 (porous carbon-based material) / (conductive polymer 1) / (conductive agent) / (binder) was 20/60/10/1
An experiment was performed in the same manner as in Example 2, except that a mixture of 0 was used. The specific capacitance of the obtained capacitor was 93 F / g, and the internal resistance was 36.7 Ω.

【0037】以上の結果をまとめたものを表1に示す。Table 1 summarizes the above results.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、多
孔性炭素系材料と導電性高分子化合物とを有する混合電
極によって構成するようにしたので、従来の多孔性炭素
系材料のみを用いた電気二重層キャパシタよりも大容
量、高速充放電することができる効果を奏する。
As described above, according to the present invention, since it is constituted by a mixed electrode having a porous carbon-based material and a conductive polymer compound, only the conventional porous carbon-based material is used. It has the effect of being able to charge and discharge at a higher capacity and at a higher speed than the conventional electric double layer capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 分極性電極 2 分極性電極 3 セパレータ 4 集電用カーボンプラスチックフィルム 5 絶縁性樹脂 1 polarity electrode 2 polarity electrode 3 separator 4 carbon plastic film for current collection 5 insulating resin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対とされた分極性電極に電解液を含浸し、
セパレータを介して構成される電気二重層キャパシタに
おいて、前記分極性電極のうちの少なくとも一方を、多
孔性炭素系材料と導電性高分子化合物とからなる混合電
極によって構成してなる電気二重層キャパシタ。
An impregnated electrolytic solution is provided in a pair of polarizable electrodes,
An electric double layer capacitor comprising an interposed separator, wherein at least one of the polarizable electrodes is constituted by a mixed electrode made of a porous carbon-based material and a conductive polymer compound.
【請求項2】請求項1記載の導電性高分子化合物が、ポ
リアニリンまたはその誘導体であることを特徴とする電
気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the conductive polymer compound is polyaniline or a derivative thereof.
【請求項3】請求項1記載の多孔性炭素系材料の全酸性
基量が全表面積に対して0.40μmol/m2以上
4.0μmol/m2以下であることを特徴とする電気
二重層キャパシタ。
3. An electric double layer capacitor, wherein the total amount of acidic groups of the porous carbon-based material according to claim 1 is 0.40 μmol / m 2 or more and 4.0 μmol / m 2 or less with respect to the total surface area.
【請求項4】導電性高分子と多孔性炭素系材料の混合比
率が5/95以上90/10(重量比)以下であること
を特徴とする請求項1乃至3のいずれかに記載の電気二
重層キャパシタ。
4. The electricity according to claim 1, wherein a mixing ratio of the conductive polymer and the porous carbon-based material is 5/95 or more and 90/10 (weight ratio) or less. Double layer capacitor.
JP2000170721A 2000-06-07 2000-06-07 Electric double-layer capacitor Pending JP2001351833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170721A JP2001351833A (en) 2000-06-07 2000-06-07 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170721A JP2001351833A (en) 2000-06-07 2000-06-07 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2001351833A true JP2001351833A (en) 2001-12-21

Family

ID=18673390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170721A Pending JP2001351833A (en) 2000-06-07 2000-06-07 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2001351833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054138B2 (en) 2004-03-23 2006-05-30 Sanyo Electric Co., Ltd. Electric double layer capacitor and electrolyte battery
US7079376B2 (en) 2004-03-23 2006-07-18 Sanyo Electric Co., Ltd. Electric double layer capacitor, electrolyte battery and method for manufacturing the same
CN101644723B (en) * 2009-08-20 2012-12-05 浙江富来森能源科技有限公司 Unit device for measuring performance of electrode material of double electric layer capacitor in water solution system and measuring method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054138B2 (en) 2004-03-23 2006-05-30 Sanyo Electric Co., Ltd. Electric double layer capacitor and electrolyte battery
US7079376B2 (en) 2004-03-23 2006-07-18 Sanyo Electric Co., Ltd. Electric double layer capacitor, electrolyte battery and method for manufacturing the same
CN101644723B (en) * 2009-08-20 2012-12-05 浙江富来森能源科技有限公司 Unit device for measuring performance of electrode material of double electric layer capacitor in water solution system and measuring method therefor

Similar Documents

Publication Publication Date Title
JP5979514B2 (en) High-capacity / high-power electrochemical energy storage device using conductive polymer composite
JP5999367B2 (en) High electron conductive polymer and high dose / high output electric energy storage device using the same
JP5011561B2 (en) Electrode material
WO2000002949A1 (en) Polymer gel electrode
JP2009245903A (en) Composite electrode
Muzaffar et al. Conducting polymer electrolytes for flexible supercapacitors
EP0971426B1 (en) Polymer secondary battery and method of making same
JP2002025868A (en) Electric double-layer capacitor
JP2010044951A (en) Electrode active material and electrode using the same
JP2001110423A (en) Secondary battery and material therefor
JP2002025865A (en) Electric double-layer capacitor
JP2017199639A (en) Electrode structure for power storage device, power storage device, and method for manufacturing electrode structure
RU2543982C2 (en) Method of obtaining composite polymer-carbon electrode material with high electrochemical capacity
JP2001351833A (en) Electric double-layer capacitor
WO2007009363A1 (en) An electrochemical supercapacitor using organic polymer free radical /carbon composite material as positive electrode
JP3711015B2 (en) Polarized electrode
JP3800810B2 (en) Electric double layer capacitor
JP2003100348A (en) Composite polymer electrolyte and electrochemical device using the same
JP2010239097A (en) Electrode active material, and electrode using the same
JP2003068307A (en) Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode
Le et al. Conjugated Polymer Nanostructures for Electrochemical Capacitor and Lithium‐Ion Battery Applications
EP2919306A1 (en) Nonaqueous electrolyte secondary battery and method for producing same
KR102622561B1 (en) Binary metal oxide nanocomposite electrode ink and pen-drawn supercapacitor array for a solar self-rechargeable power supply
JP4422969B2 (en) Gel electrolyte-containing electrode and organic electrolyte battery using the same
JP2005209703A (en) Electrochemical capacitor and its manufacturing method