JP2001345278A - Method of manufacturing semiconductor device and semiconductor manufacturing apparatus - Google Patents

Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Info

Publication number
JP2001345278A
JP2001345278A JP2000165491A JP2000165491A JP2001345278A JP 2001345278 A JP2001345278 A JP 2001345278A JP 2000165491 A JP2000165491 A JP 2000165491A JP 2000165491 A JP2000165491 A JP 2000165491A JP 2001345278 A JP2001345278 A JP 2001345278A
Authority
JP
Japan
Prior art keywords
gas
glow discharge
film
cleaning
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000165491A
Other languages
Japanese (ja)
Other versions
JP4469465B2 (en
Inventor
Shinji Tokunaga
晋次 徳永
Hiroyoshi Takezawa
浩義 竹澤
Masataka Terada
正孝 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000165491A priority Critical patent/JP4469465B2/en
Publication of JP2001345278A publication Critical patent/JP2001345278A/en
Application granted granted Critical
Publication of JP4469465B2 publication Critical patent/JP4469465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent peeling of a film deposited just after periodical cleaning of a plasma chemical vapor deposition apparatus without loading a substrate by making the deposition thin, and to stabilize film quality of gate insulating film and an amorphous silicon semiconductor film, which are deposited subsequently after the deposition of the film. SOLUTION: By continuously repeating discharge just after periodical cleaning in the deposition apparatus without loading a substrate in the presence of H2 and of SiH4 for excitation and identification, respectively, quality of the films subsequently deposited can be stabilized, and TFTs having satisfactory characteristics can be obtained from an initial period of the cleaning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示装置などと
組み合わせて画像表示応用機器を構成するための薄膜ト
ランジスタ(以後TFTと呼ぶ)の半導体層,絶縁膜層
となる薄膜の製造方法および半導体製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film to be used as a semiconductor layer and an insulating film layer of a thin film transistor (hereinafter referred to as a TFT) for forming an image display application device in combination with a liquid crystal display device and the like. About.

【0002】[0002]

【従来の技術】以下に従来の薄膜の製造方法について説
明する。
2. Description of the Related Art A conventional thin film manufacturing method will be described below.

【0003】図9にTFTの要部構成断面図を示す。ガ
ラス基板1上にゲート電極2が形成され、非晶質シリコ
ン半導体層4がゲート絶縁膜3を介して形成され、ソー
ス、ドレイン電極6a、6bがn+非晶質シリコン半導
体層5a、5bを介して形成されている。
FIG. 9 is a sectional view showing the structure of a main part of a TFT. A gate electrode 2 is formed on a glass substrate 1, an amorphous silicon semiconductor layer 4 is formed via a gate insulating film 3, and source and drain electrodes 6a and 6b are formed via n + amorphous silicon semiconductor layers 5a and 5b. It is formed.

【0004】従来は上述のゲート絶縁膜3(3000
Å)、非晶質シリコン半導体層4(500Å)、チャン
ネルストッパ絶縁膜7(2000Å)n+非晶質シリコ
ン半導体層5a、5bは図10に示すような材料ガスS
iH4、NH3、PH3のグロー放電を用いたプラズマ
化学気相堆積装置より作製されている。図10に示すプ
ラズマ化学気相堆積装置は、放電電極14と対向放電電
極12が平行に設置される容量結合型であり、基板は対
向放電電極12に設置される。
Conventionally, the aforementioned gate insulating film 3 (3000)
Å), the amorphous silicon semiconductor layer 4 (500 Å), the channel stopper insulating film 7 (2000 Å) n + the amorphous silicon semiconductor layers 5 a and 5 b are made of a material gas S as shown in FIG.
It is manufactured by a plasma chemical vapor deposition apparatus using glow discharge of iH4, NH3, and PH3. The plasma enhanced chemical vapor deposition apparatus shown in FIG. 10 is a capacitive coupling type in which a discharge electrode 14 and a counter discharge electrode 12 are installed in parallel, and a substrate is installed on the counter discharge electrode 12.

【0005】このプラズマ化学気相堆積装置では、薄膜
の堆積を行った後には、基盤以外の対向電極14や堆積
室11などに付着した膜の剥がれによるダストの発生を
防止するために、NF3、SF6、CF4等のガスを導入
し、グロー放電により膜を除去するというガスクリーニ
ングを定期的に行う。さらに、作製する膜質を安定させ
るために、定期的なクリーニング直後に基板を設置せず
に膜の堆積作業を行い、その後にTFTを作製するため
の基板に薄膜の堆積を行う。
In this plasma-enhanced chemical vapor deposition apparatus, after depositing a thin film, NF 3 is formed in order to prevent the generation of dust due to the peeling of the film adhered to the counter electrode 14 other than the base, the deposition chamber 11, and the like. , SF 6 , CF 4 and the like are introduced, and gas cleaning for removing the film by glow discharge is periodically performed. Further, in order to stabilize the quality of the film to be formed, a film deposition operation is performed immediately after the periodic cleaning without setting the substrate, and thereafter, a thin film is deposited on the substrate for forming the TFT.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の方
法では、図5に示すようにクリーニング直後からの堆積
回数に沿った膜質の変化によると思われるTFTの特性
の経時的な変化に沿った膜質の変化が見られた。これ
は、ガスクリーニング時に用いるガス成分であるフッ素
が、堆積室内に残留し、TFT形成膜中に不純物として
混入することによる影響である。また、これらの課題を
対策するために3枚相当の膜厚(12000Å)まで、
クリーニング直後の基板を設置しない状態で堆積膜厚を
増加させると図5に示すTFT特性の経時変化は良化す
るも図6のようにダストの発生が増加してしまうという
課題があった。
However, according to the conventional method, as shown in FIG. 5, the film quality changes along with the time-dependent change in the characteristics of the TFT which seems to be caused by the change in the film quality along with the number of depositions immediately after cleaning. There was a change. This is due to the effect that fluorine, which is a gas component used at the time of gas cleaning, remains in the deposition chamber and mixes as an impurity in the TFT forming film. In order to solve these problems, a film thickness of up to 3 sheets (12000 mm)
If the deposited film thickness is increased in a state where the substrate immediately after the cleaning is not installed, the temporal change of the TFT characteristics shown in FIG. 5 is improved, but there is a problem that the generation of dust increases as shown in FIG.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、フッ素系ガスをクリーニングガスとして用い
るプラズマ化学気相堆積装置において、ガスクリーニン
グ直後に100%の水素ガス雰囲気でのグロー放電と水
素ガスで希釈したSiH4ガス雰囲気でのグロー放電と
をグロー放電を止めることなくガスの切り替えのみで連
続的に処理することを特徴とする。
According to a method of manufacturing a semiconductor device of the present invention, a glow discharge in a 100% hydrogen gas atmosphere is performed immediately after gas cleaning in a plasma enhanced chemical vapor deposition apparatus using a fluorine-based gas as a cleaning gas. It is characterized in that glow discharge in a SiH 4 gas atmosphere diluted with hydrogen gas is continuously processed only by switching the gas without stopping glow discharge.

【0008】また、本発明の半導体装置の製造方法は、
フッ素系ガスがNF3、又はSF6、又はCF4のいづれ
かであることを特徴とする。
Further, a method of manufacturing a semiconductor device according to the present invention
The fluorine-based gas is NF 3 , SF 6 , or CF 4 .

【0009】また、本発明の半導体装置の製造方法は、
水素ガスで希釈したSiH4ガス雰囲気における水素ガ
ス/SiH4ガス比は、4以上であることを特徴とす
る。
Further, a method of manufacturing a semiconductor device according to the present invention
The hydrogen gas / SiH 4 gas ratio in the SiH 4 gas atmosphere diluted with hydrogen gas is 4 or more.

【0010】また、本発明の半導体装置の製造方法は、
水素ガスの100%雰囲気でのグロー放電と、水素ガス
で希釈したSiH4ガス雰囲気でのグロー放電との連続
処理は、少なくとも複数回繰り返すことを特徴とする。
Further, the method of manufacturing a semiconductor device according to the present invention comprises:
A continuous process of glow discharge in a 100% hydrogen gas atmosphere and glow discharge in a SiH 4 gas atmosphere diluted with hydrogen gas is repeated at least a plurality of times.

【0011】また、本発明の半導体装置の製造方法は、
薄膜がシリコンを主成分とする半導体薄膜であることを
特徴とする。
Further, a method of manufacturing a semiconductor device according to the present invention
The thin film is a semiconductor thin film containing silicon as a main component.

【0012】また、本発明の半導体製造装置は、上記の
半導体装置の製造方法を有する。このようにして、本発
明の半導体装置の製造方法や半導体製造装置は、定期的
な堆積室内のクリーニング後に露出した装置を構成する
材料に付着したクリーニングガスの残留成分を水素ガス
100%雰囲気でのグロー放電により膜を堆積させるこ
となく気化及び励起し、水素ガスで80%以上に希釈し
たSiH4ガス雰囲気でのグロー放電により堆積膜中に
取りこむ。すなわち、低速度の非晶質シリコンの少ない
堆積膜厚で効果的に膜中にクリーニングガスの残留成分
を固着させるものである。
Further, a semiconductor manufacturing apparatus of the present invention has the above-described semiconductor device manufacturing method. As described above, the method for manufacturing a semiconductor device and the semiconductor manufacturing apparatus of the present invention remove the residual components of the cleaning gas adhered to the material constituting the apparatus exposed after the periodic cleaning in the deposition chamber in a 100% hydrogen gas atmosphere. The film is vaporized and excited by the glow discharge without being deposited, and is taken into the deposited film by the glow discharge in a SiH 4 gas atmosphere diluted with hydrogen gas to 80% or more. That is, the residual component of the cleaning gas is effectively fixed to the film with a small deposition film thickness of the low-speed amorphous silicon.

【0013】つまり、堆積室内のクリーニングを行った
後、水素ガス100%雰囲気でのグロー放電と、H2
SiH4ガス比を4以上とした水素ガスで希釈したSi
4雰囲気でのグロー放電とを連続的に行うことで効率
良く、クリーニングガスの残留物の影響を押さえること
ができる。したがって、作製するゲート絶縁膜、非晶質
シリコン半導体層などの薄膜に不必要な不純物の混入を
防止でき、その結果膜質を安定化してTFT特性の向上
ができる。
That is, after cleaning the inside of the deposition chamber, glow discharge in a 100% hydrogen gas atmosphere and H 2 /
Si diluted with hydrogen gas having a SiH 4 gas ratio of 4 or more
By continuously performing the glow discharge in the H 4 atmosphere, the effect of the residue of the cleaning gas can be suppressed efficiently. Accordingly, unnecessary impurities can be prevented from being mixed into a thin film such as a gate insulating film or an amorphous silicon semiconductor layer to be manufactured, and as a result, film quality can be stabilized and TFT characteristics can be improved.

【0014】また、本発明の液晶表示装置は、上記の半
導体製造装置で製造する薄膜トランジスタを有する。膜
質を安定化してTFT特性の向上ができ、液晶表示装置
の品質向上が図れる。
Further, a liquid crystal display device of the present invention has a thin film transistor manufactured by the above semiconductor manufacturing apparatus. The film quality can be stabilized to improve the TFT characteristics, and the quality of the liquid crystal display device can be improved.

【0015】また、本発明の画像表示応用機器は、上記
の液晶表示装置を有する。液晶表示装置の品質が向上す
るので、画像表示応用機器の信頼性向上が図れる。
Further, an image display application device of the present invention has the above-mentioned liquid crystal display device. Since the quality of the liquid crystal display device is improved, the reliability of the image display application device can be improved.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0017】図10に示す様な13.56MHzのグロ
ー放電を用いた化学気相堆積装置を使用してSiH4
NH3、H2ガスを導入することでゲート絶縁膜、非晶質
シリコン半導体層を製膜し図9のTFTを作製した。N
3ガスクリーニングからH2グロー放電とH2で希釈し
たSiH4グロー放電の連続放電までの装置状態を図1
に示す。
[0017] SiH 4 using chemical vapor deposition apparatus using the 13.56MHz glow discharge, such as shown in FIG. 10,
By introducing NH 3 and H 2 gases, a gate insulating film and an amorphous silicon semiconductor layer were formed, and the TFT of FIG. 9 was manufactured. N
FIG. 1 shows the state of the apparatus from the F 3 gas cleaning to the continuous discharge of H 2 glow discharge and SiH 4 glow discharge diluted with H 2.
Shown in

【0018】クリーニング直後、堆積装置内に基板を設
置しない状態で100%H2ガス雰囲気のグロー放電に
続き、放電を止めることなくSiH4ガスを添加したH
2希釈によるSiH4ガス雰囲気のグロー放電に移行す
る連続処理を行う。このH2希釈によるSiH4ガスの
グロー放電において、H2/SiH4ガス比を変化させ、
この連続処理を複数回繰り返すという図1に示すような
処理を行う。
Immediately after cleaning, following a glow discharge in a 100% H 2 gas atmosphere without the substrate being set in the deposition apparatus, H containing SiH 4 gas added without stopping the discharge.
A continuous process for shifting to glow discharge in a SiH 4 gas atmosphere by 2 dilution is performed. In the glow discharge of the SiH 4 gas by the H2 dilution, the H 2 / SiH 4 gas ratio is changed,
A process as shown in FIG. 1 of repeating this continuous process a plurality of times is performed.

【0019】グロー放電中のH2/SiH4ガス比の変化
に対する、クリーニング直後の堆積膜中への不純物の含
有量を比較したところ図2に示す結果が得られる。H2
/SiH4ガス比を4以上においてTFT形成膜中に取
りこまれる不純物の含有量が線形的増加する。
When the content of impurities in the deposited film immediately after cleaning is compared with the change in the H 2 / SiH 4 gas ratio during glow discharge, the result shown in FIG. 2 is obtained. H 2
When the / SiH 4 gas ratio is 4 or more, the content of impurities taken into the TFT forming film linearly increases.

【0020】TFT形成膜中への不純物含有量の基板処
理数依存を図3に示すが、前述したH2ガス100%雰
囲気のグロー放電とH2ガスで希釈したSiH4ガス雰囲
気でのグロー放電とによる連続処理を複数回繰り返すこ
とでTFT形成膜中への不純物の含有量は減少する。さ
らにTFT形成膜の内、非晶質シリコン形成中にクリー
ニングのガス成分が多く取り込まれることを図4に示
す。
FIG. 3 shows the dependence of the impurity content in the TFT forming film on the number of substrate treatments. The glow discharge in the H 2 gas 100% atmosphere and the glow discharge in the SiH 4 gas atmosphere diluted with the H 2 gas are described above. By repeating the continuous processing a plurality of times, the content of impurities in the TFT forming film is reduced. FIG. 4 shows that a large amount of a cleaning gas component is taken in during the formation of amorphous silicon in the TFT forming film.

【0021】さらに図5にそのH2グロー放電とH2希釈
のSiH4グロー放電との連続処理回数をかえて処理し
た時のTFTの移動度を示す。図7は、H2グロー放電
とH2希釈によるSiH4グロー放電との組み合わせを
連続的に行うことで、TFT特性をクリーニング後にお
いて薄い堆積膜厚で改善できることを示す。さらに、図
5、6にH2グロー放電・H2希釈SiH4グロー放電の
連続処理を、放電を止めることなく3回行ったあとのT
FTの移動度とダストの発生を示す。さらに、H2/S
iH4グロー放電の繰り返し回数を変化させクリーニン
グ後のTFT基板1枚目における移動度の変化を図8に示
す。H2/SiH4ガス比4とし、2回以上のくり返しに
おいて安定した膜質が得られる。
FIG. 5 shows the mobility of the TFT when the H 2 glow discharge and the H 2 -diluted SiH 4 glow discharge are processed at different times. FIG. 7 shows that by continuously combining H 2 glow discharge and SiH 4 glow discharge with H 2 dilution, the TFT characteristics can be improved with a small deposited film thickness after cleaning. Further, FIGS. 5 and 6 show that the continuous treatment of H 2 glow discharge and H 2 diluted SiH 4 glow discharge was performed three times without stopping the discharge.
The mobility of FT and generation of dust are shown. Furthermore, H 2 / S
FIG. 8 shows the change in mobility of the first TFT substrate after cleaning by changing the number of repetitions of iH 4 glow discharge. With a H 2 / SiH 4 gas ratio of 4, stable film quality can be obtained in two or more repetitions.

【0022】以上の様に、クリーニング後にH2ガス1
00%雰囲気でのグロー放電とH2ガスで希釈したSi
4ガス雰囲気でのグロー放電とによる連続放電を行う
ことにより不純物のTFT形成膜中への混入を減らし、
TFT特性において依存性のない安定な製膜が実現でき
る。さらに、クリーニング直後の堆積膜厚を減少できる
ため、堆積膜のクリーニング除去時間の短縮、膜剥がれ
によるダストの発生を抑制できる。
As described above, after cleaning, H 2 gas 1
Glow discharge in 00% atmosphere and Si diluted with H 2 gas
By performing continuous discharge by glow discharge in an H 4 gas atmosphere, contamination of impurities into the TFT forming film is reduced,
A stable film formation without dependency on TFT characteristics can be realized. Further, since the deposited film thickness immediately after cleaning can be reduced, the time required for cleaning and removing the deposited film can be reduced, and generation of dust due to film peeling can be suppressed.

【0023】なお、実施例において、クリーニングガス
はNF3を用いたが、CF4、SF6等のフッ素系ガスと
しても良い。また、H2ガスと他の活性ガスとの混合ガ
ス、例えばH2+SiH2Cl2等でも同様の効果が期待
できる。
Although NF 3 is used as the cleaning gas in the embodiment, a fluorine-based gas such as CF 4 or SF 6 may be used. Similar effects can be expected with a mixed gas of H 2 gas and another active gas, for example, H 2 + SiH 2 Cl 2 .

【0024】なお、上記の説明はTFTに用いるゲート
絶縁膜、非晶質シリコン半導体薄膜の例を中心に述べて
きたが、非晶質シリコンを用いるその他の半導体装置は
いうまでもなく、プラズマ化学気相堆積法を用いて非晶
質シリコン以外の薄膜を堆積する工程を有する半導体装
置の製造方法および半導体製造装置にも本発明は有効で
ある。
In the above description, the example of the gate insulating film and the amorphous silicon semiconductor thin film used for the TFT has been mainly described. The present invention is also effective for a semiconductor device manufacturing method and a semiconductor manufacturing apparatus having a step of depositing a thin film other than amorphous silicon using a vapor deposition method.

【0025】[0025]

【発明の効果】以上のように本発明は、半導体薄膜を作
製する化学気相堆積装置のクリーニング後に堆積装置内
で引き続き基板を設置せずH2ガス100%雰囲気での
グロー放電とH2ガスで希釈したSiH4ガス雰囲気での
グロー放電とによる連続放電を少なくとも複数回行うこ
とでTFT形成膜中への不純物を減少させ、クリーニン
グ直後から十分な特性を示すTFTが得られ、産業的価
値が大きい。
As described above, according to the present invention, glow discharge in a 100% H 2 gas atmosphere and H 2 gas By performing continuous discharge by glow discharge in a SiH 4 gas atmosphere diluted with at least a plurality of times, impurities in the TFT forming film are reduced, and a TFT exhibiting sufficient characteristics immediately after cleaning can be obtained. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるクリーニング時の堆積
室内のタイムチャート
FIG. 1 is a time chart of the inside of a deposition chamber during cleaning according to an embodiment of the present invention.

【図2】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成した基板1枚目膜中への不純物
含有量をH2ガス/SiH4ガス比に対して示した図
FIG. 2 is a diagram showing an impurity content in a first film of a substrate prepared by placing a substrate in an apparatus after cleaning in the embodiment of the present invention with respect to a H 2 gas / SiH 4 gas ratio.

【図3】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成したTFT膜中への不純物含有
量をクリーニング後TFT基板堆積回数に対して示した
FIG. 3 is a graph showing the content of impurities in a TFT film formed by placing a substrate in an apparatus after cleaning according to the embodiment of the present invention, with respect to the number of times the TFT substrate is deposited after cleaning.

【図4】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成した際のTFT形成膜への不純
物含有量を各膜に対して示した図
FIG. 4 is a diagram showing, for each film, the content of impurities in a TFT forming film when a substrate is placed in an apparatus after cleaning in the embodiment of the present invention and formed.

【図5】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成したTFT特性の経時変化を示
した図
FIG. 5 is a diagram showing a change over time in TFT characteristics created by installing a substrate in an apparatus after cleaning in an embodiment of the present invention.

【図6】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成したTFT基板に対してダスト
付着数を示した図
FIG. 6 is a diagram showing the number of dusts attached to a TFT substrate formed by installing the substrate in the apparatus after cleaning in the embodiment of the present invention.

【図7】本発明の実施例におけるH2/SiH4ガス比に
対するクリーニング直後の堆積膜厚を示した図
FIG. 7 is a diagram showing a deposited film thickness immediately after cleaning with respect to an H 2 / SiH 4 gas ratio in an example of the present invention.

【図8】本発明の実施例におけるクリーニング後に基板
を装置内に設置して作成したTFT基板の1枚目におけ
る移動度をH2/SiH4グロー放電の繰り返し回数に対
して示した図
FIG. 8 is a diagram showing the mobility of the first TFT substrate formed by installing the substrate in the apparatus after cleaning in the embodiment of the present invention with respect to the number of repetitions of the H 2 / SiH 4 glow discharge.

【図9】TFTの要部構成断面図FIG. 9 is a cross-sectional view of a main part configuration of a TFT.

【図10】化学気相堆積装置の概略図FIG. 10 is a schematic diagram of a chemical vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ゲート電極 3 ゲート絶縁膜 4 非晶質シリコン半導体膜 5a、5b n+非晶質シリコン半導体膜 6a、6b ソース・ドレイン電極 7 チャンネルストッパ絶縁膜 11 堆積室 12 対向放電電極 13 基板 14 放電電極 15 ガス 16 放電電源 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Gate electrode 3 Gate insulating film 4 Amorphous silicon semiconductor film 5a, 5b n + amorphous silicon semiconductor film 6a, 6b Source / drain electrode 7 Channel stopper insulating film 11 Deposition chamber 12 Counter discharge electrode 13 Substrate 14 Discharge electrode 15 Gas 16 Discharge power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/336 (72)発明者 寺田 正孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H092 JA24 KA05 MA08 MA35 NA18 4K030 AA06 AA13 AA17 BA30 BA40 CA06 DA06 FA03 LA18 5F004 AA15 AA16 BA04 BB13 BB18 BB28 CA01 DA00 DA01 DA02 DA03 DA15 DA16 DA17 DA18 DA19 DA20 DA24 5F045 AA08 BB15 DP03 EB06 EF05 EH05 EH12 EH13 5F110 AA14 AA16 FF30 GG02 GG15 GG45 GG60 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/336 (72) Inventor Masataka Terada 1006 Ojidoma, Kadoma, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (Ref.) FF30 GG02 GG15 GG45 GG60

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フッ素系ガスをクリーニングガスとして
用いるプラズマ化学気相堆積装置において、ガスクリー
ニング直後に100%の水素ガス雰囲気でのグロー放電
と水素ガスで希釈したSiH4ガス雰囲気でのグロー放
電とをグロー放電を止めることなくガスの切り替えのみ
で連続的に処理することを特徴とする半導体装置の製造
方法。
In a plasma chemical vapor deposition apparatus using a fluorine-based gas as a cleaning gas, a glow discharge in a 100% hydrogen gas atmosphere and a glow discharge in a SiH 4 gas atmosphere diluted with hydrogen gas immediately after gas cleaning. Characterized by continuously processing only by switching gas without stopping glow discharge.
【請求項2】 フッ素系ガスがNF3、又はSF6、又は
CF4のいづれかであることを特徴とする請求項1記載
の半導体装置の製造方法。
2. The method according to claim 1, wherein the fluorine-based gas is NF 3 , SF 6 , or CF 4 .
【請求項3】 水素ガスで希釈したSiH4ガス雰囲気
における水素ガス/SiH4ガス比は、4以上であるこ
とを特徴とする請求項1または請求項2のいづれかに記
載の半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein a hydrogen gas / SiH 4 gas ratio in a SiH 4 gas atmosphere diluted with hydrogen gas is 4 or more. .
【請求項4】 水素ガスの100%雰囲気でのグロー放
電と、水素ガスで希釈したSiH4ガス雰囲気でのグロ
ー放電との連続処理は、少なくとも複数回繰り返すこと
を特徴とする請求項1から請求項3のいづれか一つに記
載の半導体装置の製造方法。
4. The continuous processing of glow discharge in an atmosphere of 100% hydrogen gas and glow discharge in an atmosphere of SiH 4 gas diluted with hydrogen gas is repeated at least a plurality of times. Item 4. The method for manufacturing a semiconductor device according to any one of Items 3.
【請求項5】 薄膜がシリコンを主成分とする半導体薄
膜であることを特徴とする請求項1から請求項4のいづ
れか一つに記載の半導体装置の製造方法。
5. The method for manufacturing a semiconductor device according to claim 1, wherein the thin film is a semiconductor thin film containing silicon as a main component.
【請求項6】 請求項1から請求項5のいづれか一つに
記載の半導体装置の製造方法を有する半導体製造装置。
6. A semiconductor manufacturing apparatus having the method of manufacturing a semiconductor device according to claim 1.
【請求項7】 請求項6に記載の半導体製造装置で製造
する薄膜トランジスタを有する液晶表示装置。
7. A liquid crystal display device having a thin film transistor manufactured by the semiconductor manufacturing apparatus according to claim 6.
【請求項8】 請求項7に記載の液晶表示装置を有する
画像表示応用機器。
8. An image display application device having the liquid crystal display device according to claim 7.
JP2000165491A 2000-06-02 2000-06-02 Manufacturing method of semiconductor device Expired - Fee Related JP4469465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165491A JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165491A JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001345278A true JP2001345278A (en) 2001-12-14
JP4469465B2 JP4469465B2 (en) 2010-05-26

Family

ID=18668955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165491A Expired - Fee Related JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4469465B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329671A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
WO2011093404A1 (en) * 2010-01-29 2011-08-04 旭硝子株式会社 Surface-treatment method for a fluorine resin molded body, and fluorine resin molded body
US11043377B1 (en) 2020-01-15 2021-06-22 Kokusai Electric Corporation Method of manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329671A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
JP4713759B2 (en) * 2001-05-01 2011-06-29 東芝モバイルディスプレイ株式会社 Manufacturing method of semiconductor device
WO2011093404A1 (en) * 2010-01-29 2011-08-04 旭硝子株式会社 Surface-treatment method for a fluorine resin molded body, and fluorine resin molded body
US8481607B2 (en) 2010-01-29 2013-07-09 Asahi Glass Company, Limited Surface-treatment method for a fluororesin molded body, and fluororesin molded body
JP5598483B2 (en) * 2010-01-29 2014-10-01 旭硝子株式会社 Surface treatment method for fluororesin molded body and fluororesin molded body
US11043377B1 (en) 2020-01-15 2021-06-22 Kokusai Electric Corporation Method of manufacturing semiconductor device
KR20210092113A (en) 2020-01-15 2021-07-23 가부시키가이샤 코쿠사이 엘렉트릭 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Also Published As

Publication number Publication date
JP4469465B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
KR100547248B1 (en) A method for forming gate dielectric layer using alumina in semiconductor device
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
US9935183B2 (en) Multilayer passivation or etch stop TFT
KR20050103811A (en) Thin film transistor fabricated by plasma deposition process
US7258895B2 (en) Methods of forming material on a substrate, and a method of forming a field effect transistor gate oxide on a substrate
US6911233B2 (en) Method for depositing thin film using plasma chemical vapor deposition
US8330193B2 (en) Silicon oxide film, production method therefor and semiconductor device having gate insulation film using the same
JP3112880B2 (en) Cleaning method for CVD equipment
JP4378806B2 (en) CVD apparatus and substrate cleaning method thereof
JP2001345278A (en) Method of manufacturing semiconductor device and semiconductor manufacturing apparatus
US20040175870A1 (en) Method for manufacturing a thin film transistor
JP2002151693A (en) Bottom gate thin-film transistor, manufacturing method thereof, etching device, and nitriding device
JPH05335335A (en) Manufacture of amorphous hydride silicon thin-film transistor
KR101163610B1 (en) Apparatus and method for atomic layer deposition
KR100770276B1 (en) Method of forming mim capacitor in semiconductor device
WO2022073176A1 (en) Plasma-enhanced chemical vapor deposition processes for depositing passivation films on microelectronic structures
JP2003273034A (en) Thin-film forming apparatus
KR20070011761A (en) Apparatus for manufacturing semiconductor device
JP2006120992A (en) Method for manufacturing silicon nitride film, and its manufacturing apparatus
JP2002359250A (en) Method for forming thin-film transistor
JPH07297403A (en) Manufacture of thin film transistor
KR950006349B1 (en) Anealing method of amolphous silicon tft
CN108257978B (en) Active material layer, manufacturing method thereof and display panel
KR100571005B1 (en) Method for fabrication of semiconductor devcie
JP2002371360A (en) Method for manufacturing semiconductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4469465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees