JP2001345208A - Superconducting-member cooling device - Google Patents

Superconducting-member cooling device

Info

Publication number
JP2001345208A
JP2001345208A JP2001039722A JP2001039722A JP2001345208A JP 2001345208 A JP2001345208 A JP 2001345208A JP 2001039722 A JP2001039722 A JP 2001039722A JP 2001039722 A JP2001039722 A JP 2001039722A JP 2001345208 A JP2001345208 A JP 2001345208A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
liquid
atmospheric pressure
cooling
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001039722A
Other languages
Japanese (ja)
Other versions
JP4733842B2 (en
Inventor
Shigeru Yoshida
茂 吉田
Koichi Ohashi
孝一 大橋
Yasuharu Kamioka
泰晴 上岡
Isamu Sagara
勇 相良
Katsuya Tsutsumi
克哉 堤
Hironobu Kimura
博伸 木村
Takaaki Bono
敬昭 坊野
Masayuki Konno
雅行 今野
Kazuo Funaki
和夫 船木
Naritaka Iwakuma
成卓 岩熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP2001039722A priority Critical patent/JP4733842B2/en
Publication of JP2001345208A publication Critical patent/JP2001345208A/en
Application granted granted Critical
Publication of JP4733842B2 publication Critical patent/JP4733842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of the event such that a temperature gradient towards a lower section from the surface of a liquid is broken by a convection in the vicinity of the surface of the liquid and agitation or the like and operating conditions are brought into an unstable state and cooling efficiency is deteriorated, in a superconducting-member cooling device constituted so that the temperature of liquid nitrogen in a liquid nitrogen vessel, in which liquid nitrogen is housed, leaving a space on the surface of the liquid and nitrogen gas pressure at atmospheric pressure or higher than atmospheric pressure is applied into the space on the surface of the liquid, is brought into a supercooling temperature under atmospheric pressure and a superconducting member is cooled by liquid nitrogen at the supercooling temperature under atmospheric pressure. SOLUTION: A convection preventive member such as an open-cell urethane foam composed of a porous heat-insulating material having a continuous hole is arranged extending over the upper and lower sections of the surface of the liquid of liquid nitrogen in the liquid nitrogen vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超電導トランス
や超電導マグネット、そのほか各種の超電導コイル、あ
るいは超電導ケーブルなどの超電導部材、特に高温超電
導部材を、液体窒素によって低温に冷却・保持するため
の超電導部材冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting member for cooling and holding a superconducting member such as a superconducting transformer, a superconducting magnet, various superconducting coils or a superconducting cable, particularly a high-temperature superconducting member, with liquid nitrogen at a low temperature. The present invention relates to a cooling device.

【0002】[0002]

【従来の技術】超電導コイルなどの超電導部材、特に高
温超電導を利用した超電導部材を冷却するにあたって
は、冷却媒体として比較的安価な液体窒素(LN2 )を
使用することが多い。この場合一般には大気圧の飽和液
体窒素、すなわち約77Kの液体窒素が用いられてい
る。すなわち、真空断熱されたクライオスタットと称さ
れる大気に実質的に開放された冷却容器に超電導部材を
収容しておき、その冷却容器内に約77Kの大気圧飽和
液体窒素を注入してその液体窒素中に超電導部材を浸漬
させ、冷却・保持するのが通常である。
2. Description of the Related Art In cooling a superconducting member such as a superconducting coil, particularly a superconducting member utilizing high-temperature superconductivity, relatively inexpensive liquid nitrogen (LN 2 ) is often used as a cooling medium. In this case, saturated liquid nitrogen at atmospheric pressure, that is, liquid nitrogen of about 77K is generally used. That is, the superconducting member is housed in a cooling vessel substantially open to the atmosphere called a cryostat insulated by vacuum, and about 77 K of atmospheric pressure saturated liquid nitrogen is injected into the cooling vessel to form the liquid nitrogen. Normally, the superconducting member is immersed therein, and cooled and held.

【0003】ところで高温超電導部材においては、若干
でも温度が下がれば、超電導特性が大幅に向上すること
が知られている。例えば臨界電流は、77Kから70K
に下がっただけでも数倍に大きくなることが知られてい
る。
It is known that, in a high-temperature superconducting member, if the temperature is lowered even slightly, the superconducting characteristics are greatly improved. For example, the critical current is 77K to 70K
It is known that even if it is lowered, it becomes several times larger.

【0004】そこで大気圧の液体窒素を減圧して例えば
65K程度に温度降下させた液体窒素中に超電導部材を
浸漬させて、超電導部材を77Kよりも低い温度まで冷
却することが考えられる。その場合、液体窒素中に超電
導部材を浸漬させるための容器では、液体窒素の減圧状
態を維持させる必要がある。一方、一般に使用されてい
るクライオスタットでは、実質的に大気に開放させた状
態での使用を前提としているため、この種の汎用クライ
オスタットを減圧した液体窒素に適用しようとすれば、
蓋部や電流導入端子等の箇所における封止の点で不充分
となり、外部から水分を含む大気圧の空気が内部に吸い
込まれて、電流導入端子のガス抜穴での水分凍結による
閉塞や超電導部材表面への氷の付着が生じたりし、実用
上運転が不可能となるおそれがある。そのため前述の目
的のためには、新たに特殊な容器を設計、製作しなけれ
ばならず、その場合コストの大幅な上昇を招く問題があ
り、そのため実用化はためらわれていたのが実情であ
る。
[0004] Therefore, it is conceivable that the superconducting member is immersed in liquid nitrogen whose temperature has been reduced to, for example, about 65K by reducing the pressure of liquid nitrogen at atmospheric pressure to cool the superconducting member to a temperature lower than 77K. In that case, in a container for immersing the superconducting member in liquid nitrogen, it is necessary to maintain the decompressed state of liquid nitrogen. On the other hand, a commonly used cryostat is presumed to be used in a state where it is substantially open to the atmosphere, so if this kind of general-purpose cryostat is applied to decompressed liquid nitrogen,
Insufficient sealing in places such as the lid and the current-introducing terminal causes air at atmospheric pressure containing moisture to be sucked in from the outside, causing blockage due to moisture freezing in the gas vent hole of the current-introducing terminal and superconductivity. There is a possibility that ice may adhere to the surface of the member and the operation may not be practically possible. Therefore, for the above-mentioned purpose, it is necessary to design and manufacture a new special container, and in that case, there is a problem that causes a significant rise in cost, and for that reason, practical use has been hesitated. .

【0005】また一方、大気圧の飽和液体窒素中に超電
導部材を浸漬させて超電導部材を作動させた場合、超電
導部材の発熱によって飽和液体窒素が直ちに気化してガ
ス気泡が発生するため、そのガス気泡によって電気絶縁
性が低下したり、冷却効率が低下したりしてしまう問題
があるが、前述のように減圧によって例えば65K程度
に温度降下された液体窒素中に超電導部材を浸漬させた
場合も、減圧下では超電導部材の発熱によって前記同様
に直ちに液体窒素が気化して気泡が発生するから、気泡
発生に対する根本的な解決策とはならない。したがって
このことも減圧された液体窒素の使用がためらわれてい
た一因である。
On the other hand, when the superconducting member is operated by immersing the superconducting member in saturated liquid nitrogen at atmospheric pressure, the saturated liquid nitrogen is immediately vaporized by the heat generated by the superconducting member and gas bubbles are generated. There is a problem that the electrical insulation is reduced by the bubbles or the cooling efficiency is reduced. However, as described above, even when the superconducting member is immersed in liquid nitrogen whose temperature is reduced to about 65 K by decompression, for example. However, under reduced pressure, the heat generated by the superconducting member immediately vaporizes the liquid nitrogen to generate air bubbles, which is not a fundamental solution to the generation of air bubbles. Therefore, this is also one of the reasons that the use of decompressed liquid nitrogen has been hesitated.

【0006】そこで本発明者等は、既に特開平10−5
4637号において、液体窒素によって高温超電導部材
を冷却するにあたって、特殊な真空封止などを行なわず
に、大気に実質的に開放された極く一般的な汎用クライ
オスタットを超電導部材冷却容器として用いながらも、
より低温に高温超電導部材を冷却して超電導性能を向上
させ得るようにするとともに、高温超電導部材作動時に
おける高温超電導部材の発熱による液体窒素からのガス
気泡の発生を抑制するようにした超電導部材冷却装置を
提案している。
The present inventors have already disclosed in Japanese Patent Application Laid-Open No. 10-5 / 1998.
In No. 4637, in cooling a high-temperature superconducting member with liquid nitrogen, a special general-purpose cryostat substantially open to the atmosphere is used as a superconducting member cooling vessel without performing a special vacuum sealing or the like. ,
Superconducting member cooling that cools the high-temperature superconducting member to a lower temperature to improve the superconducting performance and suppresses the generation of gas bubbles from liquid nitrogen due to heat generated by the high-temperature superconducting member when the high-temperature superconducting member operates. The device is proposed.

【0007】上記提案の超電導部材冷却装置は、基本的
には、超電導部材を収容してその超電導部材を冷却する
ための冷却容器を実質的に大気圧に開放した構成とし、
かつ大気圧下で過冷却状態とした例えば67K程度の液
体窒素を、液面上に空間を残すように前記冷却容器内に
収容し、かつその液面上の空間に窒素ガスを導入して大
気圧に加圧し、その冷却容器内の大気圧下で過冷却状態
の液体窒素によって超電導部材を冷却するようにしてい
る。そしてまた上記提案の超電導部材冷却装置におい
て、超電導部材に対する冷却媒体として機能させる大気
圧下で過冷却状態の液体窒素は、次のようにして得てい
る。すなわち、前述の冷却容器とは別に減圧用容器を設
けて、その減圧用容器内に熱交換器を配設しておき、減
圧用容器内に熱交換用液体窒素(例えば約77Kの大気
圧の飽和液体窒素)を供給するとともに、その減圧用容
器内の圧力を真空ポンプによって減圧して、減圧用容器
内の液体窒素を大気圧から減圧させることによりその温
度を例えば65Kの低温に降下させる。一方、前記熱交
換用液体窒素とは別に、大気圧の冷却用液体窒素(例え
ば約77Kの飽和液体窒素)を前記熱交換器に導き、そ
の熱交換器において減圧用容器内の65Kの減圧された
熱交換用液体窒素と熱交換させて、例えば67K程度ま
で大気圧のまま冷却させ、大気圧下での過冷却状態とす
る。そしてこの大気圧下で過冷却状態の例えば67Kの
冷却用液体窒素を前述の冷却容器に導いて、超電導部材
を67Kに近い温度(例えば70K)の低温に冷却する
こととしている。
[0007] The superconducting member cooling device proposed above basically has a configuration in which a cooling container for accommodating the superconducting member and cooling the superconducting member is substantially opened to the atmospheric pressure.
Liquid nitrogen of, for example, about 67K, which has been supercooled at atmospheric pressure, is accommodated in the cooling vessel so as to leave a space above the liquid surface, and nitrogen gas is introduced into the space above the liquid surface to form a large space. The superconducting member is pressurized to atmospheric pressure, and the superconducting member is cooled by liquid nitrogen in a supercooled state under the atmospheric pressure in the cooling container. Further, in the superconducting member cooling device proposed above, liquid nitrogen in a supercooled state under atmospheric pressure to function as a cooling medium for the superconducting member is obtained as follows. That is, a decompression container is provided separately from the cooling container described above, and a heat exchanger is provided in the decompression container, and a liquid nitrogen for heat exchange (for example, an atmospheric pressure of about 77K) is provided in the decompression container. Saturated liquid nitrogen) is supplied, and the pressure in the pressure reducing container is reduced by a vacuum pump, and the temperature of the liquid nitrogen in the pressure reducing container is reduced from atmospheric pressure to a low temperature of, for example, 65K. On the other hand, apart from the liquid nitrogen for heat exchange, liquid nitrogen for cooling at atmospheric pressure (for example, saturated liquid nitrogen of about 77K) is led to the heat exchanger, where the pressure is reduced by 65K in the depressurizing vessel in the heat exchanger. The liquid is exchanged with the liquid nitrogen for heat exchange, and cooled to, for example, about 67 K while maintaining the atmospheric pressure, thereby setting a supercooled state under the atmospheric pressure. Under this atmospheric pressure, supercooled liquid nitrogen, for example, 67K in a supercooled state is guided to the above-mentioned cooling container, and the superconducting member is cooled to a low temperature close to 67K (for example, 70K).

【0008】このような特開平10−54637号の提
案の超電導部材冷却装置においては、通常の77K程度
の大気圧下での飽和液体窒素を冷却媒体として用いた場
合よりも超電導部材を確実に低温に冷却することがで
き、そのため超電導部材の性能を向上させることがで
き、しかもこの場合、冷却容器内の過冷却状態の冷却用
液体窒素の液面上の空間が、大気圧の窒素ガスで満たさ
れることにより、外部から水分を含む大気圧の空気が内
部に吸い込まれるおそれを少なくして、冷却容器の蓋部
や電流導入端子等の封止に厳密さが要求されないように
することができ、さらには超電導部材を浸漬させた冷却
用液体窒素が前述のように過冷却状態であるため、超電
導部材の作動時において超電導部材が発熱しても、その
発熱部位周辺で液体窒素が気化温度に達するには温度的
余裕があり、そのため直ちにはガス気泡が発生せず、し
たがってガス気泡によって絶縁性が低下したり冷却効率
が低下したりするおそれも少ないなどの利点がある。
[0008] In such a superconducting member cooling device proposed in Japanese Patent Application Laid-Open No. 10-54637, the superconducting member can be cooled at a lower temperature than when using saturated liquid nitrogen at atmospheric pressure of about 77 K as a cooling medium. And the performance of the superconducting member can be improved, and in this case, the space above the liquid surface of the supercooled cooling liquid nitrogen in the cooling vessel is filled with nitrogen gas at atmospheric pressure. By doing so, it is possible to reduce the risk that atmospheric pressure air containing moisture from the outside is sucked into the inside, so that strictness is not required for sealing the lid portion, the current introduction terminal, and the like of the cooling container, Further, since the cooling liquid nitrogen in which the superconducting member is immersed is in a supercooled state as described above, even if the superconducting member generates heat during the operation of the superconducting member, the liquid nitrogen is generated around the heat-generating portion. There reaches the vaporization temperature is a temperature margin, therefore immediately have advantages such as fear less not generated gas bubbles, thus the cooling efficiency lowered insulating property by gas bubbles or drops.

【0009】しかしながら上記提案の超電導部材冷却装
置については、未だ次のような問題があった。
[0009] However, the superconducting member cooling device proposed above still has the following problems.

【0010】すなわち、上記提案の超電導部材冷却装置
においては、冷却用の液体窒素とは別に熱交換用液体窒
素を減圧用容器内に供給し、真空ポンプによりその減圧
用容器内を減圧して熱交換用液体窒素を温度降下させ、
その温度降下した熱交換用液体窒素と冷却用液体窒素と
を熱交換させることにより大気圧で過冷却状態の冷却用
液体窒素を得るようにしているが、この場合減圧用容器
内の熱交換用液体窒素は減圧によって徐々に蒸発気化
し、かつその気化ガスがポンプにより排気されて行くか
ら、減圧用容器内の液体窒素液面は急激に低下して行
き、遂には減圧用容器内の熱交換器が露出してしまうこ
とになる。このように熱交換器が液面から露出してしま
えば、充分な熱交換能率が得られなくなって、冷却用液
体窒素を充分な過冷却状態となるように冷却することが
困難となるから、実際上は熱交換器が液面から露出する
以前に、改めて減圧用容器内に液体窒素を補給しなけれ
ばならず、またこの液体窒素補給時には運転を一旦停止
させなければならない。
That is, in the superconducting member cooling apparatus proposed above, liquid nitrogen for heat exchange is supplied into the depressurizing vessel separately from liquid nitrogen for cooling, and the inside of the depressurizing vessel is depressurized by a vacuum pump to generate heat. Reduce the temperature of the replacement liquid nitrogen,
The liquid nitrogen for heat exchange and the liquid nitrogen for cooling whose temperature has dropped are exchanged with each other to obtain liquid nitrogen for cooling in a supercooled state at atmospheric pressure. The liquid nitrogen is gradually evaporated and vaporized by the decompression, and the vaporized gas is exhausted by the pump, so that the liquid nitrogen liquid level in the decompression container drops rapidly, and finally heat exchange in the decompression container The vessel will be exposed. If the heat exchanger is exposed from the liquid surface in this manner, sufficient heat exchange efficiency cannot be obtained, and it becomes difficult to cool the cooling liquid nitrogen to a sufficiently supercooled state. In practice, before the heat exchanger is exposed from the liquid surface, liquid nitrogen must be replenished into the depressurizing vessel, and the operation must be stopped once during the liquid nitrogen replenishment.

【0011】このように前記提案の超電導部材冷却装置
では、減圧用容器内の液体窒素補給のために運転を停止
する必要があるところから、長時間連続して運転するこ
とができないという問題があり、また液体窒素補給およ
びそのための運転停止−運転再開のための手間も煩雑と
なるという問題がある。もちろん短時間の運転の場合は
特に問題とはならないが、超電導部材の実用化へ向けた
実験・研究、測定等においては、長時間連続して運転す
ることが求められることが多く、したがって減圧用容器
への熱交換用液体窒素補給が前記提案の装置の普及に対
する大きなネックとなっていたのが実情である。
As described above, the proposed superconducting member cooling device has a problem that the operation cannot be continuously performed for a long time because the operation must be stopped to supply the liquid nitrogen in the depressurizing container. In addition, there is a problem that the labor for replenishing liquid nitrogen and for stopping and restarting the operation for the liquid nitrogen is also complicated. Of course, there is no particular problem in the case of short-time operation, but in experiments, research, measurement, etc. for the practical use of superconducting members, continuous operation for a long time is often required, and The fact is that replenishment of the container with liquid nitrogen for heat exchange has been a major bottleneck to the spread of the proposed device.

【0012】そこで本発明者等は、前記提案に倣い、大
気圧もしくは大気圧よりも高い圧力下で過冷却状態とし
た液体窒素を超電導部材に対する冷却用媒体として用い
ながらも、液体窒素を冷凍機によって大気圧下での過冷
却となる温度まで冷却し、得られた過冷却状態の低温の
液体窒素を、そのまま直接超電導部材を冷却するための
冷却媒体として用いることとし、これにより前記提案の
場合のような減圧用容器や熱交換器を用いないように
し、それに伴なって減圧用容器内への熱交換用液体窒素
の補給のための運転停止を回避し得るようにして、長時
間の連続運転を可能とした超電導部材冷却装置を、特許
第2859250号において提案している。
Therefore, the present inventors followed the above proposal and used liquid nitrogen in a supercooled state at atmospheric pressure or a pressure higher than atmospheric pressure as a cooling medium for a superconducting member, while using liquid nitrogen as a refrigerator. By cooling to a temperature that causes supercooling under atmospheric pressure, the obtained supercooled low-temperature liquid nitrogen is used as it is as a cooling medium for directly cooling the superconducting member. The use of a decompression container or heat exchanger such as described above is not used, and consequently, a shutdown for replenishment of the liquid nitrogen for heat exchange into the decompression container can be avoided, so that a long continuous A superconducting member cooling device that enables operation is proposed in Japanese Patent No. 2859250.

【0013】上記特許による超電導部材冷却装置は、基
本的には、超電導部材を収容してその超電導部材を冷却
するための大気に実質的に開放された冷却容器と、前記
冷却容器へ供給すべき液体窒素を収容するための大気圧
に実質的に開放された供給側容器と、前記供給側容器へ
液体窒素を供給するための液体窒素供給手段と、前記供
給側容器内の液体窒素を、大気圧下での過冷却温度まで
冷却するための冷凍機と、前記供給側容器内において大
気圧下での過冷却温度まで冷却された液体窒素を前記冷
却容器に移送するための移送手段とを有してなり、供給
側容器および冷却容器の液面上の空間を大気圧とするか
または大気圧よりも高い圧力とし、かつ前記移送手段に
よって前記冷却容器内に供給された過冷却状態の液体窒
素中に前記超電導部材を浸漬させるようにしたことを特
徴とするものであり、その具体例を図5に示す。
The superconducting member cooling device according to the above-mentioned patent basically has a cooling container substantially housed in the atmosphere for accommodating the superconducting member and cooling the superconducting member, and a supply to the cooling container. A supply-side container that is substantially open to atmospheric pressure for containing liquid nitrogen, liquid nitrogen supply means for supplying liquid nitrogen to the supply-side container, and liquid nitrogen in the supply-side container. A refrigerator for cooling to a supercooling temperature under atmospheric pressure, and transfer means for transferring liquid nitrogen cooled to a supercooling temperature under atmospheric pressure in the supply-side container to the cooling container. The space above the liquid surface of the supply side container and the cooling container is set to atmospheric pressure or a pressure higher than atmospheric pressure, and the supercooled liquid nitrogen supplied into the cooling container by the transfer means During the superconductivity Which is characterized in that so as to immerse the wood, shows a specific example in FIG.

【0014】図5において、冷却対象となる超電導部材
1は冷却容器3の底部に配置されている。この冷却容器
3は、大気に実質的に開放された一般的な汎用のクライ
オスタットからなるものであって、その外周壁部および
底壁部が真空断熱構造5とされ、また上端には開閉可能
な蓋部7が設けられている。この蓋部7は、容器本体に
対して真空封止されたものではなく、またこの蓋部7に
は汎用のクライオスタットと同様な電流導入端子等が設
けられており、このような蓋部7と容器本体部分との間
の隙間や電流導入端子等を通じて冷却容器3の内部は実
質的に大気開放された状態となっている。なお蓋部7に
は安全弁19が設けられているが、この安全弁19は、
内部圧力が外部の大気圧に対して例えば+0.1kgf
/cm2を越えた場合に開放されて、内部圧力を大気圧
〜大気圧+0.1kgf/cm2の範囲内、すなわち大
気圧もしくは大気圧より若干高い圧力に保持するように
機能する。そして超電導部材1は蓋部7から支持部材9
A,9Bによって吊下げた状態となっている。冷却容器
3内の底部には、後述するようにトランスファチューブ
45を介して大気圧での過冷却状態の液体窒素(冷却用
液体窒素)11が供給されて、超電導部材1がその液体
窒素11に浸漬される。またその冷却容器3内における
液体窒素11の液面11Aよりもわずかに下方の位置に
は、水平横断面の外形形状が冷却容器3の水平横断面内
周形状と実質的に相似の形状をなしかつ上下方向に所定
の厚みを有する断熱部材13が配設されている。この断
熱部材13は、要は全体として上下方向への熱伝導が液
体窒素よりも格段に少ないものとなっていれば良く、通
常はFRPなど熱伝導率の小さい材料によって形成する
か、あるいは中空構造としてその中空部分を真空断熱構
造とする。なおこの断熱部材13は、前述の支持部材9
A,9Bによって蓋部7から吊下げられており、またそ
の断熱部材13の周囲が冷却容器3の内周壁面に対して
若干の隙間14を保つように作られており、したがって
この隙間14を液体窒素11が移動し得ることになる。
一方冷却容器3における冷却用液体窒素11の液面11
Aの上方に残された空間(蓋部7と液面11Aとの間の
空間)15には、外部の第1の窒素ガス供給源16から
窒素ガス供給管18を経て大気圧の窒素ガスが供給され
る。また冷却容器3内における断熱部材13の下面側の
位置には、後述する還流管17の一端側が開口してい
る。
In FIG. 5, a superconducting member 1 to be cooled is arranged at the bottom of a cooling vessel 3. The cooling vessel 3 is composed of a general-purpose cryostat substantially open to the atmosphere, the outer peripheral wall and the bottom wall of which are a vacuum heat insulating structure 5, and the upper end is openable and closable. A lid 7 is provided. The lid 7 is not vacuum-sealed with respect to the container body, and the lid 7 is provided with a current introduction terminal similar to that of a general-purpose cryostat. The inside of the cooling container 3 is substantially open to the atmosphere through a gap between the container main body and a current introduction terminal. Note that a safety valve 19 is provided on the lid 7, and the safety valve 19 is
Internal pressure is, for example, +0.1 kgf with respect to external atmospheric pressure
/ Cm 2 , and functions to maintain the internal pressure in the range of atmospheric pressure to atmospheric pressure + 0.1 kgf / cm 2 , that is, atmospheric pressure or a pressure slightly higher than atmospheric pressure. The superconducting member 1 is moved from the lid 7 to the supporting member 9.
A and 9B are suspended. Liquid nitrogen (cooling liquid nitrogen) 11 in a supercooled state at atmospheric pressure is supplied to the bottom of the cooling vessel 3 via a transfer tube 45 as described later, and the superconducting member 1 Dipped. At a position slightly below the liquid level 11A of the liquid nitrogen 11 in the cooling vessel 3, the outer shape of the horizontal cross section is substantially similar to the inner circumferential shape of the horizontal cross section of the cooling vessel 3. In addition, a heat insulating member 13 having a predetermined thickness in the vertical direction is provided. In short, the heat insulating member 13 only needs to have heat conduction in the vertical direction as a whole significantly lower than that of liquid nitrogen, and is usually made of a material having a low heat conductivity such as FRP, or has a hollow structure. And the hollow portion has a vacuum insulation structure. The heat insulating member 13 is provided by the support member 9 described above.
A and 9B hang from the lid portion 7 and the periphery of the heat insulating member 13 is formed so as to keep a slight gap 14 with respect to the inner peripheral wall surface of the cooling container 3. The liquid nitrogen 11 can move.
On the other hand, the liquid level 11 of the cooling liquid nitrogen 11 in the cooling vessel 3
A space (space between the lid 7 and the liquid surface 11A) 15 left above A is filled with nitrogen gas at atmospheric pressure from an external first nitrogen gas supply source 16 via a nitrogen gas supply pipe 18. Supplied. At a position on the lower surface side of the heat insulating member 13 in the cooling container 3, one end side of a reflux pipe 17 described later is opened.

【0015】さらに前述のように大気に実質的に開放さ
れた冷却容器3とは別に、供給側容器21が配設されて
いる。
Further, a supply side container 21 is provided separately from the cooling container 3 which is substantially open to the atmosphere as described above.

【0016】供給側容器21は、前述の冷却容器3と同
様に大気に実質的に開放されたものであって、その外周
壁部および底壁部が真空断熱構造23とされ、また上端
には開閉可能な蓋部25が設けられている。この蓋部2
5は容器本体に対して真空封止されたものではなく、こ
のような蓋部25と容器本体部分との間の隙間などを通
じて供給側容器21の内部は実質的に大気に開放された
状態となっている。この供給側容器21には、外部の液
体窒素供給源27から、制御弁29および供給管31を
介して液体窒素33が供給されるようになっている。そ
して供給側容器21内における液体窒素33の液面33
Aよりもわずかに下方の位置には、水平横断面の外形形
状が供給側容器21の水平横断面形状と実質的に相似の
形状をなしかつ上下方向に所定の厚みを有する断熱部材
35が、蓋部25から支持部材37A,37Bによって
吊下げられた状態で配設されている。この断熱部材35
も、前記冷却容器3内の断熱部材13と同様のものであ
り、その断熱部材35の周囲が供給側容器21の内周壁
面に対して若干の隙間39を保持していて、その隙間3
9を液体窒素33が移動し得るように構成されているこ
とも、冷却容器3内の断熱部材13と同様である。
The supply-side container 21 is substantially open to the atmosphere similarly to the cooling container 3 described above. The outer peripheral wall and the bottom wall of the supply-side container 21 are formed of a vacuum heat insulating structure 23. A lid 25 that can be opened and closed is provided. This lid 2
5 is not vacuum-sealed with respect to the container body, and the inside of the supply-side container 21 is substantially open to the atmosphere through such a gap between the lid 25 and the container body. Has become. The supply side container 21 is supplied with liquid nitrogen 33 from an external liquid nitrogen supply source 27 via a control valve 29 and a supply pipe 31. The liquid level 33 of the liquid nitrogen 33 in the supply side container 21
At a position slightly lower than A, a heat insulating member 35 having an outer shape of a horizontal cross section substantially similar to the horizontal cross sectional shape of the supply-side container 21 and having a predetermined thickness in the vertical direction, It is disposed in a state of being suspended from the lid 25 by the support members 37A and 37B. This heat insulating member 35
Is also the same as the heat insulating member 13 in the cooling container 3, and the periphery of the heat insulating member 35 holds a slight gap 39 with respect to the inner peripheral wall surface of the supply side container 21.
9 is configured so that liquid nitrogen 33 can move, similarly to the heat insulating member 13 in the cooling container 3.

【0017】さらに供給側容器21には、その供給側容
器21内の液体窒素33を、大気圧下での飽和液体窒素
の温度よりも低い過冷却温度(約77Kよりも低い温
度、例えば65〜70K)に冷却するための冷凍機41
が配設されている。この冷凍機41は、冷凍媒体ガス
(通常はヘリウムガス)を圧縮するための圧縮部(コン
プレッサ)41Aと、圧縮された高圧の冷凍媒体ガスを
膨張させて低温を得るとともににその低温を冷却対象
(液体窒素)と熱交換するための冷却ヘッド41Bと、
圧縮部41Aからの高圧の媒体ガスと冷却ヘッド41B
から戻る膨張された低圧の媒体ガスの流れを切替えるた
めのモーターバルブ等の切替部41Cと、その切替部4
1Cと冷却ヘッド41Bとの間で冷凍媒体ガスを往復さ
せる通路を内部に形成したシリンダ部41Dとからなる
ものであり、その切替部41Cが供給側容器21の蓋部
25上に配置され、シリンダ部41Dが切替部41Cか
ら蓋部25を下方へ貫通して供給側容器21内の液体窒
素の液面33A上の空間47を通り、その下端が液体窒
素中に浸漬され、その部分すなわち液体窒素中に浸漬さ
れた部分に冷却ヘッド41Bが設けられている。ここ
で、シリンダ部41Dは一般にステンレス鋼により作ら
れている。また冷却ヘッド41Bは、その外面に銅等の
良伝熱材料からなる伝熱ブロックを設けた構成とされて
いる。なお圧縮部41Aは通常は供給側容器21から離
れた位置に配置され、その圧縮部41Aと切替部41C
との間が、高圧ガス管路41E、低圧ガス管路41Fに
よって結ばれている。
Further, the supply side container 21 is supplied with liquid nitrogen 33 in the supply side container 21 at a supercooling temperature lower than the temperature of saturated liquid nitrogen at atmospheric pressure (a temperature lower than about 77 K, for example, 65 to 65 K). Refrigerator 41 for cooling to 70K)
Are arranged. The refrigerator 41 includes a compression unit (compressor) 41A for compressing a refrigeration medium gas (usually helium gas), a compressed high-pressure refrigeration medium gas is expanded to obtain a low temperature, and the low temperature is cooled. A cooling head 41B for heat exchange with (liquid nitrogen);
High-pressure medium gas from compression section 41A and cooling head 41B
Switching section 41C such as a motor valve for switching the flow of the expanded low-pressure medium gas returning from
1C and a cooling portion 41B. The switching portion 41C is disposed on the lid portion 25 of the supply-side container 21. The part 41D penetrates downward through the lid part 25 from the switching part 41C, passes through the space 47 on the liquid nitrogen level 33A in the supply-side container 21, and the lower end thereof is immersed in liquid nitrogen. A cooling head 41B is provided in a portion immersed therein. Here, the cylinder portion 41D is generally made of stainless steel. The cooling head 41B has a configuration in which a heat transfer block made of a good heat transfer material such as copper is provided on an outer surface thereof. The compression section 41A is usually arranged at a position away from the supply side container 21, and the compression section 41A and the switching section 41C
Are connected by a high-pressure gas pipeline 41E and a low-pressure gas pipeline 41F.

【0018】また供給側容器21内には、蓋部25から
吊下げられた状態で送液ポンプ43が配設されている。
この送液ポンプ43は、その取入口(汲出口)が供給側
容器21における断熱部材35よりも下方(通常は供給
側容器21の底部近く)に位置するように配設されてい
る。そしてこの送液ポンプ43の出口側はトランスファ
ーチューブ45に接続されており、このトランスファー
チューブ45は前述のように冷却容器3内に導かれてい
る。さらに前記冷却容器3からの還流管17が供給側容
器21内へ導かれており、その還流管17の先端側開口
端が供給側容器の底部(前記冷凍機41の冷却ヘッド4
1Bよりも下方の位置)において開口している。
A liquid supply pump 43 is provided in the supply side container 21 so as to be suspended from the lid 25.
The liquid feed pump 43 is disposed such that its inlet (pump outlet) is located below the heat insulating member 35 in the supply-side container 21 (usually near the bottom of the supply-side container 21). The outlet side of the liquid supply pump 43 is connected to a transfer tube 45, and the transfer tube 45 is guided into the cooling container 3 as described above. Further, a reflux pipe 17 from the cooling vessel 3 is guided into the supply-side vessel 21, and the open end of the reflux pipe 17 is connected to the bottom of the supply-side vessel (the cooling head 4 of the refrigerator 41).
1B).

【0019】また供給側容器21における液体窒素33
の液面33Aの上方に残された空間(蓋部25と液面3
3Aとの間の空間)47には、外部の第2の窒素ガス供
給源49から窒素ガス供給管51を経て大気圧もしくは
大気圧以上の圧力の窒素ガスが供給されるようになって
いる。
The liquid nitrogen 33 in the supply side container 21
Space above the liquid level 33A (the lid 25 and the liquid level 3).
A nitrogen gas having an atmospheric pressure or a pressure equal to or higher than the atmospheric pressure is supplied from an external second nitrogen gas supply source 49 through a nitrogen gas supply pipe 51 to a space (47) between the first and second nitrogen gas sources.

【0020】ここで、液体窒素供給源27、制御弁2
9、および供給管31は、供給側容器21に液体窒素を
供給するための液体窒素供給手段63を構成している。
さらに送液ポンプ43およびトランスファチユーブ45
は、供給側容器21内において大気圧で過冷却状態に冷
却された液体窒素を冷却容器3に移送するための移送手
段65を構成している。一方第1の窒素ガス供給源1
6、窒素ガス供給管18は、冷却容器3における液面上
の空間15に大気圧もしくは大気圧以上の圧力の窒素ガ
スを供給するための第1の窒素ガス供給手段67を構成
しており、また第2の窒素ガス供給源49、窒素ガス供
給管51は、供給側容器21における液面上の空間47
に大気圧もしくは大気圧以上の圧力の窒素ガスを供給す
るための第2の窒素ガス供給手段69を構成している。
Here, the liquid nitrogen supply source 27 and the control valve 2
The supply pipe 9 and the supply pipe 31 constitute liquid nitrogen supply means 63 for supplying liquid nitrogen to the supply side container 21.
Further, the liquid sending pump 43 and the transfer tube 45
Constitutes a transfer means 65 for transferring liquid nitrogen, which has been cooled to a supercooled state at atmospheric pressure in the supply-side container 21, to the cooling container 3. On the other hand, the first nitrogen gas supply source 1
6. The nitrogen gas supply pipe 18 constitutes first nitrogen gas supply means 67 for supplying nitrogen gas at atmospheric pressure or a pressure higher than atmospheric pressure to the space 15 above the liquid surface in the cooling container 3; Further, the second nitrogen gas supply source 49 and the nitrogen gas supply pipe 51 are provided in the space 47 above the liquid surface in the supply side container 21.
And a second nitrogen gas supply means 69 for supplying nitrogen gas having an atmospheric pressure or a pressure higher than the atmospheric pressure.

【0021】以上のような図5に示される先行技術によ
る超電導部材冷却装置の全体的な機能について以下に説
明する。
The overall function of the prior art superconducting member cooling apparatus shown in FIG. 5 will be described below.

【0022】液体窒素供給手段63の液体窒素供給源2
7から供給側容器21に供給される液体窒素は、77K
程度のものであるが、その液体窒素は供給側容器21内
において、冷凍機41の冷却ヘッド41Bによって大気
圧もしくは大気圧以上の圧力のもとで冷却されて、大気
圧下での飽和液体窒素温度(77K程度)よりも低い温
度、例えば65〜70K程度まで温度降下される。そし
てその65〜70K程度に過冷却された大気圧もしくは
大気圧より高い圧力の液体窒素33は、送液ポンプ43
によって供給側容器21の底部付近から汲み上げられ、
トランスファチューブ45を介して、大気に実質的に開
放された冷却容器3内に導かれる。冷却容器3内に導か
れた過冷却状態の液体窒素を図5では符号11で示して
おり、これが冷却用液体窒素に相当する。
The liquid nitrogen supply source 2 of the liquid nitrogen supply means 63
7 supplied to the supply side container 21 from the
The liquid nitrogen is cooled by the cooling head 41B of the refrigerator 41 under the atmospheric pressure or a pressure higher than the atmospheric pressure in the supply side container 21, and the saturated liquid nitrogen under the atmospheric pressure is The temperature is lowered to a temperature lower than the temperature (about 77K), for example, about 65 to 70K. Then, the liquid nitrogen 33 which has been supercooled to about 65 to 70K and has the atmospheric pressure or the pressure higher than the atmospheric pressure is supplied to the liquid sending pump 43
Is pumped from near the bottom of the supply-side container 21,
It is guided through the transfer tube 45 into the cooling container 3 which is substantially open to the atmosphere. Liquid nitrogen in a supercooled state introduced into the cooling container 3 is indicated by reference numeral 11 in FIG. 5 and corresponds to liquid nitrogen for cooling.

【0023】冷却容器3内においては、前述のような例
えば65〜70Kの過冷却状態の液体窒素11によって
超電導部材1が例えば67〜72K程度に冷却・保持さ
れる。また冷却容器3内において超電導部材1からの熱
などによって例えば70K程度以上に温度上昇した液体
窒素は、還流管17を介して供給側容器21へ戻る。こ
のようにして供給側容器21へ還流された流体窒素は、
冷凍機41の冷却ヘッド41Bにより再び65〜70K
程度まで大気圧もしくは大気圧以上の圧力のもとで冷却
され、前述のように送液ポンプ43によって冷却容器3
に再び送られることになる。
In the cooling vessel 3, the superconducting member 1 is cooled and held at, for example, about 67 to 72K by the liquid nitrogen 11 in a supercooled state of, for example, 65 to 70K as described above. In the cooling container 3, the liquid nitrogen whose temperature has risen to, for example, about 70 K or more due to heat from the superconducting member 1 returns to the supply-side container 21 via the reflux pipe 17. The fluid nitrogen refluxed to the supply side container 21 in this manner is
65-70K again by the cooling head 41B of the refrigerator 41
To about the atmospheric pressure or a pressure higher than the atmospheric pressure.
Will be sent again.

【0024】ここで、冷却容器3内における冷却用液体
窒素11の液面11Aの上方の空間15には窒素ガス供
給管18を介して大気圧もしくは大気圧以上の圧力の窒
素ガスが導入される。したがって冷却容器3の液面上の
空間15は大気圧もしくは大気圧以上の圧力の窒素ガス
で満たされることになる。そのため冷却容器3内の圧力
が大気圧もしくは大気圧以上の圧力に維持され、蓋部7
の封止部分や電流導入端子部分などを介して外部から空
気が引き込まれて侵入することが防止される。
At this time, a nitrogen gas having an atmospheric pressure or a pressure higher than the atmospheric pressure is introduced into a space 15 above the liquid surface 11A of the cooling liquid nitrogen 11 in the cooling container 3 through a nitrogen gas supply pipe 18. . Therefore, the space 15 above the liquid surface of the cooling container 3 is filled with nitrogen gas at atmospheric pressure or a pressure higher than atmospheric pressure. Therefore, the pressure in the cooling container 3 is maintained at the atmospheric pressure or a pressure higher than the atmospheric pressure,
Air is prevented from being drawn in from the outside through the sealing portion and the current introduction terminal portion.

【0025】また冷却容器3内における冷却用液体窒素
11の液面下には断熱部材13が配設されているから、
冷却用液体窒素11の液面(気液界面であるため約77
K)とその断熱部材13よりも下側、特に超電導部材1
が位置している冷却容器底部との間で熱勾配を与えるこ
とができる。またその断熱部材13の存在によって液面
11A付近に底部側との間での対流撹拌が阻止される。
そしてこれらの結果、超電導部材1が位置する底部の冷
却用液体窒素11を、65K程度の低温の過冷却状態に
維持することができる。そしてこのように超電導部材1
が例えば65〜70Kの過冷却状態の低温の液体窒素1
1によって取囲まれるため、超電導部材1の作動時にお
いて超電導部材1が発熱しても、その周囲の液体窒素が
大気圧下での気化温度(約77K)以上となるまでには
10K程度の余裕があり、そのため超電導部材1の発熱
によってその周囲の液体窒素が直ちに気化してガス気泡
が発生してしまうことを有効に防止できる。
Since the heat insulating member 13 is disposed below the liquid level of the cooling liquid nitrogen 11 in the cooling vessel 3,
Liquid surface of cooling liquid nitrogen 11 (approximately 77
K) and its lower side than the heat insulating member 13, especially the superconducting member 1
Can be provided with a thermal gradient with the bottom of the cooling vessel in which is located. Also, the presence of the heat insulating member 13 prevents convection agitation between the liquid surface 11A and the bottom side.
As a result, the liquid nitrogen 11 for cooling at the bottom where the superconducting member 1 is located can be maintained in a supercooled state at a low temperature of about 65K. And thus, the superconducting member 1
Is a low-temperature liquid nitrogen 1 in a supercooled state of, for example, 65 to 70K.
Therefore, even if the superconducting member 1 generates heat during the operation of the superconducting member 1, there is a margin of about 10K before the surrounding liquid nitrogen reaches the vaporization temperature under atmospheric pressure (about 77K) or more. Therefore, it is possible to effectively prevent the liquid nitrogen around the superconducting member 1 from immediately evaporating due to the heat generation of the superconducting member 1 to generate gas bubbles.

【0026】なお供給側容器21内における液体窒素3
3の液面33Aの上方の空間47にも、窒素ガス供給管
51を介して大気圧もしくは大気圧以上の圧力の窒素ガ
スが導入されて、その大気圧もしくは大気圧以上の圧力
の窒素ガスで満たされることになる。そのため供給側容
器21内の圧力が大気圧もしくは大気圧以上の圧力に維
持され、蓋部25の封止部分などを介して外部から空気
が引き込まれて侵入することが防止される。
The liquid nitrogen 3 in the supply side container 21
The nitrogen gas at the atmospheric pressure or a pressure higher than the atmospheric pressure is also introduced into the space 47 above the liquid surface 33A of the third through the nitrogen gas supply pipe 51, and the nitrogen gas at the atmospheric pressure or the pressure higher than the atmospheric pressure is introduced. Will be satisfied. Therefore, the pressure in the supply-side container 21 is maintained at the atmospheric pressure or a pressure higher than the atmospheric pressure, and it is possible to prevent the air from being drawn in from the outside via the sealed portion of the lid 25 and entering.

【0027】また冷却容器3と同様に、供給側容器21
内における液体窒素33の液面下にも断熱部材35が配
設されており、そのため液体窒素33の液面(気液界面
であるため約77K)とその断熱部材35よりも下側、
特に冷凍機41の冷却ヘッド41B付近との間で熱勾配
を与えることができる。またその断熱部材35の存在に
よって液面33A付近と断熱部材35よりも下側の部分
との間での対流撹拌が阻止される。そしてこれらの結
果、送液ポンプ43の取入口付近の液体窒素33を、6
5〜70K程度の低温の過冷却状態に維持して、その6
5〜70K程度の低温の過冷却状態の液体窒素を冷却容
器3へ送り込むことができる。
As in the case of the cooling container 3, the supply-side container 21
The heat insulating member 35 is also provided below the liquid surface of the liquid nitrogen 33 in the inside, so that the liquid surface of the liquid nitrogen 33 (about 77 K because of the gas-liquid interface) and the lower side than the heat insulating member 35,
In particular, a thermal gradient can be provided between the refrigerator 41 and the vicinity of the cooling head 41B. In addition, the presence of the heat insulating member 35 prevents convection agitation between the vicinity of the liquid surface 33A and a portion below the heat insulating member 35. As a result, the liquid nitrogen 33 near the inlet of the liquid feed pump 43 is removed
Maintaining a supercooled state at a low temperature of about 5 to 70K,
Liquid nitrogen in a supercooled state at a low temperature of about 5 to 70 K can be sent to the cooling container 3.

【0028】[0028]

【発明が解決しようとする課題】図5に示される装置に
おいては、前述のように供給側容器21内における液体
窒素33の液面下にFRPなどの低熱伝導率材料からな
る断熱部材35を配置することによって、液面付近(約
77K)と冷却ヘッド41B付近(65〜70K)との
間で熱勾配を形成している。しかしながらこのようなF
RPなどからなる断熱部材を液面下に設けた場合、次の
ような問題があることが判明した。
In the apparatus shown in FIG. 5, the heat insulating member 35 made of a material having a low thermal conductivity such as FRP is arranged below the liquid nitrogen 33 in the supply side container 21 as described above. As a result, a thermal gradient is formed between the vicinity of the liquid surface (about 77K) and the vicinity of the cooling head 41B (65 to 70K). However, such F
When a heat insulating member made of RP or the like is provided below the liquid level, it has been found that the following problem occurs.

【0029】すなわち、供給側容器21内においては、
液体窒素33の液面33Aは、大気圧もしくは大気圧以
上の圧力の窒素ガスと液体窒素33が接する気液界面と
なっており、そのため液面近傍の液体窒素は、定常時は
飽和液体となっている。そしてその液面近傍の液体窒素
の温度は、大気圧もしくは大気圧より高い圧力下での飽
和温度となっている。なおここで“大気圧よりも高い圧
力”も、実際上は既に述べたように大気圧よりもわずか
に高い程度であるから、以下では、説明の簡単化のた
め、一律に大気圧と記すこととし、液面近傍の液体窒素
の温度も、一律に大気圧での飽和温度(約77.4K)
と考えることとする。
That is, in the supply side container 21,
The liquid surface 33A of the liquid nitrogen 33 is a gas-liquid interface where the nitrogen gas at the atmospheric pressure or a pressure higher than the atmospheric pressure is in contact with the liquid nitrogen 33. Therefore, the liquid nitrogen near the liquid surface is a saturated liquid in a steady state. ing. The temperature of the liquid nitrogen near the liquid surface is the saturation temperature under the atmospheric pressure or a pressure higher than the atmospheric pressure. Note that the "pressure higher than the atmospheric pressure" is actually slightly higher than the atmospheric pressure as described above. And the temperature of liquid nitrogen near the liquid level is also the saturation temperature at atmospheric pressure (about 77.4K)
I think that.

【0030】一方、供給側容器21内における液体窒素
の液面33Aよりも下方に離れた位置、特に冷凍機41
の冷却ヘッド41Bの位置やそれよりも下方の位置で
は、前述のように液体窒素が冷却ヘッド41Bにより冷
却されて、大気圧下での飽和温度よりも低い65〜70
K程度の温度の過冷却状態となっている。そのため液体
窒素中の冷却ヘッド41Bより上方の領域では、液面か
ら下方へ向かって温度勾配が形成されている。そしてこ
のような温度勾配を安定して維持するため、前記提案の
装置では断熱部材35を設けており、またこの断熱部材
35によって対流撹拌を阻止するようにしているのであ
るが、実際の運転時には、送液ポンプ43の作動状況や
熱負荷の変動などによる擾乱が液体窒素中に生じて、液
体窒素に対流が発生したり撹拌されたりしてしまうこと
がある。その場合、温度勾配が乱されて、たとえ前述の
ような断熱部材35を設けていても、運転状況が不安定
化し、また液面での液体窒素の気化や逆に窒素ガスの凝
縮が生じたりして、液面位置が変動してしまい、それに
伴なって温度勾配の不安定化が一層激しくなり、ますま
す運転状況が不安定化し、冷却効率の低下、システムの
信頼性の低下を招いてしまうおそれがある。
On the other hand, a position in the supply side container 21 which is located below the liquid surface 33A of the liquid nitrogen,
In the position of the cooling head 41B and the position below it, the liquid nitrogen is cooled by the cooling head 41B as described above, and 65 to 70 lower than the saturation temperature under the atmospheric pressure.
It is in a supercooled state at a temperature of about K. Therefore, in a region above the cooling head 41B in the liquid nitrogen, a temperature gradient is formed from the liquid surface downward. In order to stably maintain such a temperature gradient, the above-mentioned proposed device is provided with a heat insulating member 35, and the heat insulating member 35 prevents convection agitation. However, disturbance due to the operation state of the liquid sending pump 43 or fluctuation of the heat load may occur in the liquid nitrogen, and convection may be generated or agitated in the liquid nitrogen. In this case, the temperature gradient is disturbed, and even if the above-described heat insulating member 35 is provided, the operating condition becomes unstable, and the vaporization of liquid nitrogen on the liquid surface and conversely the condensation of nitrogen gas occur. As a result, the level of the liquid level fluctuates, and the temperature gradient becomes more and more inconsistent, resulting in more unstable operating conditions, lowering of cooling efficiency and lowering of system reliability. There is a possibility that it will.

【0031】特に前述の従来技術の場合、断熱部材35
を配置した領域では、その断熱部材35の体積によって
液体窒素が排除されていて、断熱部材35の周囲のわず
かな狭い空隙39の部分のみを液体窒素が移動し得る状
況となっているから、わずかに液体窒素の蒸発もしくは
窒素ガスの凝縮が生じただけで、液面の位置が大きく変
動し、そのため温度勾配が大きく変動してしまうおそれ
がある。したがって従来技術のような断熱部材35を設
けた場合は、実際の運転時においては運転状況の安定
化、信頼性の向上を図るには未だ不充分であった。
Particularly in the case of the above-mentioned prior art, the heat insulating member 35 is used.
In the region where is disposed, liquid nitrogen is excluded by the volume of the heat insulating member 35, and liquid nitrogen can move only in a small narrow space 39 around the heat insulating member 35. However, only the evaporation of liquid nitrogen or the condensation of nitrogen gas occurs, so that the position of the liquid surface fluctuates greatly, and thus the temperature gradient may fluctuate greatly. Therefore, when the heat insulating member 35 as in the related art is provided, it is still insufficient to stabilize the operation state and improve the reliability during the actual operation.

【0032】なお上述の説明では供給側容器21内の断
熱部材35を例にとって説明したが、冷却容器3内の断
熱部材13についてもほぼ同様な問題がある。
In the above description, the heat insulating member 35 in the supply container 21 has been described as an example. However, the heat insulating member 13 in the cooling container 3 has substantially the same problem.

【0033】さらに、既に述べたように特開平10−5
4637号に示される超電導部材冷却装置、すなわち超
電導部材を収容した冷却容器とは別に減圧容器を設けて
おいて、減圧用容器内の液体窒素を減圧して例えば65
Kの低温に降下させ、かつその低温の液体窒素と大気圧
の冷却用液体窒素とを熱交換させて、得られた大気圧下
で65K程度の低温の液体窒素(すなわち大気圧下での
過冷却液体窒素)を冷却容器に導き、その冷却容器内の
超電導部材を65K近くまで冷却するようにした装置の
場合も、冷却容器内に外部から大気圧の窒素ガスを導入
するようにしており、また冷却容器内の液体窒素の液面
下にFRP等からなる断熱部材を配置することが考えら
れており、この場合も前記と同様な問題があった。
Further, as already described,
No. 4637, a superconducting member cooling device, that is, a decompression container is provided separately from a cooling container accommodating the superconducting member, and liquid nitrogen in the decompression container is decompressed to, for example, 65.
K at a low temperature, and heat exchange between the low-temperature liquid nitrogen and the cooling liquid nitrogen at atmospheric pressure. In the case of a device in which cooling liquid nitrogen is guided to a cooling container and the superconducting member in the cooling container is cooled to near 65K, nitrogen gas at atmospheric pressure is introduced from the outside into the cooling container. Further, it has been considered to dispose a heat insulating member made of FRP or the like below the liquid nitrogen level in the cooling container. In this case, the same problem as described above has been encountered.

【0034】結局、液面上に空間を残して液体窒素を収
容しかつその液面上の空間に大気圧もしくは大気圧以上
の圧力で窒素ガスが導入される液体窒素容器(例えば特
許第2859250号の装置における供給側容器21も
しくは冷却容器3、あるいは特開平10−54637号
の装置における冷却容器)内の液体窒素を、大気圧下で
の過冷却温度とし、かつその液体窒素容器内の液体窒素
の液面下にFRP等からなる断熱部材を設けておき、大
気圧下での過冷却温度の液体窒素によって超電導部材を
冷却するようにした装置では、すべて前述のような問題
が生じるおそれがあったのである。
As a result, a liquid nitrogen container (for example, Japanese Patent No. 2859250) in which liquid nitrogen is accommodated while leaving a space above the liquid surface and nitrogen gas is introduced into the space above the liquid surface at atmospheric pressure or a pressure higher than atmospheric pressure. The liquid nitrogen in the supply-side container 21 or the cooling container 3 in the apparatus described in the above, or the cooling vessel in the apparatus disclosed in JP-A-10-54637) is set to a supercooling temperature under atmospheric pressure, and the liquid nitrogen in the liquid nitrogen container In a device in which a heat insulating member made of FRP or the like is provided below the liquid surface and the superconducting member is cooled by liquid nitrogen at a supercooling temperature under atmospheric pressure, the above-described problem may occur. It was.

【0035】この発明は以上の事情を背景としてなされ
たもので、液面上に空間を残して過冷却温度の液体窒素
を収容する液体窒素容器の液面上の空間を大気圧もしく
は大気圧以上の窒素ガス圧力で加圧し、大気圧下での過
冷却温度の液体窒素によって超電導部材を冷却するよう
にした装置において、主として液面下の温度勾配を確実
かつ安定して保つことができるようにし、これによって
運転状況の安定化、冷却効率の向上、信頼性の向上を図
ることを目的としたものである。
The present invention has been made in view of the above circumstances, and the space above the liquid surface of a liquid nitrogen container containing liquid nitrogen at a supercooled temperature while leaving a space above the liquid surface is set at atmospheric pressure or higher. In a device in which the superconducting member is cooled by liquid nitrogen at a supercooling temperature under atmospheric pressure, the temperature gradient under the liquid surface can be maintained reliably and stably. This aims at stabilizing the operating condition, improving the cooling efficiency, and improving the reliability.

【0036】前述のような課題を解決するため、この発
明においては、基本的には液体窒素容器内の液面よりも
下方の位置から液面よりも上方の位置までの間にわたっ
て、連続気泡タイプのウレタン発泡体の如く、連続孔
(連続気泡)を有する多孔質断熱材からなる対流阻止部
材を配置することとした。
In order to solve the above-mentioned problem, in the present invention, an open-cell type is basically provided from a position below the liquid level to a position above the liquid level in the liquid nitrogen container. A convection preventing member made of a porous heat-insulating material having continuous pores (open cells) is arranged like the urethane foam.

【0037】すなわち請求項1の発明は、液面上に空間
を残して液体窒素を収容しかつその液面上の空間に大気
圧もしくは大気圧以上の窒素ガス圧力が加えられる液体
窒素容器内の液体窒素を、大気圧下での過冷却温度と
し、その大気圧下での過冷却温度の液体窒素によって超
電導部材を冷却するように構成した超電導部材冷却装置
において、前記液体窒素容器内の液体窒素の液面よりも
下方の位置から、液面上方の位置までの間にわたって、
連続孔を有する多孔質断熱材からなる対流阻止部材を配
置したことを特徴とするものである。
That is, according to the first aspect of the present invention, there is provided a liquid nitrogen container in which liquid nitrogen is stored while leaving a space above the liquid surface, and a nitrogen gas pressure equal to or higher than the atmospheric pressure is applied to the space above the liquid surface. In a superconducting member cooling device configured to set liquid nitrogen to a supercooling temperature under atmospheric pressure and to cool the superconducting member by liquid nitrogen at a supercooling temperature under atmospheric pressure, the liquid nitrogen in the liquid nitrogen container From the position below the liquid level to the position above the liquid level,
A convection preventing member made of a porous heat insulating material having continuous holes is provided.

【0038】このような請求項1の発明の超電導部材冷
却装置においては、対流阻止部材は連続孔を有する多孔
質断熱材によって作られているため、液体窒素容器内の
液体窒素が液面に近い位置において対流阻止部材の連続
孔に入り込むことになり、したがって液体窒素容器内の
液面は、対流阻止部材の上下方向中間位置(上端面と下
端面との間の中間の位置)において対流阻止部材の内部
の連続孔部分に位置することになる。そして液面近傍の
位置において液面下の液体窒素が、前述のように対流阻
止部材の内部の連続孔内に入り込んでいるため、運転時
に送液ポンプや熱負荷の変動などによって容器内の液体
窒素に対流や撹拌が生じても、液面近傍の液体窒素はそ
の移動(対流、撹拌)が阻止され、その結果上述のよう
な対流や撹拌に起因する上下方向の温度勾配が崩れた
り、乱れたりすることを未然に防止することができる。
In the superconducting member cooling device according to the first aspect of the present invention, since the convection preventing member is made of a porous heat insulating material having continuous holes, the liquid nitrogen in the liquid nitrogen container is close to the liquid surface. At the position, the liquid flows into the continuous hole of the convection preventing member, so that the liquid level in the liquid nitrogen container is at a vertically intermediate position (an intermediate position between the upper end surface and the lower end surface) of the convection preventing member. Will be located in the continuous hole portion inside. At the position near the liquid level, the liquid nitrogen below the liquid level has entered the continuous hole inside the convection blocking member as described above. Even if convection or agitation occurs in the nitrogen, the movement (convection and agitation) of the liquid nitrogen in the vicinity of the liquid surface is prevented, and as a result, the vertical temperature gradient caused by the convection or the agitation as described above collapses or is disturbed Can be prevented beforehand.

【0039】また対流阻止部材は容器内の液面上の空間
中へも延出しているため、液面上の空間における窒素ガ
スの対流や撹拌も阻止され、そのため液面上の気相にお
ける温度勾配も安定化し、このことも運転状況の安定
化、信頼性の向上に寄与する。
Since the convection preventing member also extends into the space above the liquid level in the container, the convection and agitation of the nitrogen gas in the space above the liquid level are also prevented. The gradient is also stabilized, which also contributes to the stabilization of the operating condition and the improvement of reliability.

【0040】さらに、対流阻止部材として、その空隙率
(気孔率)が高いもの(例えば連続気泡ウレタン発泡体
では90%程度の空隙率を有する)を用いれば、仮に液
面での液体窒素の気化や窒素ガスの凝縮によって液量の
増減が生じたとしても、それが液位の変動に及ぼす影響
は小さく、このことも温度勾配の安定化に寄与する。
Further, if a convection preventing member having a high porosity (porosity) (for example, an open-cell urethane foam having a porosity of about 90%) is used, if the liquid nitrogen is vaporized on the liquid surface, Even if the amount of liquid increases or decreases due to the condensation of nitrogen gas or nitrogen gas, the influence on the fluctuation of the liquid level is small, and this also contributes to stabilization of the temperature gradient.

【0041】なおここで、対流阻止部材に使用される多
孔質断熱材としては、可及的に熱伝導率が低いものが望
ましいが、液体窒素とそれほど熱伝導率が変わらないも
のを用いても、前述のように液体窒素の対流、撹拌を阻
止する結果として、見掛け上大きな断熱効果を示すこと
になる。したがって断熱材としては前述のような連続気
泡ウレタン発泡体の如く、極く一般的な材質のものを用
いることができるのである。
Here, as the porous heat insulating material used for the convection blocking member, a material having as low a thermal conductivity as possible is desirable, but a material having a thermal conductivity not so different from that of liquid nitrogen can be used. As described above, as a result of preventing the convection and stirring of liquid nitrogen, an apparently large heat insulating effect is exhibited. Therefore, as the heat insulating material, an extremely general material such as the open-cell urethane foam described above can be used.

【0042】また請求項2の発明は、前述の特許第28
59250号の超電導部材冷却装置に準じて、容器内の
液体窒素を直接冷凍機によって大気圧下での過冷却温度
まで冷却するようにした場合に、前記同様に連続孔を有
する多孔質断熱材からなる対流阻止部材を設けることを
規定したものである。
The invention of claim 2 is based on the above-mentioned patent No. 28.
According to the superconducting member cooling device of No. 59250, when the liquid nitrogen in the container is directly cooled by a refrigerator to the supercooling temperature under the atmospheric pressure, the porous heat insulating material having continuous holes as described above is used. The provision of a convection preventing member is provided.

【0043】具体的には、請求項2の発明は、液面上に
空間を残して液体窒素を収容しかつその液面上の空間に
大気圧もしくは大気圧以上の窒素ガス圧力が加えられる
供給側容器と、その供給側容器内の液体窒素を大気圧下
での過冷却温度まで冷却するために冷却ヘッドを液体窒
素の液面よりも下方の位置まで浸漬させた冷凍機とを備
え、供給側容器内の過冷却温度の液体窒素を冷却対象の
超電導部材へ導いてその超電導部材を冷却するように構
成された超電導部材冷却装置において、前記供給側容器
内の液体窒素の液面よりも下方の位置から、液面上方の
位置までの間にわたって、連続孔を有する多孔質断熱材
からなる対流阻止部材を配置したことを特徴とするもの
である。
More specifically, the invention according to claim 2 is a supply method in which liquid nitrogen is accommodated while leaving a space above the liquid level, and a nitrogen gas pressure higher than the atmospheric pressure or atmospheric pressure is applied to the space above the liquid level. Side container, and a refrigerator in which a cooling head is immersed to a position below the liquid nitrogen level to cool liquid nitrogen in the supply side container to a supercooling temperature under atmospheric pressure. In a superconducting member cooling device configured to guide liquid nitrogen at a supercooling temperature in a side container to a superconducting member to be cooled and cool the superconducting member, the liquid nitrogen in the supply side container is lower than the liquid level of liquid nitrogen. And a convection preventing member made of a porous heat insulating material having continuous holes is arranged from the position to the position above the liquid level.

【0044】このように冷凍機の冷却ヘッドを容器内の
液体窒素中に直接浸漬させて、大気圧下での過冷却温度
の液体窒素を得る場合には、その容器内に通常配設され
ている送液ポンプの動作などによって液体窒素の対流や
撹拌が生じ易く、また温度勾配の乱れがシステム全体に
与える影響も大きいが、既に述べた請求項1の発明と同
様に、連続孔を有する多孔質断熱材からなる対流阻止部
材を設けておくことによって、液面下の温度勾配、液面
上の温度勾配を安定化することができる。
When the cooling head of the refrigerator is directly immersed in the liquid nitrogen in the container to obtain the liquid nitrogen at a supercooling temperature under the atmospheric pressure, the cooling head is usually provided in the container. Convection and agitation of liquid nitrogen are likely to occur due to the operation of the liquid feed pump, and the turbulence of the temperature gradient greatly affects the entire system. By providing the convection preventing member made of a high quality heat insulating material, the temperature gradient below the liquid surface and the temperature gradient above the liquid surface can be stabilized.

【0045】なお請求項2の構成の場合、多孔質断熱材
からなる対流阻止部材は、請求項3で規定しているよう
に、供給側容器の液面よりも下方でかつ冷凍機の冷却ヘ
ッドの上端部以上の位置から液面上方の位置までの間に
わたって配置しても、あるいは請求項4で規定している
ように、供給側容器の液面よりも下方でかつ冷凍機の冷
却ヘッドにおける上下方向中間位置から液面上方の位置
までの間にわたって配置しても良い。
In the case of the structure of claim 2, the convection preventing member made of a porous heat insulating material is provided below the liquid level of the supply side container and the cooling head of the refrigerator as defined in claim 3. May be disposed from the position above the upper end to the position above the liquid level, or as defined in claim 4, below the liquid level of the supply side container and in the cooling head of the refrigerator. It may be arranged from the middle position in the vertical direction to the position above the liquid level.

【0046】さらに請求項5の発明は、請求項4に記載
の超電導部材冷却装置において、冷凍機の冷却ヘッドが
供給側容器の底面近くの位置まで延伸されていることを
特徴とするものである。
According to a fifth aspect of the present invention, in the superconducting member cooling device according to the fourth aspect, the cooling head of the refrigerator extends to a position near the bottom surface of the supply-side container. .

【0047】ここで、冷凍機のシリンダ部の内部には常
温付近の高圧の媒体が流れるが、請求項5で規定するよ
うな構成としておけば、冷凍機のシリンダ部の外周面に
断熱部が設けられているため、そのシリンダ部における
液体窒素中に浸漬された部分でも、シリンダ部内の常温
付近の媒体ガスから液体窒素への熱侵入量が少なく、そ
のため冷凍機の冷却効率が低下することが防止され、ま
たシリンダ部からの熱侵入による液体窒素の蒸発自体も
少なくなるため、液体窒素の液面レベルの変動も少なく
なる。
Here, a high-pressure medium near normal temperature flows inside the cylinder portion of the refrigerator, but if the structure as defined in claim 5 is adopted, a heat insulating portion is provided on the outer peripheral surface of the cylinder portion of the refrigerator. Therefore, even in the portion of the cylinder portion immersed in the liquid nitrogen, the amount of heat entering the liquid nitrogen from the medium gas near the normal temperature in the cylinder portion is small, and the cooling efficiency of the refrigerator may be reduced. In addition, since the evaporation of liquid nitrogen due to heat intrusion from the cylinder portion is reduced, the fluctuation of the liquid surface level of liquid nitrogen is also reduced.

【0048】さらに請求項6発明は、請求項4もしくは
請求項5に記載の超電導部材冷却装置において、前記冷
凍機のシリンダ部の外周面に断熱部が設けられ、かつそ
の断熱部が、冷凍機の冷却ヘッドの外周面における上下
方向の中間位置まで延長されていることを特徴とするも
のである。
According to a sixth aspect of the present invention, in the superconducting member cooling device according to the fourth or fifth aspect, a heat insulating portion is provided on an outer peripheral surface of a cylinder portion of the refrigerator, and the heat insulating portion is provided with the refrigerator. The cooling head extends to an intermediate position in the vertical direction on the outer peripheral surface of the cooling head.

【0049】このような請求項6の発明の超電導部材冷
却装置では、シリンダ部外周面の断熱部が冷凍機の冷却
ヘッドの外周面の上下方向中間位置まで延長されている
ため、供給容器内における液面、すなわち気液界面から
冷凍機の冷却ヘッドへの熱侵入が少なくなり、冷却効率
を一層向上させることができる。
In the superconducting member cooling apparatus according to the sixth aspect of the present invention, since the heat insulating portion on the outer peripheral surface of the cylinder portion is extended to an intermediate position in the vertical direction of the outer peripheral surface of the cooling head of the refrigerator, the inside of the supply container Heat intrusion from the liquid surface, that is, the gas-liquid interface, into the cooling head of the refrigerator is reduced, and the cooling efficiency can be further improved.

【0050】[0050]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0051】[0051]

【実施例】図1において、供給側容器21における液体
窒素33の液面33Aを挟んで上下の領域には、連続気
泡ウレタン系発泡体の如く、連続孔(連続気泡)を有す
る多孔質断熱材からなる対流阻止部材77が配設されて
いる。この対流阻止部材77は、その下面77Aが液面
33Aより所定距離だけ下方の位置(図1の例では冷凍
機41の冷却ヘッド41Bの上端)に位置するように、
またその上面77Bが蓋部25よりも若干下方の位置に
位置するように配置されている。そして液体窒素33
は、その液面33A近傍において対流阻止部材77の内
部の連続孔に入り込んで、液面33Aが対流阻止部材7
7の上面77Bと下面77Aとの中間に位置することに
なる。なお対流阻止部材77の外周面の形状・寸法は、
供給側容器21の内周面と実質的に同一形状でほぼ同一
寸法に作られ、供給側容器21の内周面に嵌め込まれた
状態とされている。
In FIG. 1, a porous insulating material having continuous pores (open cells), such as an open-cell urethane foam, is provided above and below a liquid surface 33A of liquid nitrogen 33 in a supply-side container 21. Is provided. The convection preventing member 77 is positioned such that its lower surface 77A is located at a position below the liquid surface 33A by a predetermined distance (in the example of FIG. 1, the upper end of the cooling head 41B of the refrigerator 41).
The upper surface 77 </ b> B is arranged so as to be located slightly below the lid 25. And liquid nitrogen 33
Enters the continuous hole inside the convection preventing member 77 in the vicinity of the liquid surface 33A, and the liquid surface 33A
7 is located between the upper surface 77B and the lower surface 77A. The shape and dimensions of the outer peripheral surface of the convection blocking member 77 are as follows:
The inner peripheral surface of the supply-side container 21 is formed in substantially the same shape and substantially the same size, and is fitted into the inner peripheral surface of the supply-side container 21.

【0052】一方冷却容器3における液体窒素11の液
面11Aを挟む上下の領域にも、連続気泡ウレタン系発
泡体の如く、連続孔(連続気泡)を有する多孔質断熱材
からなる対流阻止部材79が配設されている。この対流
阻止部材79は、その下面79Aが液面11Aより所定
距離だけ下方の位置、望ましくは冷却対象となる超電導
部材1の上端よりも上方の位置に位置し、かつ上面79
Bが蓋部7の下面よりも若干下方に位置するように定め
られている。そして液体窒素11がその液面11Aの近
傍において対流阻止部材79の内部の連続孔部分に入り
込み、その液面11Aが対流阻止部材79の上面79B
と下面79Aとの中間に位置することになる。なお対流
阻止部材79の外周面の形状・寸法は、冷却容器3の内
周面と実質的に同一形状でほぼ同一寸法に作られ、冷却
容器3の内周面に嵌め込まれた状態となっている。
On the other hand, the convection preventing member 79 made of a porous heat insulating material having continuous pores (open cells), such as an open-cell urethane foam, is also provided above and below the liquid level 11A of the liquid nitrogen 11 in the cooling vessel 3. Are arranged. The convection preventing member 79 has a lower surface 79A located at a position below the liquid surface 11A by a predetermined distance, desirably, a position above the upper end of the superconducting member 1 to be cooled.
B is set so as to be located slightly below the lower surface of the lid 7. Then, the liquid nitrogen 11 enters the continuous hole portion inside the convection preventing member 79 near the liquid surface 11A, and the liquid surface 11A becomes the upper surface 79B of the convection preventing member 79.
And the lower surface 79A. The shape and dimensions of the outer peripheral surface of the convection preventing member 79 are substantially the same as those of the inner peripheral surface of the cooling container 3, are made substantially the same size, and are fitted into the inner peripheral surface of the cooling container 3. I have.

【0053】以上のような図1に示される実施例におい
て、液体窒素供給源27から供給側容器21内に供給さ
れた77K程度の液体窒素は、冷凍機41の冷却ヘッド
41Bによって大気圧もしくは大気圧以上の圧力のもと
で冷却されて、大気圧下での飽和液体窒素温度(77K
程度)よりも低い温度(過冷却温度)、例えば65〜7
0K程度まで温度降下され、過冷却された液体窒素33
が、送液ポンプ43によって供給側容器21の底部付近
から汲み上げられ、トランスファチューブ45を介し
て、冷却容器3内に導かれ、超電導部材1を例えば67
〜72K程度に冷却・保持する。また冷却容器3内にお
いて超電導部材1からの熱などによって例えば70K程
度以上に温度上昇した液体窒素は、還流管17を介して
供給側容器21へ戻る。このようにして供給側容器21
へ還流された液体窒素は、冷凍機41の冷却ヘッド41
Bにより再び65〜70K程度まで大気圧もしくは大気
圧以上の圧力のもとで冷却され、前述のように送液ポン
プ43によって冷却容器3に再び送られることになる。
また供給側容器21における液面33A上の空間47お
よび冷却容器3における液面11A上の空間15には、
大気圧もしくは大気圧以上の圧力の窒素ガスが導入され
て、供給側容器21内の圧力および冷却容器3内の圧力
が大気圧もしくは大気圧以上に維持され、蓋部25の封
止部分などおよび蓋部7の封止部分や電流導入端子部分
などを介して外部から空気が引込まれることを防止して
いる。以上の動作状況は図5に示す従来技術と実質的に
同様である。
In the embodiment shown in FIG. 1 described above, the liquid nitrogen of about 77 K supplied from the liquid nitrogen supply source 27 into the supply side container 21 is subjected to the atmospheric pressure or the atmospheric pressure by the cooling head 41 B of the refrigerator 41. Cooled under pressure above atmospheric pressure, saturated liquid nitrogen temperature under atmospheric pressure (77K
Temperature) (supercooling temperature), for example, 65 to 7
Liquid nitrogen 33 cooled down to about 0K and supercooled
Is pumped from the vicinity of the bottom of the supply-side container 21 by the liquid sending pump 43, is guided into the cooling container 3 via the transfer tube 45, and moves the superconducting member 1 to, for example, 67.
Cool and maintain to about 72K. In the cooling container 3, the liquid nitrogen whose temperature has risen to, for example, about 70 K or more due to heat from the superconducting member 1 returns to the supply-side container 21 via the reflux pipe 17. Thus, the supply side container 21
The liquid nitrogen refluxed to the cooling head 41 of the refrigerator 41
B again cools to about 65 to 70K under the atmospheric pressure or a pressure higher than the atmospheric pressure, and is again sent to the cooling container 3 by the liquid sending pump 43 as described above.
The space 47 on the liquid surface 33A in the supply container 21 and the space 15 on the liquid surface 11A in the cooling container 3 include:
Atmospheric pressure or a nitrogen gas at a pressure higher than the atmospheric pressure is introduced, and the pressure in the supply container 21 and the pressure in the cooling container 3 are maintained at the atmospheric pressure or the atmospheric pressure or higher. Air is prevented from being drawn in from the outside via the sealing portion of the lid 7 and the current introduction terminal portion. The above operation situation is substantially the same as the prior art shown in FIG.

【0054】ここで、供給側容器21においては、液体
窒素33中における冷凍機41の冷却ヘッド41Bより
も上方の部分、すなわち液面33A近傍の領域では、液
体窒素33が対流阻止部材77の連続孔中に入り込んで
いるため、送液ポンプ43の作動などの何らかの原因に
より容器21内の下部の領域で対流や撹拌が生じても、
その対流や撹拌による液体窒素の流動が対流阻止部材7
7の連続孔の壁部によって妨げられ、結局液面33Aの
近傍の領域では対流や撹拌が阻止されて、液面33Aか
ら下方へ向かっての温度勾配が安定して維持される。
Here, in the supply side container 21, in the portion above the cooling head 41 B of the refrigerator 41 in the liquid nitrogen 33, that is, in the region near the liquid level 33 A, the liquid nitrogen 33 is connected to the convection preventing member 77. Because it has penetrated into the hole, even if convection or agitation occurs in the lower region in the container 21 due to some cause such as operation of the liquid feed pump 43,
The flow of the liquid nitrogen due to the convection and the agitation is caused by the convection preventing member 7.
In the region near the liquid surface 33A, convection and agitation are prevented, and the temperature gradient downward from the liquid surface 33A is stably maintained.

【0055】また、液面33A上の空間47において
も、液面下の液体窒素33の対流や撹拌に附随して、気
相(窒素ガス)に対流や撹拌が生じる可能性があるが、
その場合でも対流阻止部材77が液面上まで存在してい
るため、窒素ガスの対流や撹拌が生じることを防止し、
蓋部25から液面33Aに至るまでの気相領域の温度勾
配を安定化することができる。
In the space 47 above the liquid surface 33A, convection and stirring may occur in the gas phase (nitrogen gas) in association with the convection and stirring of the liquid nitrogen 33 below the liquid surface.
Even in that case, since the convection blocking member 77 is present above the liquid surface, it is possible to prevent convection and stirring of the nitrogen gas from occurring,
The temperature gradient in the gas phase region from the lid 25 to the liquid surface 33A can be stabilized.

【0056】さらに、仮に液面33Aからの液体窒素の
気化や液面33A上の空間からの窒素ガスの凝縮によっ
て、液体窒素の量が変動したとしても、一般に連続気泡
ウレタン系発泡体などの連続孔多孔質断熱材は、その水
平横断面における気孔部分(空隙部分)の面積(すなわ
ち液体窒素33が入り込んでいる部分の水平横断面面
積)が図5に示す従来技術における断熱部材35の周囲
の空隙39の水平横断面積に比べて格段に大きいのが通
常であり、そのためわずかの液量の変動が液面位置の変
動に大きな影響を及ぼしてしまうことを回避して、液面
位置を安定して維持することができる。
Furthermore, even if the amount of liquid nitrogen fluctuates due to the vaporization of liquid nitrogen from the liquid surface 33A or the condensation of nitrogen gas from the space above the liquid surface 33A, generally, the open-cell urethane-based foam or the like may be used. In the porous heat insulating material, the area of the pore portion (void portion) in the horizontal cross section (that is, the horizontal cross sectional area of the portion where the liquid nitrogen 33 enters) is around the heat insulating member 35 in the prior art shown in FIG. Normally, it is much larger than the horizontal cross-sectional area of the gap 39. Therefore, it is possible to prevent a slight change in the liquid amount from greatly affecting the change in the liquid surface position, and to stabilize the liquid surface position. Can be maintained.

【0057】また冷却容器3内においても、連続孔を有
する多孔質断熱材からなる対流阻止部材79が配設され
ているため、上記と同様な作用、効果を得ることができ
る。すなわち冷却容器3の側では、冷却対象である超電
導部材1の動作による熱負荷の変動によって冷却容器3
内の下部で液体窒素11の対流や撹拌が生じることがあ
るが、これを対流阻止部材79によって阻止して、液面
11Aの近傍での液体窒素11の対流や撹拌を有効に防
止し、温度勾配を安定化することができる。また冷却容
器3内における液面11A上の空間の気相(窒素ガス)
に対しても同様であって、蓋部7から液面11Aまでの
気相領域における温度勾配を安定化することができる。
Since the convection preventing member 79 made of a porous heat insulating material having continuous holes is also provided in the cooling container 3, the same operation and effect as described above can be obtained. That is, on the cooling container 3 side, the cooling container 3 is changed due to the change in the heat load due to the operation of the superconducting member 1 to be cooled.
The convection and stirring of the liquid nitrogen 11 may occur in the lower part of the inside, but this is prevented by the convection blocking member 79 to effectively prevent the convection and stirring of the liquid nitrogen 11 near the liquid surface 11A, The gradient can be stabilized. Gas phase (nitrogen gas) in the space above liquid level 11A in cooling container 3
Similarly, the temperature gradient in the gas phase region from the lid 7 to the liquid surface 11A can be stabilized.

【0058】そしてまた、冷却容器3の側の対流阻止部
材79も、水平横断面の気孔部分の面積が図5に示す従
来技術の断熱部材13の周囲の空隙14の水平横断面面
積に比較して格段に大きいのが通常であり、そのため前
記同様にわずかな液量の変動が液面位置の変動に及ぼす
影響を小さくして、液面位置を安定化することができ
る。
Also, in the convection preventing member 79 on the side of the cooling vessel 3, the area of the pore portion of the horizontal cross section is compared with the horizontal cross sectional area of the space 14 around the heat insulating member 13 of the prior art shown in FIG. 5. Normally, the influence of a slight change in the liquid amount on the change in the liquid level is reduced, and the liquid level can be stabilized.

【0059】ここで、図1に示される実施例において
は、供給側容器21内における対流阻止部材77を、そ
の下面が冷凍機1の冷却ヘッド41Bの上端に位置する
ように配置しているが、対流阻止部材77は、その下面
が冷凍機1の冷却ヘッド41Bの上下方向の中間位置に
達するように配置しても良く、その場合の例を示したの
が図2の実施例である。
Here, in the embodiment shown in FIG. 1, the convection preventing member 77 in the supply side container 21 is arranged such that its lower surface is located at the upper end of the cooling head 41B of the refrigerator 1. The convection preventing member 77 may be arranged so that the lower surface thereof reaches an intermediate position in the vertical direction of the cooling head 41B of the refrigerator 1, and an example in that case is shown in the embodiment of FIG.

【0060】図2の実施例では、冷凍機41の冷却ヘッ
ド41Bは、その下端が供給側容器21の底面近くまで
延長されている。そしてこのように下方へ延長された冷
却ヘッド41の上下方向の中間位置に相当するレベル
に、連続孔を有する多孔質断熱材からなる対流阻止部材
77の下面77Aが位置している。もちろん対流阻止部
材77の上面77Bは液面33Aよりも上方(蓋部25
に近い位置)に位置している。なおこの実施例では、常
温付近の温度の冷凍機媒体ガスが内部を流通する冷凍機
41のシリンダ部41Dから液体窒素中への熱侵入を可
及的に防止するため、シリンダ部41Dの外周面を取囲
むように、真空断熱構造あるいは適宜の断熱材からなる
断熱部80が設けられている。
In the embodiment shown in FIG. 2, the lower end of the cooling head 41B of the refrigerator 41 is extended to near the bottom of the supply container 21. The lower surface 77A of the convection blocking member 77 made of a porous heat insulating material having continuous holes is located at a level corresponding to the vertical intermediate position of the cooling head 41 extended downward in this manner. Of course, the upper surface 77B of the convection preventing member 77 is higher than the liquid surface 33A (the lid 25).
(Close to). In this embodiment, in order to prevent as much as possible the intrusion of heat into the liquid nitrogen from the cylinder portion 41D of the refrigerator 41 in which the refrigerator medium gas at a temperature near normal temperature flows, the outer peripheral surface of the cylinder portion 41D A heat insulating portion 80 made of a vacuum heat insulating structure or an appropriate heat insulating material is provided so as to surround the space.

【0061】図2に示す実施例の場合、対流阻止部材7
7は液面上方から冷凍機41の冷却ヘッド41Bの上下
方向中間位置にまで及んでいるため、図1の例の場合よ
りも対流阻止部材77における液面下の部分の厚みが大
きくなっている。これは対流阻止に有効な領域が広いこ
とを意味し、そのため図1の例の場合よりも対流や撹拌
による液体窒素11の流動を防止する効果が大きく、し
たがって温度勾配をより一層安定化させる効果が得られ
る。またここで、図2の例では冷凍機41の冷却ヘッド
41Bの下端が供給側容器21の底面近くまで延長され
ているため、より一層対流阻止部材77の液面下の厚み
を増すことが可能となって、前述の効果をより一層大き
くすることが可能となっている。なお冷却ヘッド41B
の上部(前記中間位置よりも上方の部分)の外周面は対
流阻止部材77によって取囲まれているが、冷却ヘッド
41Bの下部の外周面は液体窒素11に直接接触してい
るため、冷却ヘッド41Bと液体窒素11との間の熱交
換効率を低下させるおそれは少ない。
In the case of the embodiment shown in FIG.
7 extends from above the liquid surface to a middle position in the vertical direction of the cooling head 41B of the refrigerator 41, the thickness of the portion below the liquid surface of the convection blocking member 77 is larger than in the example of FIG. . This means that the area effective for preventing convection is large, and therefore, the effect of preventing the flow of the liquid nitrogen 11 due to convection and agitation is greater than in the example of FIG. 1, and therefore, the effect of further stabilizing the temperature gradient. Is obtained. Further, in the example shown in FIG. 2, since the lower end of the cooling head 41B of the refrigerator 41 is extended to near the bottom surface of the supply-side container 21, the thickness of the convection preventing member 77 below the liquid level can be further increased. Thus, it is possible to further enhance the above-described effect. The cooling head 41B
The outer peripheral surface of the upper part (part above the intermediate position) is surrounded by the convection blocking member 77, but the lower peripheral surface of the cooling head 41B is in direct contact with the liquid nitrogen 11, so that the cooling head There is little possibility that the heat exchange efficiency between 41B and liquid nitrogen 11 will be reduced.

【0062】また図2の実施例では、冷凍機41のシリ
ンダ部41Dの外周面に断熱部80が設けられており、
そのため内部を高圧で常温付近の温度の冷凍機媒体ガス
が流通するシリンダ部41Dからその外側の液体窒素1
1への熱侵入をも防止することができる。
In the embodiment shown in FIG. 2, a heat insulating portion 80 is provided on the outer peripheral surface of the cylinder portion 41D of the refrigerator 41.
For this reason, the inside of the cylinder 41D through which the refrigerant gas at a high temperature and around the normal temperature flows inside from the cylinder portion 41D,
1 can also be prevented from entering the heat.

【0063】なおこのように冷凍機41のシリンダ部4
1Dの外周面に断熱部80を設ける場合、図3に示すよ
うにその断熱部80を冷却ヘッド41Bの上下方向中間
位置まで延長させておいても良く、このようにすれば冷
却ヘッド41Bの上部の外周面が液体窒素に直接接触す
ることを防止でき、そのため熱勾配の安定化に一層寄与
することができる。
As described above, the cylinder portion 4 of the refrigerator 41
When the heat insulating portion 80 is provided on the outer peripheral surface of the 1D, the heat insulating portion 80 may be extended to an intermediate position in the vertical direction of the cooling head 41B as shown in FIG. Can be prevented from directly contacting the outer peripheral surface with the liquid nitrogen, which can further contribute to stabilization of the thermal gradient.

【0064】なお以上の各実施例においては、対流阻止
部材を供給側容器21と冷却容器3との両者に設けてい
るが、場合によっては供給側容器21のみに設けても良
い。
In each of the above embodiments, the convection preventing member is provided in both the supply container 21 and the cooling container 3, but may be provided only in the supply container 21 in some cases.

【0065】以上の各実施例は、特許第2859250
号において提案されている従来技術の超電導部材冷却装
置を改良したものとして示したが、特開平10−546
37号で提案されている従来技術の超電導部材冷却装
置、すなわち冷凍機を用いずに、減圧用容器および熱交
換器を用いて大気圧下での過冷却液体窒素を得て超電導
部材を冷却する装置に準じて、この発明を適用し得るこ
とはもちろんである。その場合の実施例を図4に示す。
Each of the above embodiments is described in Japanese Patent No. 2859250.
The superconducting member cooling device of the prior art proposed in Japanese Patent Application Laid-Open No. H10-546 is improved.
No. 37, a superconducting member cooling device of the prior art, that is, supercooled liquid nitrogen is obtained under atmospheric pressure using a decompression vessel and a heat exchanger without using a refrigerator, and the superconducting member is cooled. It goes without saying that the present invention can be applied according to the device. FIG. 4 shows an embodiment in that case.

【0066】図4において、冷却容器3は図1に示され
る実施例の冷却容器と同様に大気に実質的に開放された
汎用のクライオスタットからなるものであって、過冷却
液体窒素11が液面上に空間を残すように注入されてお
り、かつその底部に冷却対象となる超電導部材1が配置
されている。この冷却容器3の具体的構成は、図1の実
施例の場合と同様であり、その詳細な説明は省略する。
もちろん冷却容器3内の液体窒素11の液面11Aを挟
んでその上下にわたって連続孔を有する多孔質断熱材か
らなる対流阻止部材79が配置されている点も、図1に
示される実施例の冷却容器3と同様である。なお冷却容
器3内の液体窒素11の液面上の空間15には、窒素ガ
ス供給源71から窒素ガス供給管73A,73C、開閉
弁75Bを経て大気圧もしくは大気圧以上の圧力の窒素
ガスが供給されるようになっている。また冷却容器3内
における冷却用液体窒素11の液面11Aのわずか下方
の位置には、後述する還流管17の一端側開口端が開口
している。
In FIG. 4, the cooling vessel 3 is composed of a general-purpose cryostat substantially opened to the atmosphere similarly to the cooling vessel of the embodiment shown in FIG. The superconducting member 1 is injected so as to leave a space above, and a superconducting member 1 to be cooled is disposed at the bottom. The specific configuration of the cooling container 3 is the same as that of the embodiment of FIG. 1, and a detailed description thereof will be omitted.
Needless to say, the convection preventing member 79 made of a porous heat insulating material having continuous holes extending above and below the liquid surface 11A of the liquid nitrogen 11 in the cooling vessel 3 is also provided. The same as the container 3. In the space 15 above the liquid surface of the liquid nitrogen 11 in the cooling vessel 3, nitrogen gas at atmospheric pressure or a pressure higher than atmospheric pressure is supplied from the nitrogen gas supply source 71 via the nitrogen gas supply pipes 73A and 73C and the on-off valve 75B. It is being supplied. At a position slightly below the liquid level 11A of the cooling liquid nitrogen 11 in the cooling container 3, an opening end on one end side of a reflux pipe 17 described later is opened.

【0067】さらに前述のように大気に実質的に開放さ
れた冷却容器3とは別に、供給側保持容器81および減
圧用容器83が配設されている。
Further, apart from the cooling container 3 which is substantially open to the atmosphere as described above, a supply-side holding container 81 and a depressurizing container 83 are provided.

【0068】供給側保持容器81は、冷却容器3と同様
に大気に実質的に開放されたものであって、この供給側
保持容器81には、外部の液体窒素供給源85から、制
御弁87および供給管89を介して大気圧の液体窒素9
0が供給される。その供給量は供給側保持容器81内に
設けた液面計91および前記制御弁87によって制御さ
れる。また供給側保持容器81内には、送液ポンプ93
が配設されており、この送液ポンプ93によって供給側
保持容器81内の大気圧もしくは大気圧以上の圧力の液
体窒素90が、第1トランスファチューブ95を介して
減圧用容器83内の後述する熱交換器117へ輸送され
るようになっている。また供給側保持容器81内におけ
る液体窒素90の液面の上方の空間には、外部の窒素ガ
ス供給源71から窒素ガス供給管73A,73B、開閉
弁75Aを経て大気圧もしくは大気圧以上の圧力の窒素
ガスが導かれるようになっている。なお供給側保持容器
81内の液面下には、前述の冷却容器3から導かれる還
流管17の先端が開口している。
The supply-side holding container 81 is substantially open to the atmosphere like the cooling container 3. The supply-side holding container 81 receives a control valve 87 from an external liquid nitrogen supply source 85. And liquid nitrogen 9 at atmospheric pressure via supply pipe 89
0 is supplied. The supply amount is controlled by a liquid level gauge 91 provided in the supply side holding container 81 and the control valve 87. In the supply-side holding container 81, a liquid sending pump 93 is provided.
The liquid supply pump 93 causes the liquid nitrogen 90 at the atmospheric pressure or a pressure higher than the atmospheric pressure in the supply-side holding container 81 to be described later in the depressurizing container 83 via the first transfer tube 95. The heat is transferred to the heat exchanger 117. Further, in the space above the liquid level of the liquid nitrogen 90 in the supply-side holding container 81, the atmospheric pressure or the pressure higher than the atmospheric pressure is supplied from the external nitrogen gas supply source 71 through the nitrogen gas supply pipes 73A and 73B and the on-off valve 75A. Nitrogen gas is introduced. In addition, below the liquid level in the supply-side holding container 81, the tip of the reflux pipe 17 guided from the cooling container 3 is open.

【0069】一方減圧用容器83には、外部の液体窒素
供給源105から、制御弁107および供給管109を
介して熱交換用液体窒素111が供給される。その供給
量は、減圧用容器83内に設けた液面計113および制
御弁107によって制御されるようになっている。また
この減圧用容器83には、減圧手段としてロータリーポ
ンプ115が接続されており、このロータリーポンプ1
15によって内部の熱交換用液体窒素111が大気圧よ
りも所定の圧力だけ低い圧力(例えば20kPa)に減
圧され、またそれに伴なって温度降下されるようになっ
ている。さらに減圧用容器83内には、熱交換用液体窒
素111に浸漬される位置に熱交換器117が配設され
ている。この熱交換器117の入口側には、前述の供給
側保持容器81から第1トランスファチューブ95を介
して大気圧もしくは大気圧以上の圧力の飽和液体窒素9
0が供給されて、その液体窒素90が、減圧用容器83
内の減圧された低温の熱交換用液体窒素111と熱交換
されて、温度降下する。また熱交換器117の出口側は
第2トランスファチューブ119に接続されていて、熱
交換により温度降下した液体窒素90が前述の冷却容器
3に、冷却用液体窒素11として導かれるようになって
いる。
On the other hand, liquid nitrogen 111 for heat exchange is supplied to the pressure reducing vessel 83 from the external liquid nitrogen supply source 105 via the control valve 107 and the supply pipe 109. The supply amount is controlled by a liquid level gauge 113 and a control valve 107 provided in the pressure reducing container 83. A rotary pump 115 is connected to the pressure reducing container 83 as a pressure reducing means.
The pressure of the liquid nitrogen 111 for heat exchange inside is reduced to a pressure lower than the atmospheric pressure by a predetermined pressure (for example, 20 kPa), and the temperature is lowered accordingly. Further, a heat exchanger 117 is provided in the pressure reducing container 83 at a position where the heat exchanger 117 is immersed in the liquid nitrogen 111 for heat exchange. At the inlet side of the heat exchanger 117, saturated liquid nitrogen 9 at atmospheric pressure or a pressure higher than atmospheric pressure is supplied from the supply side holding container 81 via the first transfer tube 95.
0 is supplied and the liquid nitrogen 90 is supplied to the decompression container 83.
The heat is exchanged with the decompressed low-temperature liquid nitrogen 111 for heat exchange inside, and the temperature drops. The outlet side of the heat exchanger 117 is connected to the second transfer tube 119 so that the liquid nitrogen 90 whose temperature has dropped due to heat exchange is guided to the above-described cooling container 3 as the cooling liquid nitrogen 11. .

【0070】ここで減圧用容器83の側の液体窒素供給
源105、制御弁107、供給管109は、減圧用容器
83へ熱交換用液体窒素を供給するための熱交換用液体
窒素供給手段121を構成している。また液体窒素供給
源85、制御弁87、供給管89、供給側保持容器8
1、送液ポンプ93、第1トランスファチューブ95
は、熱交換器117に大気圧もしくは大気圧以上の圧力
の液体窒素を供給するための冷却用液体窒素供給手段1
23を構成している。さらに第2トランスファチユーブ
119は、熱交換器117を通過した大気圧下での過冷
却温度の冷却用液体窒素を冷却容器3に移送するための
移送手段125を構成している。なおこの実施例では、
冷却容器3が請求項1で規定する液体窒素容器に相当す
る。
Here, the liquid nitrogen supply source 105, the control valve 107, and the supply pipe 109 on the side of the decompression container 83 are provided with a heat exchange liquid nitrogen supply means 121 for supplying the heat exchange liquid nitrogen to the decompression container 83. Is composed. Further, a liquid nitrogen supply source 85, a control valve 87, a supply pipe 89, a supply side holding container 8
1. Liquid sending pump 93, first transfer tube 95
Is a cooling liquid nitrogen supply means 1 for supplying liquid nitrogen at atmospheric pressure or a pressure higher than atmospheric pressure to the heat exchanger 117.
23. Further, the second transfer tube 119 constitutes a transfer means 125 for transferring the liquid nitrogen for cooling, which has passed through the heat exchanger 117 and has a supercooling temperature under the atmospheric pressure, to the cooling container 3. In this embodiment,
The cooling container 3 corresponds to the liquid nitrogen container defined in claim 1.

【0071】以上のような図4に示される第2の実施例
の超電導部材冷却装置の全体的な機能について以下に説
明する。
The overall function of the superconducting member cooling apparatus according to the second embodiment shown in FIG. 4 will be described below.

【0072】供給側保持容器81から送液ポンプ93に
より第1トランスファチューブ95を介して減圧用容器
83内の熱交換器117へ送られる液体窒素90は、運
転開始の初期においては77K程度の温度の大気圧下で
の飽和状態のものとなっている。一方減圧用容器83内
は、減圧手段、例えばロータリーポンプ115によって
大気圧よりも低い圧力に減圧され、そのため液体窒素供
給源105から減圧用容器83に供給された液体窒素1
11は、大気圧で下の飽和温度(77K程度)から例え
ば65K程度まで温度降下される。そして供給側保持容
器81から熱交換器117へ送られて来た大気圧もしく
は大気圧以上の圧力の液体窒素90は、減圧用容器83
内の例えば65Kの液体窒素111と熱交換されて、6
7K程度まで温度降下する。すなわち過冷却状態とな
る。なおこの熱交換器117においては、液体窒素90
の圧力は特に変化せず、大気圧もしくは大気圧以上の圧
力の状態を維持する。
The liquid nitrogen 90 sent from the supply side holding container 81 to the heat exchanger 117 in the depressurizing container 83 via the first transfer tube 95 by the liquid sending pump 93 has a temperature of about 77 K at the beginning of the operation start. Is saturated under atmospheric pressure. On the other hand, the inside of the depressurizing vessel 83 is depressurized to a pressure lower than the atmospheric pressure by depressurizing means, for example, a rotary pump 115, so that the liquid nitrogen 1 supplied from the liquid nitrogen supply source 105 to the depressurizing vessel 83
11, the temperature is reduced from the lower saturation temperature (about 77K) to, for example, about 65K at atmospheric pressure. The liquid nitrogen 90 sent from the supply-side holding container 81 to the heat exchanger 117 at atmospheric pressure or a pressure higher than the atmospheric pressure is supplied to the depressurizing container 83.
Heat exchange with liquid nitrogen 111 of, for example, 65K in the
The temperature drops to about 7K. That is, it is in a supercooled state. In this heat exchanger 117, liquid nitrogen 90
Does not change, and maintains the state of the atmospheric pressure or a pressure higher than the atmospheric pressure.

【0073】上述のようにして67K程度に過冷却され
た大気圧もしくは大気圧以上の圧力の液体窒素90は、
第2トランスファチューブ119を介して、大気に実質
的に開放された冷却容器3内に導かれる。冷却容器3内
に導かれた過冷却状態の大気圧の液体窒素を図4では符
号11で示しており、これが冷却用液体窒素に相当す
る。ここで、冷却容器3内における冷却用液体窒素11
の量は、液面11A上に空間15が残るように還流管1
7によって調整される。
The liquid nitrogen 90 at the atmospheric pressure or a pressure higher than the atmospheric pressure, which is supercooled to about 67 K as described above,
It is led through the second transfer tube 119 into the cooling container 3 which is substantially open to the atmosphere. The supercooled liquid nitrogen in the supercooled state introduced into the cooling container 3 is indicated by reference numeral 11 in FIG. 4 and corresponds to the liquid nitrogen for cooling. Here, the cooling liquid nitrogen 11 in the cooling vessel 3
Is adjusted so that the space 15 remains on the liquid surface 11A.
Adjusted by 7.

【0074】冷却容器3内においては、図1に示した実
施例と同様に67Kの過冷却状態の大気圧もしくは大気
圧以上の圧力の液体窒素11によって超電導部材1が例
えば70K程度に冷却・保持される。ここで、冷却容器
3内における冷却用液体窒素11の液面11Aの上方の
空間15には、窒素ガス供給源71から窒素ガス供給管
73A,73C、開閉弁75Bを介して大気圧もしくは
大気圧以上の圧力の窒素ガスが導入される。そのため冷
却容器3内の圧力が確実に大気圧もしくは大気圧以上の
圧力に維持され、蓋部7の封止部分等を介して外部から
大気圧の空気が引き込まれて侵入することが確実に防止
される。
In the cooling vessel 3, as in the embodiment shown in FIG. 1, the superconducting member 1 is cooled and held at, for example, about 70K by a liquid nitrogen 11 in a supercooled state of 67K or a pressure higher than the atmospheric pressure. Is done. Here, in the space 15 above the liquid level 11A of the cooling liquid nitrogen 11 in the cooling container 3, the atmospheric pressure or the atmospheric pressure is supplied from the nitrogen gas supply source 71 via the nitrogen gas supply pipes 73A and 73C and the on-off valve 75B. Nitrogen gas at the above pressure is introduced. Therefore, the pressure in the cooling vessel 3 is reliably maintained at the atmospheric pressure or a pressure higher than the atmospheric pressure, and the atmospheric pressure air is reliably prevented from being drawn in from the outside through the sealing portion of the lid 7 and the like. Is done.

【0075】ここで、冷却容器3内においては、既に述
べた図1の実施例の場合と同様に、連続孔を有する多孔
質断熱材からなる対流阻止部材79を液面11Aの上下
にわたって設けているため、何らかの原因による擾乱に
よって冷却容器3内の下部で液体窒素11の対流や撹拌
が生じても、液面近傍の液体窒素や液面上の窒素ガスに
対流や撹拌が生じるおそれが少なく、温度勾配を安定化
できるとともに、液面位置を安定化することができる。
Here, in the cooling vessel 3, a convection preventing member 79 made of a porous heat insulating material having continuous holes is provided above and below the liquid level 11A as in the case of the embodiment of FIG. Therefore, even if convection or stirring of the liquid nitrogen 11 occurs in the lower portion of the cooling vessel 3 due to disturbance due to any cause, there is little possibility that convection or stirring occurs in liquid nitrogen near the liquid surface or nitrogen gas on the liquid surface. The temperature gradient can be stabilized, and the liquid level can be stabilized.

【0076】なお、運転が進んで定常状態となれば、還
流管17を経て冷却容器3から供給側保持容器81に7
0K程度の液体窒素が戻されることにより、供給側保持
容器81内の液体窒素90も70K近い温度、すなわち
大気圧下での過冷却温度となる。そこで供給側保持容器
81についても冷却容器3と同様に、連続孔を有する多
孔質断熱材から成る対流阻止部材を、液面90Aの上下
にわたって配設しておくことが望ましい(但し図4中で
は示していない)。このように供給側保持容器81の液
面90Aの上下にわたって対流阻止部材を設けておけ
ば、冷却容器3と同様に、何らかの原因による擾乱によ
って供給側保持容器81内の下部で液体窒素90の対流
や撹拌が生じても、液面近傍の液体窒素に対流や撹拌が
生じるおそれが少なく、温度勾配を安定化し得るととも
に、液面位置を安定化することができる。
When the operation proceeds to a steady state, the cooling vessel 3 is supplied from the cooling vessel 3 to the supply-side holding vessel 81 via the reflux pipe 17.
By returning the liquid nitrogen of about 0K, the temperature of the liquid nitrogen 90 in the supply-side holding container 81 also becomes close to 70K, that is, the supercooling temperature under the atmospheric pressure. Therefore, in the supply-side holding container 81, similarly to the cooling container 3, it is desirable to arrange convection preventing members made of a porous heat insulating material having continuous holes above and below the liquid surface 90A (however, in FIG. Not shown). If the convection preventing members are provided above and below the liquid surface 90A of the supply-side holding container 81, the convection of the liquid nitrogen 90 in the lower part of the supply-side holding container 81 due to disturbance due to some cause, similarly to the cooling container 3. Even when the liquid nitrogen is stirred, the convection and the stirring are not likely to occur in the liquid nitrogen near the liquid surface, so that the temperature gradient can be stabilized and the liquid surface position can be stabilized.

【0077】なお図1〜図4に示される各実施例のいず
れにおいても、対流阻止部材77,79に用いる連続孔
を有する多孔質断熱材としては、連続気泡ウレタン系発
泡体のほか、例えば連続気泡ポリエチレン系発泡体、ア
クリロニトリルーブタジエンゴム系発泡体、エチレンプ
ロピレンゴム系発泡体等を使用することができる。
In each of the embodiments shown in FIGS. 1 to 4, the porous heat insulating material having continuous holes used for the convection preventing members 77 and 79 is, for example, continuous foam urethane foam or continuous foam. Cellular polyethylene foams, acrylonitrile butadiene rubber foams, ethylene propylene rubber foams and the like can be used.

【0078】さらに、以上の説明では、特許第2859
250号の超電導部材冷却装置に準じた実施例(図1〜
図3)における供給側容器21および冷却容器3、また
特開平10−54637号の超電導部材冷却装置に準じ
た実施例(図4)の冷却容器3(あるいは冷却容器3お
よび供給側保持容器81)について、その液面の上下に
わたって連続孔を有する多孔質断熱材からなる対流阻止
部材を設けることとしたが、これらの容器に限らず、要
は液面上に空間を残して液体窒素を収容しかつその液面
上の空間に大気圧もしくは大気圧以上の窒素ガス圧力を
加え、容器内の液体窒素を大気圧下での過冷却温度と
し、その大気圧下での過冷却温度の液体窒素によって超
電導部材を冷却する場合にはすべて適用可能である。
Further, in the above description, Japanese Patent No. 2859
Example according to the superconducting member cooling device of No. 250 (FIG. 1)
The supply-side container 21 and the cooling container 3 in FIG. 3), and the cooling container 3 (or the cooling container 3 and the supply-side holding container 81) of the embodiment (FIG. 4) according to the superconducting member cooling device of JP-A-10-54637. The convection preventing member made of a porous heat insulating material having continuous pores above and below the liquid level was provided.However, the invention is not limited to these containers, and the point is that liquid nitrogen is stored while leaving a space above the liquid level. At the atmospheric pressure or a nitrogen gas pressure higher than the atmospheric pressure is applied to the space above the liquid surface, and the liquid nitrogen in the container is set to the supercooling temperature under the atmospheric pressure. When cooling a superconducting member, all are applicable.

【0079】[0079]

【発明の効果】前述の実施例からも明らかなように、こ
の発明は、液面上に空間を残して液体窒素を収容しかつ
その液面上の空間に大気圧もしくは大気圧以上の窒素ガ
ス圧力が加えられる液体窒素容器内の液体窒素を、大気
圧下での過冷却温度とし、その大気圧下での過冷却温度
の液体窒素によって超電導部材を冷却するように構成し
た超電導部材冷却装置において、液体窒素容器内の液体
窒素の液面の下方の位置から液面の上方の位置までの間
にわたって、連続孔を有する多孔質断熱材からなる対流
阻止部材を設けているため、容器内の下部において何ら
かの擾乱により液体窒素に対流や撹拌が生じても、液面
近傍においては液体窒素の対流、撹拌が有効に阻止さ
れ、そのため液面から下方へ向かっての温度勾配が安定
に維持されるとともに、液面上の気相の温度勾配も安定
して維持され、さらには液体窒素の蒸発や窒素ガスの凝
縮により液体窒素の液量に若干の変動が生じても、その
変動が増幅されて液面位置が大きく変動されてしまうこ
とも防止でき、したがって運転状況の安定化を図って冷
却効率を常に安定させるとともに信頼性を向上させるこ
とができる。
As is apparent from the above-described embodiment, the present invention is directed to a method for storing liquid nitrogen while leaving a space above the liquid surface and for storing the nitrogen gas at or above atmospheric pressure in the space above the liquid surface. Liquid nitrogen in a liquid nitrogen container to which pressure is applied is set to a supercooling temperature under atmospheric pressure, and a superconducting member cooling device configured to cool the superconducting member by liquid nitrogen at a supercooling temperature under the atmospheric pressure. Since a convection preventing member made of a porous heat insulating material having continuous holes is provided from a position below the liquid level of the liquid nitrogen in the liquid nitrogen container to a position above the liquid level in the liquid nitrogen container, Even if convection or agitation occurs in liquid nitrogen due to some disturbance, convection and agitation of liquid nitrogen are effectively prevented in the vicinity of the liquid surface, and therefore a temperature gradient downward from the liquid surface is stably maintained. With In addition, the temperature gradient of the gas phase on the liquid surface is also maintained stably, and even if the liquid nitrogen volume slightly fluctuates due to evaporation of liquid nitrogen or condensation of nitrogen gas, the fluctuation is amplified and It is also possible to prevent the surface position from being largely changed, so that it is possible to stabilize the operating condition, always stabilize the cooling efficiency, and improve the reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例の超電導部材冷却装置
の全体構成を示す略解図である。
FIG. 1 is a schematic diagram showing the entire configuration of a superconducting member cooling device according to a first embodiment of the present invention.

【図2】この発明の第2の実施例の超電導部材冷却装置
の全体構成を示す略解図である。
FIG. 2 is a schematic diagram showing the entire configuration of a superconducting member cooling device according to a second embodiment of the present invention.

【図3】この発明の第3の実施例の超電導部材冷却装置
の全体構成を示す略解図である。
FIG. 3 is a schematic diagram showing the entire configuration of a superconducting member cooling device according to a third embodiment of the present invention.

【図4】この発明の第4の実施例の超電導部材冷却装置
の全体構成を示す略解図である。
FIG. 4 is a schematic diagram showing the entire configuration of a superconducting member cooling device according to a fourth embodiment of the present invention.

【図5】従来の超電導部材冷却装置の全体構成を示す略
解図である。
FIG. 5 is a schematic diagram showing the entire configuration of a conventional superconducting member cooling device.

【符号の説明】[Explanation of symbols]

1 超電導部材 3 冷却容器(液体窒素容器) 11 液体窒素 33 液体窒素 11A 液面 15 液面上の空間 33A 液面 47 液面上の空間 21 供給側容器(液体窒素容器) 16,49,71 窒素ガス供給源 41 冷凍機 41B 冷却ヘッド 77 対流阻止部材 79 対流阻止部材 Reference Signs List 1 superconducting member 3 cooling container (liquid nitrogen container) 11 liquid nitrogen 33 liquid nitrogen 11A liquid surface 15 space on liquid surface 33A liquid surface 47 space on liquid surface 21 supply-side container (liquid nitrogen container) 16, 49, 71 nitrogen Gas supply source 41 Refrigerator 41B Cooling head 77 Convection blocking member 79 Convection blocking member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上岡 泰晴 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 相良 勇 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 堤 克哉 福岡県福岡市南区塩原二丁目1番47号 九 州電力株式会社内 (72)発明者 木村 博伸 福岡県福岡市南区塩原二丁目1番47号 九 州電力株式会社内 (72)発明者 坊野 敬昭 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 今野 雅行 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 船木 和夫 福岡県福岡市東区みどりが丘1丁目1番7 号 (72)発明者 岩熊 成卓 福岡県大野城市下大利団地26−402 Fターム(参考) 3L044 AA04 BA07 DB02 DD04 KA04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuharu Kamioka 2-4-1-11 Utsuhoncho, Nishi-ku, Osaka-shi, Osaka Inside Taiyo Toyo Oki Co., Ltd. (72) Isamu Sagara 2-chome, Utsumotocho, Nishi-ku, Osaka-shi No. 4-11 Taiyo Toyo Oki Co., Ltd. (72) Katsuya Tsutsumi 2-47, Shiobara, Minami-ku, Fukuoka City, Fukuoka Prefecture Kyushu Electric Power Co., Inc. 2-47 Shiobara Kyushu Electric Power Co., Inc. (72) Inventor Takaaki Bono 1-1-1, Tanabe Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. Fuji Electric Co., Ltd., 1-1 1-1 Tanabe-Nitta, Kawasaki-ku (72) Inventor Kazuo Funaki 1-1-7 Midorigaoka, Higashi-ku, Fukuoka City, Fukuoka Prefecture Interest estates 26-402 F-term (reference) 3L044 AA04 BA07 DB02 DD04 KA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液面上に空間を残して液体窒素を収容し
かつその液面上の空間に大気圧もしくは大気圧以上の窒
素ガス圧力が加えられる液体窒素容器内の液体窒素を、
大気圧下での過冷却温度とし、その大気圧下での過冷却
温度の液体窒素によって超電導部材を冷却するように構
成した超電導部材冷却装置において、 前記液体窒素容器内の液体窒素の液面よりも下方の位置
から、液面上方の位置までの間にわたって、連続孔を有
する多孔質断熱材からなる対流阻止部材を配置したこと
を特徴とする超電導部材冷却装置。
1. A liquid nitrogen in a liquid nitrogen container which contains liquid nitrogen while leaving a space above the liquid surface and in which a space above the liquid surface is subjected to an atmospheric pressure or a nitrogen gas pressure higher than the atmospheric pressure.
A superconducting member cooling device configured to cool the superconducting member by liquid nitrogen having a supercooling temperature under atmospheric pressure and supercooling temperature under the atmospheric pressure. A superconducting member cooling device, wherein a convection preventing member made of a porous heat insulating material having continuous holes is arranged from a position below the liquid crystal to a position above the liquid level.
【請求項2】 液面上に空間を残して液体窒素を収容し
かつその液面上の空間に大気圧もしくは大気圧以上の窒
素ガス圧力が加えられる供給側容器と、その供給側容器
内の液体窒素を大気圧下での過冷却温度まで冷却するた
めに冷却ヘッドを液体窒素の液面よりも下方の位置まで
浸漬させた冷凍機とを備え、供給側容器内の過冷却温度
の液体窒素を冷却対象の超電導部材へ導いてその超電導
部材を冷却するように構成された超電導部材冷却装置に
おいて、 前記供給側容器内の液体窒素の液面よりも下方の位置か
ら、液面上方の位置までの間にわたって、連続孔を有す
る多孔質断熱材からなる対流阻止部材を配置したことを
特徴とする超電導部材冷却装置。
2. A supply-side container for containing liquid nitrogen while leaving a space above the liquid level and applying an atmospheric pressure or a nitrogen gas pressure higher than the atmospheric pressure to the space above the liquid level; A refrigerator in which a cooling head is immersed to a position below the liquid surface of the liquid nitrogen in order to cool the liquid nitrogen to a supercooling temperature under the atmospheric pressure; In the superconducting member cooling device configured to guide the superconducting member to the superconducting member to be cooled, and to cool the superconducting member from a position below the liquid surface of the liquid nitrogen in the supply side container to a position above the liquid surface. A cooling device for a superconducting member, wherein a convection preventing member made of a porous heat insulating material having continuous holes is disposed between the members.
【請求項3】 請求項2に記載の超電導部材冷却装置に
おいて、 前記多孔質断熱材からなる対流阻止部材が、供給側容器
の液面よりも下方でかつ冷凍機の冷却ヘッドの上端部以
上の位置から液面上方の位置までの間にわたって配置さ
れている、超電導部材冷却装置。
3. The superconducting member cooling device according to claim 2, wherein the convection blocking member made of the porous heat insulating material is located below the liquid level of the supply-side container and above the upper end of the cooling head of the refrigerator. A superconducting member cooling device arranged from a position to a position above the liquid level.
【請求項4】 請求項2に記載の超電導部材冷却装置に
おいて、 前記多孔質断熱材からなる対流阻止部材が、供給側容器
の液面よりも下方でかつ冷凍機の冷却ヘッドにおける上
下方向中間位置から液面上方の位置までの間にわたって
配置されている、超電導部材冷却装置。
4. The superconducting member cooling device according to claim 2, wherein the convection preventing member made of the porous heat insulating material is located below the liquid surface of the supply-side container and at an intermediate position in the vertical direction of the cooling head of the refrigerator. A superconducting member cooling device, which is disposed from a position up to a position above the liquid level.
【請求項5】 請求項4に記載の超電導部材冷却装置に
おいて、 冷凍機の冷却ヘッドが供給側容器の底面近くの位置まで
延伸されている、超電導部材冷却装置。
5. The superconducting member cooling device according to claim 4, wherein the cooling head of the refrigerator extends to a position near the bottom surface of the supply-side container.
【請求項6】 請求項4もしくは請求項5に記載の超電
導部材冷却装置において、 前記冷凍機のシリンダ部の外周面に断熱部が設けられ、
かつその断熱部が、冷凍機の冷却ヘッドの外周面におけ
る上下方向の中間位置まで延長されていることを特長と
する、超電導部材冷却装置。
6. The superconducting member cooling device according to claim 4, wherein a heat insulating portion is provided on an outer peripheral surface of a cylinder portion of the refrigerator.
The superconducting member cooling device is characterized in that the heat insulating portion is extended to an intermediate position in the vertical direction on the outer peripheral surface of the cooling head of the refrigerator.
JP2001039722A 2000-03-31 2001-02-16 Superconducting material cooling device Expired - Lifetime JP4733842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039722A JP4733842B2 (en) 2000-03-31 2001-02-16 Superconducting material cooling device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000097746 2000-03-31
JP2000-97746 2000-03-31
JP2000097746 2000-03-31
JP2001039722A JP4733842B2 (en) 2000-03-31 2001-02-16 Superconducting material cooling device

Publications (2)

Publication Number Publication Date
JP2001345208A true JP2001345208A (en) 2001-12-14
JP4733842B2 JP4733842B2 (en) 2011-07-27

Family

ID=26589139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039722A Expired - Lifetime JP4733842B2 (en) 2000-03-31 2001-02-16 Superconducting material cooling device

Country Status (1)

Country Link
JP (1) JP4733842B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327662A (en) * 2006-06-06 2007-12-20 Hitachi Building Systems Co Ltd Maintenance method of absorption-type refrigerating machine and cooling freezing device
JP2012049413A (en) * 2010-08-30 2012-03-08 Taiyo Nippon Sanso Corp Cooling device for superconducting member, and method for maintaining temperature of subcool liquid nitrogen in heat insulation vessel
JP7410363B2 (en) 2019-12-26 2024-01-10 超電導センサテクノロジー株式会社 Cooling device and sensor device using cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068323A (en) * 2017-06-22 2017-08-18 四川菲创能达科技有限公司 A kind of high-temperature superconducting magnet liquid nitrogen automatic filling refrigerating plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131079A (en) * 1993-11-05 1995-05-19 Sumitomo Heavy Ind Ltd High-temperature superconductor current lead
JPH10325661A (en) * 1997-05-28 1998-12-08 Taiyo Toyo Sanso Co Ltd Superconductive member cooling device
JPH10335137A (en) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd Cooling method and conducting method for superconductor
JP2001289546A (en) * 2000-03-31 2001-10-19 Taiyo Toyo Sanso Co Ltd Superconducting member cooling device
JP2001317846A (en) * 2000-02-28 2001-11-16 Taiyo Toyo Sanso Co Ltd Cooling device for superconductive member
JP2002005552A (en) * 2000-06-21 2002-01-09 Tokyo Electric Power Co Inc:The Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131079A (en) * 1993-11-05 1995-05-19 Sumitomo Heavy Ind Ltd High-temperature superconductor current lead
JPH10335137A (en) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd Cooling method and conducting method for superconductor
JPH10325661A (en) * 1997-05-28 1998-12-08 Taiyo Toyo Sanso Co Ltd Superconductive member cooling device
JP2001317846A (en) * 2000-02-28 2001-11-16 Taiyo Toyo Sanso Co Ltd Cooling device for superconductive member
JP2001289546A (en) * 2000-03-31 2001-10-19 Taiyo Toyo Sanso Co Ltd Superconducting member cooling device
JP2002005552A (en) * 2000-06-21 2002-01-09 Tokyo Electric Power Co Inc:The Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327662A (en) * 2006-06-06 2007-12-20 Hitachi Building Systems Co Ltd Maintenance method of absorption-type refrigerating machine and cooling freezing device
JP2012049413A (en) * 2010-08-30 2012-03-08 Taiyo Nippon Sanso Corp Cooling device for superconducting member, and method for maintaining temperature of subcool liquid nitrogen in heat insulation vessel
JP7410363B2 (en) 2019-12-26 2024-01-10 超電導センサテクノロジー株式会社 Cooling device and sensor device using cooling device

Also Published As

Publication number Publication date
JP4733842B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR101142901B1 (en) Cooling system for superconducting power apparatus
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
US20060218942A1 (en) Cryogen tank for cooling equipment
JP2008027780A (en) Liquid-coolant circulation cooling system
JP5469782B1 (en) Superconducting magnet cooling method and superconducting magnet
JP5649373B2 (en) Superconducting member cooling apparatus and temperature maintaining method for subcooled liquid nitrogen in a heat insulating container
JP2859250B2 (en) Superconducting member cooling device
JP2001345208A (en) Superconducting-member cooling device
JP4514346B2 (en) Superconducting material cooling device
JP3208069B2 (en) Superconducting member cooling device
JP2002005552A (en) Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment
JP5540642B2 (en) Cooling device for superconducting equipment
KR20130033062A (en) Pressure control system in superconducting fault current limiter
JP2001284665A (en) Superconducting material cooling device
JP2010177677A (en) Cooling device for superconducting member
JP3511288B2 (en) Superconducting material cooling device
CN209804586U (en) Scanning electron microscope refrigerating system based on low-temperature solid cooling
JP4866001B2 (en) Superconducting coil cooling and holding device
CN209804584U (en) Scanning electron microscope refrigerating system based on low-temperature liquid cooling
JP2008091802A (en) Cryogenic container
JP5175595B2 (en) Cooling device and superconducting device
JP2005183440A (en) Superconducting member cooling apparatus
JP5217308B2 (en) Superconducting part cooling device and its operation method
JP2005156051A (en) Superconductive member cooling device, and its control method
JP3908975B2 (en) Cooling device and cooling method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term