JP5217308B2 - Superconducting part cooling device and its operation method - Google Patents

Superconducting part cooling device and its operation method Download PDF

Info

Publication number
JP5217308B2
JP5217308B2 JP2007232512A JP2007232512A JP5217308B2 JP 5217308 B2 JP5217308 B2 JP 5217308B2 JP 2007232512 A JP2007232512 A JP 2007232512A JP 2007232512 A JP2007232512 A JP 2007232512A JP 5217308 B2 JP5217308 B2 JP 5217308B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
refrigerator
cooling
cooling head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007232512A
Other languages
Japanese (ja)
Other versions
JP2009065016A (en
Inventor
育孝 讃岐
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007232512A priority Critical patent/JP5217308B2/en
Publication of JP2009065016A publication Critical patent/JP2009065016A/en
Application granted granted Critical
Publication of JP5217308B2 publication Critical patent/JP5217308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

この発明は、超電導部冷却装置とその運転方法に関し、特に、超電導応用機器における超電導部を、極低温の液体冷媒中に浸漬して冷却する極低温容器と、この極低温容器の蓋部に搭載し、前記蓋部から極低温容器内に冷凍機の膨張機が備える冷却ヘッドを挿入して前記液体冷媒を後述する過冷却温度に冷却する冷凍機とを備えた超電導部冷却装置とその運転方法に関する。 The present invention relates to a superconducting part cooling apparatus and a method for operating the superconducting part, and in particular, a superconducting part in superconducting application equipment is immersed in a cryogenic liquid refrigerant to be cooled, and mounted on a lid part of the cryogenic container. A superconducting part cooling device including a refrigerator that inserts a cooling head provided in an expander of a refrigerator into the cryogenic container from the lid and cools the liquid refrigerant to a supercooling temperature to be described later, and a method of operating the same About.

超電導応用機器としては、超電導変圧器や超電導エネルギー貯蔵装置などの超電導コイルや磁気分離装置などがある。超電導応用機器は、従来の機器に比べ、高効率化、軽量化、小型化が図れるので、さまざまな研究開発が進められている。前記超電導応用機器を使用できる環境にするためには、超電導部材を冷却する装置が必要となる。   Examples of superconducting application equipment include superconducting coils and magnetic separation devices such as superconducting transformers and superconducting energy storage devices. Since superconducting equipment can be made more efficient, lighter, and smaller than conventional equipment, various research and development efforts are underway. In order to create an environment in which the superconducting application device can be used, an apparatus for cooling the superconducting member is required.

図6は従来の超電導部材冷却装置の一例の模式的構成を示す図である。図6において、1は極低温容器、2は超電導部材としての超電導コイル、2aは超電導コイルへ通電するための電流リード、3は冷媒、3aは冷媒液面、4は極低温容器の蓋部、5は冷凍機の膨張機、6は冷却ヘッド、6aは温度計測手段、7は熱交換器である。   FIG. 6 is a diagram showing a schematic configuration of an example of a conventional superconducting member cooling device. In FIG. 6, 1 is a cryogenic container, 2 is a superconducting coil as a superconducting member, 2a is a current lead for energizing the superconducting coil, 3 is a refrigerant, 3a is a liquid level of the refrigerant, 4 is a lid of the cryogenic container, 5 is an expander of the refrigerator, 6 is a cooling head, 6a is a temperature measuring means, and 7 is a heat exchanger.

極低温容器1は、液体窒素温度(約77K)や液体ヘリウム温度(約4.2K)などの極低温環境下で、超電導線材や超電導バルク材を用いた超電導応用機器を収納するための容器である。極低温容器1の基本的な形状は円筒状であり、側面と底面からなる円筒状の容器本体部と円板状の蓋部4とからなり、超電導コイル2などの超電導部材を蓋部4で、図示しない吊りボルトを介して吊り下げた構成を備える。   The cryogenic container 1 is a container for storing superconducting application equipment using superconducting wire or superconducting bulk material in a cryogenic environment such as liquid nitrogen temperature (about 77K) or liquid helium temperature (about 4.2K). . The basic shape of the cryogenic container 1 is cylindrical, and is composed of a cylindrical container main body portion having a side surface and a bottom surface and a disc-shaped lid portion 4, and a superconducting member such as a superconducting coil 2 is covered by the lid portion 4. And a structure suspended through a suspension bolt (not shown).

極低温容器1は、低熱侵入であること、断熱性に優れていること、強度が優れていること、気密性がよいことなどが求められている。低熱侵入や断熱性に関しては、極低温容器1を二重構造にして、内槽に超電導部としての超電導コイル2を収納し、外槽を真空や冷媒で断熱している。外槽や内槽を真空状態にする場合、気圧差に耐える構造と材料で構成することが必要であり、特に前記強度と気密性が重要となる。   The cryogenic container 1 is required to have low heat penetration, excellent heat insulation, excellent strength, good airtightness, and the like. Regarding low heat penetration and heat insulation, the cryogenic container 1 has a double structure, the superconducting coil 2 as a superconducting part is housed in the inner tank, and the outer tank is insulated by vacuum or a refrigerant. When the outer tank and the inner tank are put in a vacuum state, it is necessary to form the structure and material that can withstand the pressure difference, and the strength and airtightness are particularly important.

極低温容器1の材料としては、通常、ステンレス鋼などの金属やガラス繊維強化プラスティック(以下、GFRP)が使われる。ステンレス鋼は、加工が比較的簡単で、強度もある。また組立てて必要なところには溶接によって気密が保てる。一方、GFRPは、加工の自由度は金属より劣るが、金属相当の剛性を持ちながら、比重が小さく、絶縁材料であるため、超電導の電力応用ではステンレスに代わって使われることが多い。組立が必要なところは、はめ込み構造とし、接着により気密を保つ。比重に関して、ステンレス鋼の比重は約7.8であり、GFRPのそれは1.3〜1.7である。   As a material of the cryogenic container 1, a metal such as stainless steel or glass fiber reinforced plastic (hereinafter referred to as GFRP) is usually used. Stainless steel is relatively easy to process and strong. In addition, airtightness can be maintained by welding where necessary. On the other hand, GFRP is inferior to metal in processing freedom, but it has a rigidity equivalent to that of metal and has a low specific gravity and is an insulating material. Therefore, GFRP is often used in place of stainless steel in superconducting power applications. Where assembly is required, the structure is fitted and kept airtight by bonding. Regarding specific gravity, the specific gravity of stainless steel is about 7.8 and that of GFRP is 1.3-1.7.

高温超電導線材の開発の発展に伴い、液体窒素温度レベルでも超電導状態を維持できるようになり、冷媒としては、安価な液体窒素が使われるようになってきた。液体窒素は、不燃性であり、絶縁性にも優れている。冷媒としては、上記液体窒素以外に、液体水素や液体ネオンが使用されることもある。   With the development of high-temperature superconducting wire, it has become possible to maintain a superconducting state even at a liquid nitrogen temperature level, and inexpensive liquid nitrogen has been used as a refrigerant. Liquid nitrogen is nonflammable and has excellent insulating properties. As the refrigerant, liquid hydrogen or liquid neon may be used in addition to the liquid nitrogen.

液体窒素は、沸点が77.3Kであり、大気圧状態では常に気泡が発生している。超電導部材に電圧を架けて通電する場合、液体窒素自身は絶縁性に優れているが、気泡により、絶縁耐力が低下し、絶縁破壊等を招く恐れがある。そのため多くの電気機器応用では、液体窒素を沸点以下とするため、過冷却状態にする。一方、液体窒素の凝固点は63Kであるので、冷媒は63K〜77Kの間に維持する必要がある。超電導部材は、低温になるほど、臨界電流値などの超電導特性が向上し、また、液体窒素が沸点に至るまでの顕熱が利用できることから、できるだけ低温の65K〜67Kに過冷却されることが多い。
この明細書において「過冷却状態」とは、理化学分野における通常の定義とは異なり、以下のように定義する。即ち、例えば、前記液体窒素のような極低温の液化ガス冷媒が、その沸点(77.3K)より(過度に)低く、かつ凝固点(63K)より高い温度に冷却された状態を、「沸点より過度に低い温度(例えば、前記65K〜67K)に冷却された液の状態」を表現すべく、「過冷却状態」と定義する。
Liquid nitrogen has a boiling point of 77.3K, and bubbles are always generated under atmospheric pressure. When a superconducting member is energized with a voltage applied, liquid nitrogen itself is excellent in insulation properties, but due to bubbles, the dielectric strength is reduced, which may cause dielectric breakdown. For this reason, in many electrical equipment applications, the liquid nitrogen is brought to a boiling point or lower so that it is supercooled. On the other hand, since the freezing point of liquid nitrogen is 63K, the refrigerant needs to be maintained between 63K and 77K. Superconducting members are often supercooled to 65K to 67K as low as possible because the superconducting properties such as critical current value improve as the temperature decreases, and sensible heat until liquid nitrogen reaches the boiling point can be used. .
In this specification, the “supercooled state” is defined as follows, unlike the usual definition in the field of physics and chemistry. That is, for example, a state in which a cryogenic liquefied gas refrigerant such as liquid nitrogen is cooled to a temperature lower (overly) than its boiling point (77.3K) and higher than its freezing point (63K) In order to express a state of the liquid cooled to a very low temperature (for example, the above-mentioned 65K to 67K), it is defined as a “supercooled state”.

液体窒素を過冷却状態にする方法として、冷凍機を用いて液体窒素を冷却する方法が用いられる。要請に応じて、2つの過冷却方法がある。一つは、冷凍機と超電導部材を別々の容器に入れ、冷凍機側容器で冷媒を過冷却し、過冷却の冷媒を配管(トランスファーチューブ)を通して超電導部材側容器に供給し、逆に超電導部材側で温められた冷媒を、戻り用の別の配管を通して冷凍機側容器に戻し、冷媒を循環させる方法である(特許文献1参照)。   As a method of bringing liquid nitrogen into a supercooled state, a method of cooling liquid nitrogen using a refrigerator is used. There are two subcooling methods upon request. One is to put the refrigerator and superconducting member in separate containers, supercool the refrigerant in the refrigerator side container, supply the supercooled refrigerant to the superconducting member side container through the pipe (transfer tube), and conversely the superconducting member In this method, the refrigerant heated on the side is returned to the refrigerator side container through another return pipe, and the refrigerant is circulated (see Patent Document 1).

他の方法は、図6に示したように、超電導部材としての超電導コイル2と冷凍機の膨張機5の冷却ヘッド6部を一つの極低温容器1内に入れ、容器内で超電導部材の熱負荷等によって温められた冷媒を冷凍機で冷却する方法である。前者は、制御した温度の冷媒を超電導部材側に供給でき、超電導部材側に安定した冷媒を供給できるが、極低温容器が2つ必要で、且つ、トランスファーチューブも必要になる。一方、後者は、一つの容器に熱負荷と冷却を行うため、温度制御が難しいが極低温容器は一つで済む特徴がある。   In another method, as shown in FIG. 6, the superconducting coil 2 as a superconducting member and the cooling head 6 part of the expander 5 of the refrigerator are placed in one cryogenic vessel 1, and the heat of the superconducting member is placed in the vessel. This is a method of cooling a refrigerant heated by a load or the like with a refrigerator. The former can supply a refrigerant having a controlled temperature to the superconducting member side and can supply a stable refrigerant to the superconducting member side, but requires two cryogenic containers and a transfer tube. On the other hand, the latter is characterized in that it is difficult to control the temperature because one container is subjected to heat load and cooling, but only one cryogenic container is required.

過冷却するための冷凍機としては、GM冷凍機(ギフォード・マクマホン冷凍機)で代表される小型極低温冷凍機(以下、単に「冷凍機」と記す)が用いられる。冷凍機は、図7に示すように、膨張機5、圧縮機5a、循環冷媒管5b、電源等からなり、ガス冷媒(主にヘリウムガス)を循環させて、膨張機に冷たいガスを送り、冷却ヘッド部において温められたガスを圧縮機に戻して冷却している。冷凍機の膨張機5は、図6に示すように、冷却ヘッド6部が極低温容器の蓋部4を貫通して、極低温容器1の内部に配置され、極低温容器の蓋部4に載せて容器のシールを確保して固定されている。冷却ヘッド6は、鉛直下側に向いて液体窒素に浸漬する状態で配置され、冷媒との熱交換をよくするための熱交換器7が取り付けられている。冷凍能力としては、例えば、冷却ヘッド80K、周波数50Hzで冷凍出力200Wのものや、さらに冷凍出力が1kW級のものもある。   As a refrigerator for supercooling, a small cryogenic refrigerator (hereinafter simply referred to as “refrigerator”) represented by a GM refrigerator (Gifford McMahon refrigerator) is used. As shown in FIG. 7, the refrigerator is composed of an expander 5, a compressor 5a, a circulating refrigerant pipe 5b, a power source and the like, circulates a gas refrigerant (mainly helium gas), and sends a cold gas to the expander. The gas heated in the cooling head is returned to the compressor for cooling. As shown in FIG. 6, the expander 5 of the refrigerator has a cooling head 6 that passes through the cover 4 of the cryogenic container and is disposed inside the cryogenic container 1, and is attached to the cover 4 of the cryogenic container. The container is placed and secured to secure the seal of the container. The cooling head 6 is arranged in a state of being immersed in liquid nitrogen facing downward in the vertical direction, and a heat exchanger 7 for improving heat exchange with the refrigerant is attached. As a refrigerating capacity, for example, there are a cooling head of 80 K, a frequency of 50 Hz and a refrigerating output of 200 W, and a refrigerating output of 1 kW class.

超電導部材の温度が上昇する要因となる熱源としては、超電導部材への無通電時であっても、電流リード2a、極低温容器1、温度計測手段6a他の計測線などから、常温部と極低温部との間の温度差に基づいて侵入する熱侵入量が常に存在する。超電導部材に電気を流す通電時には、超電導部材に電流が流れることによる通電損失などの発熱が、前記熱侵入量と合わせて熱負荷となり、これにより過冷却状態の液体窒素は温度上昇する。   As a heat source that causes the temperature of the superconducting member to rise, even when the superconducting member is not energized, from the current lead 2a, the cryogenic container 1, the temperature measuring means 6a, and other measurement lines, the room temperature portion and the pole There is always an amount of heat intrusion based on the temperature difference from the low temperature part. When electricity is supplied to the superconducting member, heat such as energization loss due to current flowing through the superconducting member becomes a heat load in combination with the heat penetration amount, thereby increasing the temperature of the supercooled liquid nitrogen.

前述のように、超電導部材を冷却する液体窒素を冷凍機で過冷却とする場合、液体窒素の凝固点(63K)以上に保つ必要があり、概ね超電導部材が65K〜67K(例えば、66K)に到達するように、過冷却、温度維持がなされる。超電導部材を65K〜67Kに冷却する場合、まず、冷却ヘッド6が冷えて、液体窒素に伝導し、最終的に超電導部材を冷やすことになるが、その熱の伝達は超電導部材や液体窒素の熱容量が大きいほど時間がかかり、最も冷えて温度の低い冷却ヘッド6と、最も温度の低下の遅い超電導コイル2の温度との差が大きくなる。   As described above, when liquid nitrogen that cools the superconducting member is supercooled by a refrigerator, it is necessary to keep the liquid nitrogen freezing point (63K) or higher, and the superconducting member generally reaches 65K to 67K (for example, 66K). Thus, supercooling and temperature maintenance are performed. When the superconducting member is cooled to 65K to 67K, first, the cooling head 6 is cooled and conducted to liquid nitrogen, and finally the superconducting member is cooled, but the heat transfer is the heat capacity of the superconducting member and liquid nitrogen. The larger the is, the longer it takes, and the difference between the temperature of the cooling head 6 that is the coolest and the lowest temperature and the temperature of the superconducting coil 2 that is the slowest of the temperature decrease becomes larger.

従って、例えば、はじめは冷却ヘッド6も超電導コイル2も液体窒素の沸点77.3Kであって、冷凍機が稼働してから冷却ヘッド温度が64Kになっても、超電導コイル2は、まだ68Kや70Kを示している状態があり得る。液体窒素も温度が低下した部分は極低温容器1の下方向に移動するので、極低温容器内の底のほうの液体窒素から冷え、液位が高くなるほど、液体窒素の温度は上昇し、液面付近では77.3Kの沸点になるような分布を示す。   Therefore, for example, the cooling head 6 and the superconducting coil 2 initially have a liquid nitrogen boiling point of 77.3K, and even if the cooling head temperature reaches 64K after the refrigerator is operated, the superconducting coil 2 is still 68K or 70K. There may be a state indicating. Since the portion of the liquid nitrogen whose temperature has decreased moves downward in the cryogenic container 1, the temperature of the liquid nitrogen rises as the liquid level rises as it cools from the liquid nitrogen at the bottom in the cryogenic container. The distribution shows a boiling point of 77.3K near the surface.

このまま冷却が進行すると、冷却ヘッド6周辺の冷媒だけが先行して63Kの凝固点温度に達し、冷却ヘッド6の冷熱が液体窒素に伝達し難くなり、超電導コイル2の温度上昇を招く問題が生ずる。この対策として、通常、図示しないヒータを冷却ヘッド6部に埋め込んでおき、また、冷却ヘッドには温度計測手段6aとしての温度素子を埋め込んで温度監視を行い、その監視温度が、予め設定した所定の温度以下になった場合に、冷却ヘッド6部を加熱し、冷却ヘッド6の温度を下げすぎないようにしている。しかしながら、この方法の場合、冷却ヘッド付近の冷媒の凝固は免れるものの、新たな熱源を追加することになるため余計な電力が必要となり、全体として冷却の効率が悪くなる問題がある。   If the cooling progresses as it is, only the refrigerant around the cooling head 6 reaches the freezing point temperature of 63K in advance, and it becomes difficult for the cooling heat of the cooling head 6 to be transmitted to the liquid nitrogen, causing a problem that the temperature of the superconducting coil 2 increases. As a countermeasure, normally, a heater (not shown) is embedded in the cooling head 6, and a temperature element as the temperature measuring means 6 a is embedded in the cooling head to perform temperature monitoring, and the monitoring temperature is a predetermined value set in advance. When the temperature falls below this temperature, the cooling head 6 is heated so that the temperature of the cooling head 6 is not lowered too much. However, in this method, although the solidification of the refrigerant in the vicinity of the cooling head is avoided, a new heat source is added, so that extra power is required, and there is a problem that the cooling efficiency is deteriorated as a whole.

一方、ヒータを用いない対策も検討されており、前記特許文献1に開示されている。特許文献1の発明においては、冷凍機の圧縮機用の電源経路にインバータを設け、冷却ヘッドの温度に応じて、電源周波数をインバータで変え、インバータ制御により圧縮機の流量および圧力を制御し、冷却ヘッドの温度が凝固温度に達しないように冷凍能力を低下させる制御方法が採用されている。   On the other hand, countermeasures that do not use a heater are also being studied, and are disclosed in Patent Document 1. In the invention of Patent Document 1, an inverter is provided in the power supply path for the compressor of the refrigerator, the power supply frequency is changed by the inverter according to the temperature of the cooling head, the flow rate and pressure of the compressor are controlled by inverter control, A control method is adopted in which the refrigeration capacity is lowered so that the temperature of the cooling head does not reach the solidification temperature.

この方法によれば、超電導部材が目標温度に近い状態であれば、ヒータのような熱源を追加せずに凝固を防げるため、低消費電力に貢献できるが、まだ超電導部材が目標の温度にまで達していない段階においては、本来冷凍機が出せる冷凍能力を抑えることとなり、結局、超電導部材の初期の冷却時間が必要以上に増大し、全体として効率が悪くなる問題がある。さらに、超電導応用機器としては、冷凍機出力が低下し冷媒が蒸発して液面が低下すれば、運用コストや、絶縁の面でも問題となる場合がある。   According to this method, if the superconducting member is close to the target temperature, solidification can be prevented without adding a heat source such as a heater, which can contribute to low power consumption. However, the superconducting member still reaches the target temperature. In a stage where it has not been reached, the refrigeration capacity that can be originally produced by the refrigerator is suppressed, and as a result, the initial cooling time of the superconducting member increases more than necessary, resulting in a problem that the efficiency as a whole deteriorates. Furthermore, as a superconducting application device, if the refrigerator output decreases and the refrigerant evaporates to lower the liquid level, there may be a problem in terms of operation cost and insulation.

また、超電導部材冷却装置としては、上記のような冷却ヘッド周辺の冷媒の凝固問題とは別に、下記のような問題がある。一時的に装置を停止し、冷凍機を含む電源を落とし、しばらく後に再稼動するケースがある。   Further, the superconducting member cooling device has the following problems apart from the solidification problem of the refrigerant around the cooling head as described above. There is a case where the device is temporarily stopped, the power supply including the refrigerator is turned off, and restarted after a while.

例えば、超電導装置を日中運転し、夜間は停止し、翌朝に冷媒を復帰させ、また運転する場合である。このように、夜間に電源を停止する場合には、冷媒の熱容量で、ある程度の温度は維持できるものの、超電導装置や極低温容器からの熱侵入に加え、冷凍機の室温側から冷却ヘッドに向けて熱が侵入し、冷媒の蒸発、温度上昇を加速する問題が生ずる。   For example, the superconducting device is operated during the day, stopped at night, returned to the next morning, and operated again. In this way, when the power supply is stopped at night, although the heat capacity of the refrigerant can maintain a certain temperature, in addition to the heat intrusion from the superconducting device and the cryogenic container, the room temperature side of the refrigerator is directed to the cooling head. Therefore, there is a problem that heat enters and accelerates the evaporation of the refrigerant and the temperature rise.

この場合、次回使用時前に、冷媒を補給し過冷却運転を時間をかけて行う必要があり、効率が悪い。対策として、停止時に、冷媒を蒸発しにくい別の容器に移して保管する方法が考えられるが、この場合、次回使用時前に、冷媒を移動する必要があり、システムが複雑化し、かつ効率が悪い。
特開2005−156051号公報
In this case, it is necessary to replenish the refrigerant and perform a supercooling operation over time before the next use, which is inefficient. As a countermeasure, it is conceivable to store the refrigerant in a separate container that does not easily evaporate when stopped, but this requires that the refrigerant be moved before the next use, which complicates the system and increases efficiency. bad.
JP 2005-156051 A

この発明は、上記のような問題点に鑑みてなされたもので、この発明の課題は、冷却の全体効率を低下することなしに冷却ヘッド周辺の冷媒の凝固問題の解消を図り、さらに、装置運転中の冷却効率の向上および停止中の侵入熱量の低減を図った超電導部冷却装置とその運転方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the problem of solidification of the refrigerant around the cooling head without lowering the overall cooling efficiency. It is an object of the present invention to provide a superconducting part cooling device that improves cooling efficiency during operation and reduces the amount of intrusion heat during stoppage, and a method for operating the same.

前述の課題を解決するため、この発明は、超電導応用機器における超電導部を、極低温の液体冷媒中に浸漬して冷却する極低温容器と、この極低温容器の蓋部に搭載し、前記蓋部から極低温容器内に冷凍機の膨張機が備える冷却ヘッドを挿入して前記液体冷媒を過冷却温度に冷却する冷凍機とを備えた超電導部冷却装置において、前記冷凍機は、前記冷却ヘッドの温度を計測する温度計測手段を備え、さらに、極低温容器の蓋部と冷凍機との間に、前記冷却ヘッドの温度計測値の信号または前記超電導部への通電の有無の信号もしくは前記冷凍機の稼動の有無の信号に基づいて、極低温容器内における前記冷却ヘッドの挿入高さを可変とする冷凍機の昇降手段を備えたことを特徴とする(請求項1の発明)。   In order to solve the above-mentioned problems, the present invention is equipped with a superconducting part in a superconducting application device by immersing the superconducting part in a cryogenic liquid refrigerant and cooling it to a lid part of the cryogenic container, A superconducting part cooling apparatus including a refrigerator provided in a cryogenic container with a cooling head provided in an expander of the refrigerator to cool the liquid refrigerant to a supercooling temperature, wherein the refrigerator includes the cooling head A temperature measurement means for measuring the temperature of the cryogenic container, and a signal of a temperature measurement value of the cooling head, a signal of whether or not the superconducting part is energized, or the refrigeration between the lid of the cryogenic container and the refrigerator The present invention is characterized in that it includes elevating means for a refrigerator that makes the insertion height of the cooling head variable in the cryogenic container based on a signal indicating whether or not the machine is operating (invention of claim 1).

また、前記請求項1に記載のものにおいて、前記超電導部は高温超電導線材を備え、前記液体冷媒は液体窒素とする(請求項2の発明)。   The superconducting part may include a high-temperature superconducting wire, and the liquid refrigerant may be liquid nitrogen (invention of claim 2).

さらに、超電導部冷却装置の運転方法の発明としては、下記請求項3ないし6の発明が好ましい。即ち、前記請求項1または2に記載の超電導部冷却装置の運転方法であって、下記の手順を含むことを特徴とする(請求項3の発明)。
(1)超電導部冷却装置の起動時であって、冷凍機の稼動前および超電導部への通電前に、液体冷媒を、少なくとも前記超電導部が浸漬する予め設定した所定の液面位置まで、極低温容器内に注入する。
(2)前記冷却ヘッドを液体冷媒内の前記超電導部近傍の予め設定した所定の位置まで挿入し、冷凍機を運転して、前記液体冷媒を過冷却温度に至るまで冷却する。
(3)前記冷却ヘッドの温度が次第に低下して、液体冷媒の凝固温度より所定の温度だけ高い予め設定した温度に到達した際に、極低温容器内における前記冷却ヘッドの位置を前記冷凍機の昇降手段により上昇させる
Further, as the invention of the operation method of the superconducting part cooling device, the inventions of the following claims 3 to 6 are preferable. That is, the operation method of the superconducting part cooling device according to claim 1 or 2 includes the following procedure (invention of claim 3).
(1) At the time of starting the superconducting unit cooling device, before operating the refrigerator and before energizing the superconducting unit, the liquid refrigerant is at least brought to a predetermined liquid level position where the superconducting unit is immersed. Inject into a cryocontainer.
(2) The cooling head is inserted to a predetermined position near the superconducting part in the liquid refrigerant, and a refrigerator is operated to cool the liquid refrigerant to a supercooling temperature.
(3) When the temperature of the cooling head gradually decreases and reaches a preset temperature higher than the solidification temperature of the liquid refrigerant by a predetermined temperature, the position of the cooling head in the cryogenic container is increase by the lifting means.

さらに、前記請求項3に記載の超電導部冷却装置の運転方法であって、冷凍機の稼動により前記液体冷媒を過冷却温度に至るまで冷却した後、超電導部への通電を開始した際には、極低温容器内における前記冷却ヘッドの位置を、前記冷凍機の昇降手段により、液体冷媒内の前記超電導部近傍の予め設定した所定の位置まで下降させ、超電導部への通電を停止した際には、前記冷却ヘッドを液体冷媒内の前記液面位置近傍の予め設定した所定の位置まで上昇させることを特徴とする(請求項の発明)。 Furthermore, the operation method of the superconducting part cooling device according to claim 3, wherein when the liquid refrigerant is cooled to a supercooling temperature by operating a refrigerator, energization to the superconducting part is started. When the position of the cooling head in the cryogenic container is lowered to a predetermined position near the superconducting part in the liquid refrigerant by the elevating means of the refrigerator, and energization to the superconducting part is stopped Raises the cooling head to a predetermined position in the vicinity of the liquid level in the liquid refrigerant (invention of claim 4 ).

また、前記請求項に記載の超電導部冷却装置の運転方法であって、超電導部への通電を停止し、かつ冷凍機の運転も一時的に停止する際には、前記冷凍機の昇降手段により、前記冷却ヘッドを液体冷媒内の前記液面位置を越える位置まで上昇させ、極低温容器内における冷媒ガス空間内に前記冷却ヘッドを保持することを特徴とする(請求項の発明)。 Further, in the operation method of the superconducting part cooling device according to claim 4, when the energization to the superconducting part is stopped and the operation of the refrigerator is also temporarily stopped, the elevating means of the refrigerator Thus, the cooling head is raised to a position exceeding the liquid level position in the liquid refrigerant, and the cooling head is held in the refrigerant gas space in the cryogenic container (invention of claim 5 ).

さらにまた、前記請求項3ないし5のいずれか1項に記載の超電導部冷却装置の運転方法であって、前記冷却ヘッドが液体冷媒の凝固点温度に至るのを抑制すべく、前記冷却ヘッドの温度が次第に低下して、液体冷媒の凝固温度より所定の温度だけ高い温度に到達した際に、前記冷凍機の出力を低減することを特徴とする(請求項6の発明)。Furthermore, in the operation method of the superconducting part cooling device according to any one of claims 3 to 5, the temperature of the cooling head is controlled so as to suppress the cooling head from reaching a freezing point temperature of the liquid refrigerant. When the temperature gradually decreases and reaches a temperature higher than the solidification temperature of the liquid refrigerant by a predetermined temperature, the output of the refrigerator is reduced (invention of claim 6).

この発明によれば、従来のように、冷却ヘッドに設けたヒータ制御や、超電導部冷却完了前に冷凍機電源に設けたインバータによる冷凍機出力制御を行うことなく、極低温容器内の冷却ヘッドの位置制御により、冷却ヘッド周辺の冷媒の凝固問題の解消が図れるので、冷却の全体効率の向上が図れる。   According to the present invention, the cooling head in the cryogenic container can be controlled without performing the heater control provided in the cooling head or the refrigerator output control by the inverter provided in the refrigerator power supply before the superconducting part cooling is completed as in the prior art. With this position control, the problem of solidification of the refrigerant around the cooling head can be solved, so that the overall cooling efficiency can be improved.

また、冷凍機の冷却ヘッドの位置を冷媒温度の高い液面位置近傍の所定の位置に挿入して過冷却運転を行なうことにより、冷却ヘッドの凝固点温度に至る温度低下を抑制しつつ、最大の冷凍能力を確保でき、さらに、外部からの熱侵入量等により蒸発する冷媒量を抑えることができる。なお、超電導部材の初期冷却が完了した後は、請求項の発明のように、冷凍機出力制御(例えば、インバータによる出力制御)により冷却ヘッドの凝固点温度に至る温度低下を好適に抑制することができる。 In addition, by inserting the position of the cooling head of the refrigerator into a predetermined position near the liquid surface position where the refrigerant temperature is high and performing the supercooling operation, the temperature drop to the freezing point temperature of the cooling head is suppressed and the maximum The refrigerating capacity can be secured, and furthermore, the amount of refrigerant evaporated due to the amount of heat penetration from the outside can be suppressed. In addition, after the initial cooling of the superconducting member is completed, as in the invention of claim 6 , the temperature drop to the freezing point temperature of the cooling head is suitably suppressed by refrigerator output control (for example, output control by an inverter). Can do.

さらに、超電導部材への通電時には、請求項の発明のように、熱源となる超電導部材に冷却ヘッドを近づけることにより、効率的に超電導部材の温度上昇を抑えることができ、また、無通電時には冷媒液面付近に冷却ヘッドを近づけて冷媒の蒸発量を抑えることが可能となり、効率よい冷却と安定した冷媒の液面及び温度維持が可能となる。 Furthermore, when energizing the superconducting member, the temperature rise of the superconducting member can be effectively suppressed by bringing the cooling head closer to the superconducting member serving as a heat source, as in the invention of claim 4. The cooling head can be brought close to the vicinity of the refrigerant liquid level to suppress the evaporation amount of the refrigerant, thereby enabling efficient cooling and stable refrigerant liquid level and temperature maintenance.

また、夜間や非常時など冷凍機を一時的に停止する場合、冷凍機昇降手段を利用して冷凍機冷却ヘッドを液面より高い位置に保持することで、余計な冷媒の蒸発や温度上昇を抑えることができ、再運転により短時間で冷媒冷却の定常状態を復帰させることができる。   Also, when the refrigerator is temporarily stopped at night or in an emergency, the refrigerator cooling head is held at a position higher than the liquid level by using the refrigerator elevating means, so that excessive refrigerant evaporation and temperature rise can be achieved. The steady state of refrigerant cooling can be restored in a short time by re-operation.

図1〜図5に基づき、本発明の実施の形態について以下に述べる。図1は本発明の実施の形態に係る超電導部材冷却装置の一例の模式的構成を示す図であって、冷却ヘッドの下降状態を示す図、図2は図1と同様の超電導部材冷却装置の一例の模式的構成を示す図であって、冷却ヘッドの上昇状態を示す図、図3は図1および図2に対応する冷却ヘッドの位置における液体冷媒の温度勾配を比較して示す図、図4は本発明の超電導部材冷却装置の運転方法における冷却特性に関し、従来方法における冷却特性と比較して示す図、図5は図1と同様の超電導部材冷却装置の一例の模式的構成を示す図であって、冷凍機の一時停止時における冷却ヘッドの上昇状態を示す図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an example of a superconducting member cooling device according to an embodiment of the present invention, and shows a lowered state of a cooling head. FIG. 2 is a diagram of a superconducting member cooling device similar to FIG. It is a figure which shows a typical structure of an example, Comprising: The figure which shows the raising state of a cooling head, FIG. 3 is a figure which compares and shows the temperature gradient of the liquid refrigerant in the position of the cooling head corresponding to FIG. 1 and FIG. 4 is a diagram showing the cooling characteristics in the operation method of the superconducting member cooling device of the present invention, and is shown in comparison with the cooling properties in the conventional method. FIG. 5 is a diagram showing a schematic configuration of an example of the superconducting member cooling device similar to FIG. However, it is a figure which shows the raising state of the cooling head at the time of a temporary stop of a refrigerator.

図1、2および図5において、図6に示した部材と同一機能を有する部材には、同一符号を付し、各部材や図6で説明した装置全体の構成の重複する説明は省略する。図1、2および図5が、図6と相違する主な点は、図1、2および図5においては、極低温容器1内における冷却ヘッド6の挿入高さを可変とする冷凍機の昇降手段8と、昇降手段8と冷凍機の膨張機5との間に設けた支持板8aとを備える点である。なお、図1、2および図5においては、冷却ヘッド6部に設ける温度計測手段の図示を省略している。   1, 2 and 5, members having the same functions as those shown in FIG. 6 are given the same reference numerals, and duplicate descriptions of the components and the entire apparatus described in FIG. 6 are omitted. 1, 2 and 5 differ from FIG. 6 in that in FIG. 1, 2 and 5, the refrigerator is moved up and down so that the insertion height of the cooling head 6 in the cryogenic container 1 is variable. It is a point provided with the support plate 8a provided between the means 8, the raising / lowering means 8, and the expander 5 of a refrigerator. In FIGS. 1, 2, and 5, illustration of the temperature measuring means provided in the cooling head 6 is omitted.

図1、2および図5に示す本発明の実施の形態に係る超電導部材冷却装置は、前述のように、下記の構成を備えることを特徴とする。即ち、冷凍機は、冷却ヘッド6の温度を計測する温度計測手段を備え、さらに、極低温容器の蓋部4と冷凍機との間に、前記冷却ヘッドの温度計測値の信号または超電導コイル2への通電の有無の信号もしくは前記冷凍機の稼動の有無の信号に基づいて、極低温容器1内における冷却ヘッド6の挿入高さを可変とする冷凍機の昇降手段8を備えたことを特徴とする。   The superconducting member cooling device according to the embodiment of the present invention shown in FIGS. 1, 2 and 5 is characterized by having the following configuration as described above. That is, the refrigerator includes temperature measuring means for measuring the temperature of the cooling head 6, and further, a temperature measurement value signal of the cooling head or the superconducting coil 2 is provided between the lid portion 4 of the cryogenic container and the refrigerator. Refrigerator lifting / lowering means 8 for changing the insertion height of the cooling head 6 in the cryogenic container 1 based on a signal indicating whether the refrigerator is energized or a signal indicating whether the refrigerator is operating is provided. And

冷凍機の昇降手段としては、例えば、油圧で冷凍機の支持板8aを押し上げることで、冷却ヘッドを押し上げるようなものとすることができる。冷却ヘッド6の高さのレベルは、冷却ヘッドの温度に応じた高さをあらかじめ設定しておけば、自動で油圧調整ができる。   As a raising / lowering means of the refrigerator, for example, the cooling head can be pushed up by pushing up the support plate 8a of the refrigerator with hydraulic pressure. If the height of the cooling head 6 is set in advance according to the temperature of the cooling head, the hydraulic pressure can be automatically adjusted.

冷凍機の膨張機5や配管等は、Oリングや配管接続部等でシールされており、液体窒素の蒸発ガスが直接かかるとシール性が悪くなる恐れがあるため、さらに、極低温容器内部への水分を含んだ外気の侵入を防ぐために、気密を確保しなければならないが、そのため、図示のように、蛇腹式のステンレス配管によって、冷凍機の膨張機をその長手方向に囲んで、極低温容器の蓋部4と支持板8a部において溶接やOリングを用いてシールを図ることにより、昇降と気密を確保した昇降手段とすることが可能となる。   The expander 5 and the piping of the refrigerator are sealed with an O-ring and a pipe connection portion, etc., and if the liquid nitrogen evaporation gas is directly applied, the sealing performance may be deteriorated. In order to prevent the intrusion of outside air containing moisture, airtightness must be ensured.For this reason, as shown in the figure, the expander of the refrigerator is surrounded by a bellows type stainless steel pipe in the longitudinal direction, and the cryogenic temperature is reduced. By sealing the container lid 4 and the support plate 8a using welding or an O-ring, it is possible to provide a lifting means that ensures lifting and airtightness.

次に、上記超電導部材冷却装置の運転方法について説明する。まず、超電導部材への通電前の初期冷却運転は前記請求項3の手順により運転を行なう。そして、超電導部材への通電時には、前記請求項のような運転を行なう。また、超電導部材への通電を停止し、冷凍機の運転を一時停止する場合には、前記請求項のような運転を行なう。さらに、冷却ヘッドが液体冷媒の凝固点温度に至るのを抑制すべく、前記請求項6のような運転を行なう。上記各請求項に係る運転方法の重複説明は省略するが、多少、具体的な運転動作について、補足して以下に述べる(図1ないし図5参照)。 Next, an operation method of the superconducting member cooling device will be described. First, the initial cooling operation before energizing the superconducting member is performed according to the procedure of claim 3 . And when energizing a superconducting member, operation like the above-mentioned claim 4 is performed. Further, when the energization to the superconducting member is stopped and the operation of the refrigerator is temporarily stopped, the operation as in claim 5 is performed. Further, in order to suppress the cooling head from reaching the freezing point temperature of the liquid refrigerant, the operation as in the sixth aspect is performed. Although a duplicate description of the operation method according to each of the above claims is omitted, some specific operation will be supplementarily described below (see FIGS. 1 to 5).

まず、超電導部材への通電前であって、さらに冷凍機稼働前に、冷媒となる液体窒素を極低温容器1内に供給し、容器内部を液体窒素温度の77.3Kに維持し、決められた液面位置かそれ以上まで冷媒を入れる。このとき、冷凍機の冷却ヘッド6は冷媒に浸っているため、77.3K状態である。その後、冷凍機を稼働し、液体窒素及び超電導コイル2部を目標の66Kまで低下させる。始め、冷凍機の冷却ヘッド6は、77Kから低下し始め、遅れて超電導コイル2部に過冷却液体窒素が行き渡り次第に66Kに近づくが、例えば、超電導コイル2の温度が70Kの段階で、冷却ヘッド6が63Kとなると、冷却ヘッド周辺の液体窒素を凝固させる問題が生ずる。そこで、冷却ヘッド6の温度を上げるため、より冷媒温度が高い鉛直上方向に、冷凍機の膨張機5を昇降手段8により移動することで、凝固を防ぐことができる(図1および図2参照)。   First, before energizing the superconducting member and before operating the refrigerator, liquid nitrogen serving as a refrigerant was supplied into the cryogenic container 1, and the inside of the container was maintained at a liquid nitrogen temperature of 77.3K. Add the refrigerant to the liquid level or higher. At this time, the cooling head 6 of the refrigerator is in the 77.3K state because it is immersed in the refrigerant. Then, the refrigerator is operated, and the liquid nitrogen and the superconducting coil 2 parts are lowered to the target 66K. At first, the cooling head 6 of the refrigerator starts to decrease from 77K, and after a while, supercooled liquid nitrogen spreads over the superconducting coil 2 part and gradually approaches 66K. For example, when the temperature of the superconducting coil 2 reaches 70K, the cooling head When 6 is 63K, there is a problem of solidifying liquid nitrogen around the cooling head. Therefore, in order to raise the temperature of the cooling head 6, the expander 5 of the refrigerator is moved in the vertically upward direction where the refrigerant temperature is higher by the elevating means 8 to prevent solidification (see FIGS. 1 and 2). ).

図3は、冷却ヘッドの位置における液体冷媒の温度勾配を比較して示す図であって、図3(a)は冷却ヘッド位置が下(超電導コイル2部の近傍)の場合の、図3(b)は冷却ヘッド位置が上(液面位置近傍)の場合の、極低温容器1内の鉛直方向の温度分布(66K〜77Kの範囲の分布)を太い実線で模式的に示す。鉛直方向上部の逆S字を付した空間は、冷媒ガス空間を示す。   FIG. 3 is a diagram showing a comparison of the temperature gradient of the liquid refrigerant at the position of the cooling head. FIG. 3A shows the case where the cooling head position is down (near the superconducting coil 2 part). b) schematically shows the vertical temperature distribution (distribution in the range of 66K to 77K) in the cryogenic container 1 with a thick solid line when the cooling head position is above (in the vicinity of the liquid level position). A space with an inverted S-shape at the top in the vertical direction indicates a refrigerant gas space.

冷却ヘッド周辺の冷媒の凝固問題の解消を図り、かつ冷却の全体効率の向上を図る上で、最も好適な運転方法は、冷凍機による冷却開始時に、前記冷却ヘッド6を液体冷媒内の液面位置近傍の予め設定した所定の位置まで挿入し、冷凍機を運転して、液体冷媒を過冷却温度に至るまで冷却することである。この方法によれば、冷却ヘッドの温度低下を押さえて、最大の冷凍能力を安定して出力できる。なお、この場合、冷媒の蒸発ガスを抑制する方にも、冷却ヘッド高さが低いとき以上に冷凍能力を使うことになるので、蒸発ガスを抑えたい要求がより大きい場合にとくに有効である。   In order to solve the problem of solidification of the refrigerant around the cooling head and to improve the overall efficiency of cooling, the most preferable operation method is to place the cooling head 6 at the liquid level in the liquid refrigerant at the start of cooling by the refrigerator. It is inserted to a predetermined position near the position, and the refrigerator is operated to cool the liquid refrigerant to the supercooling temperature. According to this method, the maximum cooling capacity can be stably output while suppressing the temperature drop of the cooling head. In this case, the refrigeration capacity is also used to suppress the evaporative gas of the refrigerant more than when the cooling head height is low, which is particularly effective when the demand for suppressing the evaporative gas is greater.

また、前記請求項6の発明のように、前記冷却ヘッドの温度が次第に低下して、液体冷媒の凝固温度より所定の温度だけ高い温度に到達した際に、前記冷凍機の出力を低減して前記冷却ヘッドの温度を予め設定した所定の温度だけ上昇させるのが好ましい。冷凍機圧縮機がインバータ制御可能な場合には、冷却ヘッドの温度を監視して、凝固点に近づいた際に、インバータで冷凍出力を抑制する。これにより、省エネルギー運転も可能となる。 Further, as in the sixth aspect of the invention, when the temperature of the cooling head gradually decreases and reaches a temperature higher than the solidification temperature of the liquid refrigerant by a predetermined temperature, the output of the refrigerator is reduced. It is preferable to raise the temperature of the cooling head by a predetermined temperature set in advance. When the refrigerator compressor is inverter-controllable, the temperature of the cooling head is monitored, and the refrigeration output is suppressed by the inverter when approaching the freezing point. Thereby, energy saving operation is also possible.

この発明の運転方法によれば、従来のように、冷却ヘッドに設けたヒータ制御や、超電導コイル冷却完了前に冷凍機電源に設けたインバータによる冷凍機出力制御を行うことなく、極低温容器内の冷却ヘッドの昇降制御により、冷却ヘッド周辺の冷媒の凝固問題の解消が図れるので、冷却の全体効率の向上が図れる。   According to the operation method of the present invention, the heater control provided in the cooling head and the refrigerator output control by the inverter provided in the refrigerator power supply before the completion of cooling of the superconducting coil are not performed as in the prior art. By raising and lowering the cooling head, it is possible to solve the problem of solidification of the refrigerant around the cooling head, so that the overall efficiency of cooling can be improved.

図4は、本発明の超電導部材冷却装置の運転方法における冷却特性に関し、従来方法における冷却特性と比較して示す図であり、図4(a)は本発明の冷却ヘッド昇降制御の場合の、図4(b)は従来のインバータ制御の場合の冷却特性を模式的に示す。本発明の場合、従来方法に比較して、超電導コイルの温度は、早期に所望の66Kに近づく。また、冷却ヘッドの温度も超電導コイルの温度より若干低い温度を維持しながら徐々に低下する。
なお、図4(a)は、液体冷媒を過冷却温度に低減する初期冷却運転時の温度変化を概括的に示したものであって、前記請求項3に係る冷却ヘッドの昇降のタイミングや冷凍出力と温度との正確な対応関係については示していない。一方、前記請求項6に係る冷凍出力の制御に関しては、図4(a)の上段に、液体冷媒の凝固温度より所定の温度だけ高い温度の一例として、65Kを記載している。
FIG. 4 is a diagram showing the cooling characteristics in the operation method of the superconducting member cooling device of the present invention in comparison with the cooling characteristics in the conventional method, and FIG. 4 (a) is the case of the cooling head elevation control of the present invention. FIG. 4B schematically shows cooling characteristics in the case of conventional inverter control. In the case of the present invention, the temperature of the superconducting coil approaches the desired 66K earlier than in the conventional method. Also, the temperature of the cooling head gradually decreases while maintaining a temperature slightly lower than the temperature of the superconducting coil.
FIG. 4A schematically shows the temperature change during the initial cooling operation for reducing the liquid refrigerant to the supercooling temperature, and the timing of raising and lowering the cooling head according to claim 3 and the refrigeration. The exact correspondence between output and temperature is not shown. On the other hand, regarding the control of the refrigeration output according to the sixth aspect, 65K is described in the upper part of FIG. 4A as an example of a temperature higher than the solidification temperature of the liquid refrigerant by a predetermined temperature.

次に、超電導コイルへの通電時の運転方法について述べる。通電時のコイルの通電損失等で熱負荷が増大する場合には、冷凍機の冷却ヘッド高さを下げて、より超電導コイル2に近づけ、超電導コイル及び冷媒の温度上昇にできるだけ速く対応できるようにすることが好ましい。通電後に、再度無通電とする場合には、液面の冷媒蒸発を抑制して、熱侵入量による液面低下を抑えるため、冷却ヘッドを液面位置近傍に上昇させることが好ましい。   Next, an operation method when energizing the superconducting coil will be described. When the heat load increases due to the coil loss during energization, etc., the cooling head height of the refrigerator is lowered so that it is closer to the superconducting coil 2 and can cope with the temperature rise of the superconducting coil and the refrigerant as quickly as possible. It is preferable to do. When the power is turned off again after energization, it is preferable to raise the cooling head to the vicinity of the liquid level position in order to suppress the evaporation of the refrigerant on the liquid level and suppress the decrease in the liquid level due to the amount of heat penetration.

次に、図5に基づいて冷凍機の運転を一時停止する場合について述べる。冷凍機の運転を一時停止する場合には、昇降手段を利用して、冷凍機停止直前に、冷凍機の冷却ヘッド6を液面よりさらに上部に上昇させ、液面に冷凍機が接しないようにして保持することにより、冷凍機自体から極低温容器への熱侵入が抑制され、冷媒の蒸発及び温度上昇を抑制することができる。   Next, a case where the operation of the refrigerator is temporarily stopped will be described based on FIG. When the operation of the refrigerator is temporarily stopped, the elevating means is used to raise the cooling head 6 of the refrigerator further above the liquid level immediately before stopping the refrigerator so that the refrigerator does not contact the liquid level. By holding in this manner, heat penetration from the refrigerator itself into the cryogenic container is suppressed, and evaporation of the refrigerant and temperature rise can be suppressed.

本発明の実施の形態に係る超電導部材冷却装置の一例の模式的構成を示す図であって、冷却ヘッドの下降状態を示す図。It is a figure which shows the typical structure of an example of the superconducting member cooling device which concerns on embodiment of this invention, Comprising: The figure which shows the descent | fall state of a cooling head. 図1と同様の超電導部材冷却装置の一例の模式的構成を示す図であって、冷却ヘッドの上昇状態を示す図。It is a figure which shows the typical structure of an example of the superconducting member cooling device similar to FIG. 1, Comprising: The figure which shows the raising state of a cooling head. 図1および図2に対応する冷却ヘッドの位置における液体冷媒の温度勾配を比較して示す図。The figure which compares and shows the temperature gradient of the liquid refrigerant in the position of the cooling head corresponding to FIG. 1 and FIG. 本発明の超電導部材冷却装置の運転方法における冷却特性に関し、従来方法における冷却特性と比較して示す図。The figure shown compared with the cooling characteristic in the conventional method regarding the cooling characteristic in the operating method of the superconducting member cooling device of this invention. 図1と同様の超電導部材冷却装置の一例の模式的構成を示す図であって、冷凍機の一時停止時における冷却ヘッドの上昇状態を示す図。It is a figure which shows the typical structure of an example of the superconducting member cooling device similar to FIG. 1, Comprising: The figure which shows the raising state of the cooling head at the time of the temporary stop of a refrigerator. 従来の超電導部材冷却装置の一例の模式的構成を示す図。The figure which shows the typical structure of an example of the conventional superconducting member cooling device. 従来の超電導部材冷却装置における冷凍機の模式的構成を示す図。The figure which shows the typical structure of the refrigerator in the conventional superconducting member cooling device.

1:極低温容器、2:超電導コイル、2a:電流リード、3:冷媒、3a:冷媒液面、4:極低温容器の蓋部、5:冷凍機の膨張機、6:冷却ヘッド、6a:温度計測手段、7:熱交換器、8:昇降手段。
1: Cryogenic container, 2: Superconducting coil, 2a: Current lead, 3: Refrigerant, 3a: Refrigerant liquid level, 4: Lid of cryogenic container, 5: Refrigerating machine expander, 6: Cooling head, 6a: Temperature measuring means, 7: heat exchanger, 8: lifting means.

Claims (6)

超電導応用機器における超電導部を、極低温の液体冷媒中に浸漬して冷却する極低温容器と、この極低温容器の蓋部に搭載し、前記蓋部から極低温容器内に冷凍機の膨張機が備える冷却ヘッドを挿入して前記液体冷媒を過冷却温度に冷却する冷凍機とを備えた超電導部冷却装置において、
前記冷凍機は、前記冷却ヘッドの温度を計測する温度計測手段を備え、さらに、極低温容器の蓋部と冷凍機との間に、前記冷却ヘッドの温度計測値の信号または前記超電導部への通電の有無の信号もしくは前記冷凍機の稼動の有無の信号に基づいて、極低温容器内における前記冷却ヘッドの挿入高さを可変とする冷凍機の昇降手段を備えたことを特徴とする超電導部冷却装置。
A superconducting part in a superconducting application device is mounted on a cryogenic container that cools by immersing it in a cryogenic liquid refrigerant, and a lid part of the cryogenic container, and the expander of the refrigerator is inserted into the cryogenic container from the lid part. In the superconducting part cooling device comprising a refrigerator that inserts a cooling head provided by the refrigerator and cools the liquid refrigerant to a supercooling temperature,
The refrigerator includes temperature measuring means for measuring the temperature of the cooling head, and further, a temperature measurement value signal of the cooling head or a superconducting unit is provided between the lid of the cryogenic container and the refrigerator. A superconducting section comprising a refrigerator raising / lowering means for varying the insertion height of the cooling head in a cryogenic container based on a signal indicating whether power is supplied or not, or a signal indicating whether the refrigerator is operating. Cooling system.
請求項1に記載のものにおいて、前記超電導部は高温超電導線材を備え、前記液体冷媒は液体窒素としたことを特徴とする超電導部冷却装置。 2. The superconducting part cooling device according to claim 1, wherein the superconducting part includes a high-temperature superconducting wire, and the liquid refrigerant is liquid nitrogen. 請求項1または2に記載の超電導部冷却装置の運転方法であって、下記の手順を含むことを特徴とする超電導部冷却装置の運転方法。
(1)超電導部冷却装置の起動時であって、冷凍機の稼動前および超電導部への通電前に、液体冷媒を、少なくとも前記超電導部が浸漬する予め設定した所定の液面位置まで、極低温容器内に注入する。
(2)前記冷却ヘッドを液体冷媒内の前記超電導部近傍の予め設定した所定の位置まで挿入し、冷凍機を運転して、前記液体冷媒を過冷却温度に至るまで冷却する。
(3)前記冷却ヘッドの温度が次第に低下して、液体冷媒の凝固温度より所定の温度だけ高い予め設定した温度に到達した際に、極低温容器内における前記冷却ヘッドの位置を前記冷凍機の昇降手段により上昇させる
The operation method of the superconducting part cooling device according to claim 1 or 2, comprising the following procedure.
(1) At the time of starting the superconducting unit cooling device, before operating the refrigerator and before energizing the superconducting unit, the liquid refrigerant is at least brought to a predetermined liquid level position where the superconducting unit is immersed. Inject into a cryocontainer.
(2) The cooling head is inserted to a predetermined position near the superconducting part in the liquid refrigerant, and a refrigerator is operated to cool the liquid refrigerant to a supercooling temperature.
(3) When the temperature of the cooling head gradually decreases and reaches a preset temperature higher than the solidification temperature of the liquid refrigerant by a predetermined temperature, the position of the cooling head in the cryogenic container is increase by the lifting means.
請求項3に記載の超電導部冷却装置の運転方法であって、冷凍機の稼動により前記液体冷媒を過冷却温度に至るまで冷却した後、超電導部への通電を開始した際には、極低温容器内における前記冷却ヘッドの位置を、前記冷凍機の昇降手段により、液体冷媒内の前記超電導部近傍の予め設定した所定の位置まで下降させ、超電導部への通電を停止した際には、前記冷却ヘッドを液体冷媒内の前記液面位置近傍の予め設定した所定の位置まで上昇させることを特徴とする超電導部冷却装置の運転方法。 The operation method of the superconducting part cooling device according to claim 3, wherein when the liquid refrigerant is cooled to a supercooling temperature by operating a refrigerator, energization to the superconducting part is started at a very low temperature. When the position of the cooling head in the container is lowered to a predetermined position near the superconducting part in the liquid refrigerant by the elevating means of the refrigerator, and when the energization to the superconducting part is stopped, A method of operating a superconducting part cooling device, wherein the cooling head is raised to a predetermined position in the vicinity of the liquid surface position in the liquid refrigerant. 請求項に記載の超電導部冷却装置の運転方法であって、超電導部への通電を停止し、かつ冷凍機の運転も一時的に停止する際には、前記冷凍機の昇降手段により、前記冷却ヘッドを液体冷媒内の前記液面位置を越える位置まで上昇させ、極低温容器内における冷媒ガス空間内に前記冷却ヘッドを保持することを特徴とする超電導部冷却装置の運転方法。 The operation method of the superconducting part cooling device according to claim 4 , wherein when energization to the superconducting part is stopped and the operation of the refrigerator is also temporarily stopped, by the elevating means of the refrigerator, A method of operating a superconducting part cooling apparatus, wherein the cooling head is raised to a position exceeding the liquid level position in the liquid refrigerant, and the cooling head is held in the refrigerant gas space in the cryogenic container. 請求項3ないし5のいずれか1項に記載の超電導部冷却装置の運転方法であって、前記冷却ヘッドが液体冷媒の凝固点温度に至るのを抑制すべく、前記冷却ヘッドの温度が次第に低下して、液体冷媒の凝固温度より所定の温度だけ高い温度に到達した際に、前記冷凍機の出力を低減することを特徴とする超電導部冷却装置の運転方法。6. The method of operating a superconducting part cooling device according to claim 3, wherein the temperature of the cooling head gradually decreases in order to suppress the cooling head from reaching the freezing point temperature of the liquid refrigerant. Then, when the temperature reaches a predetermined temperature higher than the solidification temperature of the liquid refrigerant, the output of the refrigerator is reduced.
JP2007232512A 2007-09-07 2007-09-07 Superconducting part cooling device and its operation method Expired - Fee Related JP5217308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232512A JP5217308B2 (en) 2007-09-07 2007-09-07 Superconducting part cooling device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232512A JP5217308B2 (en) 2007-09-07 2007-09-07 Superconducting part cooling device and its operation method

Publications (2)

Publication Number Publication Date
JP2009065016A JP2009065016A (en) 2009-03-26
JP5217308B2 true JP5217308B2 (en) 2013-06-19

Family

ID=40559328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232512A Expired - Fee Related JP5217308B2 (en) 2007-09-07 2007-09-07 Superconducting part cooling device and its operation method

Country Status (1)

Country Link
JP (1) JP5217308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289457B1 (en) * 2020-09-18 2021-08-13 주식회사 패리티 Active Temperature Control Apparatus for Cryogenic Hydrogen Storage Tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104234B1 (en) 2010-09-30 2012-01-10 한국전력공사 Apparatus and method for controlling temperature inside of superconducting fault current limiter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597182B2 (en) * 1989-04-20 1997-04-02 住友重機械工業株式会社 Superconducting magnet device
JPH09287837A (en) * 1996-04-19 1997-11-04 Kobe Steel Ltd Cryogenic cooling device
JP2005156051A (en) * 2003-11-27 2005-06-16 Taiyo Nippon Sanso Corp Superconductive member cooling device, and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289457B1 (en) * 2020-09-18 2021-08-13 주식회사 패리티 Active Temperature Control Apparatus for Cryogenic Hydrogen Storage Tank

Also Published As

Publication number Publication date
JP2009065016A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
US20190212049A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
US7559205B2 (en) Cryogen tank for cooling equipment
JP5228177B2 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JP2012184918A (en) Method and apparatus for closed-loop precooling of cryogenically cooled equipment
CN107110928B (en) System and method for cooling a magnetic resonance imaging apparatus
CN103985499A (en) High-temperature superconducting magnet liquid nitrogen zero-evaporation cooling system
JP2006012654A (en) Cooling system for superconductive power apparatus
JP2008025858A (en) Subcooled low-temperature device
JP2016170928A (en) Superconductor cooling device
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
JP5217308B2 (en) Superconducting part cooling device and its operation method
JP5833284B2 (en) Cooling system
JP6616717B2 (en) Cryogenic cooling device and cryogenic cooling method
JP6144521B2 (en) Superconducting cable cooling system
KR101574940B1 (en) A closed cryogen cooling system and method for cooling a superconducting magnet
KR20070006590A (en) Undercooled horizontal cryostat configuration
KR20130033062A (en) Pressure control system in superconducting fault current limiter
JP5540642B2 (en) Cooling device for superconducting equipment
JP5916517B2 (en) Cooling container
JP2859250B2 (en) Superconducting member cooling device
JP6082531B2 (en) Cooling container
KR20130035755A (en) Decompression pumping system for hts power cable and cooling method for using the same
JP4488695B2 (en) Cryogenic cooling device
JP2021510931A (en) Superconducting magnet with thermal battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees