JP2001342324A - Epoxy resin for fiber-reinforced composite wheel - Google Patents

Epoxy resin for fiber-reinforced composite wheel

Info

Publication number
JP2001342324A
JP2001342324A JP2000161332A JP2000161332A JP2001342324A JP 2001342324 A JP2001342324 A JP 2001342324A JP 2000161332 A JP2000161332 A JP 2000161332A JP 2000161332 A JP2000161332 A JP 2000161332A JP 2001342324 A JP2001342324 A JP 2001342324A
Authority
JP
Japan
Prior art keywords
fiber
epoxy resin
reinforced composite
resin
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000161332A
Other languages
Japanese (ja)
Inventor
Masaki Shimada
政紀 島田
Hiromi Kimura
浩巳 木村
Shigeo Nagaya
重夫 長屋
Naoji Kajima
直二 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Chubu Electric Power Co Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nippon Steel Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2000161332A priority Critical patent/JP2001342324A/en
Publication of JP2001342324A publication Critical patent/JP2001342324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin which can be molded into a thick-walled article having a thickness of 20 mm or more, not moldable by a conventional epoxy resin used in filament winding because of the development of cracks, etc., and to provide a large-sized carbon fiber-reinforced composite wheel or a rotor for a high-speed rotating fly wheel required in general industrial applications. SOLUTION: This epoxy resin, used in producing a fiber-reinforced composite material wheel, has a glass transition point of 40 deg.C or higher but not higher than 100 deg.C and a strain at break of 3% or higher. A fiber-reinforced composite material wheel or a rotor for a high-speed-rotating fly wheel is produced from the resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軽量で高強度、高弾性
の繊維強化複合材が回転体として使用されつつある、遠
心分離ロータ、フライホイル等の円筒回転体部材の一般
産業分野における繊維強化複合材ホイルおよび繊維強化
複合材ホイル用エポキシ樹脂に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber in a general industrial field of a cylindrical rotating member such as a centrifugal rotor or a flywheel, in which a lightweight, high-strength, high-elastic fiber-reinforced composite material is being used as a rotating member. The present invention relates to a reinforced composite foil and an epoxy resin for a fiber reinforced composite foil.

【0002】[0002]

【従来の技術】繊維強化複合材は、ガラス繊維、炭素繊
維といった高性能繊維を繊維強化に用いることにより、
軽量、高強度、耐腐食性などの優れた特性を発揮し、種
々の分野への適用が行われている。その中でもパイプ形
状などの軸対称物は、産業機器の各種ローラーやシャフ
ト、各種アームやロータ、など様々な用途に用いられて
いる。
2. Description of the Related Art Fiber-reinforced composite materials are made by using high-performance fibers such as glass fibers and carbon fibers for fiber reinforcement.
It exhibits excellent properties such as light weight, high strength, and corrosion resistance, and has been applied to various fields. Among them, axially symmetric objects such as pipe shapes are used for various applications such as various rollers and shafts of industrial equipment, various arms and rotors, and the like.

【0003】軸対称形状の繊維強化複合材の製造方法と
しては、フィラメント・ワインディング法、プリプレグ
積層法、引き抜き成形方法などがある。これらの製造方
法のうち、引き抜き成形法は生産性に優れるという特徴
があるものの、繊維配向方向の自由度がなく特殊用途以
外には用いられない。
As a method for producing an axially symmetric fiber-reinforced composite material, there are a filament winding method, a prepreg laminating method, a pultrusion molding method and the like. Among these production methods, the pultrusion molding method has the feature of being excellent in productivity, but has no degree of freedom in the fiber orientation direction and cannot be used for any purpose other than special use.

【0004】プリプレグ成形法はプリプレグと呼ばれる
シート状の中間素材を芯金(マンドレル)に巻き付ける
方法であり(軸対称物を成形する場合にはシート・ワイ
ンディング法とも呼ばれる)、繊維の方向を変えること
ができ、生産性が比較的高いという特徴がある。しかし
ながらプリプレグ積層方法は、肉厚が大きいものや、大
型の管体を製造することは困難である。
[0004] The prepreg molding method is a method of winding a sheet-like intermediate material called a prepreg around a mandrel (also called a sheet winding method when molding an axisymmetric object), and changing the direction of the fiber. It is characterized by relatively high productivity. However, in the prepreg laminating method, it is difficult to produce a thick or large tube.

【0005】これに対してフィラメント・ワインディン
グ法は、数百本乃至数万本の単繊維を合一した繊維束
を、樹脂を含浸させながらマンドレルに巻きつける方法
であり、繊維の配向方向を精密に制御することが可能な
上、大型の成形物や肉厚の成形物が製造できるという特
徴がある。
On the other hand, the filament winding method is a method in which a bundle of hundreds to tens of thousands of single fibers is wound around a mandrel while impregnating with a resin, and the orientation direction of the fibers is precisely controlled. In addition, it is characterized in that a large molded product and a thick molded product can be manufactured.

【0006】プリプレグ成形方法では、成形厚みは5m
m以下がほとんどであり、10mmまでの積層を実施す
ると、コスト的、時間的、品質的にフィラメント・ワイ
ンディング法に劣ることになる。
In the prepreg molding method, the molding thickness is 5 m
m or less, and laminating up to 10 mm is inferior in cost, time and quality to the filament winding method.

【0007】しかしフィラメント・ワインディング法に
おいても、従来のエポキシ樹脂を使用すると、成型厚み
は5mm〜20mm程度までがほとんどであり、30m
m近くなるとクラックの発生等が起こり、品質的に満足
できるものを製造することは非常に困難であった。
However, even in the filament winding method, when a conventional epoxy resin is used, the molding thickness is almost from 5 mm to 20 mm, and the molding thickness is 30 m.
When the distance is close to m, cracks occur and it is very difficult to produce a product having satisfactory quality.

【0008】尚、フィラメント・ワインディング法で使
用される樹脂は、繊維束に樹脂を含浸させながらマンド
レルに繊維をまきつけることから、樹脂の粘度、ポット
ライフの制約を加味して一般的にガラス転移点120℃
前後のものが一般的である。
[0008] The resin used in the filament winding method is to impregnate the fiber into a mandrel while impregnating the fiber bundle with the resin. 120 ° C
Before and after are common.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来のフィ
ラメント・ワインディング法で使用されるエポキシ樹脂
では、クラック等の発生により製造することができなか
った、20mm以上の肉厚品の成形が可能なエポキシ樹
脂を提供し、一般産業用途に必要とされる大型の炭素繊
維強化複合材ホイルを提供するものである。
SUMMARY OF THE INVENTION According to the present invention, it is possible to mold a thick product having a thickness of 20 mm or more, which could not be produced due to the occurrence of cracks or the like with the epoxy resin used in the conventional filament winding method. The present invention provides a large epoxy resin and a large carbon fiber reinforced composite foil required for general industrial use.

【0010】[0010]

【課題を解決するための手段】本発明は、ガラス転移点
が40℃以上100℃以下であって、樹脂の破断歪みが
3%以上の特性をもつエポキシ樹脂およびその樹脂を使
用しフィラメント・ワインディング法で肉厚成形の大型
の炭素繊維強化複合材ホイルまたはロータを製造するこ
とにある。
SUMMARY OF THE INVENTION The present invention relates to an epoxy resin having a glass transition point of 40.degree. C. or more and 100.degree. C. or less and a breaking strain of resin of 3% or more, and a filament winding method using the resin. To produce large carbon fiber reinforced composite foils or rotors with thick wall by the method.

【0011】[0011]

【発明の実施の形態】肉厚が20mm以上、特に50m
m以上になると、クラックなしで繊維強化複合材ホイル
を製造するには、ガラス転移点が40℃以上100℃以
下であって、樹脂の破断歪みが3%以上の特性をもつエ
ポキシ樹脂が必要となる。以下詳細に本発明のメカニズ
ムを説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The thickness is more than 20 mm, especially 50 m
m or more, in order to produce a fiber-reinforced composite foil without cracks, an epoxy resin having a glass transition point of 40 ° C. or more and 100 ° C. or less and a breaking strain of the resin of 3% or more is required. Become. Hereinafter, the mechanism of the present invention will be described in detail.

【0012】繊維強化エポキシ樹脂複合材が、クラック
が発生するメカニズムとしては、繊維複合材の異方性が
大きな因子となっており、繊維方向の強度に対し繊維垂
直方向は1/100程度の強度しかない。そこで、成形
後の樹脂硬化で樹脂の硬化収縮と残留熱応力により高い
応力が発生し、繊維垂直方向の弱い強度の点でクラック
が発生してしまうことになる。
The mechanism by which the fiber-reinforced epoxy resin composite material cracks is largely due to the anisotropy of the fiber composite material. The strength in the fiber vertical direction is about 1/100 of the strength in the fiber direction. There is only. Therefore, when the resin is cured after molding, a high stress is generated due to the curing shrinkage of the resin and the residual thermal stress, and a crack is generated at a point of weak strength in the vertical direction of the fiber.

【0013】薄い肉厚の時には、リングの内周と外周長
さに差が少ないため樹脂の硬化収縮と残留熱応力は大き
く発生しないが、径が大きくかつ肉厚が厚くなると内周
と外周差が非常に大きくなることにより樹脂の硬化収縮
と残留熱応力が大きくなる。
When the thickness is small, there is little difference between the inner circumference and the outer circumference of the ring, so that the curing shrinkage of the resin and the residual thermal stress do not occur much, but when the diameter is large and the thickness is large, the difference between the inner circumference and the outer circumference is small. Becomes very large, the curing shrinkage of the resin and the residual thermal stress increase.

【0014】本発明では、径が大きくかつ肉厚が厚くな
り、内周と外周差が非常に大きくなっても、硬化時に割
れずに成形できるエポキシ樹脂を提供し、一般産業用途
に必要とされる大型の炭素繊維強化複合材ホイルを製造
可能とする。
The present invention provides an epoxy resin which can be molded without cracking at the time of curing even when the diameter is large and the wall thickness is large and the difference between the inner and outer circumferences is very large, and is required for general industrial use. Large carbon fiber reinforced composite foil.

【0015】本発明では、問題点を解決するための手段
として樹脂の硬化収縮(線膨張係数)と残留熱応力の点
と、割れ発生に直接かかわる繊維垂直方向強度、つまり
樹脂の破壊について注目した。
In the present invention, attention has been paid to curing shrinkage (linear expansion coefficient) and residual thermal stress of the resin, and the strength in the vertical direction of the fiber which is directly related to the occurrence of cracks, that is, the destruction of the resin, as means for solving the problems. .

【0016】まず樹脂の硬化収縮(線膨張係数)と残留
熱応力においては、残留熱応力を、σ=E(弾性率)×
線膨張率×(Tg−20℃)とできる(Tg;ガラス転
移点、以下Tgと表示する)。樹脂はTg以上ではゴム
状態であり、温度変化によって熱応力は発生しないと考
えられる。従って、硬化時の残留熱応力は、硬化温度か
らTgを経て室温まで下がる間の、Tgから室温の温度
差(ΔT)により発生するものと考えられる(硬化温度
>Tgの場合)。これより線膨張率つまり樹脂の硬化収
縮は、残留熱応力を現す因子である。そこで残留熱応力
を小さく押さえるには線膨張率を小さくするか、Tgを
小さくすることによって残留熱応力を小さくおさえるこ
とができる。
First, regarding the curing shrinkage (linear expansion coefficient) and the residual thermal stress of the resin, the residual thermal stress is represented by σ = E (elastic modulus) ×
The coefficient of linear expansion × (Tg−20 ° C.) (Tg; glass transition point, hereinafter referred to as Tg). The resin is in a rubber state above Tg, and it is considered that thermal stress does not occur due to temperature change. Therefore, it is considered that the residual thermal stress at the time of curing is caused by a temperature difference (ΔT) from Tg to room temperature while the temperature falls from the curing temperature to room temperature via Tg (when curing temperature> Tg). Thus, the coefficient of linear expansion, that is, the curing shrinkage of the resin, is a factor representing the residual thermal stress. Therefore, in order to keep the residual thermal stress small, the residual thermal stress can be kept small by decreasing the coefficient of linear expansion or reducing Tg.

【0017】そこで本発明では、一般に120℃以上の
Tgをもつエポキシ樹脂にかわり、40℃以上100℃
以下のTgをもつエポキシ樹脂を開発することにより、
残留熱応力を押さえることにした。Tgが40℃より下
になると残留熱応力は非常に小さくなるが、一般産業用
途として使用するのに、40℃付近では、樹脂がゴム状
となり強度的に問題となる。また、100℃以上だと現
用のエポキシ樹脂とかわらず残留熱応力を下げることが
できない。
Therefore, in the present invention, an epoxy resin having a Tg of 120 ° C. or more is generally used instead of an epoxy resin having a Tg of
By developing an epoxy resin with the following Tg,
We decided to keep the residual thermal stress down. When Tg is lower than 40 ° C., the residual thermal stress becomes very small. However, when used for general industrial use, at around 40 ° C., the resin becomes rubbery, which causes a problem in strength. On the other hand, when the temperature is 100 ° C. or higher, the residual thermal stress cannot be reduced regardless of the epoxy resin in use.

【0018】好ましくは、一般産業用途で使用するため
に、40℃付近でも強度が高く保持し、かつ厚みが非常
に厚くなった時(50mm以上)に残留熱応力を下げる
ために、50℃以上90℃以下のTgのエポキシ樹脂が
良い。
Preferably, for use in general industrial applications, the strength is kept high even at around 40 ° C. and the residual thermal stress is reduced when the thickness becomes extremely thick (50 mm or more). An epoxy resin having a Tg of 90 ° C. or less is preferable.

【0019】次に割れ発生に直接かかわる繊維垂直方向
強度、つまり樹脂の破壊を考慮すると、樹脂の破断歪み
が大きいものほど残留熱応力によって割れる可能性が低
くなる。そこで本発明ではエポキシ樹脂の粘度、ポット
ライフも考慮して3%以上であれば、十分残留熱応力に
耐えうる樹脂となることを見出した。破断歪みは大きけ
れば大きいほど樹脂の破壊には有利であるが、粘度、ポ
ットライフの点からも極端に高い樹脂は製造できない。
Next, in consideration of the strength in the fiber vertical direction directly related to the generation of cracks, that is, the destruction of the resin, the greater the breaking strain of the resin, the lower the possibility of cracking due to residual thermal stress. Therefore, in the present invention, it has been found that if the viscosity and the pot life of the epoxy resin are taken into consideration, the resin can be sufficiently resistant to residual thermal stress if it is at least 3%. The greater the breaking strain, the more advantageous the resin is in breaking. However, it is not possible to produce a resin having an extremely high viscosity and pot life.

【0020】[0020]

【実施例】以下、本発明を実施例によって更に具体的に
説明する。本発明に使用する繊維は、炭素繊維、ガラス
繊維、アラミド繊維のいずれでも良いが、特に繊維の異
方性が強く、高弾性かつ高強度で高速の回転体に使用さ
れる炭素繊維において非常に有効である。この繊維を使
用して本発明の樹脂を繊維に含浸した後、金属マンドレ
ルに繊維を必要厚みに巻き付けるフィラメント・ワイン
ディング法により成形する。その後、この成形体をオー
ブン中で硬化させ樹脂を硬化後、金属マンドレルを抜き
製品リングとする。
EXAMPLES The present invention will be described more specifically below with reference to examples. The fiber used in the present invention may be any of carbon fiber, glass fiber, and aramid fiber. It is valid. After the fiber is impregnated with the resin of the present invention using the fiber, the fiber is formed by a filament winding method of winding the fiber to a required thickness on a metal mandrel. Thereafter, the molded body is cured in an oven to cure the resin, and then the metal mandrel is removed to form a product ring.

【0021】実施例1としてエポキシ樹脂EP1;Tg
47℃、実施例2としてエポキシ樹脂EP2;Tg86
℃、比較例としてエポキシ樹脂EP3;Tg120℃を
用いた。
In Example 1, epoxy resin EP1; Tg
47 ° C., epoxy resin EP2 as Example 2; Tg86
° C, and epoxy resin EP3; Tg120 ° C as a comparative example.

【0022】以下表1にそれぞれの樹脂の各種特性値と
破断歪み結果、熱応力結果を示す。
Table 1 below shows various characteristic values of each resin, results of breaking strain, and results of thermal stress.

【表1】 表のように比較例は破断歪みは小さく、熱応力は大きく
なっている。
[Table 1] As shown in the table, the comparative example has a small breaking strain and a large thermal stress.

【0023】以下これらの樹脂を使用して、以下の同一
条件でおのおの樹脂によるリング(筒状体)を製造し、
クラックの状況を調べた。外径Φ450mm、幅70m
mの金属マンドレルを準備して、おのおのの樹脂を含浸
した弾性率3530MPaの炭素繊維を肉厚75mm巻
き、外径Φ600mmのリング(筒状体)を成形した。
この成形体を以下の条件で硬化した後、金属マンドレル
より取り外し、側部断面を研磨してクラック発生の有無
を確認した。
Using these resins, a ring (cylindrical body) made of each resin is manufactured under the same conditions as follows.
I checked the crack situation. Outer diameter Φ450mm, width 70m
A metal mandrel of m m was prepared, and a carbon fiber having an elastic modulus of 3530 MPa impregnated with each resin was wound at a thickness of 75 mm to form a ring (tubular body) having an outer diameter of 600 mm.
After the molded body was cured under the following conditions, the molded body was removed from the metal mandrel, and the side section was polished to check for the occurrence of cracks.

【0024】実施例1;エポキシ樹脂EP1 60℃で
4時間硬化 実施例2;エポキシ樹脂EP2 90℃で16時間硬化 比較例1;エポキシ樹脂EP3 130℃で8時間硬化 比較例2;エポキシ樹脂EP3 130℃で8時間硬化
後1昼夜の徐冷却を実施
Example 1: Epoxy resin EP1 cured at 60 ° C. for 4 hours Example 2: Epoxy resin EP2 cured at 90 ° C. for 16 hours Comparative example 1: Epoxy resin EP3 cured at 130 ° C. for 8 hours Comparative example 2: Epoxy resin EP3 130 Slow cooling for one day and night after curing for 8 hours at ℃

【0025】断面観察の結果は、以下のようになった。 実施例1;エポキシ樹脂EP1 全く割れの発生な
し 実施例2;エポキシ樹脂EP2 全く割れの発生な
し 比較例1;エポキシ樹脂EP3 中央付近に大きな
層間クラック 比較例2;エポキシ樹脂EP3徐冷 上部1/3付近に
小さなヘアークラック
The results of the cross-sectional observation are as follows. Example 1: Epoxy resin EP1 No cracks generated Example 2: Epoxy resin EP2 No cracks generated Comparative example 1: Epoxy resin EP3 Large interlayer crack near the center Comparative example 2: Epoxy resin EP3 Slow cooling Top 1/3 Small hair cracks nearby

【0026】ガラス転移点が40℃以上100℃以下で
あって、樹脂の破断歪みが3%以上の特性をもつエポキ
シ樹脂を使用の場合は、高速回転等の応力をかけても割
れないリング(筒状体)を製造できたが、比較例の樹脂
であると、除冷をして熱応力を緩和してもクラックをも
たない製品の製造は困難であった。
When an epoxy resin having a glass transition point of 40 ° C. or more and 100 ° C. or less and a breaking strain of the resin of 3% or more is used, a ring that does not crack even when subjected to stress such as high-speed rotation. Although it was possible to manufacture a cylindrical body), it was difficult to manufacture a product having no cracks even if the resin of Comparative Example was cooled to reduce thermal stress.

【0027】[0027]

【本発明の効果】本発明では、径が大きくかつ肉厚が厚
くなり、内周と外周差が非常に大きくなっても硬化時に
割れなく成形できるエポキシ樹脂を提供し、一般産業用
途に必要とされる大型の炭素繊維強化複合材ホイルまた
はロータを製造可能とした。
According to the present invention, an epoxy resin having a large diameter and a large wall thickness, and capable of being molded without being cracked at the time of curing even when the difference between the inner circumference and the outer circumference becomes extremely large, is required for general industrial use. Large carbon fiber reinforced composite foils or rotors to be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 浩巳 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内 (72)発明者 鹿島 直二 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内 Fターム(参考) 4D057 BA21 4F072 AA01 AA02 AA06 AA07 AB06 AB09 AB10 AD23 AH02 AH22 AJ04 AK11 AL16 4J002 CD001 CL002 DA016 DL006 FA046 FD012 FD016 GM00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Kimura 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Shigeo Nagaya Character north of Odakacho, Midori-ku, Nagoya-shi, Aichi 20-1 Sekiyama Power Technology Research Center, Chubu Electric Power Co., Inc. (72) Inventor Naoji Kajima 20-1 Kita-Sekiyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Electric Power Technology Research Center Chubu Electric Power Co., Ltd. In-house F-term (reference) 4D057 BA21 4F072 AA01 AA02 AA06 AA07 AB06 AB09 AB10 AD23 AH02 AH22 AJ04 AK11 AL16 4J002 CD001 CL002 DA016 DL006 FA046 FD012 FD016 GM00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化複合材ホイルの製造において使
用するエポキシ樹脂であって、ガラス転移点が40℃以
上100℃以下であり、樹脂の破断歪みが3%以上の特
性をもつことを特徴とする繊維強化複合材ホイル用エポ
キシ樹脂。
1. An epoxy resin used in the production of a fiber-reinforced composite foil, having a glass transition point of 40 ° C. or more and 100 ° C. or less, and having a breaking strain of 3% or more. Epoxy resin for fiber reinforced composite foil.
【請求項2】 請求項1の繊維強化複合材ホイル用エポ
キシ樹脂を使用した繊維強化複合材ホイル。
2. A fiber reinforced composite foil using the epoxy resin for a fiber reinforced composite foil according to claim 1.
【請求項3】 請求項1の繊維強化複合材ホイル用エポ
キシ樹脂を使用した20mm以上の肉厚でクラックが発
生しない繊維強化複合材ホイル。
3. A fiber-reinforced composite foil which is made of the epoxy resin for a fiber-reinforced composite foil of claim 1 and has a thickness of 20 mm or more and does not generate cracks.
【請求項4】 請求項1の繊維強化複合材ホイル用エポ
キシ樹脂を使用した高速回転フライホイル用ロータ。
4. A rotor for a high-speed flywheel using the epoxy resin for a fiber-reinforced composite material foil according to claim 1.
JP2000161332A 2000-05-31 2000-05-31 Epoxy resin for fiber-reinforced composite wheel Pending JP2001342324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161332A JP2001342324A (en) 2000-05-31 2000-05-31 Epoxy resin for fiber-reinforced composite wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161332A JP2001342324A (en) 2000-05-31 2000-05-31 Epoxy resin for fiber-reinforced composite wheel

Publications (1)

Publication Number Publication Date
JP2001342324A true JP2001342324A (en) 2001-12-14

Family

ID=18665370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161332A Pending JP2001342324A (en) 2000-05-31 2000-05-31 Epoxy resin for fiber-reinforced composite wheel

Country Status (1)

Country Link
JP (1) JP2001342324A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271651A (en) * 1993-03-23 1994-09-27 Asahi Chem Ind Co Ltd Epoxy resin composition
JPH10237196A (en) * 1997-02-28 1998-09-08 Nippon Oil Co Ltd Tow prepreg
JP2000355649A (en) * 1999-04-16 2000-12-26 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271651A (en) * 1993-03-23 1994-09-27 Asahi Chem Ind Co Ltd Epoxy resin composition
JPH10237196A (en) * 1997-02-28 1998-09-08 Nippon Oil Co Ltd Tow prepreg
JP2000355649A (en) * 1999-04-16 2000-12-26 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
KR100237256B1 (en) Cylindrical part manufactured by fiber reinforced plastic composite material and the method thereof
JP2015529575A (en) Composite article and method therefor
JP2888664B2 (en) Optical tube made of CFRP
US6325108B1 (en) Prestressed composite cryogenic piping
JPH09141754A (en) Tapered hollow shaft
KR100298101B1 (en) Fiber Reinforced Composite Material
JP2001342324A (en) Epoxy resin for fiber-reinforced composite wheel
EP3233481B1 (en) A method to manufacture an article of a fiber made reinforced thermostructural composite
US20180222167A1 (en) Shaft-like composite member
JPH09250247A (en) Composite material reinforced concrete structural body
CN113646556B (en) Composite coil spring with carbon fiber and glass fiber layers
JP2016147056A (en) Tubular body and golf club shaft, and manufacturing method thereof
JP6490413B2 (en) Fiber reinforced composite shaft
JPH09277389A (en) Tapered hollow shaft
JP3692691B2 (en) Fiber reinforced plastic tubular body
JPH10151690A (en) Tubular member made of fiber reinforced plastic
WO2023102883A1 (en) Composite holding pole structure for communication antenna and manufacturing method for composite holding pole structure
JPH07103226A (en) High speed rotating body
JPH0587123A (en) Fiber reinforced resin roll
JPH06278671A (en) Fiber-reinforced thermosetting resin pipe for bicycle frame and its manufacture
JP2000130428A (en) Composite roll and its manufacture
JP2002011798A (en) Tubular composite material and manufacturing method therefor
JPH0792396A (en) Optical cylinder made of cfrp
JPH0338108B2 (en)
JP2001060508A (en) Superconducting dipole magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713