JP2001334114A - Filter element and its production process - Google Patents

Filter element and its production process

Info

Publication number
JP2001334114A
JP2001334114A JP2000158206A JP2000158206A JP2001334114A JP 2001334114 A JP2001334114 A JP 2001334114A JP 2000158206 A JP2000158206 A JP 2000158206A JP 2000158206 A JP2000158206 A JP 2000158206A JP 2001334114 A JP2001334114 A JP 2001334114A
Authority
JP
Japan
Prior art keywords
fluid passage
plugging
diameter fluid
diameter
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000158206A
Other languages
Japanese (ja)
Other versions
JP4471452B2 (en
Inventor
Motoshige Mizuno
元重 水野
Masahiro Wakita
昌宏 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000158206A priority Critical patent/JP4471452B2/en
Priority to PCT/JP2001/004957 priority patent/WO2002100514A1/en
Publication of JP2001334114A publication Critical patent/JP2001334114A/en
Application granted granted Critical
Publication of JP4471452B2 publication Critical patent/JP4471452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a filter element of which the cross-sectional area of each of an inlet side fluid passage and an outlet side fluid passage is adjusted to an optimum area corresponding to the liquid to be filtered, and also to provide a production process by which this filter element can be produced with a simple sealing stage. SOLUTION: This filter element comprises a filter base material provided with a fluid passage group consisting of many fluid passages which are parallel to each other and separated from each other by a porous wall, wherein: the fluid passage group consists of large-diameter fluid passages each having a large cross-sectional area and small-diameter fluid passages having one or plural kinds of smaller cross-sectional areas than those of the large-diameter fluid passages; and one end face of each of the large-diameter fluid passages and one end face of each of the small-diameter fluid passages having one or several kinds of cross-sectional areas are sealed so that the sealed end face of each of the large-diameter fluid passages and the sealed end face of each of the small-diameter fluid passages are opposite to each other. This production process of the filter element comprises only a stage for immersing the filter base material in a sealant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用浄水器のろ
過、半導体製造装置で使用する研磨液のろ過、循環風呂
のろ過、水耕栽培における溶液のろ過、ディーゼル微粒
子除去装置(DPF)における微粒子のろ過等に使用さ
れるフィルターエレメントおよびその製造方法に関する
ものである。
[0001] The present invention relates to filtration of household water purifiers, filtration of polishing liquid used in semiconductor manufacturing equipment, filtration of circulation baths, filtration of solutions in hydroponics, and diesel particulate filter (DPF). The present invention relates to a filter element used for filtering fine particles and the like and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、家庭用浄水器のろ過、半導体
製造装置で使用する研磨液のろ過、循環風呂のろ過、水
耕栽培における溶液のろ過、ディーゼル微粒子除去装置
(DPF)における微粒子のろ過等に使用されるフィル
ターエレメントとして、多孔質の壁により仕切られた多
数の互いに平行な流体流路よりなるフィルター機材の相
隣接する流体通路の入口部と出口部を交互に目封止し、
流体通路の壁をろ過面としたフィルターエレメントが知
られている。図5は従来のフィルターエレメントの一例
の端面構成を示す図であり、黒く塗りつぶした部分が目
封止され気体や液体のろ過に使用されている。
2. Description of the Related Art Conventionally, filtration of household water purifiers, filtration of polishing liquid used in semiconductor manufacturing equipment, filtration of circulation baths, filtration of solutions in hydroponics, and filtration of fine particles in a diesel particulate filter (DPF). As a filter element used for etc., alternately plugging the inlet and the outlet of adjacent fluid passages of the filter equipment consisting of a number of parallel fluid passages partitioned by porous walls,
2. Description of the Related Art A filter element having a wall of a fluid passage as a filtration surface is known. FIG. 5 is a diagram showing an end face configuration of an example of a conventional filter element. A black-out portion is plugged and used for filtering gas or liquid.

【0003】フィルタ−基材の製法は、フィルター基材
の軸方向に多数の貫通した流体通路を必要とするため、
スクリュー型押し出し機やシリンダー型押し出し機を使
用した押し出し方法が広く採用されている。流体通路の
断面形状としては、矩形、円形、六角形などが採用さ
れ、かかる流体通路を形成できる押し出し金型の製造の
容易さより、フィルター基材の全断面に渡って基本的に
同一断面形状と同一寸法の流体通路が形成され、従って
ろ過流体の入口側も清澄流体の出口側も同一流体通路と
なっている。
[0003] Filter-substrate manufacturing methods require a large number of penetrating fluid passages in the axial direction of the filter substrate.
Extrusion methods using a screw-type extruder or a cylinder-type extruder are widely used. As the cross-sectional shape of the fluid passage, a rectangle, a circle, a hexagon, or the like is adopted.From the ease of manufacturing an extrusion die capable of forming such a fluid passage, the cross-sectional shape is basically the same over the entire cross-section of the filter substrate. Fluid passages of the same dimensions are formed, so that the inlet side of the filtered fluid and the outlet side of the clarified fluid are the same fluid passage.

【0004】またその目封止方法は図5に示すフィルタ
ーエレメントに対応した図6に示す形状でゴム、樹脂
膜、金属膜等からフィルター基材の材質に対応して適宜
選択されたマスクパターンをフィルター基材に張り付け
るか、フィルター基材の端面に置いた後、目封止材を注
入している。この目封止材の注入は、例えばフィルタ−
基材と同一材料からなるスラリ−液に図6に示すマスク
パタ−ンを張付けたフィルタ−基材を浸漬するか、流体
通路の径が大の場合は目封止材であるスラリ−の乾燥収
縮が大であるので、粘土状に調製した目封止材をヘラ状
の工具またはスキージなどで圧入していた。またマスク
パタ−ンを使用せずにフィルタ−基材の端部の孔配列を
光学的に画像処理し、目封止材を定量注入できるノズル
をフィルター基材の目封止する流体通路に対応させ、目
封止箇所にスラリ−を個々に注入する方法も採用されて
いた。
[0006] The plugging method is a method shown in FIG. 6 corresponding to the filter element shown in FIG. 5 using a mask pattern appropriately selected from rubber, a resin film, a metal film and the like in accordance with the material of the filter substrate. The plugging material is injected after being attached to the filter substrate or placed on the end surface of the filter substrate. The injection of the plugging material is performed, for example, using a filter.
The filter base material having the mask pattern shown in FIG. 6 is immersed in a slurry liquid composed of the same material as the base material, or when the diameter of the fluid passage is large, the slurry as a plugging material is dried and shrunk. Therefore, the plugging material prepared in the form of clay was press-fitted with a spatular tool or a squeegee. In addition, the hole arrangement at the end of the filter base material is optically image-processed without using a mask pattern, and a nozzle capable of injecting a fixed amount of plugging material is made to correspond to a fluid passage for plugging the filter base material. A method of individually injecting slurry into plugged portions has also been adopted.

【0005】[0005]

【発明が解決しようとする課題】上述したフィルター基
材の形状と目封止方法において、気体または液体中の固
形分をろ過する場合、フィルタ−基材の流体通路は目封
止操作によりろ過面である壁面を境に上流側、下流側に
分隔され、それぞれ有底状となり、ろ過すべき流体中の
固形分は上流側の流体通路に堆積し、壁面を通過する流
体の抵抗が所定の値以上となると下流側の流体通路より
正常な流体を上流側に流し、いわゆる逆洗を行ってい
る。ろ過要素としてのフィルタ−エレメントの寿命はフ
ィルタ−基材の開細孔に侵入した固形物が前記逆洗にて
も限度以上除去不能となった時点で決定されるので、上
流側のろ過面積は広い方がろ過抵抗の減少と固形物の堆
積量を多くできることになるが、ろ過面積を確保するた
め流体通路の内径(d)を小さくすると、流体通路の軸
方向長さ(L)との比L/dが大となり、上流側の有底
状の流体通路の特に底部分に堆積した固形物は逆洗を使
用しても除去不能となり、フィルタ−の寿命が短くなる
ので、L/dは50以下が良いとされている。また固形
物の除去を容易とするため流体通路の径を大きくする
と、固形物の排出は容易となるがフィルタ−エレメント
1個あたりのろ過面積は減少し、ろ過装置としての大き
さが大となる。
In the above-mentioned shape of the filter substrate and the plugging method, when filtering solids in a gas or a liquid, the fluid passage of the filter substrate is plugged with a filtration surface. The upper and lower sides are separated from each other by the wall surface, and each has a bottomed shape.The solid content in the fluid to be filtered is deposited in the upstream fluid passage, and the resistance of the fluid passing through the wall surface is a predetermined value. As a result, a normal fluid flows from the downstream fluid passage to the upstream side, and so-called backwashing is performed. The life of the filter element as a filter element is determined when the solids that have entered the open pores of the filter base material cannot be removed beyond the limit even by the backwashing, so the upstream filtration area is The larger the width, the smaller the filtration resistance and the larger the amount of solid matter deposited. However, if the inside diameter (d) of the fluid passage is reduced to secure a filtration area, the ratio to the axial length (L) of the fluid passage is reduced. Since L / d becomes large and solid matter deposited especially on the bottom portion of the bottomed fluid passage on the upstream side cannot be removed even by using the backwash, and the life of the filter is shortened, L / d becomes large. It is considered that 50 or less is good. In addition, if the diameter of the fluid passage is increased to facilitate the removal of the solid matter, the discharge of the solid matter becomes easy, but the filtration area per filter element decreases, and the size as a filtration device increases. .

【0006】家庭用の浄水器のろ過、半導体ウエハ製造
におけるCMP研磨機に内蔵する研磨液のろ過、循環風
呂のろ過、水耕栽培における溶液のろ過、ディーゼル微
粒子除去装置(DPF)における微粒子のろ過などに使
用するフィルターエレメントは装置を安価にするため、
2ケ月から1年の後、所定の流体処理量が確保できなく
なった場合、逆洗せずに交換する場合がある。この場合
のフィルターエレメントとしての寿命は上流側の流体通
路の総表面積と総体積により決定される。いずれの場合
も下流側にはろ過された清浄な流体とフィルタ−エレメ
ントの最大気孔径の5〜10%の微細な固形物しか透過
しないので、下流側は上流側ほど流体の通過面積を必要
としないが、従来のフィルターエレメントの流体通路は
上流側も下流側も同一断面積であるので、フィルタ−エ
レメントの径が下流側の流体通路の断面積が過剰な分だ
け、寸法が大となっている。また前記の如くの使い捨て
型のフィルターエレメントは良好なろ過特性を短期のフ
ィルターエレメントの交換で確保するために低価格であ
ることが必要となっている。
[0006] Filtration of a water purifier for home use, filtration of a polishing liquid incorporated in a CMP polishing machine in semiconductor wafer production, filtration of a circulation bath, filtration of a solution in hydroponics, and filtration of fine particles in a diesel particulate filter (DPF). The filter element used for such as to make the device cheap,
After two months to one year, when the predetermined fluid throughput cannot be secured, the fluid may be replaced without backwashing. The life of the filter element in this case is determined by the total surface area and the total volume of the upstream fluid passage. In either case, only the filtered clean fluid and fine solids of 5 to 10% of the maximum pore diameter of the filter element permeate on the downstream side, so the downstream side requires a fluid passage area closer to the upstream side. However, since the fluid passage of the conventional filter element has the same cross-sectional area on both the upstream side and the downstream side, the size of the filter element becomes large due to the excessive cross-sectional area of the fluid passage on the downstream side. I have. Further, the disposable filter element as described above needs to be inexpensive in order to secure good filtration characteristics by replacing the filter element in a short time.

【0007】フィルター基材には成形時にねじれ、曲が
りなどの変形が発生するので、矩形、円形、六角形など
の流体通路の配列および形状も一定でなく、マスクパタ
ーンを張付ける場合、マスクパタ−ンを張付けた後にマ
スクパタ−ンとフィルター基材の流体通路とのずれを修
正する必要がある。また前記流体通路が小さくなると対
応して流体通路を隔てている壁厚も減少するので、マス
クパタ−ンの開孔部どうしのつなぎ部分の寸法も前記流
体通路間の壁厚以下にしなければならなくマスクパタ−
ン自体の強度も低下し、張付ける場合にマスクパタ−ン
を損傷する。また特に、未焼成のセラミックス製フィル
ター基材にマスクパターンを張り付ける方法は、フィル
ター基材自体の表面の細粒が剥離しやすく、フィルター
端面を前もって封孔処理を行ってから、マスクパターン
を接着する必要があった。従って内接円径でφ2mm以
下の流体通路に形成されたフィルター基材にはマスクパ
タ−ンを利用した目封止法は困難であった。
[0007] Since deformation, such as twisting or bending, occurs in the filter substrate during molding, the arrangement and shape of the fluid passages such as rectangles, circles, and hexagons are not constant. It is necessary to correct the misalignment between the mask pattern and the fluid passage of the filter substrate after the application. Since the wall thickness separating the fluid passages correspondingly decreases as the fluid passages become smaller, the dimension of the connecting portion between the openings of the mask pattern must be smaller than the wall thickness between the fluid passages. Mask pattern
Also, the strength of the mask itself is reduced, and the mask pattern is damaged when pasting. In particular, the method of attaching a mask pattern to an unfired ceramic filter base material is such that fine particles on the surface of the filter base material are easily peeled off, and the mask pattern is bonded after performing a sealing process on the filter end face in advance. I needed to. Therefore, it is difficult to perform a plugging method using a mask pattern on a filter substrate formed in a fluid passage having an inscribed circle diameter of 2 mm or less.

【0008】押出し工程で、ろ過壁面においてフィルタ
ー基材の気孔径より大となった欠損部分を封孔しフィル
ター基材自体の気孔分布を回復させるため、あるいはフ
ィルター基材の気孔径より小さなろ過気孔径を得るため
にフィルター基材の壁面の上流側をフィルター基材より
小さな気孔径の材料にてコ−トし複層構造にすることが
広く採用されている。この構造のフィルタ−エレメント
の場合、マスクパターンを置いて目封止材を圧入する場
合は、フィルタ−基材の端部での目封止材の形状が図7
の様に目封止材とフィルター基材との境界部(図7中の
*印部分)が鋭角状になり、前記コート層の剥離が発生
し、コート層の機能が発揮できなくなる。またこの方法
では、目封止材の圧入深さの制御が困難であり、目封止
材の剥離や境界部で隙間が発生しやすい。
[0008] In the extrusion step, in order to recover the pore distribution of the filter substrate itself by sealing the defective portion on the filtration wall surface which has become larger than the pore diameter of the filter substrate, or to filter air having a size smaller than the pore size of the filter substrate. In order to obtain a pore size, it is widely adopted to coat the upstream side of the wall surface of the filter substrate with a material having a smaller pore size than the filter substrate to form a multilayer structure. In the case of the filter element having this structure, when the plugging material is press-fitted with the mask pattern placed, the shape of the plugging material at the end of the filter base material is changed as shown in FIG.
As described above, the boundary between the plugging material and the filter substrate (the portion marked with * in FIG. 7) becomes sharp, and the coating layer is peeled off, and the function of the coating layer cannot be exhibited. Further, in this method, it is difficult to control the press-fitting depth of the plugging material, and the plugging material is easily peeled or a gap is easily generated at a boundary portion.

【0009】目封止材に浸漬する方法は、目封止材の圧
入による目封止法に対し前記内鋭角部が発生しなく、境
界部は滑らかなメニスカス形状を呈するので、前記複層
構造とするフィルタ−構造の場合には特に有利であり好
ましい目封止方法であるが、流体通路の内径が小さい場
合、マスクパターンとフィルター基材の密着が不完全と
なり、必要箇所以外に目封止される問題が発生し易い。
In the method of dipping in the plugging material, the inner acute angle portion does not occur and the boundary portion has a smooth meniscus shape in the plugging method by press-fitting the plugging material. This is a particularly advantageous and preferable plugging method in the case of a filter structure in which the mask pattern and the filter substrate are incompletely adhered when the inner diameter of the fluid passage is small, and plugging is performed at a portion other than a necessary portion. Problems are likely to occur.

【0010】さらにマスクパタ−ンを使用せずにフィル
タ−基材の端部の孔配列を光学的に読み取った上で画像
処理し、目封止材を定量注入できるノズルを連動させ、
目封止箇所に直接スラリ−を個々に注入する方法は設備
が高価であり、また目封止工程そのものも時間がかかる
問題がある。いずれにしても前述するフィルターエレメ
ントは寸法が大きくかつ特に目封止に係わる歩留りが悪
く、製品コストが高くなる問題があった。
[0010] Furthermore, without using a mask pattern, the hole arrangement at the end of the filter base material is optically read, and image processing is performed.
The method of individually injecting the slurry directly into the plugging site has a problem that the equipment is expensive and the plugging process itself takes time. In any case, the above-described filter element has a problem that the dimensions are large, the yield related to plugging is particularly poor, and the product cost is high.

【0011】本発明の目的は上述した課題を解消して、
ろ過壁面を境とした上流側の流体通路の総断面積を、ろ
過する流体中の固形物量に対応した最適の断面積とする
ことができ、また下流側の総断面積も清澄液の量及びろ
過用途に対応した最少のものとできるのでフィルターエ
レメントの外径寸法も最少とすることが可能で装置の寸
法も小さくできるフィルタ−エレメントを提供しようと
するものである。
An object of the present invention is to solve the above-mentioned problems,
The total cross-sectional area of the fluid passage on the upstream side of the filtration wall can be set to an optimum cross-sectional area corresponding to the amount of solids in the fluid to be filtered, and the total cross-sectional area on the downstream side can also be the amount of the clarified liquid and An object of the present invention is to provide a filter element capable of minimizing the outer diameter of the filter element and reducing the size of the apparatus, since the filter element can be minimized for filtration applications.

【0012】また、本発明の他の目的は、特に複層構造
にした場合のコート不良の発生が著しく低減でき、また
マスクパターンを全く使用しないので、流体通路寸法が
小さい場合にも広く適用でき、マスクパターンの剥離に
よる目封止不良が全く無く、しかもフィルター基材の変
形があっても目封止が可能であると共に、目封止時間が
低減でき、さらに高価な光学的な画像処理装置と目封止
材の注入装置が不要な安価なコストの目封止方法を達成
することができるフィルターエレメントの製造方法を提
供しようとするものである。
Another object of the present invention is to remarkably reduce the occurrence of coating defects particularly in the case of a multi-layer structure, and use no mask pattern. Therefore, the present invention can be widely applied even when the fluid passage size is small. In addition, there is no plugging failure due to peeling of the mask pattern, and even if the filter base material is deformed, plugging is possible, and the plugging time can be reduced, and furthermore, an expensive optical image processing apparatus Another object of the present invention is to provide a method of manufacturing a filter element that can achieve a low-cost plugging method that does not require a plugging material injection device.

【0013】[0013]

【課題を解決するための手段】本発明のフィルターエレ
メントは、多孔質の壁により仕切られた多数の互いに平
行な流体通路よりなるフィルター基材において、流体通
路が、断面が大きい太径流体通路と、太径流体通路より
も小さい少なくとも1つの断面の大きさを有する細径流
体通路とからなり、太径流体通路の一方の端面を目封止
するとともに、少なくとも1つの断面の大きさを有する
細径流体通路を、太径流体通路が目封止された端面とは
反対側の端面で目封止したことを特徴とするものであ
る。
According to the present invention, there is provided a filter element comprising a plurality of parallel fluid passages separated by a porous wall, wherein the fluid passages are formed of a large-diameter fluid passage having a large cross section. A small-diameter fluid passage having at least one cross-sectional size smaller than the large-diameter fluid passage, plugging one end surface of the large-diameter fluid passage, and having at least one cross-sectional size. The diameter fluid passage is plugged with an end surface opposite to the end surface where the large diameter fluid passage is plugged.

【0014】本発明のフィルターエレメントでは、流体
通路を太径流体通路と細径流体通路とから構成し、太径
流体通路を一方の端面で目封止し、細径流体通路を他方
の端面で目封止するよう構成することで、ろ過壁面を境
とした上流側の流体通路の総断面積を、ろ過する流体中
の固形物量に対応した最適の断面積とすることができ、
また下流側の総断面積も清澄液の量及びろ過用途に対応
した最少のものとできるのでフィルターエレメントの外
径寸法も最少とすることが可能で装置の寸法も小さくで
きる。
In the filter element of the present invention, the fluid passage comprises a large-diameter fluid passage and a small-diameter fluid passage, the large-diameter fluid passage is plugged at one end face, and the small-diameter fluid passage is sealed at the other end face. By being configured to be plugged, the total cross-sectional area of the fluid passage on the upstream side of the filtration wall surface can be an optimum cross-sectional area corresponding to the amount of solids in the fluid to be filtered,
In addition, since the total cross-sectional area on the downstream side can be minimized in accordance with the amount of the clarified liquid and the application of filtration, the outer diameter of the filter element can be minimized, and the size of the apparatus can be reduced.

【0015】本発明のフィルターエレメントの好適例と
しては、流体通路の断面が円形を基準とし、太径流体通
路の回りに細径流体通路を配設した構成、流体通路の断
面が多角形を基準とし、太径流体通路の回りに細径流体
通路を配設した構成、多角形が六角形状である構成、フ
ィルターエレメントの軸に垂直方向の断面において、前
記細径流体通路の総断面積が前記太径流体通路の総断面
積の40%を超え120%以下である構成、太径流体通
路をろ過流体の入口とし、前記細径流体通路を清澄流体
の出口とした構成をとると、上記本発明の効果をより好
適に達成することができる。
As a preferred example of the filter element of the present invention, a configuration in which the cross section of the fluid passage is based on a circle, a small diameter fluid passage is arranged around a large diameter fluid passage, and the cross section of the fluid passage is based on a polygon. A configuration in which a small-diameter fluid passage is arranged around a large-diameter fluid passage, a configuration in which a polygon is a hexagon, and a cross-section perpendicular to an axis of a filter element, the total cross-sectional area of the small-diameter fluid passage is When the configuration is more than 40% and less than or equal to 120% of the total cross-sectional area of the large diameter fluid passage, the large diameter fluid passage is used as the inlet of the filtered fluid, and the small diameter fluid passage is used as the outlet of the clarifying fluid, Advantages of the invention can be more suitably achieved.

【0016】また、本発明のフィルターエレメントの製
造方法の第1発明は、多孔質の壁により仕切られた多数
の互いに平行な流体通路よりなり、流体通路が、断面が
大きい太径流体通路と、太径流体通路よりも小さい少な
くとも1つの断面の大きさを有する細径流体通路とから
なるフィルター基材を準備する準備工程と、 準備工程
で準備したフィルター基材の一端面を目封止材に浸漬
し、太径流体通路と細径流体通路に目封止材を充填し、
フィルター基材の太径流体通路より目封止材を排出する
ことで細径流体通路に選択的に目封止材を充填し、再び
目封止材に浸漬し太径流体通路の目封止材の充填長さを
細径流体通路の目封止材の充填長さよりも長くなるよう
に目封止材を充填した後、太径流体通路の目封止材のみ
を残す位置でフィルター基材を切断して、太径流体通路
のみに選択的に目封止材を充填させる第一の目封止工程
と、第一の目封止工程で目封止した端面と反対側の端面
を目封止材に浸漬して、細径流体通路の目封止材の充填
長さを太径流体通路の目封止材の充填長さより長く形成
した後、細径流体通路の目封止材のみを残す位置でフィ
ルター基材を切断して、細径流体通路のみに選択的に目
封止材を充填させる第二の目封止工程と、からなること
を特徴とするものである。
A first invention of a method for manufacturing a filter element according to the present invention is characterized in that the fluid passage comprises a large number of parallel fluid passages partitioned by a porous wall, wherein the fluid passage has a large-diameter fluid passage having a large cross section. A preparing step of preparing a filter substrate comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the large-diameter fluid passage; and one end face of the filter substrate prepared in the preparing step as a plugging material Immersion, filling the large diameter fluid passage and the small diameter fluid passage with plugging material,
The plugging material is selectively filled in the small-diameter fluid passage by discharging the plugging material from the large-diameter fluid passage of the filter substrate, and then immersed in the plugging material again to plug the large-diameter fluid passage. After filling the plugging material so that the filling length of the material is longer than the filling length of the plugging material in the small-diameter fluid passage, the filter base material is left at a position where only the plugging material in the large-diameter fluid passage is left. And a first plugging step of selectively filling only the large-diameter fluid passage with a plugging material, and an end face opposite to the end face plugged in the first plugging step. After being immersed in the sealing material and forming the filling length of the plugging material of the small-diameter fluid passage longer than the filling length of the plugging material of the large-diameter fluid passage, only the plugging material of the small-diameter fluid passage is used. And a second plugging step of cutting the filter base material at the position where the liquid is left and selectively filling only the small-diameter fluid passage with the plugging material. A.

【0017】さらに、本発明のフィルターエレメントの
製造方法の第2発明は、多孔質の壁により仕切られた多
数の互いに平行な流体通路よりなり、流体通路が、断面
が大きい太径流体通路と、太径流体通路よりも小さい少
なくとも1つの断面の大きさを有する細径流体通路とか
らなるフィルター基材を準備する準備工程と、 準備工
程で準備したフィルター基材の一端面を目封止材に浸漬
し、太径流体通路と細径流体通路に目封止剤を充填し、
フィルター基材の太径流体通路より目封止材を排出する
ことで、細径流体通路のみに選択的に目封止材を充填さ
せる第一の目封止工程と、第一の目封止工程で目封止し
た端面と反対側の端面を目封止材に浸漬して、太径流体
通路の目封止材の充填長さを細径流体通路の目封止材の
充填長さより長く形成した後、太径流体通路の目封止材
のみを残す位置でフィルター基材を切断して、太径流体
通路のみに選択的に目封止材を充填させる第二の目封止
工程と、からなることを特徴とするものである。
Further, a second invention of the method for producing a filter element of the present invention is characterized in that the fluid passage comprises a large number of parallel fluid passages partitioned by a porous wall, the fluid passage having a large cross section, A preparing step of preparing a filter substrate comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the large-diameter fluid passage; and one end face of the filter substrate prepared in the preparing step as a plugging material Immersion, filling the large diameter fluid passage and the small diameter fluid passage with a plugging agent,
A first plugging step of selectively filling only the small-diameter fluid passage with the plugging material by discharging the plugging material from the large-diameter fluid passage of the filter substrate, and a first plugging The end face opposite to the end face plugged in the process is immersed in the plugging material, and the filling length of the plugging material of the large diameter fluid passage is longer than the filling length of the plugging material of the small diameter fluid passage. After forming, cut the filter substrate at a position where only the plugging material of the large diameter fluid passage is left, and a second plugging step of selectively filling the plugging material only in the large diameter fluid passage. , Consisting of:

【0018】本発明のフィルターエレメントの製造方法
では、流体通路を太径流体通路と細径流体通路とから構
成することで、目封止方法としては最も好適であるフィ
ルター基材を目封止材へ浸漬する方法を、太径流体通路
と細径流体通路の断面の大きさの差を利用してマスクパ
ターンを使用しなくとも、利用することができる。その
ため、特に複層構造にした場合のコート不良の発生が著
しく低減でき、またマスクパターンを全く使用しないの
で、流体通路寸法が小さい場合にも広く適用でき、マス
クパターンの剥離による目封止不良が全く無く、しかも
フィルター基材の変形があっても目封止が可能であると
共に、目封止時間が低減でき、さらに高価な光学的な画
像処理装置と目封止材の注入装置が不要な安価なコスト
の目封止方法を達成することができる。
In the method for manufacturing a filter element according to the present invention, the fluid base is constituted by a large-diameter fluid passage and a small-diameter fluid passage. The immersion method can be used without using a mask pattern by utilizing a difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects, particularly in the case of a multilayer structure, can be significantly reduced, and since no mask pattern is used, it can be widely applied even when the fluid passage size is small. No plugging is possible, and even if the filter base material is deformed, plugging is possible, plugging time can be reduced, and an expensive optical image processing device and plugging material injection device are unnecessary. An inexpensive plugging method can be achieved.

【0019】本発明のフィルターエレメントの製造方法
の好適例として、フィルター基材がセラミックス材料か
らなる構成、目封止材がセラミックス材料からなり、フ
ィルター基材が未焼成の状態で、前記第一の目封止工程
と第二の目封止工程を行う構成、目封止材がセラミック
ス材料、有機系接着剤のいずれかであり、フィルター基
材を焼成した後、前記第一の目封止工程と第二の目封止
工程を行う構成、第一の目封止工程において、フィルタ
ー基材を目封止材に浸漬した後、フィルター基材を上方
に引き上げることにより太径流体通路及び細径流体通路
に目封止材を充填する構成、第二の目封止工程におい
て、フィルター基材の上部より真空吸引することによ
り、太径流体通路又は細径流体通路の目封止材の充填長
さが細径流体通路又は太径流体通路の目封止材の長さよ
り長くなるように選択的に目封止材を充填する構成、第
二の目封止工程において、フィルター基材を目封止材に
浸漬した後、フィルター基材を目封止材中で下方に移動
することにより、太径流体通路又は細径流体通路の目封
止材の充填長さが細径流体通路又は太径流体通路の目封
止材の長さより長くなるように選択的に目封止材を充填
する構成、フィルターエレメントの目封止をした両端の
少なくとも一面に釉薬が塗布されている構成をとると、
上述した本発明の製造方法の効果をさらに効果的に達成
することができる。
As a preferred example of the method for manufacturing a filter element of the present invention, the filter base is made of a ceramic material, the plugging material is made of a ceramic material, and the filter base is unfired. A structure for performing a plugging step and a second plugging step, wherein the plugging material is any of a ceramic material and an organic adhesive, and after the filter base material is fired, the first plugging step And a second plugging step, in the first plugging step, after immersing the filter base material in the plugging material, the filter base material is lifted upward to allow the large diameter fluid passage and the small diameter In the configuration in which the plugging material is filled in the fluid passage, in the second plugging step, the filling length of the plugging material in the large-diameter fluid passage or the small-diameter fluid passage is obtained by vacuum suction from above the filter substrate. Small diameter fluid passage or A configuration in which the plugging material is selectively filled so as to be longer than the length of the plugging material in the diameter fluid passage, in the second plugging step, after immersing the filter substrate in the plugging material, the filter By moving the base material downward in the plugging material, the filling length of the plugging material of the large-diameter fluid passage or the small-diameter fluid passage becomes smaller than that of the small-diameter fluid passage or the large-diameter fluid passage. If a configuration in which the plugging material is selectively filled so as to be longer than the length, and a configuration in which glaze is applied to at least one surface of both ends of the plugged filter element,
The effects of the manufacturing method of the present invention described above can be more effectively achieved.

【0020】[0020]

【発明の実施の形態】本発明においてはフィルター基材
の流体通路の断面方向において、少なくとも2つ以上の
内寸法の異なる流体通路の組み合わせより構成すること
が必要である。図1は○型の流体通路からなるフィルタ
ーエレメントの端面構成を示し、黒く塗り潰した部分は
目封止された状態である。また図2は六角形の流体通路
からなるフィルターエレメントの端面構成を示し、同様
に黒く塗りつぶした部分は目封止されている状態を示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is necessary that the filter substrate is constituted by a combination of at least two or more fluid passages having different internal dimensions in the cross-sectional direction of the fluid passage. FIG. 1 shows the configuration of an end face of a filter element composed of a 流体 -shaped fluid passage, and the blacked-out portion is plugged. FIG. 2 shows an end face configuration of a filter element composed of hexagonal fluid passages, and similarly, a black-out portion shows a plugged state.

【0021】図1に示す○型はコート層による複層化を
図る場合、内部に鋭角部が無くコート層の剥離が少ない
ので複層化が容易であり、また○型加工を主体とした押
出し金型で済むため金型も安価となる。また最も断面積
の大きな太径流体通路の断面積を基準として、配置設計
が容易な下流側の細径流体通路を適度に配置し細密配置
を好適に構成できると共に、上流側の断面積と下流側の
断面積の比率の設計が容易となる。この実施例の場合、
1種類の太径流体通路に対し、2種類の寸法の細径流体
通路が配置されているが、後述する目封止方法は勿論採
用出来る。またフィルター基材の外径部分と太径流体通
路が交錯する場合、太径流体通路を省略するのではな
く、適宜変形させ配設することが好ましい。この場合、
変形させた太径流体通路の内接円は細径流体通路の内接
円より大とすることが必要となる。
In the case of forming a multilayer with a coat layer as shown in FIG. 1, there is no acute angle portion inside and there is little peeling of the coat layer, so that the multilayer can be easily formed. Since the mold is sufficient, the mold is inexpensive. In addition, based on the cross-sectional area of the large-diameter fluid passage having the largest cross-sectional area, the small-diameter fluid passage on the downstream side, which is easy to design, can be appropriately arranged and the fine arrangement can be suitably configured. It becomes easy to design the ratio of the cross-sectional area on the side. In this example,
Although two types of small-diameter fluid passages are provided for one type of large-diameter fluid passage, the plugging method described later can be employed as a matter of course. When the outer diameter portion of the filter substrate and the large-diameter fluid passage intersect, it is preferable that the large-diameter fluid passage is not omitted, but is appropriately deformed and arranged. in this case,
The inscribed circle of the deformed large-diameter fluid passage needs to be larger than the inscribed circle of the small-diameter fluid passage.

【0022】図2に示す六角孔型はろ過層である壁部分
の体積を最少とでき、また内部の鋭角部もなく、さらに
細密配置も容易であるので、フィルターエレメントの外
径寸法を最少とでき最も好ましい。また流体通路の断面
は三角、四角、台形、八角形、星型など、またそれぞれ
の変形型、また○型を含めたいずれかの形状を複合的に
混合して使用してももちろん良い。フィルターエレメン
トの外径部分の太径流体通路の変形態様は前記○型のエ
レメントと同様である。
The hexagonal hole type shown in FIG. 2 can minimize the volume of the wall portion which is the filter layer, has no sharp inside portion, and is easy to arrange finely. Therefore, the outer diameter of the filter element is minimized. Most preferred. Further, the cross section of the fluid passage may be triangular, square, trapezoidal, octagonal, star-shaped, etc., or may be of any modified shape, or any shape including a circle may be mixed and used. The deformation mode of the large-diameter fluid passage at the outer diameter portion of the filter element is the same as that of the O-shaped element.

【0023】また太径流体通路と細径流体通路とは流体
通路の壁面をろ過部分としているので、両流体通路が近
接していることがろ過抵抗を減らすために必要であり、
太径流体通路の回りに細径流体通路を配設し、一つの細
径流体通路を複数の太径流体通路で共有する様にするこ
とが好ましい。いずれの場合も、太径流体通路を流体中
の固形物を分離し堆積する上流側とし、下流側は上流側
の全断面積の40%以上から120%以下とすることが
好ましい。40%未満であると、下流側の流体通過に伴
う圧力損失が大きくなる。また下流側の総断面積は通常
のろ過操作においては、上流側の総断面積より小であれ
ば良いので、フィルターエレメントの外径を大きくしな
いために100%以下が良いが、下流側を減圧にしてろ
過面より蒸発させる方法を採用する場合などは下流側の
流体通路の径が小さくなることによる圧力損失の増大が
発生し、また通路の数も増大するので金型の製造も困難
となるので、120%までとすることが好ましい。上流
側の固形物の堆積量とろ過耐久性の検討、および流体通
路の最適配置の設計と金型の設計製造に係わる時間を短
くすることが容易な点から60%から100%とするこ
とが最も好ましい。本発明の実施例では、太径流体通路
側をろ過の上流側としているが、目封じ部分1個あたり
のろ過流体への暴露面積を少なくし、目封じ部分の耐久
性を向上させる必要が有る場合などは下流側を太径流体
通路としてもちろん良い。
Since the large-diameter fluid passage and the small-diameter fluid passage use the wall surface of the fluid passage as a filtration portion, it is necessary that both fluid passages are close to each other in order to reduce filtration resistance.
It is preferable that a small-diameter fluid passage is provided around the large-diameter fluid passage so that one small-diameter fluid passage is shared by a plurality of large-diameter fluid passages. In any case, the large-diameter fluid passage is preferably on the upstream side where solids in the fluid are separated and deposited, and the downstream side is preferably from 40% to 120% of the total cross-sectional area of the upstream side. If it is less than 40%, the pressure loss due to the passage of the fluid on the downstream side increases. Also, in a normal filtration operation, the total cross-sectional area on the downstream side may be smaller than the total cross-sectional area on the upstream side. Therefore, it is preferable that the total cross-sectional area be 100% or less so as not to increase the outer diameter of the filter element. When the method of evaporating from the filtration surface is adopted, the pressure loss increases due to the decrease in the diameter of the fluid passage on the downstream side, and the number of passages also increases, so that it becomes difficult to manufacture a mold. Therefore, the content is preferably set to 120%. From 60% to 100%, it is easy to study the amount of solids deposited on the upstream side and the filtration durability, and to shorten the time required for designing the optimal arrangement of the fluid passage and designing and manufacturing the mold. Most preferred. In the embodiment of the present invention, the large-diameter fluid passage side is set as the upstream side of the filtration. However, it is necessary to reduce the exposed area per one plugged portion to the filtered fluid and to improve the durability of the plugged portion. In such a case, the downstream side may of course be a large-diameter fluid passage.

【0024】つぎに流体通路の目封止方法について述べ
る。本発明の目封止方法によれば、太径流体通路と該太
径流体通路以外の細径流体通路を区分した状態で、第一
に太径流体通路を目封止する方法と、第一に前記太径流
体通路以外の細径流体通路を目封止する方法の2通りの
いずれの態様にも使用できる。フィルター基材と目封止
スラリー液は類似した材料と特性のものを選択すること
が好ましく、まず粒度が#800の電融アルミナに長
石、カオリナイトなどの粘土質からなる焼結助材と、バ
インダーとしてメチルセルロース、ポリエチレングリコ
ールオレイン酸エステルを混合したものを、例えば図2
に示す形状に押出成形した後1520℃で焼成し、フィ
ルターエレメントのフィルター基材とする。この実施例
では耐食性、対薬品性が良好であるので、最も好ましい
態様であるセラミックス製のエメレントについて説明し
ているが、後述する有機系の接着剤を使用すれば、多孔
質のプラスチック、焼結金属からなるフィルター基材な
どにももちろん適用できる。またセラミックス材料とし
て、本実施例では低価格と強度が両立できる点でアルミ
ナを採用しているが、ディーゼル微粒子除去装置(DP
F)における微粒子のろ過に使用されるフィルターエレ
メントなどの高温用途の場合はコーディエライト、ジル
コニア、窒化珪素などが、熱温度差の大なる時はムライ
ト、耐食性が必要な時は炭化珪素、窒化アルミなどと用
途に応じた材料を適宜選択し、本発明に示す方法によ
り、目封止できる。実施例に示すフィルター基材の外径
はφ80mmであり、また太径流体通路の内接円の直径
はφ3mm、細径流体通路の内接円の直径はφ1.4m
mとした。また目封止用のスラリー(目封止液)は前記
粒度の電融アルミナに目封止時の収縮を最少とするため
#150の粒度の電融アルミナ粒を加え、粘着材として
ポリアクリル酸アンモニウムをまた焼結助材としてカオ
リナイトとカリ長石を水で良く混練して目封止材のスラ
リ−とし、以降の工程にて使用する。
Next, a method of plugging the fluid passage will be described. According to the plugging method of the present invention, a method of first plugging a large-diameter fluid passage in a state where a large-diameter fluid passage and a small-diameter fluid passage other than the large-diameter fluid passage are separated, It can be used in any of the two modes of plugging a small diameter fluid passage other than the large diameter fluid passage. It is preferable to select a filter base material and a plugging slurry liquid having similar materials and properties. First, a sintering aid made of clay such as feldspar, kaolinite, etc. is used for fused alumina having a particle size of # 800. A mixture of methylcellulose and polyethylene glycol oleate as a binder, for example, as shown in FIG.
After extrusion molding into the shape shown in Table 2, the mixture is fired at 1520 ° C. to obtain a filter base material for a filter element. In this example, since the corrosion resistance and chemical resistance are good, a ceramic emergent which is the most preferable mode is described. However, if an organic adhesive described later is used, porous plastic, sintered plastic can be used. Of course, it can be applied to a filter base made of metal. In this embodiment, alumina is used as a ceramic material because both low price and strength can be achieved.
F) Cordierite, zirconia, silicon nitride, etc. for high temperature applications such as filter elements used for filtering fine particles in filtration, mullite when the thermal temperature difference is large, silicon carbide when corrosion resistance is required, The material can be appropriately selected according to the application such as aluminum, and plugging can be performed by the method shown in the present invention. The outer diameter of the filter substrate shown in the example is φ80 mm, the diameter of the inscribed circle of the large diameter fluid passage is φ3 mm, and the diameter of the inscribed circle of the small diameter fluid passage is φ1.4 m.
m. The plugging slurry (plugging liquid) is prepared by adding fused alumina particles having a particle size of # 150 to the fused alumina having the above particle size to minimize shrinkage during plugging. Ammonium is also used as a sintering aid, and kaolinite and potassium feldspar are well kneaded with water to form a plugging slurry and used in the subsequent steps.

【0025】まず太径流体通路を最初に目封止する方法
について、本発明による目封止手順を示す図3(a)〜
(l)により説明する。図3(a)に示す様に前記方法
にて調製したフィルター基材を、図3(b)に示す様に
同じく前記方法で調製した目封止液に4mmの長さに浸
漬する。細径流体通路に侵入した目封止液は水分が基材
により吸収され固形分が細径流体通路の内径に付着し該
細径流体通路を閉塞するが、太径流体通路側は該孔の内
径には前記細径流体通路と同等に目封止液が付着する
が、中心部は目封止液の付着速度が遅いので、前記細径
流体通路に目封止液が付着した時点で、図3(c)に示
す様にフィルター基材を目封止液より取り出す。この場
合、フィルター基材は目封止材と同一材料とすることが
目封止部の焼成による歪みを最少とするため最も好まし
いが、フィルター基材との固着を良好なものとし、また
目封じ部との熱膨張差を合わせるために他セラミックス
材料としても、もちろん良い。また焼成コストを少なく
するため、未焼成の状態で目封じすることが好ましい
が、フィルター基材の焼結温度以下で仮焼成して、フィ
ルター基材取扱時の保形性を向上させても良い。更にフ
ィルター基材がスラリー状の目封止材中の水などの溶解
材の浸入により、変形、損傷し易い場合は、該フィルタ
ー基材を焼成してから目封止する事が好ましい。
First, a method for plugging a large-diameter fluid passage first will be described with reference to FIGS.
This will be described with reference to (l). As shown in FIG. 3 (a), the filter substrate prepared by the above method is immersed in the plugging solution prepared by the same method as shown in FIG. 3 (b) to a length of 4 mm. The plugging liquid that has entered the small-diameter fluid passage absorbs moisture and solids adhere to the inner diameter of the small-diameter fluid passage and closes the small-diameter fluid passage. The plugging liquid adheres to the inner diameter similarly to the small-diameter fluid passage, but since the central portion has a low attachment speed of the plugging liquid, at the time when the plugging liquid adheres to the small-diameter fluid passage, As shown in FIG. 3C, the filter substrate is taken out of the plugging liquid. In this case, it is most preferable that the filter base material is made of the same material as the plugging material in order to minimize distortion due to firing of the plugged portion. Of course, other ceramic materials may be used to match the thermal expansion difference with the part. Further, in order to reduce the firing cost, it is preferable to plug in an unfired state, but it is also possible to temporarily fire at a temperature lower than the sintering temperature of the filter substrate to improve the shape retention during handling of the filter substrate. . Further, when the filter base material is easily deformed or damaged due to intrusion of a dissolving material such as water in the slurry plugging material, it is preferable that the filter base material be fired before plugging.

【0026】次ぎに図3(d)に示す様に、中心部は柔
らかい状態であるので、目封止液が太径流体通路より排
出され、中心部には開孔部ができる。より積極的に太径
流体通路に存在する目封止液を排出するために、目封止
を実施している端面の反対の端面から空気等を導入して
ブローすると好ましい。また太径流体通路側はこの段階
では中心部が開孔していなければならないので、フィル
ター基材の細径流体通路に目封止液が付着するに従い、
上方に引き上げると太径流体通路の中心は常に開孔状態
で上方に移動することになり最も好ましい。またフィル
タ基材の軸方向が半径方法になる態様でフィルタ基材を
回転し、太径流体通路内の目封止液を遠心力により排出
しても良い。
Next, as shown in FIG. 3 (d), since the central portion is in a soft state, the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion. In order to more positively discharge the plugging liquid present in the large-diameter fluid passage, it is preferable to blow air by introducing air or the like from the end face opposite to the end face where plugging is performed. In addition, since the center portion of the large-diameter fluid passage must be opened at this stage, as the plugging liquid adheres to the small-diameter fluid passage of the filter substrate,
When it is pulled upward, the center of the large-diameter fluid passage always moves upward in an open state, which is the most preferable. Alternatively, the filter substrate may be rotated in such a manner that the axial direction of the filter substrate becomes radial, and the plugging liquid in the large-diameter fluid passage may be discharged by centrifugal force.

【0027】フィルター基材を乾燥機に入れ乾燥させ細
径流体通路の目封止部をフィルター基材に固着させた
後、図3(e)の様に再度目封止液に8mm浸漬させる
と、細径流体通路は端部が閉塞しているので目封止液は
侵入しないが、太径流体通路は少なくとも中心部は開孔
しているので、目封止液への浸漬に伴い太径流体通路に
目封止液が侵入するので、太径流体通路の孔内に目封止
液が固着するまで目封止液に浸漬しておく。この時、端
部の目封止長さは細径流体通路と太径流体通路が異なる
ので、フィルター基材を目封止液から取り出し図3
(f)の様に乾燥させた後、図3(g)に示す様に太径
流体通路の目封止箇所を残し、細径流体通路の目封止箇
所を削除する位置で、フィルター基材を切断し、太径流
体通路を対象とした第一の目封止工程を終了する。この
切断は、ダイヤモンド砥石による切断がフィルター基材
および目封じ部分に与える加工負荷が少なく良い。第一
の目封止工程を終了することで、図3(h)に示す様に
フィルター基材の太径流体通路を一方の端部で目封止す
ることができる。
After the filter base material is placed in a drier and dried to fix the plugged portion of the small-diameter fluid passage to the filter base material, the filter base material is immersed again in the plugging liquid as shown in FIG. Since the end of the small-diameter fluid passage is closed, the plugging liquid does not enter. However, since the large-diameter fluid passage is open at least in the center, the large-diameter fluid passage is immersed in the plugging liquid. Since the plugging liquid enters the fluid passage, it is immersed in the plugging liquid until the plugging liquid is fixed in the hole of the large-diameter fluid passage. At this time, the plugging length at the end is different between the small-diameter fluid passage and the large-diameter fluid passage.
After drying as shown in (f), as shown in FIG. 3 (g), at the position where the plugged portion of the large-diameter fluid passage is left and the plugged portion of the small-diameter fluid passage is deleted, the filter base material is removed. And the first plugging step for the large-diameter fluid passage ends. In this cutting, the processing load imposed on the filter base material and the plugged portion by the cutting by the diamond grindstone is small and good. By ending the first plugging step, the large-diameter fluid passage of the filter substrate can be plugged at one end as shown in FIG.

【0028】さらに目封止した太径流体通路の反対側の
端部を図3(i)に示す様に前記目封止液のスラリーに
5mmの深さに浸漬すると、前記と同工程により目封止
される。この場合、より積極的に細径流体通路を目封止
するために、フィルター基材の上部端部から真空で吸引
するか、毛細管現象により細径流体通路と太径流体通路
の目封止部の軸方向長さを増すか、または、図3(b)
と同様に細径流体通路側に目封止液を付着させながら上
方に引上げてもよい。フィルター基材を目封止液より取
り出し、図3(j)の状態で乾燥させた後、図3(k)
に示す様に太径流体通路の目封止箇所を削除できかつ細
径流体通路側の目封止箇所が残存する位置でフィルター
基材を切断して、第二の目封止工程が終了する。この第
二の目封止工程が終了することで、図3(l)に示す様
に、太径流体通路を一方の端面で目封止し、細径流体通
路を他方の端面で目封止したフィルターエレメントを得
ることができる。
When the opposite end of the plugged large-diameter fluid passage is further immersed in the plugging liquid slurry to a depth of 5 mm as shown in FIG. Sealed. In this case, in order to more positively plug the small-diameter fluid passage, a vacuum is sucked from the upper end portion of the filter substrate, or the small-diameter fluid passage and the large-diameter fluid passage are plugged by a capillary phenomenon. Or increase the axial length of
In the same manner as described above, the plugging liquid may be pulled upward while attaching the plugging liquid to the small-diameter fluid passage side. After removing the filter substrate from the plugging liquid and drying it in the state of FIG. 3 (j), FIG. 3 (k)
As shown in Fig. 7, the filter base material is cut at a position where the plugged portion of the large-diameter fluid passage can be deleted and the plugged portion of the small-diameter fluid passage remains, and the second plugging step is completed. . When the second plugging step is completed, the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face, as shown in FIG. A filtered filter element can be obtained.

【0029】以上の工程では目封止材をフィルター基材
と同一のセラミックス材料としたが、家庭用の浄水器の
ろ過フィルター、半導体ウエハ製造におけるCMP研磨
機に内蔵する研磨液ろ過フィルタ、循環風呂のろ過フィ
ルター、水耕栽培における溶液のろ過フィルター浄水器
では流体の温度が80℃以下であり、目封止材としては
充填が容易な有機系の接着剤が好ましい。この場合の工
程は前述するセラミックス系の目封止材と同様である
が、フィルター基材への目封止材の付着の代わりに接着
剤を硬化することで同一の作用効果が得られる。この場
合接着剤の硬化収縮により、フィルター基材を引っ張り
損傷することを無くすために、接着剤中に粒度が#15
0程度のセラミック粉末または樹脂の粒を混合させると
好ましい。さらに加熱硬化するために熱を加えると、冷
却時にフィルター基材より熱膨張率の大きい接着剤が、
フィルター基材を引張り損傷するので、接着剤は常温で
も効果が可能な主剤と硬化剤からなり、かつポットライ
フの長いものを選定し、アセトン等の溶剤にて希釈した
ものを使用し、浸漬と取り出しを複数回実施し、フィル
ター基材の内表面にコーティングする様にして接着剤を
付着させる方法が好ましい。
In the above steps, the plugging material is the same ceramic material as the filter base material. However, the filter for home water purifier, the polishing liquid filter built in the CMP polishing machine for semiconductor wafer production, the circulation bath The filter temperature of the fluid is 80 ° C. or less in the filtration filter of No. 1 and the filtration filter of the solution in the hydroponic cultivation, and the plugging material is preferably an organic adhesive which can be easily filled. The process in this case is the same as that of the ceramic plugging material described above, but the same operation and effect can be obtained by curing the adhesive instead of attaching the plugging material to the filter substrate. In this case, in order to prevent the filter base material from being pulled and damaged by the curing shrinkage of the adhesive, the particle size of the adhesive is set to # 15.
It is preferable to mix approximately 0 ceramic powder or resin particles. When heat is further applied to heat and cure, an adhesive having a larger coefficient of thermal expansion than the filter substrate during cooling,
Since the filter base material will be damaged by pulling it, use an adhesive consisting of a base material and a curing agent that can be effective at room temperature and a long pot life, and use a material diluted with a solvent such as acetone. It is preferable to take out a plurality of times and apply an adhesive so as to coat the inner surface of the filter substrate.

【0030】一方、細径流体通路を第一に目封止する方
法は、基本的には上述した太径流体通路を第一に目封止
する方法と同一である。その概略を図4(a)〜(i)
を参考にして説明すると、まず、図4(a)に示す様に
前記方法にて調製したフィルター基材を、図4(b)に
示す様に同じく前記方法で調製した目封止液に4mmの
長さに浸漬する。次に図4(c)に示す様にフィルター
基材を目封止液より取り出す。次に図4(d)に示す様
に、中心部は柔らかい状態であるので、目封止液が太径
流体通路より排出され、中心部には開孔部ができる。次
にフィルター基材を乾燥機に入れ細径流体通路の目封止
部をフィルター基材に固着させる。この状態で第一工程
が終了し、図4(e)に示す様にフィルター基材の細径
流体通路を一方の端部で目封止することができる。
On the other hand, the method of first plugging the small-diameter fluid passage is basically the same as the above-described method of first plugging the large-diameter fluid passage. The outline is shown in FIGS.
First, as shown in FIG. 4 (a), the filter base material prepared by the above-described method is mixed with the plugging liquid prepared by the same method as shown in FIG. Immerse to length. Next, as shown in FIG. 4C, the filter substrate is taken out of the plugging liquid. Next, as shown in FIG. 4D, since the central portion is in a soft state, the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion. Next, the filter substrate is placed in a dryer, and the plugged portion of the small-diameter fluid passage is fixed to the filter substrate. In this state, the first step is completed, and the small-diameter fluid passage of the filter substrate can be plugged at one end as shown in FIG.

【0031】その後、図4(f)に示す様に、フィルタ
ー基材を再度目封止液に8mm浸漬させると、細径流体
通路は端部が閉塞しているので目封止液は侵入しにくい
が、太径流体通路は少なくとも中心部は開孔しているの
で、目封止液への浸漬に伴い太径流体通路に目封止液が
侵入する。この場合、より積極的に太径流体通路を目封
止するために、フィルター基材の上部端部から真空で吸
引するか、フィルター基材を目封止液中で下方に移動さ
せることが好ましい。次にフィルター基材を目封止液よ
り取り出し、図4(g)にの状態で乾燥させた後、図5
(h)に示す様に細径流体通路の目封止箇所を削除でき
かつ太径流体通路側の目封止箇所が残存する位置でフィ
ルター基材を切断して、第二の目封止工程がが終了す
る。この第二の目封止工程が終了することで、図4
(i)に示す様に、太径流体通路を一方の端面で目封止
し、細径流体通路を他方の端面で目封止したフィルター
エレメントを得ることができる。
Thereafter, as shown in FIG. 4 (f), when the filter substrate is immersed again in the plugging liquid by 8 mm, the plugging liquid enters because the end of the small-diameter fluid passage is closed. Although it is difficult, since the large-diameter fluid passage is open at least at the center, the plugging liquid enters the large-diameter fluid passage with immersion in the plugging liquid. In this case, in order to more positively plug the large-diameter fluid passage, it is preferable to vacuum-suction from the upper end of the filter substrate or to move the filter substrate downward in the plugging liquid. . Next, the filter base material was taken out of the plugging liquid and dried in the state shown in FIG.
As shown in (h), the filter base material is cut at a position where the plugged portion of the small-diameter fluid passage can be deleted and the plugged portion of the large-diameter fluid passage remains, and a second plugging step is performed. Ends. When the second plugging step is completed, FIG.
As shown in (i), it is possible to obtain a filter element in which the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face.

【0032】以上の様に、本考案によるフィルターエレ
メントの目封止工程は太径流体通路を第一に目封止する
方法と、細径流体通路を第一に目封止する方法の2通り
があるが、工程数が少ない点で細径流体通路を第一に目
封止する方法が好ましいが、目封止体積の大きい太径流
体通路側を先ず確実に目封止できる点では、太径流体通
路を第一に目封止する方法が好ましく、この2方法のい
ずれかはセラミック基材の材質と流体通路の内寸法およ
び目封止材の材質により適宜選定できる。またフィルタ
ー基材を損耗させる固体を含む流体をろ過する場合は、
細径流体通路の目封止部を第一に目封止することによ
り、固体を含む流体に接触する細径流体通路を先ず確実
にセラミックス径目封止材で目封止し、固体を含む流体
に暴露することが少ない太径流体通路を目封止が容易な
有機系接着剤にて目封止することもできる。この場合、
目封止された細径流体通路のフィルター基材端面にガラ
ス系の釉薬を塗布すると、前記目封止部分のフィルター
基材への固着を強化でき、また耐摩耗性も向上できる点
好ましく、太径流体通路の端面にも実施しても良い。本
発明による目封止ではスラリー状の目封止材を使用して
いるので、φ1〜φ2.5mmの内接円寸法の間で、太
径流体通路と細径流体通路を選択する場合は、前記スラ
リー状の目封止材をガラス系の釉薬としても好ましい。
As described above, the plugging process of the filter element according to the present invention can be performed in one of two ways: a first method of plugging the large-diameter fluid passage and a first method of plugging the small-diameter fluid passage. Although the method of first plugging the small-diameter fluid passage is preferable in that the number of steps is small, the large-diameter fluid passage having a large plugging volume can be first reliably plugged. The method of first plugging the radial fluid passage is preferable, and any one of these two methods can be appropriately selected depending on the material of the ceramic base material, the internal dimensions of the fluid passage, and the material of the plugging material. When filtering a fluid containing solids that wears the filter substrate,
By first plugging the plugged portion of the small-diameter fluid passage, the small-diameter fluid passage in contact with the fluid containing the solid is first reliably plugged with the ceramic-diameter plugging material to contain the solid. The large-diameter fluid passage that is less exposed to the fluid can be plugged with an organic adhesive that is easy to plug. in this case,
When a glass-based glaze is applied to the end face of the filter base material of the plugged small-diameter fluid passage, fixation of the plugged portion to the filter base material can be strengthened and abrasion resistance can be improved. The present invention may be applied to the end face of the radial fluid passage. In the plugging according to the present invention, since a plugging material in the form of slurry is used, between the inscribed circle dimensions of φ1 to φ2.5 mm, when selecting a large-diameter fluid passage and a small-diameter fluid passage, The slurry plugging material is also preferably used as a glass glaze.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
のフィルターエレメントによれば、流体通路を太径流体
通路と細径流体通路とから構成し、太径流体通路を一方
の端面で目封止し、細径流体通路を他方の端面で目封止
するよう構成しているため、ろ過壁面を境とした上流側
の流体通路の総断面積を、ろ過する流体中の固形物量に
対応した最適の断面積とすることができ、また下流側の
総断面積も清澄液の量及びろ過用途に対応した最少のも
のとできるのでフィルターエレメントの外径寸法も最少
とすることが可能で装置の寸法も小さくできる。
As is apparent from the above description, according to the filter element of the present invention, the fluid passage is composed of a large-diameter fluid passage and a small-diameter fluid passage, and the large-diameter fluid passage is formed at one end face. It is sealed and the small-diameter fluid passage is plugged at the other end face, so the total cross-sectional area of the upstream fluid passage, which borders on the filter wall, corresponds to the amount of solids in the fluid to be filtered. It is possible to minimize the outer diameter of the filter element because the total cross-sectional area on the downstream side can be minimized according to the amount of the clarified liquid and the filtration application. Can be made smaller.

【0034】また、本発明のフィルターエレメントの製
造方法によれば、流体通路を太径流体通路と細径流体通
路とから構成しているため、目封止方法としては最も好
適であるフィルター基材を目封止材へ浸漬する方法を、
太径流体通路と細径流体通路の断面の大きさの差を利用
してマスクパターンを使用しなくとも、利用することが
できる。そのため、特に複層構造にした場合のコート不
良の発生が著しく低減でき、またマスクパターンを全く
使用しないので、流体通路寸法が小さい場合にも広く適
用でき、マスクパターンの剥離による目封止不良が全く
無く、しかもフィルター基材の変形があっても目封止が
可能であると共に、目封止時間が低減でき、さらに高価
な光学的な画像処理装置と目封止材の注入装置が不要な
安価なコストの目封止方法を達成することができる。
Further, according to the filter element manufacturing method of the present invention, since the fluid passage is constituted by the large-diameter fluid passage and the small-diameter fluid passage, the filter substrate which is the most suitable as a plugging method is used. The method of immersing
The present invention can be used without using a mask pattern by utilizing the difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects, particularly in the case of a multilayer structure, can be significantly reduced, and since no mask pattern is used, it can be widely applied even when the fluid passage size is small. No plugging is possible, and even if the filter base material is deformed, plugging is possible, plugging time can be reduced, and an expensive optical image processing device and plugging material injection device are unnecessary. An inexpensive plugging method can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフィルターエレメントの一例の端面構
造を示す図である。
FIG. 1 is a view showing an end face structure of an example of a filter element of the present invention.

【図2】本発明のフィルターエレメントの他の例の端面
構造を示す図である。
FIG. 2 is a view showing an end face structure of another example of the filter element of the present invention.

【図3】(a)〜(l)は本発明のフィルターエレメン
トの製造方法における太径流体通路を先に目封止する方
法を工程順に示す図である。
3 (a) to 3 (l) are views showing a method of plugging a large diameter fluid passage first in a method of manufacturing a filter element of the present invention in the order of steps.

【図4】(a)〜(i)は本発明のフィルターエレメン
トの製造方法における細径流体通路を先に目封止する方
法を工程順に示す図である。
FIGS. 4A to 4I are diagrams showing a method of plugging a small-diameter fluid passage first in a method of manufacturing a filter element of the present invention in the order of steps.

【図5】従来のフィルターエレメントの一例の端面構造
を示す図である。
FIG. 5 is a view showing an end face structure of an example of a conventional filter element.

【図6】従来のフィルターエレメントの端面目封止に使
用するマスクパターンの一例を示す図である。
FIG. 6 is a view showing an example of a conventional mask pattern used for plugging an end face of a filter element.

【図7】従来のフィルターエレメントの端部での目封止
材の形状の一例を示す図である。
FIG. 7 is a view showing an example of a shape of a plugging material at an end of a conventional filter element.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // A01G 31/00 601 B01D 35/02 Z Fターム(参考) 2B314 MA26 PA11 3L036 AD31 4D019 AA01 AA03 BA05 BB06 BD10 CA01 CB06 4D058 JA32 JB06 KA23 KA27 SA08 4D064 AA11 AA17 AA31 AA40 BF31 BJ07 EA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // A01G 31/00 601 B01D 35/02 Z F term (reference) 2B314 MA26 PA11 3L036 AD31 4D019 AA01 AA03 BA05 BB06 BD10 CA01 CB06 4D058 JA32 JB06 KA23 KA27 SA08 4D064 AA11 AA17 AA31 AA40 BF31 BJ07 EA01

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】多孔質の壁により仕切られた多数の互いに
平行な流体通路よりなるフィルター基材において、流体
通路が、断面が大きい太径流体通路と、太径流体通路よ
りも小さい少なくとも1つの断面の大きさを有する細径
流体通路とからなり、太径流体通路の一方の端面を目封
止するとともに、少なくとも1つの断面の大きさを有す
る細径流体通路を、太径流体通路が目封止された端面と
は反対側の端面で目封止したことを特徴とするフィルタ
ーエレメント。
1. A filter substrate comprising a plurality of parallel fluid passages separated by a porous wall, wherein the fluid passages have a large-diameter fluid passage having a large cross section and at least one fluid passage having a smaller cross-section than the large-diameter fluid passage. A small-diameter fluid passage having a cross-sectional size, the one end face of the large-diameter fluid passage being plugged, and the small-diameter fluid passage having at least one cross-sectional size being formed by the large-diameter fluid passage. A filter element which is plugged at an end face opposite to the sealed end face.
【請求項2】前記流体通路の断面が円形を基準とし、太
径流体通路の回りに細径流体通路を配設した請求項1記
載のフィルターエレメント。
2. The filter element according to claim 1, wherein a cross section of the fluid passage is based on a circle, and a small diameter fluid passage is provided around the large diameter fluid passage.
【請求項3】前記流体通路の断面が多角形を基準とし、
太径流体通路の回りに細径流体通路を配設した請求項1
記載のフィルターエレメント。
3. A cross section of said fluid passage is based on a polygon,
2. A small-diameter fluid passage is provided around a large-diameter fluid passage.
The filter element as described.
【請求項4】前記多角形が六角形状である請求項3記載
のフィルターエレメント。
4. The filter element according to claim 3, wherein said polygon is a hexagon.
【請求項5】フィルターエレメントの軸に垂直方向の断
面において、前記細径流体通路の総断面積が前記太径流
体通路の総断面積の40%を超え120%以下である請
求項1〜4のいずれか1項に記載のフィルターエレメン
ト。
5. A cross section perpendicular to the axis of the filter element, wherein the total cross-sectional area of the small-diameter fluid passage is more than 40% and not more than 120% of the total cross-sectional area of the large-diameter fluid passage. The filter element according to any one of the above.
【請求項6】前記太径流体通路をろ過流体の入口とし、
前記細径流体通路を清澄流体の出口とした請求項1〜5
のいずれか1項に記載のフィルターエレメント。
6. The large-diameter fluid passage serves as an inlet for a filtered fluid.
6. The method according to claim 1, wherein the small-diameter fluid passage is an outlet for a clarifying fluid.
The filter element according to any one of the above.
【請求項7】フィルターエレメントが、家庭用浄水器の
ろ過、半導体製造装置で使用する研磨液のろ過、循環風
呂のろ過、水耕栽培における溶液のろ過、ディーゼル微
粒子除去装置(DPF)における微粒子のろ過に使用さ
れる請求項1〜6のいずれか1項に記載のフィルターエ
レメント。
7. The filter element is used for filtration of a household water purifier, filtration of a polishing liquid used in a semiconductor manufacturing apparatus, filtration of a circulation bath, filtration of a solution in hydroponics, and removal of fine particles in a diesel particulate filter (DPF). The filter element according to any one of claims 1 to 6, which is used for filtration.
【請求項8】多孔質の壁により仕切られた多数の互いに
平行な流体通路よりなり、流体通路が、断面が大きい太
径流体通路と、太径流体通路よりも小さい少なくとも1
つの断面の大きさを有する細径流体通路とからなるフィ
ルター基材を準備する準備工程と、 準備工程で準備したフィルター基材の一端面を目封止材
に浸漬し、太径流体通路と細径流体通路に目封止材を充
填し、フィルター基材の太径流体通路より目封止材を排
出することで細径流体通路に選択的に目封止材を充填
し、再び目封止材に浸漬し太径流体通路の目封止材の充
填長さを細径流体通路の目封止材の充填長さよりも長く
なるように目封止材を充填した後、太径流体通路の目封
止材のみを残す位置でフィルター基材を切断して、太径
流体通路のみに選択的に目封止材を充填させる第一の目
封止工程と、 第一の目封止工程で目封止した端面と反対側の端面を目
封止材に浸漬して、細径流体通路の目封止材の充填長さ
を太径流体通路の目封止材の充填長さより長く形成した
後、細径流体通路の目封止材のみを残す位置でフィルタ
ー基材を切断して、細径流体通路のみに選択的に目封止
材を充填させる第二の目封止工程と、からなることを特
徴とするフィルターエレメントの製造方法。
8. A large-diameter fluid passage having a large cross section and at least one fluid passage having a large cross-section, comprising a plurality of parallel fluid passages separated by porous walls.
A preparing step of preparing a filter substrate comprising a small-diameter fluid passage having three cross-sectional sizes; and immersing one end surface of the filter substrate prepared in the preparing step in a plugging material to form a large-diameter fluid passage and a small-diameter fluid passage. Filling the plugging material into the large diameter fluid passage and discharging the plugging material from the large diameter fluid passage of the filter substrate to selectively fill the small diameter fluid passage with the plugging material and plugging again After filling the plugging material so that the filling length of the plugging material of the large-diameter fluid passage is longer than the filling length of the plugging material of the small-diameter fluid passage, A first plugging step of cutting the filter substrate at a position where only the plugging material is left, and selectively filling only the large-diameter fluid passage with the plugging material; The end face opposite to the plugged end face is immersed in the plugging material, and the filling length of the plugging material of the small diameter fluid passage is plugged with the large diameter fluid passage. After forming longer than the filling length of the second, the filter base material is cut at a position where only the plugging material of the small-diameter fluid passage is left, and only the small-diameter fluid passage is filled with the plugging material. A method for manufacturing a filter element, comprising: a plugging step.
【請求項9】多孔質の壁により仕切られた多数の互いに
平行な流体通路よりなり、流体通路が、断面が大きい太
径流体通路と、太径流体通路よりも小さい少なくとも1
つの断面の大きさを有する細径流体通路とからなるフィ
ルター基材を準備する準備工程と、 準備工程で準備したフィルター基材の一端面を目封止材
に浸漬し、太径流体通路と細径流体通路に目封止剤を充
填し、フィルター基材の太径流体通路より目封止材を排
出することで、細径流体通路のみに選択的に目封止材を
充填させる第一の目封止工程と、 第一の目封止工程で目封止した端面と反対側の端面を目
封止材に浸漬して、太径流体通路の目封止材の充填長さ
を細径流体通路の目封止材の充填長さより長く形成した
後、太径流体通路の目封止材のみを残す位置でフィルタ
ー基材を切断して、太径流体通路のみに選択的に目封止
材を充填させる第二の目封止工程と、からなることを特
徴とするフィルターエレメントの製造方法。
9. A large-diameter fluid passage having a large cross section and at least one fluid passage having a large cross-section, comprising a plurality of parallel fluid passages separated by a porous wall.
A preparing step of preparing a filter substrate comprising a small-diameter fluid passage having three cross-sectional sizes; and immersing one end surface of the filter substrate prepared in the preparing step in a plugging material to form a large-diameter fluid passage and a small-diameter fluid passage. Filling the diameter fluid passage with a plugging agent, and discharging the plugging material from the large diameter fluid passage of the filter substrate, thereby selectively filling only the small diameter fluid passage with the plugging material. The plugging step and the end face opposite to the end face plugged in the first plugging step are immersed in the plugging material, and the filling length of the plugging material in the large-diameter fluid passage is reduced in diameter. After being formed longer than the filling length of the plugging material of the fluid passage, the filter base material is cut at a position where only the plugging material of the large-diameter fluid passage is left, and selectively plugged only in the large-diameter fluid passage. And a second plugging step of filling a material.
【請求項10】前記フィルター基材がセラミックス材料
からなる請求項8または9記載のフィルターエレメント
の製造方法。
10. The method for producing a filter element according to claim 8, wherein said filter substrate is made of a ceramic material.
【請求項11】前記目封止材がセラミックス材料からな
り、フィルター基材が未焼成の状態で、前記第一の目封
止工程と第二の目封止工程を行う請求項10記載のフィ
ルターエレメントの製造方法。
11. The filter according to claim 10, wherein the first plugging step and the second plugging step are performed in a state where the plugging material is made of a ceramic material and the filter substrate is unfired. Element manufacturing method.
【請求項12】前記目封止材がセラミックス材料、有機
系接着剤のいずれかであり、フィルター基材を焼成した
後、前記第一の目封止工程と第二の目封止工程を行う請
求項10記載のフィルターエレメントの製造方法。
12. The first plugging step and the second plugging step after firing the filter base material, wherein the plugging material is either a ceramic material or an organic adhesive. A method for manufacturing a filter element according to claim 10.
【請求項13】前記第一の目封止工程において、フィル
ター基材を目封止材に浸漬した後、フィルター基材を上
方に引き上げることにより太径流体通路及び細径流体通
路に目封止材を充填する請求項8または9記載のフィル
ターエレメントの製造方法。
13. In the first plugging step, after the filter base material is immersed in a plugging material, the filter base material is lifted upward to plug the filter base material into a large diameter fluid passage and a small diameter fluid passage. The method for producing a filter element according to claim 8, wherein the material is filled.
【請求項14】前記第二の目封止工程において、フィル
ター基材の上部より真空吸引することにより、太径流体
通路又は細径流体通路の目封止材の充填長さが細径流体
通路又は太径流体通路の目封止材の長さより長くなるよ
うに選択的に目封止材を充填する請求項8または9記載
のフィルターエレメントの製造方法。
14. In the second plugging step, the filling length of the plugging material in the large-diameter fluid passage or the small-diameter fluid passage is reduced by vacuum suction from above the filter base material. 10. The method for manufacturing a filter element according to claim 8, wherein the plugging material is selectively filled so as to be longer than the length of the plugging material in the large diameter fluid passage.
【請求項15】前記第二の目封止工程において、フィル
ター基材を目封止材に浸漬した後、フィルター基材を目
封止材中で下方に移動することにより、太径流体通路又
は細径流体通路の目封止材の充填長さが細径流体通路又
は太径流体通路の目封止材の長さより長くなるように選
択的に目封止材を充填する請求項8または9記載のフィ
ルターエレメントの製造方法。
15. In the second plugging step, after immersing the filter base material in the plugging material, the filter base material is moved downward in the plugging material, so that a large-diameter fluid passage or The plugging material is selectively filled so that the filling length of the plugging material in the small-diameter fluid passage is longer than the length of the plugging material in the small-diameter fluid passage or the large-diameter fluid passage. A method for producing the filter element according to the above.
【請求項16】フィルターエレメントの目封止をした両
端の少なくとも一面に釉薬が塗布されている請求項8ま
たは9記載のフィルターエレメントの製造方法。
16. The method for manufacturing a filter element according to claim 8, wherein glaze is applied to at least one surface of the plugged ends of the filter element.
JP2000158206A 2000-05-29 2000-05-29 Manufacturing method of filter element Expired - Lifetime JP4471452B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000158206A JP4471452B2 (en) 2000-05-29 2000-05-29 Manufacturing method of filter element
PCT/JP2001/004957 WO2002100514A1 (en) 2000-05-29 2001-06-12 Filter element and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000158206A JP4471452B2 (en) 2000-05-29 2000-05-29 Manufacturing method of filter element
PCT/JP2001/004957 WO2002100514A1 (en) 2000-05-29 2001-06-12 Filter element and production method thereof

Publications (2)

Publication Number Publication Date
JP2001334114A true JP2001334114A (en) 2001-12-04
JP4471452B2 JP4471452B2 (en) 2010-06-02

Family

ID=26345088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158206A Expired - Lifetime JP4471452B2 (en) 2000-05-29 2000-05-29 Manufacturing method of filter element

Country Status (2)

Country Link
JP (1) JP4471452B2 (en)
WO (1) WO2002100514A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024295A1 (en) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Honeycomb structure
WO2004024294A1 (en) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Filter
JP2004141728A (en) * 2002-10-22 2004-05-20 Ngk Insulators Ltd Filter element and its manufacturing method
JP2004261664A (en) * 2003-02-28 2004-09-24 Ngk Insulators Ltd Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
WO2004113252A1 (en) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. Honeycomb structure
WO2005037406A1 (en) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. Honeycomb structure
JP2006167680A (en) * 2004-12-20 2006-06-29 Hitachi Metals Ltd Method for producing ceramic honeycomb filter
JPWO2004111398A1 (en) * 2003-06-05 2006-07-20 イビデン株式会社 Honeycomb structure
JPWO2005002709A1 (en) * 2003-06-23 2006-08-10 イビデン株式会社 Honeycomb structure
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter
WO2008117559A1 (en) * 2007-03-28 2008-10-02 Ngk Insulators, Ltd. Honeycomb filter
WO2008120499A1 (en) * 2007-03-29 2008-10-09 Ngk Insulators, Ltd. Honeycomb segment
WO2008126433A1 (en) * 2007-03-30 2008-10-23 Ngk Insulators, Ltd. Honeycomb segment and honeycomb structure
WO2009011434A1 (en) * 2007-07-18 2009-01-22 Ngk Insulators, Ltd. Process for producing honeycomb structure and apparatus therefor
WO2009011435A1 (en) * 2007-07-18 2009-01-22 Ngk Insulators, Ltd. Process for producing honeycomb structure and apparatus therefor
JP2009508683A (en) * 2005-09-20 2009-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Filter elements and particulate filters with multiple geometrically similar passages
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter
JP2009526647A (en) * 2006-02-15 2009-07-23 ボールドウィン・フィルターズ・インコーポレーテッド Grooved filter device
JP2009195905A (en) * 2009-04-13 2009-09-03 Hitachi Metals Ltd Method for manufacturing ceramic honeycomb filter
US7585471B2 (en) 2004-02-23 2009-09-08 Ibiden Co., Ltd. Honeycomb structured body and exhaust gas purifying device
JP2009233938A (en) * 2008-03-26 2009-10-15 Ngk Insulators Ltd Method of manufacturing plugged honeycomb structure
US7618596B2 (en) * 2003-02-18 2009-11-17 Ngk Insulators Honeycomb filter and exhaust gas purification system
JP2010053697A (en) * 2008-08-26 2010-03-11 Denso Corp Diesel particulate filter
JP2010131586A (en) * 2008-11-06 2010-06-17 Denso Corp Honeycomb filter and method for manufacturing the same
WO2010104104A1 (en) * 2009-03-13 2010-09-16 パナソニック電工株式会社 Filtration member and cartridge water purification equipped with filtration member
DE102011004343A1 (en) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Exhaust gas purification filter has base substrate, multiple cells, which are composed of inlet cells and outlet cells, where multiple separation walls are made of porous material
JP2012030219A (en) * 2010-06-28 2012-02-16 Kyocera Corp Honeycomb structure and gas treatment apparatus using the same
WO2013061872A1 (en) * 2011-10-28 2013-05-02 住友化学株式会社 Honeycomb structure
JP2013094721A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Honeycomb structure
JP5324423B2 (en) * 2007-03-20 2013-10-23 日本碍子株式会社 Honeycomb structure
EP2705891A1 (en) 2012-09-06 2014-03-12 NGK Insulators, Ltd. Plugged honeycomb structure
CN105073361A (en) * 2012-12-27 2015-11-18 住友化学株式会社 Method for manufacturing honeycomb structure
WO2016039325A1 (en) * 2014-09-08 2016-03-17 イビデン株式会社 Honeycomb sintered body and honeycomb filter
WO2019187126A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Plugged honeycomb segment, and plugged honeycomb structure
KR20210145070A (en) * 2020-05-22 2021-12-01 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Filter apparatus for semiconductor device fabrication process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439236B2 (en) 2003-10-23 2010-03-24 イビデン株式会社 Honeycomb structure
FR2902348B1 (en) * 2006-06-19 2008-08-08 Ceramiques Tech Ind Sa MONOLITHIC POROUS BODY HAVING A BEES NUCK STRUCTURE, ESPECIALLY PARTICULATE FILTER FOR EXHAUST GASES
WO2016013513A1 (en) * 2014-07-23 2016-01-28 イビデン株式会社 Honeycomb filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788486A (en) * 1971-09-30 1974-01-29 Minnesota Mining & Mfg Filter
JPS53133860U (en) * 1977-03-30 1978-10-23
CA1145270A (en) * 1979-12-03 1983-04-26 Morris Berg Ceramic filters for diesel exhaust particulates and methods of making
JPS5892409U (en) * 1981-12-18 1983-06-22 トヨタ自動車株式会社 Internal combustion engine exhaust gas filter
US4550034A (en) * 1984-04-05 1985-10-29 Engelhard Corporation Method of impregnating ceramic monolithic structures with predetermined amounts of catalyst
JP3130587B2 (en) * 1991-09-17 2001-01-31 イビデン株式会社 Honeycomb filter of exhaust gas purification device
DE69834076D1 (en) * 1997-01-31 2006-05-18 Takasago Thermal Engineering CLEANING DEVICE, FILTER AND METHOD FOR THEIR MANUFACTURE

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7766991B2 (en) 2002-09-13 2010-08-03 Ibiden Co., Ltd. Honeycomb structural body
CN1322909C (en) * 2002-09-13 2007-06-27 揖斐电株式会社 Honeycomb structure
JPWO2004024293A1 (en) * 2002-09-13 2006-01-05 イビデン株式会社 Honeycomb structure
US7316722B2 (en) * 2002-09-13 2008-01-08 Ibiden Co., Ltd. Honeycomb structure
US7314496B2 (en) * 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
CN100345611C (en) * 2002-09-13 2007-10-31 揖斐电株式会社 Honeycomb structure
US8012234B2 (en) 2002-09-13 2011-09-06 Ibiden Co., Ltd. Honeycomb structural body
WO2004024294A1 (en) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Filter
US7326270B2 (en) 2002-09-13 2008-02-05 Ibiden Co., Ltd. Filter
WO2004024293A1 (en) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Honeycomb structure
WO2004024295A1 (en) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. Honeycomb structure
JP4553737B2 (en) * 2002-09-13 2010-09-29 イビデン株式会社 Honeycomb structure
JP2004141728A (en) * 2002-10-22 2004-05-20 Ngk Insulators Ltd Filter element and its manufacturing method
US7618596B2 (en) * 2003-02-18 2009-11-17 Ngk Insulators Honeycomb filter and exhaust gas purification system
JP2004261664A (en) * 2003-02-28 2004-09-24 Ngk Insulators Ltd Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
US8246710B2 (en) 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
JP4969103B2 (en) * 2003-06-05 2012-07-04 イビデン株式会社 Honeycomb structure
JPWO2004111398A1 (en) * 2003-06-05 2006-07-20 イビデン株式会社 Honeycomb structure
CN100391897C (en) * 2003-06-23 2008-06-04 揖斐电株式会社 Honeycomb structure
JPWO2005002709A1 (en) * 2003-06-23 2006-08-10 イビデン株式会社 Honeycomb structure
US7611764B2 (en) * 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
WO2004113252A1 (en) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. Honeycomb structure
US7785695B2 (en) 2003-10-20 2010-08-31 Ibiden Co., Ltd. Honeycomb structured body
WO2005037405A1 (en) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. Honeycomb structure
WO2005037406A1 (en) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. Honeycomb structure
US7556782B2 (en) 2003-10-20 2009-07-07 Ibiden Co., Ltd. Honeycomb structured body
US7585471B2 (en) 2004-02-23 2009-09-08 Ibiden Co., Ltd. Honeycomb structured body and exhaust gas purifying device
JP2006167680A (en) * 2004-12-20 2006-06-29 Hitachi Metals Ltd Method for producing ceramic honeycomb filter
JP4909352B2 (en) * 2005-09-20 2012-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Filter elements and particulate filters with multiple geometrically similar passages
JP2009508683A (en) * 2005-09-20 2009-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Filter elements and particulate filters with multiple geometrically similar passages
US8257460B2 (en) 2005-09-20 2012-09-04 Robert Bosch Gmbh Filter element and soot filter having geometrically similar channels
JP4600826B2 (en) * 2005-10-18 2010-12-22 日立金属株式会社 Ceramic honeycomb filter
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter
JP2009526647A (en) * 2006-02-15 2009-07-23 ボールドウィン・フィルターズ・インコーポレーテッド Grooved filter device
JP5324423B2 (en) * 2007-03-20 2013-10-23 日本碍子株式会社 Honeycomb structure
JP5292280B2 (en) * 2007-03-28 2013-09-18 日本碍子株式会社 Honeycomb filter
US7846527B2 (en) 2007-03-28 2010-12-07 Ngk Insulators, Ltd. Honeycomb filter
WO2008117559A1 (en) * 2007-03-28 2008-10-02 Ngk Insulators, Ltd. Honeycomb filter
JPWO2008120499A1 (en) * 2007-03-29 2010-07-15 日本碍子株式会社 Honeycomb segment
US7858169B2 (en) 2007-03-29 2010-12-28 Ngk Insulators, Ltd. Honeycomb segment
WO2008120499A1 (en) * 2007-03-29 2008-10-09 Ngk Insulators, Ltd. Honeycomb segment
WO2008126433A1 (en) * 2007-03-30 2008-10-23 Ngk Insulators, Ltd. Honeycomb segment and honeycomb structure
JP5292282B2 (en) * 2007-03-30 2013-09-18 日本碍子株式会社 Honeycomb segment and honeycomb structure
US8192667B2 (en) 2007-07-18 2012-06-05 Ngk Insulators, Ltd. Apparatus for manufacturing a honeycomb structure
US7722791B2 (en) 2007-07-18 2010-05-25 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure and manufacturing apparatus thereof
CN101541491B (en) * 2007-07-18 2013-09-25 日本碍子株式会社 Process for producing honeycomb structure and apparatus therefor
US7919033B2 (en) 2007-07-18 2011-04-05 Ngk Insulators, Ltd. Method of manufacturing honeycomb structure and manufacturing apparatus thereof
JP5372756B2 (en) * 2007-07-18 2013-12-18 日本碍子株式会社 Method for manufacturing honeycomb structure and apparatus for manufacturing the same
WO2009011434A1 (en) * 2007-07-18 2009-01-22 Ngk Insulators, Ltd. Process for producing honeycomb structure and apparatus therefor
WO2009011435A1 (en) * 2007-07-18 2009-01-22 Ngk Insulators, Ltd. Process for producing honeycomb structure and apparatus therefor
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter
JP4706744B2 (en) * 2007-09-26 2011-06-22 株式会社デンソー Exhaust gas purification filter
JP2009233938A (en) * 2008-03-26 2009-10-15 Ngk Insulators Ltd Method of manufacturing plugged honeycomb structure
JP2010053697A (en) * 2008-08-26 2010-03-11 Denso Corp Diesel particulate filter
JP2010131586A (en) * 2008-11-06 2010-06-17 Denso Corp Honeycomb filter and method for manufacturing the same
WO2010104104A1 (en) * 2009-03-13 2010-09-16 パナソニック電工株式会社 Filtration member and cartridge water purification equipped with filtration member
JP2009195905A (en) * 2009-04-13 2009-09-03 Hitachi Metals Ltd Method for manufacturing ceramic honeycomb filter
DE102011004343A1 (en) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Exhaust gas purification filter has base substrate, multiple cells, which are composed of inlet cells and outlet cells, where multiple separation walls are made of porous material
JP2012030219A (en) * 2010-06-28 2012-02-16 Kyocera Corp Honeycomb structure and gas treatment apparatus using the same
US9322311B2 (en) 2011-10-28 2016-04-26 Sumitomo Chemical Company, Limited Honeycomb structure
WO2013061872A1 (en) * 2011-10-28 2013-05-02 住友化学株式会社 Honeycomb structure
JP2013094702A (en) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd Honeycomb structure
JP2013094721A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Honeycomb structure
EP2705891A1 (en) 2012-09-06 2014-03-12 NGK Insulators, Ltd. Plugged honeycomb structure
EP3222338A1 (en) 2012-09-06 2017-09-27 NGK Insulators, Ltd. Plugged honeycomb structure
US9289711B2 (en) 2012-09-06 2016-03-22 Ngk Insulators, Ltd. Plugged honeycomb structure
CN105073361A (en) * 2012-12-27 2015-11-18 住友化学株式会社 Method for manufacturing honeycomb structure
CN107030863A (en) * 2012-12-27 2017-08-11 住友化学株式会社 The manufacture method of honeycomb structured body
JP2016055231A (en) * 2014-09-08 2016-04-21 イビデン株式会社 Honeycomb fired product and honeycomb filter
WO2016039325A1 (en) * 2014-09-08 2016-03-17 イビデン株式会社 Honeycomb sintered body and honeycomb filter
WO2019187126A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Plugged honeycomb segment, and plugged honeycomb structure
JPWO2019187126A1 (en) * 2018-03-30 2021-01-14 日本碍子株式会社 Sealed honeycomb segment and sealed honeycomb structure
US11426716B2 (en) 2018-03-30 2022-08-30 Ngk Insulators, Ltd. Plugged honeycomb segment, and plugged honeycomb structure
KR20210145070A (en) * 2020-05-22 2021-12-01 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Filter apparatus for semiconductor device fabrication process
KR102504442B1 (en) * 2020-05-22 2023-02-28 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Filter apparatus for semiconductor device fabrication process

Also Published As

Publication number Publication date
JP4471452B2 (en) 2010-06-02
WO2002100514A1 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
JP4471452B2 (en) Manufacturing method of filter element
EP1724448B1 (en) Honeycomb filter for purifyng exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
US8057568B2 (en) Extruded porous substrate and products using the same
JP5005917B2 (en) Method for manufacturing plugged honeycomb structure
EP2116347B1 (en) Method for manufacturing a sealed honeycomb structure
CN101878098B (en) Method of manufacturing a ceramic honeycomb structure
RU2338583C2 (en) Division module and method of its manufacturing
EP2116348B1 (en) Method for manufacturing sealing honeycomb structure
JP2003269132A (en) Exhaust emission control filter
EP1816323B2 (en) Plugged honeycomb structure
JP2007204331A (en) Method for manufacturing sealed honeycomb structure and sealed honeycomb structure
CN103458989A (en) Sealed honeycomb structure
EP2108436A1 (en) Honeycomb structure and method for manufacturing the same
EP1640068B1 (en) Process for producing honeycomb structure
JP5523871B2 (en) Manufacturing method of honeycomb filter
US11578001B2 (en) Coating material, outer periphery-coated silicon carbide-based honeycomb structure, and method for coating outer periphery of silicon carbide-based honeycomb structure
WO2004091756A1 (en) Ceramics honeycomb filter and method of manufacturing the same
WO2008021587A2 (en) An extruded porous substrate having inorganic bonds
KR100671867B1 (en) Ceramic filter
US6627123B2 (en) Method for selectively plugging a honeycomb
JP2009214098A (en) Honeycomb structure, apparatus for cleaning exhaust gas and method for manufacturing the honeycomb structure
JP2004051674A (en) Coating material, honeycomb structure, and preparation method thereof
EP1161332A1 (en) Improved method of making multicellular filters
JP2004353633A (en) Ceramic honeycomb filter
JP4040427B2 (en) Manufacturing method of filter element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150