JP2001313051A - Hydrogen supply device for fuel cell and hydrogen storage method - Google Patents

Hydrogen supply device for fuel cell and hydrogen storage method

Info

Publication number
JP2001313051A
JP2001313051A JP2000130519A JP2000130519A JP2001313051A JP 2001313051 A JP2001313051 A JP 2001313051A JP 2000130519 A JP2000130519 A JP 2000130519A JP 2000130519 A JP2000130519 A JP 2000130519A JP 2001313051 A JP2001313051 A JP 2001313051A
Authority
JP
Japan
Prior art keywords
hydrogen
tank
storage
fuel cell
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000130519A
Other languages
Japanese (ja)
Other versions
JP4644335B2 (en
Inventor
Masashi Takahashi
高橋昌志
Seiji Takahashi
高橋誠司
Yoshio Nuitani
縫谷芳雄
Katsuzo Sahoda
佐保田克三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Original Assignee
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Japan Metals and Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000130519A priority Critical patent/JP4644335B2/en
Publication of JP2001313051A publication Critical patent/JP2001313051A/en
Application granted granted Critical
Publication of JP4644335B2 publication Critical patent/JP4644335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen supply device for a fuel cell which supplies stably a necessary amount of hydrogen reformed and generated from a raw material containing hydrogen by a reformer to a fuel cell when hydrogen is in short supply, for instance, at starting or heavy loading of the fuel cell. SOLUTION: In a hydrogen supply device for fuel cell having a reformer, a storage tank (A) equipped with hydrogen storage alloy and an emitting tank (B) equipped with hydrogen storage alloy, as the storage tank (A), a flat vertical cylinder vessel which has a ratio of height (H)/diameter (L) of less than 1, or a vertical vessel which sends reforming gas vertically from top to bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用水素供
給装置及び水素吸蔵方法に関し、さらに詳しくは、アル
コールや液化石油ガスなどの燃料を改質器により改質し
て発生させた水素を燃料電池、特に自動車に搭載される
燃料電池に、安定して必要量供給するための燃料電池用
水素供給装置、及び改質ガス中の水素を、吸蔵タンクに
収納されている水素吸蔵合金にほぼ100%近く吸蔵さ
せる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen supply apparatus and a hydrogen storage method for a fuel cell, and more particularly, to a method for converting hydrogen such as alcohol or liquefied petroleum gas by a reformer to generate hydrogen. A hydrogen supply device for a fuel cell for stably supplying a required amount to a battery, especially a fuel cell mounted on an automobile, and hydrogen in the reformed gas is supplied to a hydrogen storage alloy stored in a storage tank by approximately 100%. %).

【0002】[0002]

【従来の技術】近年、石油の代替エネルギーとして、水
素を発電用燃料とする燃料電池が注目を浴びている。こ
のような燃料電池は、燃料極と酸化剤極からなり、燃料
極には水素を、酸化剤極には酸素を供給して、電解質層
を介して接触反応させて電気化学反応による電気化学エ
ネルギーを取り出そうとするものである。この種の燃料
電池としては燃料として水素が使用される。この水素は
一般的には天然ガス、ナフサ、液化石油ガス、メタノー
ル等の炭化水素燃料を改質し、水素を主成分とする燃料
ガスに変換することにより取り出される。二酸化炭素や
メタンのような不純物ガスを含む改質ガスから改質器に
よって水素を精製し、この水素を利用して電気化学的エ
ネルギーを取り出す燃料電池装置は従来より多くの提案
がなされている。一方、このような燃料電池装置におい
て用いられる上記改質器の応答遅れによる燃料電池への
水素供給量の不足分を充足すべく、水素吸蔵材としての
水素吸蔵合金を有する水素貯蔵装置を備えたものが知ら
れている(例えば、特開平2−56866号公報参
照)。
2. Description of the Related Art In recent years, fuel cells using hydrogen as a fuel for power generation have attracted attention as an alternative energy to petroleum. Such a fuel cell is composed of a fuel electrode and an oxidant electrode. Hydrogen is supplied to the fuel electrode and oxygen is supplied to the oxidant electrode. Is to be taken out. This type of fuel cell uses hydrogen as fuel. This hydrogen is generally extracted by reforming a hydrocarbon fuel such as natural gas, naphtha, liquefied petroleum gas, or methanol, and converting it to a fuel gas containing hydrogen as a main component. 2. Description of the Related Art There have been many proposals for a fuel cell device in which hydrogen is purified from a reformed gas containing an impurity gas such as carbon dioxide or methane by a reformer, and electrochemical energy is extracted using the hydrogen. On the other hand, a hydrogen storage device having a hydrogen storage alloy as a hydrogen storage material is provided to satisfy the shortage of hydrogen supply to the fuel cell due to the response delay of the reformer used in such a fuel cell device. An example is known (for example, see Japanese Patent Application Laid-Open No. 2-56866).

【0003】このような水素吸蔵合金を有する水素貯蔵
装置を用いた燃料電池システムは、改質器の始動時や改
質器からの水素供給が不足した場合に、水素貯蔵装置か
ら水素を供給するシステムであり、このような水素貯蔵
装置によって燃料電池に水素を安定して一定供給するこ
とができる。ところで、本出願人らは、先に上記燃料電
池装置を改良した燃料電池システムを提案した(特願平
11−164939号)。この燃料システムは、「水素
を燃料とする機器に水素を供給すべく、アルコール、ガ
ソリン等の原料から水素を生成する改質器を備えた水素
供給システムにおいて、前記改質器により生成された水
素を吸蔵し、かつ放出することが可能な水素貯蔵器を有
し、その水素貯蔵器は、第1の水素吸蔵材を備えた第1
貯蔵部と、第2の水素吸蔵材を備えた第2貯蔵部とを有
し、両水素吸蔵材において、水素の吸蔵し易さに関して
は前記第1の水素吸蔵材が前記第2の水素吸蔵材に比べ
て優れており、一方、吸蔵水素の放出し易さに関しては
前記第2の水素吸蔵材が前記第1の水素吸蔵材に比べて
優れており、前記第1貯蔵部に前記改質器からの水素を
一旦吸蔵させ、次いでその吸蔵水素を放出して得られた
水素を前記第2貯蔵部に吸蔵させ、前記機器の要求水素
量を前記改質器により充足することができない場合に、
その要求水素量を充足すべく、前記第2貯蔵部より吸蔵
水素を放出させることを特徴とする、水素を燃料とする
機器への水素供給システム」である。ところが、このよ
うな燃料電池用水素供給装置システムにおいて、第1の
水素貯蔵部に充填する水素吸蔵合金の充填量が多すぎた
り、選択した容器構造若しくは形状によっては、第1の
貯蔵部の圧力損失が大きくなる場合があり、その結果第
1の貯蔵部に備えられた水素吸蔵合金に改質ガスが供給
されなくなる場合や供給されても改質ガス供給量が少な
くなり、水素吸蔵合金の水素吸蔵時間が長くかかるとい
う問題が生じる。例えば、従来公知の先端部にステンレ
スフィルターを備えた横型円筒状容器に水素を導入して
容器内部に収納された水素吸蔵合金に水素を吸蔵するよ
うな方式の容器構造では、圧力損失が大きすぎて改質ガ
スが全く水素貯蔵部に導入されない場合がある。このよ
うな状況下では、燃料電池の要求水素量を前記改質器に
より充足することができないときに第2の貯蔵部から燃
料電池に水素を供給しようとした場合、第1の貯蔵部か
ら円滑に水素を第2の貯蔵部に供給できないために、必
要量の水素を供給できない場合が生じる。特に、市街地
で燃料自動車を駆動走行させているような場合で始動停
止を頻繁に行うような場合には、第2の貯蔵部に水素が
不足し、燃料電池に必要量の水素が供給されない場合が
発生する恐れがあった。
A fuel cell system using a hydrogen storage device having such a hydrogen storage alloy supplies hydrogen from the hydrogen storage device when starting the reformer or when the supply of hydrogen from the reformer is insufficient. This is a system in which hydrogen can be stably supplied to a fuel cell stably by such a hydrogen storage device. By the way, the present applicants have previously proposed a fuel cell system obtained by improving the above-mentioned fuel cell device (Japanese Patent Application No. 11-164939). The fuel system includes a hydrogen supply system including a reformer that generates hydrogen from a raw material such as alcohol or gasoline in order to supply hydrogen to a device using hydrogen as a fuel. A hydrogen storage device capable of storing and releasing hydrogen, the hydrogen storage device comprising a first hydrogen storage material having a first hydrogen storage material.
A second storage unit provided with a second hydrogen storage material, wherein the first hydrogen storage material has the second hydrogen storage material for both hydrogen storage materials with respect to ease of hydrogen storage. The second hydrogen storage material is superior to the first hydrogen storage material with respect to the ease of release of the stored hydrogen. Hydrogen from the reactor is temporarily stored, and then the hydrogen obtained by releasing the stored hydrogen is stored in the second storage unit, and when the required hydrogen amount of the equipment cannot be satisfied by the reformer, ,
A hydrogen supply system for a device using hydrogen as fuel, wherein the stored hydrogen is released from the second storage unit in order to satisfy the required amount of hydrogen. However, in such a hydrogen supply system for a fuel cell, the pressure of the first storage unit may be too large depending on the filling amount of the hydrogen storage alloy filled in the first hydrogen storage unit or depending on the selected container structure or shape. The loss may increase, and as a result, when the reformed gas is not supplied to the hydrogen storage alloy provided in the first storage unit or when the reformed gas is supplied, the reformed gas supply amount is reduced, and the hydrogen of the hydrogen storage alloy is reduced. There is a problem that the occlusion time is long. For example, in a conventionally known container structure of a type in which hydrogen is introduced into a horizontal cylindrical container provided with a stainless steel filter at the tip end and hydrogen is stored in a hydrogen storage alloy stored in the container, the pressure loss is too large. In some cases, no reformed gas is introduced into the hydrogen storage unit. In such a situation, when hydrogen is supplied from the second storage unit to the fuel cell when the required hydrogen amount of the fuel cell cannot be satisfied by the reformer, the first storage unit smoothly supplies the hydrogen. May not be able to supply the required amount of hydrogen because hydrogen cannot be supplied to the second storage unit. In particular, when starting and stopping frequently in a case where a fuel vehicle is driven and driven in an urban area, if the second storage unit is short of hydrogen and the required amount of hydrogen is not supplied to the fuel cell, Could occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
状況下で、第1の貯蔵部に収納された水素吸蔵合金に、
改質器からの改質ガスをスムーズに供給して水素を吸蔵
させると共に、この第1の貯蔵部から、水素を円滑に第
2の貯蔵部に供給し、例えば燃料電池の始動時や高負荷
時などにおいて、改質器からの水素供給が不足した際に
も、燃料電池に安定して必要量の水素を供給し得る燃料
電池用水素供給装置を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen storage alloy stored in a first storage unit under such a situation.
The reformed gas from the reformer is smoothly supplied to store hydrogen, and hydrogen is smoothly supplied from the first storage unit to the second storage unit. An object of the present invention is to provide a fuel cell hydrogen supply device that can stably supply a required amount of hydrogen to a fuel cell even when the supply of hydrogen from a reformer is insufficient at times.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、改質器と、水
素吸蔵合金を備えた第1の吸蔵タンク(A)と、水素吸
蔵合金を備えた第2の放出タンク(B)とを有し、か
つ、吸蔵タンク(A)として、特定の形状の偏平状縦型
円筒容器を用いるか、あるいは改質ガスを上から下へ垂
直方法に流す形式の縦型容器を用いることにより、その
目的を達成し得ることを見出した。また、偏平状縦型円
筒容器からなる吸蔵タンク(A)に水素吸蔵合金を、水
素吸蔵合金充填高さ(H1)/円筒容器断面積(S)比
がある値以下になるように充填することにより、圧力損
失を低くすることができ、かつ改質ガス中の水素をほぼ
100%近く吸蔵し得ることを見出した。本発明は、か
かる知見に基づいて完成したものである。すなわち、本
発明は、(1)水素発生用改質器と、該改質器からの水
素を吸蔵し、かつ放出することが可能な水素吸蔵・放出
タンクを具備してなる、燃料電池に水素を供給するため
の燃料電池用水素供給装置において、上記水素吸蔵・放
出タンクが、前記改質器からの水素を一旦吸蔵させるた
めの水素吸蔵合金を備えた吸蔵タンク(A)と、該吸蔵
タンク(A)から放出される水素を吸蔵させ、かつ放出
させるための水素吸蔵合金を備えた放出タンク(B)と
からなり、かつ上記吸蔵タンク(A)が、該改質器から
の改質ガスを導入する入口部と吸蔵した水素を放出タン
ク(B)に放出する放出口を備えた、高さ(H)/直径
(L)比1以下の偏平状縦型円筒容器であることを特徴
とする燃料電池用水素供給装置、(2)水素発生用改質
器と、該改質器からの水素を吸蔵し、かつ放出すること
が可能な水素吸蔵・放出タンクを具備してなる、燃料電
池に水素を供給するための燃料電池用水素供給装置にお
いて、上記水素吸蔵・放出タンクが、前記改質器からの
水素を一旦吸蔵させるための水素吸蔵合金を備えた吸蔵
タンク(A)と、該吸蔵タンク(A)から放出される水
素を吸蔵させ、かつ放出させるための水素吸蔵合金を備
えた放出タンク(B)とからなり、かつ上記吸蔵タンク
(A)が、該改質器からの改質ガスを導入する入口部と
吸蔵した水素を放出タンク(B)に放出する放出口を備
えてなる、改質ガスを上から下へ垂直方向に流す形式の
縦型容器であることを特徴とする燃料電池用水素供給装
置、及び(3)上記(1)の燃料電池用水素供給装置に
おいて、偏平状縦型円筒容器からなる吸蔵タンク(A)
に水素吸蔵合金を、水素吸蔵合金充填高さ(H1)/円
筒容器断面積(S)比が4.0m/m2 以下になるように
充填し、これに改質器からの改質ガスを導入することを
特徴とする水素吸蔵方法、を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a reformer, a first storage tank (A) equipped with a hydrogen storage alloy, A second discharge tank (B) provided with a hydrogen storage alloy, and a specific vertical cylindrical container having a specific shape is used as the storage tank (A); It has been found that the object can be achieved by using a vertical container of a type flowing vertically. In addition, the hydrogen storage alloy (A), which is a flat vertical cylindrical container, is filled with the hydrogen storage alloy so that the hydrogen storage alloy filling height (H1) / cylindrical container cross-sectional area (S) ratio becomes a certain value or less. As a result, the pressure loss can be reduced and hydrogen in the reformed gas can be stored by nearly 100%. The present invention has been completed based on such findings. That is, the present invention provides (1) a fuel cell comprising: a hydrogen generating reformer; and a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer. In the hydrogen supply device for a fuel cell for supplying hydrogen, the hydrogen storage / release tank includes a storage tank (A) including a hydrogen storage alloy for temporarily storing hydrogen from the reformer, and the storage tank. (A) a storage tank (B) provided with a hydrogen storage alloy for storing and releasing hydrogen released from the storage tank (A), and the storage tank (A) comprises a reformed gas from the reformer. Characterized in that it is a flat vertical cylindrical container having a height (H) / diameter (L) ratio of 1 or less, provided with an inlet for introducing water and a discharge port for discharging the stored hydrogen to a discharge tank (B). Hydrogen supply device for fuel cell, (2) reformer for hydrogen generation and A hydrogen supply device for a fuel cell for supplying hydrogen to a fuel cell, comprising a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer. A storage tank (A) provided with a hydrogen storage alloy for temporarily storing hydrogen from the reformer; and a storage tank (A) for storing and releasing hydrogen released from the storage tank (A). A discharge tank (B) provided with a hydrogen storage alloy, wherein the storage tank (A) discharges the stored hydrogen to the discharge tank (B) and an inlet for introducing reformed gas from the reformer. A hydrogen supply device for a fuel cell, characterized in that it is a vertical container of a type in which a reformed gas flows vertically from top to bottom, comprising a discharge port for discharging hydrogen, and (3) the fuel cell according to (1). In a hydrogen supply device for Storage tank consisting of a container (A)
With a hydrogen storage alloy so that the ratio of the height of the hydrogen storage alloy (H1) / the cross-sectional area (S) of the cylindrical container becomes 4.0 m / m 2 or less, and the reformed gas from the reformer is filled therein. A hydrogen storage method characterized by being introduced.

【0006】[0006]

【発明の実施の形態】本発明の燃料電池用水素供給装置
は、水素発生用改質器と、該改質器からの水素を吸蔵
し、かつ放出することが可能な水素吸蔵・放出タンクを
具備してなる、燃料電池に水素を供給するための装置で
あって、2つの態様、すなわち(1)上記水素吸蔵・放
出タンクが、前記改質器からの水素を一旦吸蔵させるた
めの水素吸蔵合金を備えた吸蔵タンク(A)と、該吸蔵
タンク(A)から放出される水素を吸蔵させ、かつ放出
させるための水素吸蔵合金を備えた放出タンク(B)と
からなり、かつ上記吸蔵タンク(A)が、高さ(H)/
直径(L)比1以下の偏平状縦型円筒容器である装置
(以下、燃料電池用水素供給装置Iと称す。)、及び
(2)該水素吸蔵・放出タンクが、上記吸蔵タンク
(A)と放出タンク(B)とからなり、かつ該吸蔵タン
ク(A)が、改質ガスを上から下へ垂直方向に流す形式
の縦型容器である装置(以下、燃料電池用水素供給装置
IIと称す。)がある。本発明の燃料電池用水素供給装置
における水素発生用改質器は、例えばアルコール、ガソ
リン、液化石油ガスなどの含水素原料を、部分酸化改質
法や水蒸気改質法などにより改質処理して、水素ガスを
発生させる機器である。一方、該改質器からの水素を吸
蔵し、かつ放出することが可能な水素吸蔵・放出タンク
は、前記改質器からの水素を一旦吸蔵させるための水素
吸蔵合金を備えた吸蔵タンク(A)と、該吸蔵タンク
(A)から放出される水素を吸蔵させ、かつ放出させる
ための水素吸蔵合金を備えた放出タンク(B)とから構
成されている。上記吸蔵タンク(A)は、一個の水素吸
蔵タンクであってもよく、また、たがいに離間して設け
られた複数個の水素貯蔵タンクであってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen supply device for a fuel cell according to the present invention comprises a reformer for generating hydrogen and a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer. An apparatus for supplying hydrogen to a fuel cell, comprising: (1) the hydrogen storage / release tank in which the hydrogen storage / release tank temporarily stores hydrogen from the reformer; A storage tank (A) provided with an alloy, and a release tank (B) provided with a hydrogen storage alloy for storing and releasing hydrogen released from the storage tank (A); (A) is height (H) /
A device that is a flat vertical cylindrical container having a diameter (L) ratio of 1 or less (hereinafter referred to as a hydrogen supply device I for fuel cells); and (2) the hydrogen storage / release tank is the storage tank (A). And a release tank (B), wherein the storage tank (A) is a vertical container of a type in which the reformed gas flows vertically from top to bottom (hereinafter referred to as a fuel cell hydrogen supply device).
Called II. ). The reformer for hydrogen generation in the hydrogen supply device for a fuel cell according to the present invention is configured to reform a hydrogen-containing raw material such as alcohol, gasoline or liquefied petroleum gas by a partial oxidation reforming method or a steam reforming method. , A device that generates hydrogen gas. On the other hand, a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer is a storage tank (A) provided with a hydrogen storage alloy for temporarily storing hydrogen from the reformer. ) And a release tank (B) provided with a hydrogen storage alloy for storing and releasing hydrogen released from the storage tank (A). The storage tank (A) may be a single hydrogen storage tank or a plurality of hydrogen storage tanks provided separately from each other.

【0007】本発明の水素供給装置においては、まず、
水素発生用改質器から供給された改質ガス中の水素が吸
蔵タンク(A)に内蔵された水素吸蔵合金に吸蔵され、
その後、その吸蔵水素が放出タンク(B)に移送され、
該放出タンク(B)に内蔵された水素吸蔵合金に吸蔵さ
れる。そして、燃料電池の始動時や高負荷時など、改質
器から直接供給される水素量だけでは不足するときに
は、放出タンク(B)から燃料電池に水素が供給され
る。この際、吸蔵タンク(A)は、水素を放出タンク
(B)に放出して空になった状態では再び改質器から送
られる改質ガス中の水素を吸蔵し、放出タンク(B)が
空になった状態で再び水素を放出タンク(B)に送る。
In the hydrogen supply device of the present invention, first,
Hydrogen in the reformed gas supplied from the reformer for hydrogen generation is stored in the hydrogen storage alloy contained in the storage tank (A),
After that, the stored hydrogen is transferred to the release tank (B),
It is stored in the hydrogen storage alloy contained in the discharge tank (B). Then, when the amount of hydrogen directly supplied from the reformer is insufficient, such as when the fuel cell is started or under a high load, hydrogen is supplied from the discharge tank (B) to the fuel cell. At this time, when the storage tank (A) releases hydrogen to the release tank (B) and becomes empty, the storage tank (A) stores hydrogen in the reformed gas sent from the reformer again, and the release tank (B) In the empty state, hydrogen is sent again to the discharge tank (B).

【0008】本発明の水素供給装置Iにおいては、上記
吸蔵タンク(A)として、該改質器からの改質ガスを導
入する入口部と吸蔵した水素を放出タンク(B)に放出
する放出口を備えた、高さ(H)/直径(L)比1 以下
の偏平状縦型円筒容器が用いられる。縦型円筒容器と
は、円筒容器の円筒部分が天地となるような形状の容器
である。高さ(H)/直径(L)比が1を超える容器で
は圧力損失が充分に小さくならず、本発明の目的が達せ
られない。特に、高さ(H)/断面積(S)が4.5m/
2 以下の容器が好適である。このような形状の容器に
水素吸蔵合金粉末を充填すると入口と出口の圧力損失を
極めて小さくすることができ、充填された水素吸蔵合金
粉末に改質ガス中の水素が迅速に吸蔵される。例えば0.
15MPaの圧力で流入した改質ガスを、僅か0.05M
Pa程度の圧力損失で0.1MPaの出口側流量が確保さ
れる。したがって低圧力で燃料電池に供給されるような
改質ガス中の水素を吸蔵するのに特に有効である。
In the hydrogen supply device I of the present invention, the storage tank (A) has an inlet for introducing the reformed gas from the reformer and a discharge port for discharging the stored hydrogen to the discharge tank (B). A flat vertical cylindrical container having a height (H) / diameter (L) ratio of 1 or less is used. The vertical cylindrical container is a container having a shape such that the cylindrical portion of the cylindrical container is turned upside down. In a container having a height (H) / diameter (L) ratio exceeding 1, the pressure loss is not sufficiently reduced, and the object of the present invention cannot be achieved. In particular, the height (H) / cross-sectional area (S) is 4.5 m /
m 2 or less of the container is preferred. When the hydrogen storage alloy powder is filled in a container having such a shape, the pressure loss at the inlet and the outlet can be extremely reduced, and the hydrogen in the reformed gas is quickly stored in the filled hydrogen storage alloy powder. For example, 0.
The reformed gas flowing in at a pressure of 15 MPa is reduced to only 0.05 M
An outlet flow rate of 0.1 MPa is secured with a pressure loss of about Pa. Therefore, it is particularly effective for storing hydrogen in the reformed gas supplied to the fuel cell at a low pressure.

【0009】本発明の水素供給装置Iにおいては、この
偏平状縦型円筒容器への改質ガスの供給方法については
時に制限はなく、ガスの流れ方向が上から下になるよう
に供給してもよいし、あるいは下から上になるように供
給してもよいが、ガスの流れ方向が上から下になるよう
に改質ガスを供給するのが有利である。このようにガス
の流れ方向を上から下にすることで、ガスの流れのパス
ができにくく、水素吸蔵合金層全体に改質ガスが流れる
ために、該合金層全体が改質ガスと効果的に接触し、改
質ガスからの水素回収効率が向上する。したがって、該
偏平状縦型円筒容器からなる吸蔵タンクは、上部又は上
側面に改質ガスの入口部を備え、下部又は下側面に出口
を備えた構造のものが好ましい。この出口は、不純物ガ
スの排出口であると共に、吸蔵した水素を放出タンク
(B)に放出する放出口となる。本発明はまた、前記燃
料電池用水素供給装置Iにおいて、該吸蔵タンク(A)
中の水素吸蔵合金に水素を吸蔵させる方法をも提供する
ものである。
In the hydrogen supply apparatus I of the present invention, the method of supplying the reformed gas to the flat vertical cylindrical container is not limited in some cases, and the gas is supplied so that the gas flows from top to bottom. Alternatively, the reformed gas may be supplied from bottom to top, but it is advantageous to supply the reformed gas such that the gas flows from top to bottom. By making the gas flow direction from top to bottom in this way, it is difficult to make a gas flow path, and the reformed gas flows through the entire hydrogen storage alloy layer. , And the efficiency of hydrogen recovery from the reformed gas is improved. Therefore, it is preferable that the storage tank formed of the flat vertical cylindrical container has a structure in which an upper or upper side is provided with an inlet for reformed gas and a lower or lower side is provided with an outlet. This outlet serves as a discharge port for the impurity gas and a discharge port for discharging the stored hydrogen to the discharge tank (B). The present invention also provides the hydrogen supply device for a fuel cell I, wherein the storage tank (A)
Another object of the present invention is to provide a method for storing hydrogen in a hydrogen storage alloy therein.

【0010】本発明の方法においては、前記の偏平状縦
型円筒容器からなる吸蔵タンク(A)に水素吸蔵合金
を、水素吸蔵合金充填高さ(H1)/円筒容器断面積
(S)比が4.0m/m2 以下になるように充填し、これ
に改質器からの改質ガスを導入して、上記水素吸蔵合金
に、該改質ガス中の水素を吸蔵させる。このような水素
吸蔵方法を採用することにより、圧力損失を極めて低く
することができ、かつ改質ガス中の水素を、該水素吸蔵
合金にほぼ100%近く吸蔵させることができる。次
に、本発明の水素供給装置IIにおいては、吸蔵タンク
(A)として、前記改質器からの改質ガスを導入する入
口部と吸蔵した水素を放出タンク(B)に放出する放出
口を備えてなる、改質ガスを上から下へ垂直方向に流す
形式の縦型容器が用いられる。この縦型容器の形状とし
ては特に制限はなく、円筒型、角型のいずれであっても
よい。また、高さ/幅比についても特に制限はない。
In the method of the present invention, the hydrogen storage alloy is placed in the storage tank (A) comprising the above-mentioned flat vertical cylindrical container, and the ratio of the hydrogen storage alloy filling height (H1) / the cross-sectional area (S) of the cylindrical container is set. The filling is performed so as to be 4.0 m / m 2 or less, and a reformed gas from a reformer is introduced into the hydrogen absorbing alloy to cause the hydrogen absorbing alloy to absorb the hydrogen in the reformed gas. By employing such a hydrogen storage method, the pressure loss can be extremely reduced, and almost 100% of the hydrogen in the reformed gas can be stored in the hydrogen storage alloy. Next, in the hydrogen supply device II of the present invention, as the storage tank (A), an inlet for introducing the reformed gas from the reformer and a discharge port for discharging the stored hydrogen to the discharge tank (B) are provided. A vertical container provided with a flow direction of the reformed gas in a vertical direction from top to bottom is used. The shape of the vertical container is not particularly limited, and may be any of a cylindrical shape and a square shape. There is no particular limitation on the height / width ratio.

【0011】改質ガスを、上から下へ垂直方向に流すこ
とにより、前述の水素供給装置Iの説明において述べた
ように、ガスの流れのパスができにくく、水素吸蔵合金
層全体に改質ガスが流れるために、該合金層全体が改質
ガスと効果的に接触し、改質ガスからの水素回収効率が
向上する。このように、本発明の水素供給装置IIにおい
ては、前記の縦型容器からなる吸蔵タンク(A)は、改
質ガスを上から下へ垂直方向に流すために、上面に改質
ガスの入口部を備え、下面に出口を備えた構造のものが
用いられる。この出口は、不純物ガスの排出口であると
共に、吸蔵した水素を放出タンク(B)に放出する放出
口となる。本発明において、吸蔵タンク(A)及び放出
タンク(B)に、それぞれ収納される水素吸蔵合金とし
ては特に制限はなく、従来公知のRNi5 型やTiMn
合金などの一般的な水素吸蔵合金を用いることができる
が、上記吸蔵タンク(A)には、水素吸蔵合金として、
平均粒径の異なる二種以上の水素吸蔵合金粉末の混合物
を充填させるのが有利である。このような混合粉末を充
填させることによって、より高密度にかつ均一に充填す
ることができ、その結果、ガスの流れはより均一とな
る。
By flowing the reformed gas vertically from top to bottom, as described in the description of the hydrogen supply device I, it is difficult to make a gas flow path, and the reformed gas is reformed throughout the hydrogen storage alloy layer. Since the gas flows, the entire alloy layer comes into effective contact with the reformed gas, and the efficiency of hydrogen recovery from the reformed gas is improved. As described above, in the hydrogen supply device II of the present invention, the storage tank (A) composed of the above-described vertical container is provided with the inlet of the reformed gas on the upper surface in order to flow the reformed gas vertically from top to bottom. And a structure having an outlet on the lower surface. This outlet serves as a discharge port for the impurity gas and a discharge port for discharging the stored hydrogen to the discharge tank (B). In the present invention, the hydrogen storage alloy contained in the storage tank (A) and the release tank (B) is not particularly limited, and the conventionally known RNi 5 type or TiMn can be used.
A general hydrogen storage alloy such as an alloy can be used. In the storage tank (A), as the hydrogen storage alloy,
It is advantageous to fill a mixture of two or more hydrogen storage alloy powders having different average particle sizes. By filling such a mixed powder, packing can be performed more densely and uniformly, and as a result, the gas flow becomes more uniform.

【0012】この混合粉末として、平均粒径が異なる二
種の水素吸蔵合金粉末の混合物を用いる場合、平均粒径
30〜50μmの水素吸蔵合金粉末と、平均粒径1〜2
0μmの水素吸蔵合金粉末とを、重量比1:1〜3:1
の割合で混合したものが、上記効果の点から好適であ
る。また、前期吸蔵タンク(A)に収納させる水素吸蔵
合金としては、改質ガス中の水素を効率よく回収するた
めに、有効水素移動量の最高吸蔵点における吸蔵圧力
が、使用温度下で改質ガス圧力の60%以下であるもの
が好適である。改質ガス圧力は、通常0.15MPa程度
であり、かつ水素濃度は60容量%程度であるので、水
素分圧は0.09MPa程度となる。すなわち、有効水素
移動量の最高吸蔵点における吸蔵圧力が、使用温度下で
改質ガス圧力の60%以下ということは、一般に改質ガ
スの水素分圧以下であることを意味する。なお、上記の
有効水素移動量とは、その水素吸蔵合金のプラトー域で
の水素吸蔵合量のことである。
When a mixture of two kinds of hydrogen storage alloy powders having different average particle diameters is used as the mixed powder, a hydrogen storage alloy powder having an average particle diameter of 30 to 50 μm and a hydrogen storage alloy powder having an average particle diameter of 1 to 2 are used.
0 μm hydrogen storage alloy powder in a weight ratio of 1: 1 to 3: 1
Is preferable from the viewpoint of the above effects. For the hydrogen storage alloy to be stored in the storage tank (A) in the previous period, the storage pressure at the maximum storage point of the effective hydrogen transfer amount must be adjusted at the operating temperature in order to efficiently recover the hydrogen in the reformed gas. Those having a gas pressure of 60% or less are preferred. Since the reformed gas pressure is usually about 0.15 MPa and the hydrogen concentration is about 60% by volume, the hydrogen partial pressure is about 0.09 MPa. That is, the fact that the storage pressure at the maximum storage point of the effective hydrogen transfer amount is 60% or less of the reformed gas pressure at the operating temperature generally means that the hydrogen partial pressure of the reformed gas is lower than the partial pressure. The above-mentioned effective hydrogen transfer amount is the amount of hydrogen storage and storage in the plateau region of the hydrogen storage alloy.

【0013】[0013]

【実施例】次に、添付図面に従い、本発明の実施態様に
ついて詳細に説明する。図1は、本発明の水素供給装置
を有する燃料電池システムの一例の概要図であって、こ
の燃料電池システムは、例えば水素を燃料とする燃料電
池自動車に搭載することができる。この燃料電池システ
ムは、水素発生用改質器1、及び吸蔵タンク(A)(以
下単に吸蔵タンクと称す。)3と放出タンク(B)(以
下、単に放出タンクと称す。)4とからなる水素吸蔵・
放出タンクを具備してなる本発明の水素供給装置と、上
記水素供給装置から水素の供給を受けて作動する燃料電
池2とを主要構成要素とするシステムである。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an example of a fuel cell system having a hydrogen supply device according to the present invention. This fuel cell system can be mounted on, for example, a fuel cell vehicle using hydrogen as fuel. This fuel cell system includes a reformer 1 for hydrogen generation, a storage tank (A) (hereinafter simply referred to as a storage tank) 3 and a discharge tank (B) (hereinafter simply referred to as a discharge tank) 4. Hydrogen storage
This is a system including a hydrogen supply device of the present invention including a discharge tank and a fuel cell 2 that operates by receiving hydrogen from the hydrogen supply device as main components.

【0014】水素発生用改質器1は、アルコール、ガソ
リン、液化石油ガスなどの含水素原料を改質して、水素
(改質ガス)を発生させる機器であって、該機器で発生
した改質ガスを燃料電池2に供給すべく、その供給口が
燃料電池2の入口に供給管6を介して接続されている。
燃料電池2の出口は通常排出管を介して改質器の燃焼系
に接続され、(図示せず)これにより燃料電池2の排ガ
ス中の可燃成分が燃焼されて、その発生熱は改質器1に
おける改質反応に用いられる。この改質反応には、燃料
電池、改質器、モータ等が発生する熱も利用される。ま
た、水素発生用改質器1からの改質ガスは、供給管5を
通って吸蔵タンク3に供給され、その中に内蔵されてい
る水素吸蔵合金によって、選択的に水素が吸蔵される。
The reformer 1 for hydrogen generation is a device for reforming a hydrogen-containing raw material such as alcohol, gasoline and liquefied petroleum gas to generate hydrogen (reformed gas). A supply port is connected to an inlet of the fuel cell 2 via a supply pipe 6 in order to supply the quality gas to the fuel cell 2.
The outlet of the fuel cell 2 is usually connected to the combustion system of the reformer via a discharge pipe (not shown), whereby the combustible components in the exhaust gas of the fuel cell 2 are burned, and the generated heat is converted to the reformer. 1 for the reforming reaction. This reforming reaction also utilizes heat generated by a fuel cell, a reformer, a motor, and the like. The reformed gas from the reformer 1 for hydrogen generation is supplied to the storage tank 3 through the supply pipe 5, and hydrogen is selectively stored by the hydrogen storage alloy contained therein.

【0015】吸蔵タンク3としては、改質ガス入口部と
出口とを有する、偏平状縦型円筒容器又は改質ガスを上
から下へ垂直方向に流す形式の縦型容器が用いられる。
吸蔵タンク3に吸蔵された水素の燃料電池2への供給
は、そのまま供給管7を介して燃料電池2に直接供給さ
れる配管系列と、供給管8と放出タンク4と供給管9を
経由して燃料電池2に供給される配管系列とによって行
われる。
As the storage tank 3, a flat vertical cylindrical container having a reformed gas inlet and an outlet or a vertical container of a type in which the reformed gas flows vertically from top to bottom is used.
The hydrogen stored in the storage tank 3 is supplied to the fuel cell 2 via the supply pipe 7, the pipe line directly supplied to the fuel cell 2, the supply pipe 8, the discharge tank 4, and the supply pipe 9. And the piping system supplied to the fuel cell 2.

【0016】吸蔵タンク3に吸蔵された水素を、さらに
放出タンク4に吸蔵させる理由は、水素発生用改質器1
から送られる改質ガスの水素純度が低いためにそのまま
では、燃料電池が作動しない場合があるからであり、確
実に燃料電池を作動させるためと、いかなるタイミング
においてもただちに、かつ瞬時に燃料電池に水素を供給
するためである。一方、上述した吸蔵タンク3から、燃
料電池2へ直接供給するのは、高純度の水素を含む改質
ガスが、水素発生用改質器1から送られる場合か、又は
吸蔵タンク3で吸蔵水素が高純度化されて送られる場合
である。
The reason that the hydrogen stored in the storage tank 3 is further stored in the release tank 4 is that the hydrogen generating reformer 1
This is because the fuel cell may not operate as it is because the hydrogen purity of the reformed gas sent from the fuel cell is low, and in order to operate the fuel cell reliably and immediately and instantly at any timing. This is for supplying hydrogen. On the other hand, the above-described storage tank 3 is directly supplied to the fuel cell 2 when the reformed gas containing high-purity hydrogen is sent from the reformer 1 for hydrogen generation, or when the stored hydrogen is stored in the storage tank 3. Is highly purified and sent.

【0017】前記吸蔵タンク3は、一個の水素貯蔵タン
クでもよく、又は互いに離間して設けられた複数個の水
素貯蔵タンクからなるものでもよい。各タンクは水素吸
蔵合金を内蔵しており、吸蔵タンクが、複数個の水素貯
蔵タンクからなる場合は、その中の一つのタンクが水素
放出をしている間に、他のタンクは水素を吸蔵すること
ができる。また、吸蔵タンク3から排出される未吸蔵の
不純物を含むガスは配管10を通って、水素発生用改質
器1へ戻される。次に、本発明における燃料電池システ
ムについて、燃料電池運転プロセスと始動時又は高負荷
運転時とに分けて、説明する。 (1)始動時プロセス(改質運転停止状態) この状態は、水素発生用改質器1の停止時において、燃
料電池を起動させる際のプロセスである。この場合は改
質ガスが得られないので、放出タンク4に貯蔵した高純
度の水素ガスを高速度で放出させることで対処する。そ
のために、水素発生用改質器1から吸蔵タンク3の出口
までのバルブを閉じ、放出タンク4から燃料電池2に向
かうバルブを開として、該放出タンク内に60℃程度の
温水を供給して、放出タンク4内に充填した水素吸蔵合
金から水素を発生させ、この水素を燃料電池2に供給す
る。そして、燃料電池システムが起動し、前記水素発生
用改質器1の運転が再開された後は、以下の定常運転プ
ロセスを採用することになる。
The storage tank 3 may be a single hydrogen storage tank or a plurality of hydrogen storage tanks spaced apart from each other. Each tank has a built-in hydrogen storage alloy.If the storage tank consists of multiple hydrogen storage tanks, while one of the tanks is releasing hydrogen, the other tanks store hydrogen. can do. Further, the gas containing unoccluded impurities discharged from the storage tank 3 is returned to the hydrogen generation reformer 1 through the pipe 10. Next, the fuel cell system according to the present invention will be described separately for the fuel cell operation process and the start-up or high-load operation. (1) Start-up process (reforming operation stop state) This state is a process when the fuel cell is started when the reformer 1 for hydrogen generation is stopped. In this case, since a reformed gas cannot be obtained, a measure is taken by discharging high-purity hydrogen gas stored in the discharge tank 4 at a high speed. For this purpose, the valve from the reformer 1 for hydrogen generation to the outlet of the storage tank 3 is closed, the valve from the discharge tank 4 to the fuel cell 2 is opened, and hot water of about 60 ° C. is supplied into the discharge tank. Then, hydrogen is generated from the hydrogen storage alloy filled in the discharge tank 4, and the hydrogen is supplied to the fuel cell 2. Then, after the fuel cell system is started and the operation of the reformer 1 for hydrogen generation is restarted, the following steady operation process is adopted.

【0018】このように、燃料電池の始動時には、急速
に水素を放出タンクから放出させる必要があり、また、
追い越しなどを行う際の高負荷時には、不足の水素を前
記放出タンクから一時的に放出して、改質器からの水素
を補うようにする。吸蔵タンク3及び放出タンク4に
は、通常それぞれ2系列、すなわち3Aと3B及び4A
と4Bが配置されており、例えば、始動時においては、
吸蔵タンク3Aと放出タンク4Aに予め水素を吸蔵させ
た状態で、放出タンク4Aから水素を燃料電池2に放出
させる。この際、同時に吸蔵タンク3Aと放出タンク4
Bの間のバルブを開とし、放出タンク4Bに水素を吸蔵
させる。このシステムは放出タンク4Bに水素を吸蔵さ
せる際に発生する熱を、放出タンク4Aの水素が燃料電
池2に供給される際の冷熱によって冷却することで、放
出タンク4Bを冷却する冷却水等の冷媒が不要となるか
又は極めて少なくて済む。これは、特に、燃料自動車の
始動時のような冷媒が得にくい状況下で効果を発揮でき
る。本システムは、改質器の運転が開始された状態では
以下のプロセスに移行する。
As described above, when starting the fuel cell, it is necessary to rapidly release hydrogen from the release tank.
At the time of a high load during overtaking or the like, insufficient hydrogen is temporarily released from the release tank to supplement the hydrogen from the reformer. The storage tank 3 and the release tank 4 usually have two lines each, namely 3A, 3B and 4A.
And 4B are arranged, for example, at the time of starting,
Hydrogen is released from the release tank 4A to the fuel cell 2 in a state where hydrogen is previously stored in the storage tank 3A and the release tank 4A. At this time, the storage tank 3A and the discharge tank 4
The valve between B is opened to store hydrogen in the discharge tank 4B. This system cools the heat generated when storing hydrogen in the discharge tank 4B by cooling the hydrogen in the discharge tank 4A when the hydrogen is supplied to the fuel cell 2 so as to cool the discharge tank 4B. No or very little refrigerant is required. This can be particularly effective in situations where it is difficult to obtain a refrigerant, such as when starting a fuel vehicle. This system shifts to the following process when the operation of the reformer is started.

【0019】(2)通常運転又は高負荷時運転プロセス
(改質運転状態又は改質器の水素供給不足状態) (通常運転プロセス)この状態は、水素発生用改質器1
から発生する通常の水素含有改質ガスを定常的に用いて
燃料自動車を連続運転するプロセスである。上記改質器
1で生成した水素を配管を通じて燃料電池2に供給す
る。この状態で燃料自動車は定常走行される。定常走行
中、暖機運転中又は信号機により停止中には余剰の水素
は、バルブが開放され、改質ガスの一部が吸蔵タンク3
A及び3Bに流れ、改質ガス中の水素が、吸蔵タンク3
A,3Bに選択的に吸蔵される。吸蔵タンクを2系列に
したのは後述する放出タンク4から水素が燃料電池2に
供給される際に放出タンク4に供給される水素量を確保
するためであり、例えば吸蔵タンク3の大きさを放出タ
ンク4の2倍にすれば一つであってもよく、さらに2つ
以上を設けることもできる。
(2) Normal Operation or High Load Operation Process (Reforming Operation State or Reformer Insufficient Hydrogen Supply State) (Normal Operation Process)
This is a process for continuously operating a fuel-powered vehicle using a regular hydrogen-containing reformed gas generated from the fuel cell. The hydrogen generated in the reformer 1 is supplied to the fuel cell 2 through a pipe. In this state, the fuel vehicle runs normally. During normal running, during warm-up operation, or when stopped by a traffic light, excess hydrogen is released from the valve, and a part of the reformed gas is stored in the storage tank 3.
A and 3B, the hydrogen in the reformed gas is stored in the storage tank 3
A and 3B selectively occlude. The reason why the storage tanks are divided into two lines is to secure the amount of hydrogen supplied to the release tank 4 when hydrogen is supplied from the release tank 4 to the fuel cell 2 described later. For example, the size of the storage tank 3 is reduced. If it is twice as large as the discharge tank 4, one may be provided, and two or more may be provided.

【0020】吸蔵タンク3に吸蔵された水素は、走行中
に放出タンク4Aに移動され、より高純度の水素に生成
される。放出されるタイミングは、放出タンク4Bから
水素を燃料電池2に供給する際に行われる。すなわち、
高負荷時に放出タンク4Bから燃料電池2に水素が供給
される際には放出タンク4Aは水素の放出によって冷却
されるので水素が吸蔵しやすくなり、一方、放出タンク
4Bは放出タンク4Aの熱によって一層燃料電池2に放
出しやすくなる。このように本システムは、このサイク
ルを繰り返すことで放出タンク4Aと4Bを切り替えな
がら放出、吸蔵を繰り返すことで常に放出タンク4に燃
料電池2に供給する水素を有する状態で運転できる。そ
して、運転停止の前などに吸蔵タンク3に吸蔵した水素
を、燃料電池2ではなくいずれか少なくとも一方の放出
タンク4に供給してそこで水素は貯蔵される。
The hydrogen stored in the storage tank 3 is moved to the discharge tank 4A during traveling to generate higher purity hydrogen. The release timing is performed when hydrogen is supplied to the fuel cell 2 from the release tank 4B. That is,
When hydrogen is supplied from the release tank 4B to the fuel cell 2 at a high load, the release tank 4A is cooled by the release of hydrogen, so that hydrogen is easily stored, while the release tank 4B is heated by the heat of the release tank 4A. Release to the fuel cell 2 becomes easier. As described above, the present system can be operated in a state where hydrogen is always supplied to the fuel tank 2 in the discharge tank 4 by repeating discharge and storage while switching the discharge tanks 4A and 4B by repeating this cycle. Then, the hydrogen stored in the storage tank 3 before the operation is stopped or the like is supplied not to the fuel cell 2 but to at least one of the release tanks 4, where the hydrogen is stored.

【0021】なお、放出タンク4A,4Bの内部には、
各区画に水素吸蔵合金粉末が充填され、ヘッダーを介し
て水素が吸蔵される吸蔵管と放出される放出管を備えて
いる。 参考例1 直径89mm,長さ25mmの円筒容器2個を用意し、
それぞれに、平均粒径14μmの水素吸蔵合金(ミッシ
ュメタル,Ni,Co,Mn及びAlからなる合金)粉
末30重量%と、平均粒径35μmの水素吸蔵合金(上
記と同じもの)粉末70重量%との混合物500gを充
填し、吸蔵タンク(A−1)及び(A−2)を作製し
た。吸蔵タンク(A−1)は縦型として用い、水素含有
ガスを上から下へ垂直方向に流し、一方吸蔵タンク(A
−2)は横型として用い、水素含有ガスを水平方向に流
した。まず、吸蔵タンク(A−1)及び(A−2)内の
水素吸蔵合金を、それぞれ常法に従って活性化したの
ち、70℃にて、0.1MPaになるまで水素を放出させ
た。次いで、各吸蔵タンクを25℃の恒温槽中に浸し、
水素とアルゴンとの体積比3:1の混合ガスを、圧力0.
4MPa、流量5.3リットル/分の条件で、ガス入口側
から20分間導入して水素を吸蔵させた。次に、恒温水
槽の温度を70℃とし、大気圧下に水素を放出させて、
その放出量を測定し、20分間での水素吸蔵量を求め
た。その結果、水素吸蔵量は、縦型吸蔵タンク(A−
1)では52.9Nリットルであり、横型の吸蔵タンク
(A−2)では32.8Nリットルであった。以上の結果
より、吸蔵タンクは、横型形式のものより、縦型であっ
て、上から下へ垂直方向に水素含有ガスを流す形式のも
のが、水素吸蔵能力に優れていることが分かる。 参考例2 直径126mm,高さ12.5mmのH/L比が0.1で、
かつH/S比が1.0m/m2 の偏平状縦型円筒容器(A
−3)と、直径89mm,高さ25mmのH/L比が0.
28で、かつH/S比が4.0m/m2 の偏平状縦型円筒
容器(A−4)と、直径73mm、高さ37.5mmのH
/L比が0.51で、かつH/S比が9.0m/m2 の偏平
状縦型円筒容器(A−5)の3個を用意し、それぞれに
平均粒径14μmの水素吸蔵合金(ミッシュメタル,N
i,Co,Mn及びAlからなる合金)粉末500gを
充填し、吸蔵タンク(A−3),(A−4)及び(A−
5)を作製した。各吸蔵タンク共に、水素含有ガスを上
から下へ垂直方向に流した。まず、吸蔵タンク(A−
3),(A−4)及び(A−5)内の水素吸蔵合金を、
それぞれ常法に従って活性化したのち、70℃にて、0.
1MPaになるまで水素を放出させた。次いで、各吸蔵
タンクを25℃の恒温槽中に浸し、水素とアルゴンとの
体積比3:1の混合ガスを、圧力0.4MPa,流量5.3
リットル/分の条件で、ガス入口側から20分間導入し
て水素を吸蔵させた。次に、恒温水槽の温度を70℃と
し、大気圧下に水素を放出させて、その放出量を測定
し、20分間での水素吸蔵量を求めた。また、吸蔵終了
直前の入口側と出口側のガス圧力差を測定した。これら
の結果を第1表に示す。
Incidentally, inside the discharge tanks 4A and 4B,
Each section is filled with a hydrogen storage alloy powder, and has a storage tube for storing hydrogen via a header and a discharge tube for releasing hydrogen. Reference Example 1 Two cylindrical containers having a diameter of 89 mm and a length of 25 mm were prepared.
30% by weight of hydrogen storage alloy (alloy composed of Mischmetal, Ni, Co, Mn and Al) powder having an average particle size of 14 μm and 70% by weight of hydrogen storage alloy (same as above) powder having an average particle size of 35 μm And 500 g of a mixture of the above were filled to form storage tanks (A-1) and (A-2). The storage tank (A-1) is used as a vertical type, and the hydrogen-containing gas flows vertically from top to bottom while the storage tank (A-1) is used.
-2) was used as a horizontal type, and a hydrogen-containing gas was flowed in the horizontal direction. First, after activating the hydrogen storage alloys in the storage tanks (A-1) and (A-2) in accordance with ordinary methods, hydrogen was released at 70 ° C. until the pressure became 0.1 MPa. Next, each storage tank was immersed in a constant temperature bath at 25 ° C.
A mixed gas of hydrogen and argon at a volume ratio of 3: 1 was applied at a pressure of 0.
Under a condition of 4 MPa and a flow rate of 5.3 liter / min, hydrogen was absorbed by introducing gas from the gas inlet side for 20 minutes. Next, the temperature of the constant temperature water tank was set to 70 ° C., and hydrogen was released under atmospheric pressure.
The release amount was measured, and the hydrogen storage amount for 20 minutes was determined. As a result, the hydrogen storage amount becomes the vertical storage tank (A-
In 1), it was 52.9 Nl, and in the horizontal storage tank (A-2), it was 32.8 Nl. From the above results, it can be seen that the storage tank is of a vertical type and a type in which a hydrogen-containing gas flows vertically from top to bottom is more excellent in hydrogen storage capacity than a horizontal type. Reference Example 2 An H / L ratio of 126 mm in diameter and 12.5 mm in height is 0.1,
And a flat vertical cylindrical container having an H / S ratio of 1.0 m / m 2 (A
-3), and the H / L ratio of 89 mm in diameter and 25 mm in height is 0.
28 and a flat vertical cylindrical container (A-4) having an H / S ratio of 4.0 m / m 2 , and a H having a diameter of 73 mm and a height of 37.5 mm.
Three flat vertical cylindrical containers (A-5) having a / L ratio of 0.51 and an H / S ratio of 9.0 m / m 2 are prepared, and each of them has a hydrogen storage alloy having an average particle size of 14 μm. (Misch metal, N
i, Co, Mn, and Al) powder (500 g), and the storage tanks (A-3), (A-4), and (A-
5) was produced. In each storage tank, a hydrogen-containing gas was flowed vertically from top to bottom. First, the storage tank (A-
3) The hydrogen storage alloys in (A-4) and (A-5)
After activation according to the usual method, at 70 ° C., 0.
Hydrogen was released until the pressure reached 1 MPa. Next, each occlusion tank was immersed in a thermostat at 25 ° C., and a mixed gas of hydrogen and argon at a volume ratio of 3: 1 was applied at a pressure of 0.4 MPa and a flow rate of 5.3.
At a rate of 1 liter / min, hydrogen was introduced by introducing for 20 minutes from the gas inlet side. Next, the temperature of the thermostatic water tank was set to 70 ° C., hydrogen was released under atmospheric pressure, the amount of released hydrogen was measured, and the amount of hydrogen absorbed for 20 minutes was determined. Further, the gas pressure difference between the inlet side and the outlet side immediately before the end of the occlusion was measured. Table 1 shows the results.

【0022】[0022]

【表1】 [Table 1]

【0023】第1表から分かるように、H/S比が4.5
m/m2 以下のものは、水素吸蔵能力に優れている。
As can be seen from Table 1, the H / S ratio is 4.5.
Those having m / m 2 or less are excellent in hydrogen storage capacity.

【0024】[0024]

【発明の効果】本発明の燃料電池用水素供給装置は、ア
ルコールや液化石油ガスなどの燃料を改質器により改質
して発生させた水素を、例えば燃料電池の始動時や高負
荷時などにおいて、改質器からの水素供給が不足した際
にも、燃料電池に安定して必要量供給することができ
る。
The hydrogen supply apparatus for a fuel cell according to the present invention converts hydrogen generated by reforming a fuel such as alcohol or liquefied petroleum gas by a reformer, for example, at the time of starting the fuel cell or at a high load. In this case, even when the supply of hydrogen from the reformer is insufficient, the required amount can be stably supplied to the fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素供給装置を有する燃料電池システ
ムの一例の概要図である。
FIG. 1 is a schematic diagram of an example of a fuel cell system having a hydrogen supply device of the present invention.

【符号の説明】[Explanation of symbols]

1 水素発生用改質器 2 燃料電池 3 吸蔵タンク 4 放出タンク DESCRIPTION OF SYMBOLS 1 Reformer for hydrogen generation 2 Fuel cell 3 Storage tank 4 Release tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋誠司 茨城県つくば市東光台5丁目9番地6 日 本重化学工業株式会社筑波研究所内 (72)発明者 縫谷芳雄 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 佐保田克三 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3E072 AA03 EA10 5H027 AA02 BA01 BA14 KK01 KK42 MM01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Seiji Takahashi 5-9-6 Tokodai, Tsukuba, Ibaraki Pref., Japan Tsukuba Research Laboratories Co., Ltd. No. 1 Inside Honda R & D Co., Ltd. MM01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素発生用改質器と、該改質器からの水
素を吸蔵し、かつ放出することが可能な水素吸蔵・放出
タンクを具備してなる、燃料電池に水素を供給するため
の燃料電池用水素供給装置において、上記水素吸蔵・放
出タンクが、前記改質器からの水素を一旦吸蔵させるた
めの水素吸蔵合金を備えた吸蔵タンク(A)と、該吸蔵
タンク(A)から放出される水素を吸蔵させ、かつ放出
させるための水素吸蔵合金を備えた放出タンク(B)と
からなり、かつ上記吸蔵タンク(A)が、該改質器から
の改質ガスを導入する入口部と吸蔵した水素を放出タン
ク(B)に放出する放出口を備えた、高さ(H)/直径
(L)比1以下の偏平状縦型円筒容器であることを特徴
とする燃料電池用水素供給装置。
An apparatus for supplying hydrogen to a fuel cell, comprising: a reformer for hydrogen generation; and a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer. In the hydrogen supply device for a fuel cell described above, the hydrogen storage / release tank includes a storage tank (A) provided with a hydrogen storage alloy for temporarily storing hydrogen from the reformer, and a hydrogen storage / release tank. A release tank (B) provided with a hydrogen storage alloy for storing and releasing the released hydrogen, wherein the storage tank (A) is an inlet for introducing reformed gas from the reformer. A flat vertical cylindrical container having a height (H) / diameter (L) ratio of 1 or less, comprising a fuel tank and a discharge port for discharging the stored hydrogen to a discharge tank (B). Hydrogen supply device.
【請求項2】 吸蔵タンク(A)が高さ(H)/断面積
(S)比4.5m/m 2 以下の偏平状縦型円筒容器である
請求項1記載の燃料電池用水素供給装置。
2. The storage tank (A) has a height (H) / cross-sectional area.
(S) Ratio 4.5m / m TwoThe following flat vertical cylindrical container
The hydrogen supply device for a fuel cell according to claim 1.
【請求項3】 水素発生用改質器と、該改質器からの水
素を吸蔵し、かつ放出することが可能な水素吸蔵・放出
タンクを具備してなる、燃料電池に水素を供給するため
の燃料電池用水素供給装置において、上記水素吸蔵・放
出タンクが、前記改質器からの水素を一旦吸蔵させるた
めの水素吸蔵合金を備えた吸蔵タンク(A)と、該吸蔵
タンク(A)から放出される水素を吸蔵させ、かつ放出
させるための水素吸蔵合金を備えた放出タンク(B)と
からなり、かつ上記吸蔵タンク(A)が、該改質器から
の改質ガスを導入する入口部と吸蔵した水素を放出タン
ク(B)に放出する放出口を備えてなる、改質ガスを上
から下へ垂直方向に流す形式の縦型容器であることを特
徴とする燃料電池用水素供給装置。
3. A method for supplying hydrogen to a fuel cell, comprising: a hydrogen generating reformer; and a hydrogen storage / release tank capable of storing and releasing hydrogen from the reformer. In the hydrogen supply device for a fuel cell described above, the hydrogen storage / release tank includes a storage tank (A) provided with a hydrogen storage alloy for temporarily storing hydrogen from the reformer, and a hydrogen storage / release tank. A release tank (B) provided with a hydrogen storage alloy for storing and releasing the released hydrogen, wherein the storage tank (A) is an inlet for introducing reformed gas from the reformer. Hydrogen supply for a fuel cell, characterized in that it is a vertical container of a type in which a reformed gas flows vertically from top to bottom, comprising a discharge part for discharging the stored hydrogen to a discharge tank (B). apparatus.
【請求項4】 吸蔵タンク(A)における水素吸蔵合金
として、平均粒径の異なる二種以上の水素吸蔵合金粉末
の混合物を用いる請求項1又は3記載の燃料電池用水素
供給装置。
4. The hydrogen supply device for a fuel cell according to claim 1, wherein a mixture of two or more kinds of hydrogen storage alloy powders having different average particle diameters is used as the hydrogen storage alloy in the storage tank (A).
【請求項5】 吸蔵タンク(A)における水素吸蔵合金
として、有効水素移動量の最高吸蔵点における吸蔵圧力
が、使用温度下で改質ガス圧力の60%以下であるもの
を用いる請求項1又は3記載の燃料電池用水素供給装
置。
5. The hydrogen storage alloy in the storage tank (A), wherein the storage pressure at the maximum storage point of the effective hydrogen transfer amount is 60% or less of the reformed gas pressure at the operating temperature. 4. The hydrogen supply device for a fuel cell according to 3.
【請求項6】 請求項1又は2記載の燃料電池用水素供
給装置において、偏平状縦型円筒容器からなる吸蔵タン
ク(A)に水素吸蔵合金を、水素吸蔵合金充填高さ(H
1)/円筒容器断面積(S)比が4.0m/m2 以下にな
るように充填し、これに改質器からの改質ガスを導入す
ることを特徴とする水素吸蔵方法。
6. The hydrogen supply device for a fuel cell according to claim 1, wherein the storage tank (A) formed of a flat vertical cylindrical container is filled with a hydrogen storage alloy and has a hydrogen storage alloy filling height (H).
1) A method for storing hydrogen, characterized in that a filling is carried out so that a ratio of (S) / cylindrical vessel cross-sectional area (S) becomes 4.0 m / m 2 or less, and a reformed gas from a reformer is introduced into this.
JP2000130519A 2000-04-28 2000-04-28 Hydrogen supply device for fuel cell and hydrogen storage method Expired - Fee Related JP4644335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130519A JP4644335B2 (en) 2000-04-28 2000-04-28 Hydrogen supply device for fuel cell and hydrogen storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130519A JP4644335B2 (en) 2000-04-28 2000-04-28 Hydrogen supply device for fuel cell and hydrogen storage method

Publications (2)

Publication Number Publication Date
JP2001313051A true JP2001313051A (en) 2001-11-09
JP4644335B2 JP4644335B2 (en) 2011-03-02

Family

ID=18639604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130519A Expired - Fee Related JP4644335B2 (en) 2000-04-28 2000-04-28 Hydrogen supply device for fuel cell and hydrogen storage method

Country Status (1)

Country Link
JP (1) JP4644335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092478A1 (en) * 2016-11-18 2018-05-24 澤藤電機株式会社 Fuel battery system and fuel battery system operation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249359A (en) * 1988-05-17 1990-02-19 Fuji Electric Co Ltd Fuel cell power generating system
JPH0547400A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Fuel cell system
JPH0642699A (en) * 1992-07-24 1994-02-18 Iwatani Internatl Corp Hydrogen storage container
JPH07252577A (en) * 1994-03-10 1995-10-03 Nippon Steel Corp Hydrogen occluding material
JPH08109402A (en) * 1994-10-07 1996-04-30 Sanyo Electric Co Ltd Hydrogen occlusion body and its production
JPH11209101A (en) * 1998-01-27 1999-08-03 Agency Of Ind Science & Technol Fluidized bed reaction apparatus of hydrogen occlusion alloy
JP2000012062A (en) * 1998-06-24 2000-01-14 Imura Japan Kk Hydrogen gas supply device and hydrogen gas supply method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249359A (en) * 1988-05-17 1990-02-19 Fuji Electric Co Ltd Fuel cell power generating system
JPH0547400A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Fuel cell system
JPH0642699A (en) * 1992-07-24 1994-02-18 Iwatani Internatl Corp Hydrogen storage container
JPH07252577A (en) * 1994-03-10 1995-10-03 Nippon Steel Corp Hydrogen occluding material
JPH08109402A (en) * 1994-10-07 1996-04-30 Sanyo Electric Co Ltd Hydrogen occlusion body and its production
JPH11209101A (en) * 1998-01-27 1999-08-03 Agency Of Ind Science & Technol Fluidized bed reaction apparatus of hydrogen occlusion alloy
JP2000012062A (en) * 1998-06-24 2000-01-14 Imura Japan Kk Hydrogen gas supply device and hydrogen gas supply method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092478A1 (en) * 2016-11-18 2018-05-24 澤藤電機株式会社 Fuel battery system and fuel battery system operation method
JP2018081870A (en) * 2016-11-18 2018-05-24 澤藤電機株式会社 Fuel cell system and operation method thereof
CN109792062A (en) * 2016-11-18 2019-05-21 泽藤电机株式会社 Fuel cell system and fuel cell system operation method

Also Published As

Publication number Publication date
JP4644335B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US20200165126A1 (en) Storing And Transporting Energy
US20060118201A1 (en) Mobile hydrogen delivery system
KR20170089344A (en) Solid state hydrogen storage device and solid state hydrogen storage system
JP2004273164A (en) Fuel cell system
JP5186824B2 (en) Hydrogen generator
JP4644335B2 (en) Hydrogen supply device for fuel cell and hydrogen storage method
JP4663839B2 (en) Hydrogen recovery / storage container
JP2009091165A (en) Hydrogen supply system
JP4644334B2 (en) Hydrogen supply device for fuel cell
US20040096722A1 (en) Fuel cell hydrogen recovery system
JP2001289397A (en) Hydrogen storage alloy storing container
JP3789720B2 (en) High purity hydrogen powered fuel cell system
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
KR20150137070A (en) Methods and systems for making metal hydride slurries
JP2000327306A (en) High-purity hydrogen production apparatus and fuel cell system
EP1329416A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
JPH07192744A (en) Steam separating system of fuel cell
JP2004011003A (en) Hydrogen storage material and hydrogen storage vessel using the same
JP4644333B2 (en) Hydrogen supply apparatus and method for fuel cell
JPH06234502A (en) Energy storing method using hydrogen occluding alloy slurry
JP6015200B2 (en) Hydrogen storage and supply equipment
US20230045434A1 (en) Metal Hydride-Hydrogen Tank System With A Frost-Start Capability
AU2011235957B2 (en) Storing and transporting energy
JPH11339821A (en) Hybrid fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees