JP2001311681A - Method for preparing sample for transmission electron microscope observation and sampling apparatus - Google Patents

Method for preparing sample for transmission electron microscope observation and sampling apparatus

Info

Publication number
JP2001311681A
JP2001311681A JP2000130709A JP2000130709A JP2001311681A JP 2001311681 A JP2001311681 A JP 2001311681A JP 2000130709 A JP2000130709 A JP 2000130709A JP 2000130709 A JP2000130709 A JP 2000130709A JP 2001311681 A JP2001311681 A JP 2001311681A
Authority
JP
Japan
Prior art keywords
sample
probe
transmission electron
electron microscope
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000130709A
Other languages
Japanese (ja)
Inventor
Morihiro Okada
守弘 岡田
Masaaki Sugiyama
昌章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000130709A priority Critical patent/JP2001311681A/en
Publication of JP2001311681A publication Critical patent/JP2001311681A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing samples for transmission electron microscope observation and a sampling apparatus whereby extracted samples can be fixed in an arbitrary direction to a sample stage. SOLUTION: According to this method for preparing samples for transmission electron microscope observation which uses a focused ion beam processing apparatus, while the extracted sample obtained by separating a part of a sample through the exposure to focused ion beams is being observed, a probe directly holding the extracted sample is rotated by an arbitrary angle with its shaft as the axis of rotation, so that the extracted sample is fixed in an arbitrary direction to the sample stage. This sampling apparatus used in preparing samples for transmission electron microscope observation by a focused ion beam processing apparatus includes a probe which can rotate which its shaft being as an axis of rotation and a rotating means for rotating the probe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は集束イオンビーム加
工装置による透過電子顕微鏡観察用試料作製方法とその
ためのサンプリング装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample for observation by a transmission electron microscope using a focused ion beam processing apparatus and a sampling apparatus therefor.

【0002】[0002]

【従来の技術】微小領域試料を拡大視野のもとで摘出・
移動させる方法及び装置に関する技術は、特開平第5−
52721号公報、特開平第11−108810号公
報、特開平第11−108813号公報、特開平第11
−135051号公報などにで開示されている。
2. Description of the Related Art A small area sample is extracted under an enlarged visual field.
The technology relating to the moving method and apparatus is disclosed in
No. 52721, JP-A-11-108810, JP-A-11-10813, JP-A-11-10881
No. 1,350,051.

【0003】特開平第5−52721号公報は集束イオ
ンビーム(以下FIBと略す)装置内部の10μm以下
の厚みを有するプローブヘッドに微小試料を接続した
後、平行移動によって該試料を移植する方法を開示した
ものである。特開平第11−108810号公報は試料
欠陥部を検出する電子顕微鏡と、FIB加工装置とをゲ
ートバルブで繋いだ構成でかつ、FIB装置内で微小試
料を、バイモルフ圧電素子で微動するプローブを用いて
平行移動搬送することを特徴とする、解析装置を示した
ものである。
Japanese Patent Application Laid-Open No. 5-52721 discloses a method of connecting a small sample to a probe head having a thickness of 10 μm or less inside a focused ion beam (hereinafter abbreviated as FIB) device, and implanting the sample by parallel movement. It has been disclosed. Japanese Patent Application Laid-Open No. 11-108810 discloses a configuration in which an electron microscope for detecting a sample defect portion and a FIB processing device are connected by a gate valve, and a probe that finely moves a small sample in a FIB device by a bimorph piezoelectric element. 1 shows an analysis apparatus characterized in that the analysis apparatus performs parallel movement conveyance.

【0004】特開平第11−108813号公報は微小
試料摘出の際に、試料面に対して0度以上20度以下の
角度で、エッチングイオンビームを照射しかつ、レーザ
で膜厚をモニタしながら、微小試料の薄膜化を行うFI
Bによる試料作成装置に関するもので、やはり微小試料
の移送はプローブを用いた平行移動となっている。特開
平第11−135051号公報は積層型圧電素子または
バイモルフ型圧電素子を連結した多軸マニピュレーター
を用いて微小試料を平行移動させる構成の荷電粒子ビー
ム装置に関するものである。
[0004] Japanese Patent Application Laid-Open No. 11-10813 discloses that, when a small sample is extracted, an etching ion beam is irradiated to the sample surface at an angle of 0 ° or more and 20 ° or less and the film thickness is monitored by a laser. For thinning micro samples
B relates to the sample preparation apparatus, and the transfer of the minute sample is also a parallel movement using a probe. Japanese Patent Application Laid-Open No. 11-135051 relates to a charged particle beam apparatus having a configuration in which a minute sample is translated in parallel using a multi-axis manipulator to which a laminated piezoelectric element or a bimorph type piezoelectric element is connected.

【0005】これらの技術は半導体デバイスの欠陥解析
を目的とする開発で研究されたもので、精度が高くて位
置が明らかになっている集積回路の欠陥箇所を狙って、
試料を摘出し、加工・観察することができ、集束イオン
ビーム技術とマイクロマニピュレーション技術とを組み
合わせた装置として理解することができる。しかし以上
で述べた技術のFIB装置内のマニピュレーターにおい
ては、材料の結晶方位解析という観点では検討はなされ
ていない。
[0005] These techniques have been studied in development for the purpose of defect analysis of semiconductor devices, and are aimed at a defective portion of an integrated circuit whose position is known with high accuracy.
A sample can be extracted, processed and observed, and can be understood as an apparatus combining a focused ion beam technique and a micromanipulation technique. However, in the manipulator in the FIB apparatus of the technique described above, no study has been made from the viewpoint of analyzing the crystal orientation of the material.

【0006】[0006]

【発明が解決しようとする課題】鉄鋼材料や各種の固体
材料において、電子線後方散乱パターン解析装置(EB
SP)の技術が進歩した結果、容易に表層結晶粒の方位
決定が行えるようになっている。この技術を応用して、
結晶方位の判っている結晶粒に対して、ある特定の角度
からの断面を切り出せば、結晶方位に依存した現象の解
明に対して、所望の方位から電顕観察ができる断面組織
試料を作成することができる。
An electron beam backscattering pattern analyzer (EB) is used for steel materials and various solid materials.
As a result of the advance of the technique SP), the orientation of the surface crystal grains can be easily determined. Applying this technology,
By cutting out a cross section from a specific angle for a crystal grain whose crystal orientation is known, a cross-sectional structure sample that can be observed with an electron microscope from a desired orientation is created to elucidate the phenomenon depending on the crystal orientation. be able to.

【0007】しかしながら、現在の技術レベルにあるマ
イクロサンプリングプローブはプローブの中心軸と回転
軸とが一致していない。そのため、金属試料解析におい
てマイクロサンプリングで摘出した微小結晶を、特定の
結晶面方位に試料ホルダーへ固定させたい場合、試料ホ
ルダーの傾き角以上に、摘出結晶の向きを変えることは
できなかった。
[0007] However, the microsampling probe in the current technical level does not coincide with the center axis and the rotation axis of the probe. Therefore, when it is desired to fix a microcrystal extracted by micro-sampling to a specific crystal plane orientation in a sample holder in a metal sample analysis, the orientation of the extracted crystal cannot be changed beyond the inclination angle of the sample holder.

【0008】一方、結晶方位からの制約ではなく、表面
形状や析出形態において所望の角度からの断面組成を知
りたいというニーズがある。例えば、鉄鋼プロセスにお
いては、スケール制御に代表される高温酸化プロセスの
研究が行われている。ここでは鉄の酸化膜の中に、様々
な元素が溶け込んだり、また鉄の濃度が変化したりする
ため、酸化スケール膜中の存在元素の濃度分布を調べる
必要がある。
On the other hand, there is a need to know the cross-sectional composition from a desired angle in the surface shape and the precipitation form, not by the constraint from the crystal orientation. For example, in a steel process, a high-temperature oxidation process represented by scale control has been studied. Here, various elements dissolve into the oxide film of iron and the concentration of iron changes, so it is necessary to examine the concentration distribution of the elements present in the oxide scale film.

【0009】複雑な起伏を示すスケールの特定部位の電
子顕微鏡観察用試料を作成するには、FIB法を用いる
のが最適であるが、加工方向は上方からとするのが通常
である。ところが上方から酸化膜を加工すると、上方部
分に多くのGaイオンビームがあたることになり、熱の
発生や薄片化される部分の厚みの違い、また加工中の存
在元素の拡散など、様々な現象が起きることが予想さ
れ、スケールのように組成や構成相の未知な酸化膜に対
しては、正確なFIBによる試料薄片化が起きているか
どうか不明であり、解決法が望まれていた。試料を予め
横にして加工する方法も考えられたが、それでは表面性
状が観察できないことになり、本来の目標である「上か
ら見た複雑な形状の目的とする所を薄片化する」という
ことが達成できない。
In order to prepare a sample for observation with an electron microscope at a specific portion of a scale showing complicated undulations, it is optimal to use the FIB method, but the processing direction is usually from above. However, when processing the oxide film from above, many Ga ion beams hit the upper part, causing various phenomena such as heat generation, differences in the thickness of the part to be sliced, and diffusion of existing elements during processing. Is expected to occur, and it is not known whether accurate thinning of the sample by FIB occurs for an oxide film whose composition or constituent phase is unknown, such as a scale, and a solution has been desired. A method of processing the sample in advance was considered, but the surface properties could not be observed, and the original goal was to “thin the target part of a complex shape viewed from above”. Cannot be achieved.

【0010】[0010]

【課題を解決するための手段】発明者らは、特定の結晶
方位からの断面組織の切り出し、ならびに、従来通りに
上方からみて目的とする部位をサンプリングした後に、
改めて組織に影響を与えず薄片化する方法を鋭意検討し
た。即ち、結晶面方位や表層形状に併せて必要な方向を
選び出し、その方向からGaイオンビームを照射して薄
片化加工する方法を鋭意検討し、本発明に至り、その要
旨とするところは以下の通りである。
Means for Solving the Problems The inventors of the present invention cut out a cross-sectional structure from a specific crystal orientation, and sampled a target portion as viewed from above as in the conventional method.
We again studied the method of thinning without affecting the tissue. That is, the necessary direction is selected in accordance with the crystal plane orientation and the surface layer shape, and a method of performing thinning by irradiating a Ga ion beam from the direction is intensively studied, leading to the present invention, and the gist thereof is as follows. It is on the street.

【0011】(1) 集束イオンビーム加工装置による
透過電子顕微鏡観察用試料作製方法において、集束イオ
ンビームの照射により試料の一部を分離して得られる摘
出試料を観察しながら、該摘出試料を直接保持している
プローブを、前記プローブの軸を回転軸として任意の角
度で回転させることにより、前記摘出試料を任意の方向
に向けて試料台に固定することを特徴とする透過電子顕
微鏡観察用試料作製方法。
(1) In a method for preparing a sample for transmission electron microscope observation using a focused ion beam processing apparatus, the extracted sample is directly observed while observing an extracted sample obtained by separating a part of the sample by irradiation with a focused ion beam. A sample for transmission electron microscope observation, characterized in that the held probe is rotated at an arbitrary angle about the axis of the probe as a rotation axis, whereby the extracted sample is fixed to a sample table in an arbitrary direction. Production method.

【0012】(2) 試料が結晶試料であって、摘出試
料の特定の結晶方位を任意の方向に向けて試料台に固定
することを特徴とする前記(1)に記載の透過電子顕微
鏡観察用試料作製方法。 (3) 集束イオンビーム加工装置による透過電子顕微
鏡観察用試料作製に用いるサンプリング装置であって、
プローブの軸を回転軸とする回転が可能なプローブと、
前記プローブの軸の回転を行うための回転手段とを備え
ることを特徴とするサンプリング装置。
(2) The sample for a transmission electron microscope observation according to the above (1), wherein the sample is a crystal sample, and a specific crystal orientation of the extracted sample is fixed to a sample table in an arbitrary direction. Sample preparation method. (3) A sampling device used for preparing a sample for observation with a transmission electron microscope by a focused ion beam processing device,
A probe that can rotate around the axis of the probe as a rotation axis,
A sampling unit, comprising: a rotation unit configured to rotate a shaft of the probe.

【0013】(4) 前記回転手段が、前記プローブの
回転軸に前記回転手段の回転軸を接続した小型超音波モ
ータであることを特徴とする前記(3)に記載のサンプ
リング装置。
(4) The sampling device according to (3), wherein the rotating means is a small ultrasonic motor in which a rotating shaft of the rotating means is connected to a rotating shaft of the probe.

【0014】[0014]

【発明の実施の形態】以下に本発明について、詳細に説
明する。図1に示すのは、本発明のサンプリング装置の
全体構成の一例である。移送手段は移動速度が速くスト
ロークが大きい粗動部1と、高い移動分解能の微動部2
とで構成され、移送手段全体を試料ステージと独立して
設置して、サンプリング位置の大きな移動は試料ステー
ジ移動に分担させてある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. FIG. 1 shows an example of the entire configuration of the sampling device of the present invention. The transfer means includes a coarse moving section 1 having a high moving speed and a large stroke, and a fine moving section 2 having a high moving resolution.
The entire transfer means is installed independently of the sample stage, and the large movement of the sampling position is shared with the movement of the sample stage.

【0015】粗動部のXYZ方向の駆動はモーターやギ
ヤ、圧電素子などで構成して、数mm程度のストローク
で、数μmの移動分解能を有している。微動部はできる
だけコンパクトであることや、精密移動することが要求
されるため、バイモルフ圧電素子を用いてサブミクロン
の移動分解能を得ている。粗動部1は狭窄部3を支点と
して支柱4が3個のエンコーダX14、エンコーダY
(図示せず)及びエンコーダZ15によってXYZ軸方
向に移動できる。粗動部1の駆動系は試料室壁5の横ポ
ートを介して大気側にあり、真空はベローズ6によって
遮断されている。バイモルフ圧電素子7の先端にはモー
ター8に直径50μm程度の細く先鋭化したタングステ
ン製のプローブ9が連結され、粗動部1とは支柱4によ
って連結されている。バイモルフ圧電素子7に電圧を加
えることで、プローブ9の先端はだいたいZ方向に微動
する。このような移送には構成、サイズ、配置を充分に
考慮しなければならない。
The coarse moving section is driven in the XYZ directions by a motor, gears, piezoelectric elements, etc., and has a moving resolution of several μm with a stroke of about several mm. Since the fine movement section is required to be as compact as possible and to move precisely, a bimorph piezoelectric element is used to obtain a submicron movement resolution. Coarse movement section 1 has encoder 4 and encoder Y having three support columns 4 with stenosis section 3 as a fulcrum.
(Not shown) and the encoder Z15 can move in the XYZ axis directions. The drive system of the coarse movement unit 1 is on the atmosphere side via the lateral port of the sample chamber wall 5, and the vacuum is shut off by the bellows 6. The tip of the bimorph piezoelectric element 7 is connected to a motor 8 via a thin and sharpened tungsten probe 9 having a diameter of about 50 μm. By applying a voltage to the bimorph piezoelectric element 7, the tip of the probe 9 slightly moves in the Z direction. Careful consideration must be given to configuration, size, and arrangement for such transfers.

【0016】この移送手段は2種の回転機構を有し、図
1のように支柱4内にモーター10を内蔵させ、ジョイ
ント11とバイモルフ圧電素子7とを連結させてある。
この構造によりプローブ9は軸12を中心に回転する。
軸12を中心とする回転は、集束イオンビーム装置の試
料交換・ガス銃出し入れの際に、プローブが損傷を受け
ないように、収納させるために必要な回転である。
This transfer means has two types of rotation mechanisms. As shown in FIG. 1, a motor 10 is built in the support 4 and a joint 11 and the bimorph piezoelectric element 7 are connected.
With this structure, the probe 9 rotates about the axis 12.
The rotation about the axis 12 is necessary for accommodating the probe so that the probe is not damaged when the focused ion beam apparatus exchanges a sample or puts the gas gun in and out.

【0017】もう一つの回転はプローブ9を保持してい
るモータ8によるもので、回転軸13を中心に回転す
る。この回転により、試料台のチルト角に制限されるこ
と無く、摘出された微小結晶を自由に回転させて、任意
の面方位を意図する方向に向けて、試料ホルダーへ固定
することができる。このさい摘出微小結晶は回転軸13
を中心としての回転に制限されるが、三次元空間で任意
の方向を向けるためには、回転軸13とは平行でない軸
による回転が必要である。この回転軸13とは平行でな
い軸の回転は、回転可能なFIB試料台に固定されてい
る摘出試料の母材の回転によって得ることができ、もし
くは試料台の向きを回転させることでも得られる。
Another rotation is performed by the motor 8 holding the probe 9, and the rotation is performed around the rotation shaft 13. By this rotation, the extracted microcrystal can be freely rotated without being limited by the tilt angle of the sample stage, and can be fixed to the sample holder with an arbitrary plane orientation in the intended direction. The microcrystals thus obtained are rotated on a rotating shaft 13.
However, in order to turn in any direction in the three-dimensional space, rotation by an axis that is not parallel to the rotation axis 13 is required. The rotation of the axis that is not parallel to the rotation axis 13 can be obtained by rotating the base material of the extracted sample fixed to the rotatable FIB sample table, or can be obtained by rotating the direction of the sample table.

【0018】モータ8には、電磁モータでも分子モータ
でも使用できるが、真空度を劣化させることが少ない小
型超音波モータが最も望ましい。次に上記試料作成装置
を用いた本発明による試料作成方法の一例を図2を用い
ながら説明する。 (ア)大矩形穴加工工程 図2−1のように摘出するべき微小試料を取り囲むよう
に矩形溝をFIBで設ける。矩形溝の長辺の長さは3μ
m以上100μm以下である。このとき後に試料を支え
る支持部となる橋梁部を残しておく。次に試料を大きく
傾斜(本実施例では向こう側に )させ、試料基板面に
対して斜めに入射するFIBによって図2−1の矩形溝
の下の辺を掘る。これにより試料片が片持ち梁の状態で
保持される。 (イ)プローブ固定工程 次に図2−2のように試料ステージを水平にもどし摘出
すべき試料の橋梁部とは反対の端部にプローブ先端を接
触させ、接触部分をFIBにてW蒸着膜を形成し、試料
に固定させる。 (ウ)試料摘出工程 図2−3に示すようにFIBにて橋梁部を掘り下げ、微
小試料を試料基板から切断する。 (エ)摘出試料搬送工程 図2−4に示すように、プローブを試料基板面から垂直
上方向に移動させ、微小試料を摘出する。次に摘出試料
を電子顕微鏡観察用メッシュに設置するのであるが、実
際にはメッシュステージを移動させ、FIB観察視野内
にメッシュを移動させる。このとき不意の事故を避ける
ためにプローブは摘出試料をつけたまま試料基板面はる
か上方に待避させておく。 (オ)摘出試料移動工程 図2−5に示すように、表面形状を観察しながら必要な
面が上面になるようにFIB視野内で微小試料を回転さ
せ、メッシュを観察視野に入れた後、プローブを徐々に
下げメッシュに摘出試料を接触させる。 (カ)摘出試料固定およびプローブ切り離し 摘出試料のメッシュ試料台接触部分にFIBにてW蒸着
膜を形成し、摘出試料をメッシュに固定させる。次に摘
出試料に接続しているプローブ先端部をFIBで切断す
ると、図2−6のように摘出試料はメッシュ上に自立す
る。この状態で例えば加熱による組織の変化、表面反応
の様子を観察することもできるし、必要に応じて試料を
薄片化してもよい。
As the motor 8, an electromagnetic motor or a molecular motor can be used, but a small ultrasonic motor which hardly deteriorates the degree of vacuum is most preferable. Next, an example of a sample preparation method according to the present invention using the above-described sample preparation apparatus will be described with reference to FIG. (A) Large rectangular hole processing step A rectangular groove is provided by FIB so as to surround a small sample to be extracted as shown in FIG. The length of the long side of the rectangular groove is 3μ
m or more and 100 μm or less. At this time, a bridge portion serving as a support portion for supporting the sample is left behind. Next, the sample is greatly inclined (to the far side in this embodiment), and the lower side of the rectangular groove in FIG. 2-1 is dug by FIB obliquely incident on the sample substrate surface. As a result, the sample piece is held in a cantilever state. (A) Probe fixing step Next, as shown in Fig. 2-2, the sample stage is returned to a horizontal position, and the tip of the probe is brought into contact with the end of the sample to be extracted opposite to the bridge portion, and the contact portion is made of a W vapor-deposited film by FIB. Is formed and fixed to the sample. (C) Sample extraction step As shown in FIG. 2-3, the bridge portion is dug down by FIB, and a minute sample is cut from the sample substrate. (D) Extraction sample transporting step As shown in FIG. 2-4, the probe is moved vertically upward from the sample substrate surface to extract a minute sample. Next, the extracted sample is placed on a mesh for observation with an electron microscope. Actually, the mesh stage is moved to move the mesh within the field of view for FIB observation. At this time, in order to avoid an unexpected accident, the probe is evacuated far above the surface of the sample substrate with the sample removed. (E) Extracted sample moving step As shown in FIG. 2-5, after observing the surface shape, rotate the micro sample in the FIB field of view so that the required surface is the upper surface, and put the mesh in the observation field. The probe is gradually lowered to bring the extracted sample into contact with the mesh. (F) Fixation of the extracted sample and separation of the probe A W vapor-deposited film is formed by FIB on the mesh sample table contact portion of the extracted sample, and the extracted sample is fixed to the mesh. Next, when the tip of the probe connected to the extracted sample is cut by FIB, the extracted sample becomes independent on the mesh as shown in FIG. 2-6. In this state, for example, a change in a tissue due to heating and a state of a surface reaction can be observed, and the sample may be sliced as necessary.

【0019】上記図2での例は、摘出試料のいずれかの
切断面が上面になるようにメッシュに固定したが、例え
ば元の試料表面が面心立方格子の(111)面であり、
そこから摘出した微小試料を(100)面が上方を向く
ようにするために、プローブの先端で54.7度回転さ
せてメッシュに固定したい時、図3のようなメッシュを
用いると安定して摘出試料を固定できる。
In the example shown in FIG. 2, the cut sample is fixed to the mesh such that one of the cut surfaces is the upper surface. For example, the original sample surface is a (111) plane of a face-centered cubic lattice.
When it is desired that the micro sample extracted therefrom be rotated by 54.7 degrees at the tip of the probe so that the (100) plane faces upward, and fixed to the mesh, the mesh shown in FIG. 3 is used stably. The extracted sample can be fixed.

【0020】試料表面の結晶方位を測定する電子線回折
には電子線後方散乱パターン解析(EBSP)装置かも
しくは電子チャネリングパターン(ECP)装置を用い
る。
An electron beam backscattering pattern analysis (EBSP) device or an electron channeling pattern (ECP) device is used for electron beam diffraction for measuring the crystal orientation of the sample surface.

【0021】[0021]

【実施例】厚さ0.8mmの極低炭素鋼(IF鋼)の冷
延板から、2mm角の大きさの試料片を切り出し、FI
Bで試料表面を平坦化した。その結果平坦化部分に直径
およそ20μmの体心立方鉄(αFe)単結晶が、粒界
もあらわに稠密に並んでいるのが観察された。この部分
の結晶方位をEBSPで測定し、図4−1に示すように
表面に(111)面を持つ単結晶を一つ選び、EBSP
装置のSEM画像下で、WF6ガスを電子線で分解し、
この単結晶上にWをデポすることでマーキングを施し
た。次にこの試料片をFIB装置に移し、マーキングを
頼りに先の単結晶を視野内に納め、マイクロサンプリン
グで表面に亜鉛粉を載せた後、FIB装置内の加熱ステ
ージ上で、溶融亜鉛めっき反応を行わせた(図4−
2)。
EXAMPLE A 2 mm square sample was cut out from a cold rolled sheet of 0.8 mm thick ultra low carbon steel (IF steel), and FI
The sample surface was flattened with B. As a result, it was observed that body-centered cubic iron (αFe) single crystals having a diameter of about 20 μm were clearly and densely arranged in the flattened portion, with the grain boundaries also apparently arranged. The crystal orientation of this part was measured by EBSP, and one single crystal having a (111) plane on the surface was selected as shown in FIG.
Under the SEM image of the device, WF6 gas is decomposed by electron beam,
Marking was performed by depositing W on this single crystal. Next, the sample piece is transferred to an FIB apparatus, and the single crystal is placed in the field of view by relying on marking. After zinc powder is placed on the surface by microsampling, a hot galvanizing reaction is performed on a heating stage in the FIB apparatus. (Fig. 4-
2).

【0022】この亜鉛めっき層の成長結晶組織は下地鉄
の結晶方位に大きく依存し、この試料の場合は下地鉄の
(001)面と平行なめっき断面構造を観察した。その
方法は、まず図2に示した方法で、下地の単結晶ごとこ
の亜鉛めっき部位を摘出した(図4−3)。次にめっき
が載っているこの鉄結晶の(111)面に対して、EB
SPでの測定結果をもとに35.3°だけ図4−4の矢
印の方向に回転させ、(001)面が垂直になるように
操作し、メッシュに固定した(図4−5)。そしてこの
試料を図4−6に示すようにFIB装置で(001)面
に平行に切って薄片化し、透過電子顕微鏡でめっき層を
観察した。
The growth crystal structure of the galvanized layer largely depends on the crystal orientation of the underlying iron. In this sample, a plating cross-sectional structure parallel to the (001) plane of the underlying iron was observed. According to the method, first, this galvanized portion was extracted together with the underlying single crystal by the method shown in FIG. 2 (FIG. 4-3). Next, EB is applied to the (111) plane of the iron crystal on which plating is placed.
Based on the measurement result at SP, the sample was rotated by 35.3 ° in the direction of the arrow in FIG. 4-4, and the (001) plane was operated so as to be vertical and fixed to the mesh (FIG. 4-5). Then, as shown in FIG. 4-6, this sample was cut in parallel with the (001) plane using a FIB apparatus to obtain a thin section, and the plating layer was observed with a transmission electron microscope.

【0023】[0023]

【発明の効果】本発明によれば、マイクロサンプリング
で摘出した微小結晶を、特定の結晶面方位を向けて試料
ホルダーへ固定することができ、結晶科学の研究、特に
集合組織上の表面反応と、表面を構成する個々の単結晶
との関係を具体的に明らかにする解析に寄与するところ
が大きい。
According to the present invention, microcrystals extracted by microsampling can be fixed to a sample holder with a specific crystal plane orientation oriented, and can be used for research in crystal science, especially for surface reactions on texture. This greatly contributes to an analysis that specifically clarifies the relationship with each single crystal constituting the surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のサンプリング装置の一例を示
す断面図である。
FIG. 1 is a sectional view showing an example of a sampling device according to the present invention.

【図2】図2は、本発明の試料作製方法の一例における
手順を示す模式図である。
FIG. 2 is a schematic view showing a procedure in an example of a sample manufacturing method of the present invention.

【図3】図3は、任意の角度回転させた摘出試料の作製
方法を示す模式図である。
FIG. 3 is a schematic view showing a method for producing an extracted sample rotated by an arbitrary angle.

【図4】図4は、本発明の試料作製方法の実施例におけ
る手順を示す模式図である。
FIG. 4 is a schematic view showing a procedure in an embodiment of the sample manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1…粗動部 2…微動部 3…狭窄部 4…支柱 5…試料室壁 6…ベローズ 7…バイモルフ圧電素子 8…モータ 9…プローブ 10…モータ 11…ジョイント 12、13…回転軸 14…エンコーダX 15…エンコーダZ 16…メッシュ DESCRIPTION OF SYMBOLS 1 ... Coarse movement part 2 ... Fine movement part 3 ... Stenosis part 4 ... Strut 5 ... Sample chamber wall 6 ... Bellows 7 ... Bimorph piezoelectric element 8 ... Motor 9 ... Probe 10 ... Motor 11 ... Joint 12, 13 ... Rotating shaft 14 ... Encoder X 15: Encoder Z 16: Mesh

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 37/20 G01N 1/28 G F H Fターム(参考) 2G001 AA03 BA07 BA11 BA15 CA03 GA06 GA13 JA07 KA09 LA02 NA10 NA13 NA17 RA02 RA04 RA06 RA20 5C001 AA01 AA05 BB07 CC01 CC08──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H01J 37/20 G01N 1/28 GF H F term (reference) 2G001 AA03 BA07 BA11 BA15 CA03 GA06 GA13 JA07 KA09 LA02 NA10 NA13 NA17 RA02 RA04 RA06 RA20 5C001 AA01 AA05 BB07 CC01 CC08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集束イオンビーム加工装置による透過電
子顕微鏡観察用試料作製方法において、 集束イオンビームの照射により試料の一部を分離して得
られる摘出試料を観察しながら、該摘出試料を直接保持
しているプローブを、前記プローブの軸を回転軸として
任意の角度で回転させることにより、前記摘出試料を任
意の方向に向けて試料台に固定することを特徴とする透
過電子顕微鏡観察用試料作製方法。
1. A method for preparing a sample for transmission electron microscope observation using a focused ion beam processing apparatus, wherein the isolated sample is directly held while observing an extracted sample obtained by separating a part of the sample by irradiation with a focused ion beam. The sample preparation for transmission electron microscopy observation, characterized in that the probe is rotated at an arbitrary angle about the axis of the probe as a rotation axis, so that the extracted sample is fixed to a sample table in an arbitrary direction. Method.
【請求項2】 試料が結晶試料であって、摘出試料の特
定の結晶方位を任意の方向に向けて試料台に固定するこ
とを特徴とする請求項1に記載の透過電子顕微鏡観察用
試料作製方法。
2. A sample for observation by a transmission electron microscope according to claim 1, wherein the sample is a crystal sample, and a specific crystal orientation of the extracted sample is fixed to a sample stage in an arbitrary direction. Method.
【請求項3】 集束イオンビーム加工装置による透過電
子顕微鏡観察用試料作製に用いるサンプリング装置であ
って、 プローブの軸を回転軸とする回転が可能なプローブと、
前記プローブの軸の回転を行うための回転手段とを備え
ることを特徴とするサンプリング装置。
3. A sampling device for use in preparing a sample for transmission electron microscope observation by a focused ion beam processing device, wherein the probe is rotatable about the probe axis as a rotation axis;
A sampling unit, comprising: a rotation unit configured to rotate a shaft of the probe.
【請求項4】 前記回転手段が、前記プローブの回転軸
に前記回転手段の回転軸を接続した小型超音波モータで
あることを特徴とする請求項3に記載のサンプリング装
置。
4. The sampling apparatus according to claim 3, wherein said rotating means is a small ultrasonic motor in which a rotating shaft of said rotating means is connected to a rotating shaft of said probe.
JP2000130709A 2000-04-28 2000-04-28 Method for preparing sample for transmission electron microscope observation and sampling apparatus Withdrawn JP2001311681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130709A JP2001311681A (en) 2000-04-28 2000-04-28 Method for preparing sample for transmission electron microscope observation and sampling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130709A JP2001311681A (en) 2000-04-28 2000-04-28 Method for preparing sample for transmission electron microscope observation and sampling apparatus

Publications (1)

Publication Number Publication Date
JP2001311681A true JP2001311681A (en) 2001-11-09

Family

ID=18639748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130709A Withdrawn JP2001311681A (en) 2000-04-28 2000-04-28 Method for preparing sample for transmission electron microscope observation and sampling apparatus

Country Status (1)

Country Link
JP (1) JP2001311681A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003682A (en) * 2003-06-13 2005-01-06 Fei Co Method and device for operating microscopic sample
JP2008026312A (en) * 2006-06-23 2008-02-07 Fei Co Plan-view sample preparation method
JP2009216498A (en) * 2008-03-10 2009-09-24 Sii Nanotechnology Inc Thin sample piece preparing method
EP2001038A3 (en) * 2007-06-06 2010-09-22 Carl Zeiss NTS GmbH Charged particle beam device and method applied in a charged particle beam device
JP2011187267A (en) * 2010-03-08 2011-09-22 Jeol Ltd Sample holder and multi-beam system
JP2014192037A (en) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp Charged particle beam apparatus, method for processing sample by using the apparatus, and computer program for processing sample by using the apparatus
CN106769826A (en) * 2017-01-18 2017-05-31 天津大学 It is a kind of for metallographic observation when adjusting sample angle device
CN109813586A (en) * 2019-02-27 2019-05-28 南京理工大学 A kind of axial rotating device
CN111796121A (en) * 2020-07-22 2020-10-20 广东省焊接技术研究所(广东省中乌研究院) Strong texture structure metal transmission electron microscopic characterization sample preparation method
CN113109376A (en) * 2021-06-15 2021-07-13 中国科学院地质与地球物理研究所 System and method for transferring sample of cryoelectron microscope and electronic equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619695B2 (en) * 2003-06-13 2011-01-26 エフ イー アイ カンパニ Method and apparatus for manipulating a microscopic sample
JP2005003682A (en) * 2003-06-13 2005-01-06 Fei Co Method and device for operating microscopic sample
JP2008026312A (en) * 2006-06-23 2008-02-07 Fei Co Plan-view sample preparation method
US8247785B2 (en) 2007-06-06 2012-08-21 Carl Zeiss Nts Gmbh Particle beam device and method for use in a particle beam device
EP2001038A3 (en) * 2007-06-06 2010-09-22 Carl Zeiss NTS GmbH Charged particle beam device and method applied in a charged particle beam device
JP2009216498A (en) * 2008-03-10 2009-09-24 Sii Nanotechnology Inc Thin sample piece preparing method
JP2011187267A (en) * 2010-03-08 2011-09-22 Jeol Ltd Sample holder and multi-beam system
JP2014192037A (en) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp Charged particle beam apparatus, method for processing sample by using the apparatus, and computer program for processing sample by using the apparatus
CN106769826A (en) * 2017-01-18 2017-05-31 天津大学 It is a kind of for metallographic observation when adjusting sample angle device
CN106769826B (en) * 2017-01-18 2023-12-15 天津大学 Device for adjusting angle of sample during metallographic observation
CN109813586A (en) * 2019-02-27 2019-05-28 南京理工大学 A kind of axial rotating device
CN111796121A (en) * 2020-07-22 2020-10-20 广东省焊接技术研究所(广东省中乌研究院) Strong texture structure metal transmission electron microscopic characterization sample preparation method
CN111796121B (en) * 2020-07-22 2023-06-02 广东省焊接技术研究所(广东省中乌研究院) Strong texture tissue metal transmission electron microscopic characterization sample preparation method
CN113109376A (en) * 2021-06-15 2021-07-13 中国科学院地质与地球物理研究所 System and method for transferring sample of cryoelectron microscope and electronic equipment
CN113109376B (en) * 2021-06-15 2021-09-24 中国科学院地质与地球物理研究所 System and method for transferring sample of cryoelectron microscope and electronic equipment

Similar Documents

Publication Publication Date Title
Mayer et al. TEM sample preparation and FIB-induced damage
KR101228476B1 (en) Method and apparatus for sample formation and microanalysis in a vacuum chamber
JP6418747B2 (en) Sample preparation stage
US6768110B2 (en) Ion beam milling system and method for electron microscopy specimen preparation
Giannuzzi et al. A review of focused ion beam milling techniques for TEM specimen preparation
JP2015204296A (en) High capacity tem grid
Sezen et al. Focused Ion Beams (FIB)—Novel methodologies and recent applications for multidisciplinary sciences
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
US20160189929A1 (en) Rapid tem sample preparation method with backside fib milling
JPH11258130A (en) Apparatus for producing sample and method for producing sample
JP2001311681A (en) Method for preparing sample for transmission electron microscope observation and sampling apparatus
US9488554B2 (en) Method and system for reducing curtaining in charged particle beam sample preparation
JP2005308400A (en) Sample machining method, sample machining device and sample observing method
JP4654018B2 (en) Focused ion beam processing apparatus, sample stage, and sample observation method
JP2003007241A (en) Common sample holder for scanning electron microscope and focused-ion beam device, and sample-preparation method for transmission electron microscope
CN113466268B (en) Combined sample and preparation method thereof
JP5489295B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
Lodge et al. The surface diffusion of silver under high resolution imaging conditions
Anderson et al. Practical Aspects of FIB Tem Specimen Preparation: With Emphasis On Semiconductor Applications
Raffa et al. Focused ion beam as a scanning probe: Methods and applications
Bonifacio et al. Cutting-edge sample preparation from FIB to Ar concentrated ion beam milling of advanced semiconductor devices
JP2008159294A (en) Specimen mount for auger spectral analysis
JP2007212202A (en) Sample evaluation device and method
JP2005203383A (en) Micro testpiece processing and observation method and device
JP2005203382A (en) Micro testpiece processing and observation method and device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703