JP2001303242A - Manufacturing method of sputtering target - Google Patents

Manufacturing method of sputtering target

Info

Publication number
JP2001303242A
JP2001303242A JP2000127511A JP2000127511A JP2001303242A JP 2001303242 A JP2001303242 A JP 2001303242A JP 2000127511 A JP2000127511 A JP 2000127511A JP 2000127511 A JP2000127511 A JP 2000127511A JP 2001303242 A JP2001303242 A JP 2001303242A
Authority
JP
Japan
Prior art keywords
sputtering target
phase
magnetic disk
heat treatment
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000127511A
Other languages
Japanese (ja)
Other versions
JP4750924B2 (en
Inventor
Kazuteru Kato
和照 加藤
Hiroshi Watanabe
渡辺  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000127511A priority Critical patent/JP4750924B2/en
Publication of JP2001303242A publication Critical patent/JP2001303242A/en
Application granted granted Critical
Publication of JP4750924B2 publication Critical patent/JP4750924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a sputtering target which can achieve the high quality of a magnetic disk or the like although there is so definite opinion how the performance of the sputtering target used in manufacturing the magnetic disk or the like for electronic appliances affects the quality of the magnetic disk. SOLUTION: This sputtering target has uniformly distributed Pt and Ta of high concentration in a main phase and excellent magnetic characteristics by heat-treating a Co-Cr-Pt-Ta alloy having the main phase and a precipitation phase at a high temperature, and implementing the warm working thereto to lead the main phase and the precipitation phase into a balanced state, or making close thereto. The heat treatment temperature is preferably 1,000-1,250 deg.C, and the warm working temperature is preferably 500-900 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた磁気特性を
有する磁気ディスク等を製造するためのスパッタリング
ターゲットの製造方法に関し、より詳細には主相と析出
相から成る合金を熱処理しかつ温間加工を行って両相の
組成を変化させ、特に両相の組成を互いに近づけ、両相
を実質的に平衡状態に維持するようにしたスパッタリン
グターゲットを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sputtering target for manufacturing a magnetic disk or the like having excellent magnetic properties, and more particularly to a method for heat-treating an alloy composed of a main phase and a precipitated phase and warming the alloy. The present invention relates to a method for producing a sputtering target in which the composition of both phases is changed by processing, and particularly, the compositions of the two phases are brought close to each other so as to maintain both phases substantially in an equilibrium state.

【0002】[0002]

【従来の技術】磁気ディスクへの高速処理及び大容量化
の要求は年を追うごとに厳しくなっており、場合によっ
ては四半期毎にモデルが変わる勢いである。今般の電子
機器製品の隆盛の一助として前記磁気ディスク等の高品
質化が挙げられる。該磁気ディスクを初めとするスパッ
タリングにより製造される製品の品質は、成膜条件、組
成、膜厚、膜構造、基板材料等により大きく影響される
ことが知られている。しかしながらスパッタリングで使
用するターゲット材料が磁気ディスクの磁気特性に影響
を及ぼすか否かに関しては殆ど知見がなく、どのような
スパッタリングターゲットが高品質の磁気ディスクの原
料と成り得るかに関しては定見が存在しない。
2. Description of the Related Art The demand for high-speed processing and large-capacity magnetic disks has become stricter each year, and in some cases, models change every quarter. As one of the prosperity of the electronic equipment products, the quality of the magnetic disk or the like is improved. It is known that the quality of products manufactured by sputtering such as the magnetic disk is greatly affected by film forming conditions, composition, film thickness, film structure, substrate material and the like. However, little is known about whether the target material used in sputtering affects the magnetic properties of the magnetic disk, and there is a consensus on what sputtering target can be a raw material for high-quality magnetic disks. do not do.

【0003】[0003]

【発明が解決しようとする課題】スパッタリングターゲ
ット用材料として汎用されている合金として、Co−C
r−Pt−Ta合金があり、中でも典型的な磁気ディス
クとして使用されるCo(72)−Cr(16)−Pt
(8)−Ta(4)合金の金属組織写真を図6に示す
(以下この熱処理を行っていない合金を現状品とい
う)。図6から、該合金の金属組織は、灰色のコバルト
を主成分とする主相と白色の白金及びタンタルが濃化し
た析出相の2相構造を採っていることが分かる。従来は
前記析出相を細かく分散させることが高品質ターゲット
材料に繋がると理解されていたが、実証されていなかっ
た。
As an alloy widely used as a material for a sputtering target, Co-C
There is an r-Pt-Ta alloy, among which Co (72) -Cr (16) -Pt used as a typical magnetic disk
FIG. 6 shows a photograph of the metal structure of the (8) -Ta (4) alloy (hereinafter, an alloy not subjected to this heat treatment is referred to as a current product). FIG. 6 shows that the metal structure of the alloy has a two-phase structure of a main phase mainly composed of gray cobalt and a precipitated phase in which white platinum and tantalum are concentrated. Conventionally, it has been understood that finely dispersing the precipitate phase leads to a high quality target material, but this has not been demonstrated.

【0004】2元状態図ではコバルト−クロム及びコバ
ルト−白金はいずれも固溶系で、コバルト−タンタルは
非固溶系である。組成比から見ると現状品はコバルト主
相とCo3 Taを基本構造とする2相組織となってお
り、コバルト主相中のタンタル濃度は3.0 原子%であ
る。本発明者等は、この現状品に対して処理又は加工を
行って、該現状品を用いて磁気ディスクを作製し、その
磁気特性に及ぼす影響について検討した。従って本発明
は、高品質の磁気ディスク等を製造できるスパッタリン
グターゲットの製造方法を提供することを目的とする。
In the binary phase diagram, both cobalt-chromium and cobalt-platinum are solid-solution systems, and cobalt-tantalum is a non-solid solution system. From the viewpoint of the composition ratio, the current product has a two-phase structure having a cobalt main phase and Co 3 Ta as basic structures, and the tantalum concentration in the cobalt main phase is 3.0 atomic%. The present inventors performed processing or processing on the current product, manufactured a magnetic disk using the current product, and examined the effect on the magnetic characteristics. Accordingly, an object of the present invention is to provide a method for manufacturing a sputtering target capable of manufacturing a high-quality magnetic disk or the like.

【0005】[0005]

【課題を解決するための手段】本発明は、主相と析出相
を有するCo−Cr−Pt−X(ここでXは、Ta、
B、Nb及びCuから成る群から選択される1種又は2
種以上である)合金を高温で熱処理し、かつ温間加工を
行って、主相と析出相とを互いに平衡状態にすることを
特徴とするスパッタリングターゲットの製造方法であ
る。
SUMMARY OF THE INVENTION The present invention provides a Co-Cr-Pt-X having a main phase and a precipitated phase, wherein X is Ta,
One or two selected from the group consisting of B, Nb and Cu
(More than one kind) is a heat treatment of an alloy at a high temperature, and a warm working, so that a main phase and a precipitated phase are equilibrated with each other.

【0006】以下本発明を詳細に説明する。本発明は、
主相と析出相から成る粗合金を比較的長時間熱処理し、
次いで温間加工することを特徴とする。前記熱処理に加
え温間加工を施すことで主相と析出相の白金、タンタル
及びXの濃度がより平衡状態に互いに近づいたスパッタ
リングターゲットを製造でき、これを用いることで高品
質の磁気ディスクを製造することができる。換言する
と、従来の認識のように析出相を主相中に細かく分散す
るのではなく、主相と析出相から成る合金の高温熱処理
及び温間加工により、析出相を極力減らして主相に近づ
けて平衡に近い状態に導き、更に温間加工により、より
平衡に近い状態又は完全な平衡状態に導くことにより、
高品質のスパッタリングターゲットが得られることが分
かった。又タンタルを含む場合も含まない場合も、熱処
理を行うことにより主相中の白金濃度が上昇して、これ
らの濃度上昇が保磁力の向上に大きく寄与する。
Hereinafter, the present invention will be described in detail. The present invention
Heat treatment of the crude alloy consisting of the main phase and the precipitated phase for a relatively long time,
Subsequently, warm working is characterized. By performing warm working in addition to the heat treatment, it is possible to produce a sputtering target in which the concentrations of platinum, tantalum and X in the main phase and the precipitated phase are closer to each other in a more equilibrium state, and by using this, a high quality magnetic disk is produced. can do. In other words, instead of finely dispersing the precipitated phase in the main phase as in the conventional recognition, the high-temperature heat treatment and warm working of the alloy consisting of the main phase and the precipitated phase reduce the precipitated phase as much as possible to bring it closer to the main phase. To a state close to equilibrium, and further to a state closer to equilibrium or complete equilibrium by warm working,
It has been found that a high quality sputtering target can be obtained. Also, regardless of whether or not tantalum is contained, the heat treatment increases the concentration of platinum in the main phase, and the increase in these concentrations greatly contributes to the improvement of the coercive force.

【0007】白金はスパッタリングターゲットの主相と
析出相の両者中に存在し、それぞれの相に存在する白金
が該ターゲットからスパッタリングされる際の方位分布
の差が形成される磁気ディスク等の合金膜中に濃度差を
生じさせると考えられる。スパッタリングの主相と析出
相の白金量をコントロールすることで、最適な膜組成及
び組成分布の合金膜を作製できると考えられる。又Xで
定義される金属であるタンタル、硼素、ニオブ及び銅に
関しても同様の効果が生ずると推測できる。本発明方法
により製造されるスパッタリングターゲットは、任意の
スパッタリング操作に使用できるが、最も有用な用途は
電子機器等に使用される磁気ディスクである。従ってこ
こではスパッタリングターゲットの性質を改良すること
により、磁気ディスクの静磁気特性が向上することにつ
いて説明する。
[0007] Platinum is present in both the main phase and the precipitated phase of a sputtering target, and an alloy film such as a magnetic disk or the like in which a difference in azimuth distribution when the platinum present in each phase is sputtered from the target is formed. It is believed that there is a density difference in it. It is considered that an alloy film having an optimum film composition and composition distribution can be produced by controlling the amounts of platinum in the main phase and the precipitation phase of sputtering. It can also be assumed that the same effect is produced with respect to the metals defined by X, such as tantalum, boron, niobium and copper. The sputtering target manufactured by the method of the present invention can be used for any sputtering operation, but the most useful application is a magnetic disk used for electronic equipment and the like. Therefore, here, a description will be given of how the magnetostatic properties of the magnetic disk are improved by improving the properties of the sputtering target.

【0008】良好な磁気特性を有する磁気ディスクと
は、第1に磁気特性の面内分布の不均一性が小さいこと
であり、第2により高い保磁力(Hc)と、限りなく1
に近い保磁力角型比(S*)を有することである。加熱
処理を行ったスパッタリングターゲットを使用して作製
される磁気ディスクの保磁力は加熱処理を行わないスパ
ッタリングターゲットを使用して作製される磁気ディス
クの保磁力より約200 Oe高く、又前者の保磁力角型比
は後者の保磁力角型比より約0.08だけ1に近づいてお
り、磁気ディスクの磁気特性の良否の指標となる保磁力
及び保磁力角型比のいずれもが、加熱処理を行ったスパ
ッタリングターゲットを使用することにより向上すると
いう顕著な効果が生ずる。
[0008] A magnetic disk having good magnetic characteristics means firstly that the non-uniformity of the in-plane distribution of the magnetic characteristics is small, and secondly that it has a higher coercive force (Hc) and 1
Has a coercive force squareness ratio (S *) close to The coercive force of a magnetic disk manufactured using a heat-treated sputtering target is about 200 Oe higher than the coercive force of a magnetic disk manufactured using a sputtering target not subjected to a heat treatment. The squareness ratio is closer to 1 by about 0.08 than the latter coercive force squareness ratio, and both the coercive force and the coercive force squareness ratio, which are indicators of the magnetic properties of the magnetic disk, have been subjected to the heat treatment. Use of a sputtering target has a remarkable effect of improvement.

【0009】この加熱処理に加えて温間加工を行って得
られる磁気ディスクの保磁力は加熱処理のみのスパッタ
リングターゲットを使用して作製される磁気ディスクの
保磁力より50〜200 Oe程度高く、又前者の保磁力角型
比は後者の保磁力角型比より若干高いか同等であり、磁
気ディスクの磁気特性の良否の指標となる保磁力及び保
磁力角型比のいずれもが、加熱処理後に温間加工を行っ
て得られるスパッタリングターゲットを使用することに
より向上するという顕著な効果が生ずる。又加熱処理及
び温間加工を行ったスパッタリングターゲットを使用し
て作製される磁気ディスクはその面内保磁力と面内白金
濃度の分布が更に均一になり、これが磁気特性の向上の
一助になると推測できる。このことは白金以外のタンタ
ル、硼素、ニオブ及び銅に関しても同様であると推測で
きる。
The coercive force of a magnetic disk obtained by performing warm working in addition to this heat treatment is about 50 to 200 Oe higher than the coercive force of a magnetic disk manufactured using a sputtering target having only heat treatment. The former coercive force squareness ratio is slightly higher or equal to the latter coercive force squareness ratio, and both the coercive force and the coercive force squareness ratio, which are indicators of the magnetic properties of the magnetic disk, after heat treatment. Use of a sputtering target obtained by performing warm working has a remarkable effect of improvement. In addition, magnetic disks manufactured using a sputtering target that has been subjected to heat treatment and warm working have a more uniform in-plane coercive force and in-plane platinum concentration distribution, which is presumed to help improve magnetic characteristics. it can. This is presumed to be the same for tantalum, boron, niobium and copper other than platinum.

【0010】本発明方法で使用されるスパッタリングタ
ーゲットは、Co−Cr−Pt−Xで示されるコバルト
合金から成り、Xは、Ta、B、Nb及びCuから選択
される1種又は2種以上で、Taであることが最も望ま
しく、この他に、Ta+BやNb又はCuが好ましく使
用でき、具体的には、例えばCo−Cr−Pt−Ta、
Co−Cr−Pt−B、Co−Cr−Pt−Nb、Co
−Cr−Pt−Cu及びCo−Cr−Pt−Ta−Bな
どがある。加熱処理の条件は前述した磁気特性の発現を
効果的に行える範囲で選択すれば良いが、通常は1000〜
1250℃、好ましくは1100〜1250℃、より好ましくは1200
〜1250℃で行う。熱処理時間は長いほど望ましく、好ま
しくは10時間以上、より好ましくは20時間以上である。
本発明の温間加工とは、加工対象であるスパッタリング
ターゲットの再結晶温度以下の温度で加熱することを意
味する。この温間加工は、平衡状態に達していない場合
の主相と析出相をより平衡状態に近づけて完全又は完全
に近い状態の平衡状態を得るための操作で、好ましい加
工温度は500 〜900 ℃、より好ましくは600 〜800 ℃、
更に好ましくは650 〜750 ℃である。
[0010] The sputtering target used in the method of the present invention comprises a cobalt alloy represented by Co-Cr-Pt-X, wherein X is one or more selected from Ta, B, Nb and Cu. , Ta, and most preferably, Ta + B, Nb, or Cu can be preferably used. Specifically, for example, Co—Cr—Pt—Ta,
Co-Cr-Pt-B, Co-Cr-Pt-Nb, Co
-Cr-Pt-Cu and Co-Cr-Pt-Ta-B. The conditions of the heat treatment may be selected within a range in which the above-described magnetic characteristics can be effectively exhibited, but usually the heat treatment is performed at 1000 to
1250C, preferably 1100-1250C, more preferably 1200
Perform at ~ 1250 ° C. The heat treatment time is desirably longer, and is preferably at least 10 hours, more preferably at least 20 hours.
The warm working in the present invention means heating at a temperature not higher than the recrystallization temperature of the sputtering target to be worked. This warm working is an operation for bringing the main phase and the precipitation phase closer to the equilibrium state when the equilibrium state has not been reached, to obtain a complete or almost complete equilibrium state, and the preferable working temperature is 500 to 900 ° C. , More preferably 600-800 ° C,
More preferably, it is 650-750 ° C.

【0011】[0011]

【発明の実施の形態】次に本発明方法によるスパッタリ
ングターゲットの製造に関する実施例を説明する。なお
以下の実施例におけるスパッタリングターゲットの評価
のうち、金属組織評価は粒径観察に光学顕微鏡を、組織
観察にSEMを用いた。組成測定はEPMAにより行っ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment relating to the production of a sputtering target according to the method of the present invention will be described. Note that among the evaluations of the sputtering targets in the following examples, the metallographic structure was evaluated by using an optical microscope for observing the particle size and using an SEM for observing the structure. The composition was measured by EPMA.

【0012】実施例1 既知の方法でCo(72)−Cr(16)−Pt(8)−T
a(4)の組成を有するコバルト合金から成る直径約20
cmのスパッタリングターゲットを作製した。このスパッ
タリングターゲットを1250℃で36時間熱処理し、熱処理
後のスパッタリングターゲットのSEM組成像(倍率10
00倍)を図7に示した。図7の灰色の部分が主相、白く
見える部分が析出相であり、図7と図6を比較すると分
かるように熱処理により析出相の量が減少して平衡状態
に近づいていることが分かる。又加熱処理前(現状品)
と加熱処理後(長時間熱処理品)のスパッタリングター
ゲットの主相及び析出相の組成を表1に纏めた。
Example 1 Co (72) -Cr (16) -Pt (8) -T
a diameter of about 20 made of a cobalt alloy having the composition of (4)
cm sputtering target was produced. This sputtering target was heat-treated at 1250 ° C. for 36 hours, and the SEM composition image (magnification: 10
(00 times) is shown in FIG. The gray part in FIG. 7 is the main phase, and the part that looks white is the precipitated phase. As can be seen from a comparison between FIG. 7 and FIG. 6, it can be seen that the amount of the precipitated phase is reduced by the heat treatment and the state is approaching the equilibrium state. Before heat treatment (current product)
Table 1 summarizes the compositions of the main phase and the precipitated phase of the sputtering target after the heat treatment (heat-treated product for a long time).

【0013】表1の現状品と長時間熱処理品の白金及び
タンタルの含有量を比較すると、熱処理により析出相中
の白金及びタンタルが大きく減少して(白金は20.7原子
%から12.6原子%に減少し、タンタルは19.3原子%から
7.4 原子%に減少した)、主相中の白金及びタンタルが
増加して(白金は7.7 原子%から8.2 原子%に増加し、
タンタルは3.0 原子%から3.3 原子%に増加した)いる
ことが分かる。これは熱処理により主相と析出相の白金
及びタンタル含有量の差異が小さくなって、平衡状態に
近づいていることを意味している。
A comparison of the contents of platinum and tantalum between the current product and the long-time heat-treated product in Table 1 shows that the heat treatment significantly reduced the platinum and tantalum in the precipitated phase (platinum decreased from 20.7 atomic% to 12.6 atomic%). And tantalum from 19.3 atomic percent
Platinum and tantalum in the main phase increased (platinum increased from 7.7 at.% To 8.2 at.%)
Tantalum has increased from 3.0 at.% To 3.3 at.%). This means that the difference between the contents of platinum and tantalum in the main phase and the precipitated phase is reduced by the heat treatment, and the equilibrium state is approached.

【0014】次いで長時間熱処理品を約700 ℃で温間加
工を施した。この温間加工後のスパッタリングターゲッ
トのSEM組成像(倍率1000倍)を図1に示した。図1
から温間加工により得られたスパッタリングターゲット
は主相中に層状の白色の析出物が存在していることが分
かる。又表1中に前述した現状品と長時間熱処理品のス
パッタリングターゲットの主相及び析出相の組成に加え
て長時間加熱+温間加工品(以下温間加工品という)の
主相及び析出相の組成を示した。表1中の長時間熱処理
品と温間加工品の白金及びタンタルの含有量を比較する
と、温間加工により析出相中の白金及びタンタルが更に
減少し(白金は12.6原子%から9.4 原子%に減少し、タ
ンタルは7.4 原子%から4.8 原子%に減少した)、主相
中の白金及びタンタルが更に増加して(白金は8.2 原子
%から8.5 原子%に増加し、タンタルは3.3 原子%から
3.3 原子%に増加した)いることが分かる。これは熱処
理に加えて温間加工を行うことにより主相と析出相の白
金及びタンタル含有量の差異が更に小さくなって、両相
の組成が更に互いに近づいたことを意味している。
Next, the long-time heat-treated product was subjected to warm working at about 700 ° C. FIG. 1 shows an SEM composition image (1000 times magnification) of the sputtering target after this warm working. FIG.
From the results, it can be seen that the sputtering target obtained by warm working has a layered white precipitate in the main phase. Also, in Table 1, in addition to the composition of the main phase and the precipitated phase of the sputtering target of the current product and the long-time heat-treated product described above, the main phase and the precipitated phase of the long-time heating + warm-worked product (hereinafter referred to as warm-processed product) Is shown. Comparing the contents of platinum and tantalum in the long-time heat-treated product and the warm-worked product in Table 1, platinum and tantalum in the precipitated phase were further reduced by warm working (platinum was reduced from 12.6 atomic% to 9.4 atomic%). Pt and tantalum in the main phase further increased (platinum increased from 8.2 at% to 8.5 at%, tantalum decreased from 3.3 at% to 3.3 at%).
3.3 atomic%). This means that the difference between the contents of platinum and tantalum in the main phase and the precipitated phase was further reduced by performing the warm working in addition to the heat treatment, and the compositions of the two phases were closer to each other.

【0015】[0015]

【表1】 [Table 1]

【0016】次にこの温間加工品、長時間熱処理品及び
現状品のスパッタリングターゲットを使用して、それぞ
れ4個ずつの直径65mmのMKP製結晶化ガラス基板にコ
バルト合金をスパッタリングして磁気ディスクとした。
得られた磁気ディスクのコバルト合金層の厚さは、それ
ぞれ105 Å、130 Å、175 Å及び230 Å(温間加工
品)、120 Å、145 Å、200 Å及び230 Å(長時間熱処
理品)及び105 Å、125 Å、170 Å及び225 Å(現状
品)であった。それぞれの磁気ディスクから切出した合
金膜のそれぞれの磁気ディスクの中心から半径20mmの位
置における膜厚と保磁力(Hc)の関係をVSMを使用
して測定し、図2に示す関係(保磁力の膜厚依存性)が
得られた。
Next, using the warm-processed product, the long-time heat-treated product and the current product sputtering target, a cobalt alloy is sputtered on each of four crystallized glass substrates made of MKP having a diameter of 65 mm each having a diameter of 65 mm. did.
The thickness of the cobalt alloy layer of the obtained magnetic disk is 105 mm, 130 mm, 175 mm and 230 mm (warm-processed), 120 mm, 145 mm, 200 mm and 230 mm (long-time heat-treated), respectively. And 105Å, 125Å, 170Å and 225Å (as is). The relationship between the film thickness and the coercive force (Hc) of the alloy film cut from each magnetic disk at a position with a radius of 20 mm from the center of each magnetic disk was measured using VSM, and the relationship shown in FIG. (Dependence on film thickness).

【0017】図2から測定範囲内の膜厚では、温間加工
品の方が長時間熱処理品より優れた保磁力を示したこと
が分かる。又同一の磁気ディスクの中心から半径20mmの
位置における膜厚と保磁力角型比(S*)の関係を測定
し、図3に示す関係(保磁力角型比の膜厚依存性)が得
られた。図3から測定範囲内の膜厚では、温間加工品の
方が長時間熱処理品より僅かに1に近いか同等の保磁力
角型比を有していたことが分かる。
From FIG. 2, it can be seen that, at a film thickness within the measurement range, the warm-worked product exhibited better coercive force than the long-time heat-treated product. The relationship between the film thickness and the coercive force squareness ratio (S *) at a radius of 20 mm from the center of the same magnetic disk was measured, and the relationship shown in FIG. 3 (the film thickness dependence of the coercive force squareness ratio) was obtained. Was done. From FIG. 3, it can be seen that, for the film thickness within the measurement range, the warm-worked product had a coercive force squareness slightly closer to 1 or equivalent to the long-time heat-treated product.

【0018】次に両磁気ディスクの保磁力の分布を測定
した。長時間熱処理及び温間加工を行ったスパッタリン
グターゲット、長時間熱処理を行ったスパッタリングタ
ーゲット及び処理を行っていないスパッタリングターゲ
ットから作製した磁気ディスクの基板上のコバルト合金
の基板中心から14mm、21mm及び28mmの地点での保磁力を
測定した結果を図4に示す。図4から現状品では14mmと
28mmの地点間では200 Oe程度の保磁力の差異があり、
長時間熱処理品ではその差異が80Oeまで減少し、温間
加工品ではその差異が50Oeまで減少していることが観
察され、温間加工により磁気特性の面内分布がより均一
になっていることが分かる。次いで同じく前記3種の磁
気ディスクのコバルト合金中の白金濃度の分布を測定し
た。両磁気ディスク上のコバルト合金の基板中心から10
mm、20mm、30mm及び40mmの地点での白金濃度を測定した
結果を図5に示す。
Next, the distribution of coercive force of both magnetic disks was measured. 14 mm, 21 mm and 28 mm from the center of the cobalt alloy substrate on the magnetic disk substrate made from the sputtering target subjected to long-time heat treatment and warm working, the sputtering target subjected to long-time heat treatment and the sputtering target not subjected to the treatment FIG. 4 shows the result of measuring the coercive force at the point. From Figure 4, the current product is 14mm
There is a difference in coercive force of about 200 Oe between the 28 mm points,
It is observed that the difference is reduced to 80 Oe in the long-time heat-treated product and the difference is reduced to 50 Oe in the warm-worked product, and that the in-plane distribution of the magnetic properties is more uniform by the warm working. I understand. Next, the distribution of the platinum concentration in the cobalt alloy of the three types of magnetic disks was measured. 10 minutes from the center of the cobalt alloy substrate on both magnetic disks
FIG. 5 shows the results of measuring the platinum concentration at the points of mm, 20 mm, 30 mm and 40 mm.

【0019】図5から現状品では特に基板中心に近い10
mmの地点での白金濃度が約8.5 原子%と高く、一方基板
中心から遠い40mmの地点での白金濃度は約7.6 原子%と
低く、その差は約0.9 原子%である。又長時間熱処理品
では基板中心に近い10mmの地点での白金濃度が約8.3 原
子%で基板中心から遠い40mmの地点での白金濃度が約7.
7 原子%で、その差は約0.6 原子%で、現状品の白金濃
度差より約0.3 原子%低くなっている。これに対し、温
間加工品では基板中心に近い10mmの地点での白金濃度が
約8.2 原子%で基板中心から遠い40mmの地点での白金濃
度が約7.8 原子%で、その差は約0.4 原子%で、長時間
熱処理品の白金濃度差より約0.2 原子%低くなってお
り、温間加工品の白金濃度の面内分布が更に均一になっ
ていることが分かる。又基板中心から20mm及びそれより
遠い地点での白金濃度が約0.1 〜0.2 原子%だけ温間加
工品の方が高くなっており、白金濃度と保磁力がほぼ比
例するという従来の知見が確認できた。
As shown in FIG. 5, in the current product, 10 is particularly close to the substrate center.
The platinum concentration at the point of mm is as high as about 8.5 at%, while the platinum concentration at the point 40 mm far from the center of the substrate is as low as about 7.6 at%, the difference being about 0.9 at%. For long-time heat treated products, the platinum concentration at a point 10 mm near the substrate center is about 8.3 atomic%, and the platinum concentration at a point 40 mm far from the center of the substrate is about 7.
At 7 atomic%, the difference is about 0.6 atomic%, which is about 0.3 atomic% lower than the current platinum concentration difference. In contrast, the warm-processed product has a platinum concentration of about 8.2 atomic percent at a point 10 mm near the center of the substrate and a platinum concentration of about 7.8 atomic percent at a point 40 mm far from the center of the substrate, with a difference of about 0.4 atomic percent. %, Which is about 0.2 atomic% lower than the platinum concentration difference of the long-time heat-treated product, indicating that the in-plane distribution of the platinum concentration of the warm-worked product is more uniform. Also, the platinum concentration at 20 mm from the center of the substrate and farther away is higher by about 0.1 to 0.2 atomic% in the warm-worked product, confirming the conventional knowledge that the platinum concentration is almost proportional to the coercive force. Was.

【0020】[0020]

【発明の効果】本発明方法は、主相と析出相を有するC
o−Cr−Pt−X(ここでXは、Ta、B、Nb及び
Cuから成る群から選択される)合金を高温で熱処理
し、かつ温間加工を行って、主相と析出相の組成を変化
させることを特徴とするスパッタリングターゲットの製
造方法(請求項1)である。前記コバルト合金の熱処理
を行うと、析出相中の白金やXの濃度が減少して主相中
の白金やXの濃度に近付き、該コバルト合金中の主相と
析出相が平衡状態に近くなる。
According to the method of the present invention, a C phase having a main phase and a precipitated phase is obtained.
The alloy of o-Cr-Pt-X (where X is selected from the group consisting of Ta, B, Nb and Cu) is heat treated at a high temperature and subjected to warm working to obtain a composition of a main phase and a precipitated phase. The method for producing a sputtering target according to claim 1, wherein When the heat treatment of the cobalt alloy is performed, the concentration of platinum or X in the precipitated phase decreases and approaches the concentration of platinum or X in the main phase, and the main phase and the precipitated phase in the cobalt alloy become closer to the equilibrium state. .

【0021】そしてこの熱処理に加えて温間加工を行う
と、熱処理により得られた効果が更に明確に現れ、主相
中の白金やX(特にタンタル)の濃度増加を実現して完
全な平衡状態又はそれに近い状態に達する。このような
平衡状態又はそれに近い状態に達したスパッタリングタ
ーゲットは高品質(保磁力や保磁力角型比)を有し、該
スパッタリングターゲットを使用して作製される磁気デ
ィスク等も高い性能を有することになる。又この熱処理
及び温間加工はそれぞれ1000〜1250℃及び500 〜900 ℃
の温度で行うことが望ましく(請求項2)、これにより
ほぼ理想的なスパッタリングターゲットが得られる。
When warm working is performed in addition to this heat treatment, the effect obtained by the heat treatment appears more clearly, and the concentration of platinum and X (particularly, tantalum) in the main phase is increased to achieve a complete equilibrium state. Or a state close to it. A sputtering target that has reached such an equilibrium state or a state close thereto has high quality (coercive force and coercive force squareness ratio), and a magnetic disk manufactured using the sputtering target also has high performance. become. Also, this heat treatment and warm working are 1000 ~ 1250 ℃ and 500 ~ 900 ℃ respectively
(Claim 2), whereby an almost ideal sputtering target can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における長時間熱処理及び温間加工後
のコバルト合金の表面構造を示す1000倍の走査電子顕微
鏡写真。
FIG. 1 is a scanning electron micrograph (× 1000) showing the surface structure of a cobalt alloy after prolonged heat treatment and warm working in Example 1.

【図2】実施例1における長時間熱処理していないコバ
ルト合金、長時間熱処理を行ったコバルト合金及び長時
間熱処理及び温間加工を行ったコバルト合金の3種類の
コバルト合金ターゲットを用いて作製した磁気ディスク
のコバルト合金層の膜厚と保磁力の関係を示すグラフ。
FIG. 2 is manufactured using three types of cobalt alloy targets in Example 1, that is, a cobalt alloy that has not been subjected to long-time heat treatment, a cobalt alloy that has undergone long-time heat treatment, and a cobalt alloy that has been subjected to long-time heat treatment and warm working. 4 is a graph showing the relationship between the thickness of the cobalt alloy layer of the magnetic disk and the coercive force.

【図3】実施例1における前記3種類のコバルト合金タ
ーゲットを用いて作製した磁気ディスクのコバルト合金
層の膜厚と保磁力角型比の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the thickness of a cobalt alloy layer and the coercivity squareness ratio of a magnetic disk manufactured using the three types of cobalt alloy targets in Example 1.

【図4】実施例1における3種類のコバルト合金ターゲ
ットを用いて作製した磁気ディスクのコバルト合金層の
基板中心からの距離と保磁力の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the distance from the center of the substrate and the coercive force of the cobalt alloy layer of a magnetic disk manufactured using three types of cobalt alloy targets in Example 1.

【図5】実施例1における3種類のコバルト合金ターゲ
ットを用いて作製した磁気ディスクのコバルト合金層の
基板中心からの距離と白金濃度の関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a distance from a substrate center of a cobalt alloy layer of a magnetic disk manufactured using three types of cobalt alloy targets in Example 1 and a platinum concentration.

【図6】従来の熱処理を行っていないコバルト合金スパ
ッタリングターゲットの表面構造を示す1000倍の走査電
子顕微鏡写真。
FIG. 6 is a scanning electron micrograph (× 1000) showing the surface structure of a conventional cobalt alloy sputtering target without heat treatment.

【図7】実施例1において長時間熱処理のみを行ったコ
バルト合金スパッタリングターゲットの表面構造を示す
1000倍の走査電子顕微鏡写真。
FIG. 7 shows the surface structure of a cobalt alloy sputtering target subjected to only a long-time heat treatment in Example 1.
Scanning electron micrograph at 1000x.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691B 694 694B 1/10 1/10 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 691 C22F 1/00 691B 694 694B 1/10 1/10 J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相と析出相を有するCo−Cr−Pt
−X(ここでXは、Ta、B、Nb及びCuから成る群
から選択される1種又は2種以上である)合金を高温で
熱処理し、かつ温間加工を行って、主相と析出相とを互
いに平衡状態にすることを特徴とするスパッタリングタ
ーゲットの製造方法。
1. Co-Cr-Pt having a main phase and a precipitated phase
-X (where X is one or more selected from the group consisting of Ta, B, Nb and Cu) alloys at a high temperature and subjected to warm working to precipitate the main phase and A method for producing a sputtering target, wherein phases are equilibrated with each other.
【請求項2】 高温熱処理を、1000〜1250℃の温度で行
い、温間加工を500〜900 ℃の温度で行うようにした請
求項1に記載のスパッタリングターゲットの製造方法。
2. The method according to claim 1, wherein the high-temperature heat treatment is performed at a temperature of 1000 to 1250 ° C., and the hot working is performed at a temperature of 500 to 900 ° C.
JP2000127511A 2000-04-27 2000-04-27 Manufacturing method of sputtering target Expired - Fee Related JP4750924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127511A JP4750924B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127511A JP4750924B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Publications (2)

Publication Number Publication Date
JP2001303242A true JP2001303242A (en) 2001-10-31
JP4750924B2 JP4750924B2 (en) 2011-08-17

Family

ID=18637097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127511A Expired - Fee Related JP4750924B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Country Status (1)

Country Link
JP (1) JP4750924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100549199C (en) * 2007-12-26 2009-10-14 安泰科技股份有限公司 A kind of manufacture method of magnetron sputtering Co-Cr-Ta alloy target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218891A1 (en) 2014-09-19 2016-03-24 Jost-Werke Gmbh Locking device for containers
CN112046642A (en) 2020-09-27 2020-12-08 长沙行深智能科技有限公司 Unmanned vehicle with separable functional modules

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227775A (en) * 1987-03-16 1988-09-22 Kobe Steel Ltd Ferromagnetic substance target for magnetron sputtering
JPH02138449A (en) * 1989-10-07 1990-05-28 Res Inst Electric Magnetic Alloys Manufacture of wear resistant high permeability alloy
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JPH06104120A (en) * 1992-08-03 1994-04-15 Hitachi Metals Ltd Sputtering target for magnetic recording medium and its production
JPH07118818A (en) * 1993-10-25 1995-05-09 Kobe Steel Ltd Method for making magnetic permeability of hard-to-work co alloy low
JPH0827570A (en) * 1993-12-20 1996-01-30 Leybold Materials Gmbh Target for magnetron-cathode sputtering device and its preparation
JPH108243A (en) * 1996-06-24 1998-01-13 Sanyo Special Steel Co Ltd Production of low permeability sputtering cobalt base target material for magnetic recording medium
JP2000104160A (en) * 1998-09-29 2000-04-11 Hitachi Metals Ltd Cobalt-chromium target for ground coat, and its manufacture
JP2001026860A (en) * 1999-07-14 2001-01-30 Hitachi Metals Ltd Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP2001073125A (en) * 1999-09-08 2001-03-21 Nikko Materials Co Ltd Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227775A (en) * 1987-03-16 1988-09-22 Kobe Steel Ltd Ferromagnetic substance target for magnetron sputtering
JPH02138449A (en) * 1989-10-07 1990-05-28 Res Inst Electric Magnetic Alloys Manufacture of wear resistant high permeability alloy
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JPH06104120A (en) * 1992-08-03 1994-04-15 Hitachi Metals Ltd Sputtering target for magnetic recording medium and its production
JPH07118818A (en) * 1993-10-25 1995-05-09 Kobe Steel Ltd Method for making magnetic permeability of hard-to-work co alloy low
JPH0827570A (en) * 1993-12-20 1996-01-30 Leybold Materials Gmbh Target for magnetron-cathode sputtering device and its preparation
JPH108243A (en) * 1996-06-24 1998-01-13 Sanyo Special Steel Co Ltd Production of low permeability sputtering cobalt base target material for magnetic recording medium
JP2000104160A (en) * 1998-09-29 2000-04-11 Hitachi Metals Ltd Cobalt-chromium target for ground coat, and its manufacture
JP2001026860A (en) * 1999-07-14 2001-01-30 Hitachi Metals Ltd Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP2001073125A (en) * 1999-09-08 2001-03-21 Nikko Materials Co Ltd Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100549199C (en) * 2007-12-26 2009-10-14 安泰科技股份有限公司 A kind of manufacture method of magnetron sputtering Co-Cr-Ta alloy target

Also Published As

Publication number Publication date
JP4750924B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP3962690B2 (en) Pt-Co sputtering target
JP4376487B2 (en) Manufacturing method of high purity nickel alloy target
JP7389156B2 (en) magnetic copper alloy
JPS5827941A (en) Manufacture of amorphous thin film
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JP2011208232A (en) Cu-Co-Si ALLOY MATERIAL
JP2001026860A (en) Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP7459873B2 (en) Soft magnetic alloys and magnetic components
EP1235946B1 (en) Method for producing cobalt-based alloy sputter target
JP4750924B2 (en) Manufacturing method of sputtering target
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
Kobayashi et al. Grain boundary character distribution and texture evolution during surface energy-driven grain growth in nanocrystalline gold thin films
JPS63241135A (en) High-hardness alloy and its production
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP2006348319A (en) TERNARY Ti-Ni-Cu SHAPE MEMORY ALLOY AND ITS MANUFACTURING METHOD
JP4750923B2 (en) Manufacturing method of sputtering target
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JP4582465B2 (en) High purity nickel or nickel alloy target and method for producing the same
JPS5964734A (en) Co-ni magnetic alloy
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JP2001098360A (en) Co-Cr-Pt-C TARGET, ITS MANUFACTURE, AND MAGNETIC RECORDING MEDIUM
TW202104605A (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JP4698779B2 (en) Magnetic sputtering target and manufacturing method thereof
JP4573381B2 (en) Manufacturing method of sputtering target
JP2003213405A (en) High purity nickel or nickel alloy target and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4750924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees