JP2001302340A - High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device - Google Patents

High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device

Info

Publication number
JP2001302340A
JP2001302340A JP2000122549A JP2000122549A JP2001302340A JP 2001302340 A JP2001302340 A JP 2001302340A JP 2000122549 A JP2000122549 A JP 2000122549A JP 2000122549 A JP2000122549 A JP 2000122549A JP 2001302340 A JP2001302340 A JP 2001302340A
Authority
JP
Japan
Prior art keywords
thermal expansion
weight
eucryptite
less
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000122549A
Other languages
Japanese (ja)
Inventor
Chiharu Wada
千春 和田
Makoto Sakamaki
誠 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000122549A priority Critical patent/JP2001302340A/en
Publication of JP2001302340A publication Critical patent/JP2001302340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high density low thermal expansion ceramic having low thermal expansion property, small porosity and few voids and the manufacturing method and to provide a member for semiconductor manufacturing device using the ceramic. SOLUTION: The high density low thermal expansion ceramic consists practically of eucryptite and silicon nitride and/or silicon carbide and is controlled to have <=0.5% porosity, <=10 μm maximum void diameter and <=1×10-6/ deg.C coefficient of thermal expansion at 10-40 deg.C. The ceramic constitutes the member for semiconductor manufacturing device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空装置構造体、
サセプタ、真空チャック、静電チャック、露光装置にお
けるステージやステージ位置測定用ミラー、あるいはこ
れらの支持部材、さらには半導体製造プロセスに用いら
れる各種治具などの半導体製造装置用部材に適した緻密
質低熱膨張セラミックスおよびその製造方法、ならびに
それを用いた半導体製造装置用部材に関する。
TECHNICAL FIELD The present invention relates to a vacuum device structure,
Dense low heat suitable for susceptors, vacuum chucks, electrostatic chucks, mirrors for stage and stage position measurement in exposure equipment, or support members for these, and other members for semiconductor manufacturing equipment such as various jigs used in semiconductor manufacturing processes The present invention relates to an expanded ceramic, a method for manufacturing the same, and a member for a semiconductor manufacturing apparatus using the same.

【0002】従来より、ユークリプタイト系焼結体は、
低熱膨張のセラミックスとして知られている。このユー
クリプタイト系焼結体は、一般には、ユークリプタイト
粉末、あるいはユークリプタイトを形成するLi2O、
Al23、SiO2粉末を配合して所定形状に成型後、
1000〜1400℃の温度で焼成することによって作
製される。
[0002] Conventionally, eucryptite-based sintered bodies have been
Known as low thermal expansion ceramics. This eucryptite-based sintered body is generally made of eucryptite powder or Li 2 O that forms eucryptite,
After mixing Al 2 O 3 and SiO 2 powder and molding into a predetermined shape,
It is produced by firing at a temperature of 1000 to 1400 ° C.

【0003】一方、LSIなどの半導体装置の製造工程
において、シリコンウエハに配線を形成する工程におい
て、ウエハを支持または保持するためのサセプタ、真空
チャック、静電チャックや絶縁リングとして、あるいは
その他の治具等として、これまでアルミナや窒化ケイ素
が比較的に安価で、化学的にも安定であるため広く用い
られている。また、露光装置のXYテーブル等としても
従来よりアルミナや窒化ケイ素などのセラミックスが用
いられている。
On the other hand, in a process of manufacturing a semiconductor device such as an LSI, in a process of forming wiring on a silicon wafer, a susceptor for supporting or holding the wafer, a vacuum chuck, an electrostatic chuck, an insulating ring, or other processes. As tools, alumina and silicon nitride have hitherto been widely used because they are relatively inexpensive and chemically stable. In addition, ceramics such as alumina and silicon nitride have been used as an XY table of an exposure apparatus.

【0004】近年、LSIなどにおける高集積化にとも
ない、回路の微細化が急速に進められ、その線幅もサブ
ミクロンオーダーのレベルまで高精密化しつつある。こ
のため、シリコンウエハに高精密回路を形成するための
露光装置に対して高い精度が要求され、例えば露光装置
のステージ用部材においては100nm(0.10μ
m)以下の位置決め精度が要求され、露光の位置合わせ
誤差が製品の品質向上や歩留まり向上に大きな影響を及
ぼしているのが現状である。
In recent years, with the increase in integration in LSIs and the like, the miniaturization of circuits has been rapidly advanced, and their line widths have been becoming highly precise to the order of submicrons. For this reason, a high precision is required for an exposure apparatus for forming a high precision circuit on a silicon wafer. For example, a stage member of an exposure apparatus requires 100 nm (0.10 μm).
m) The following positioning accuracy is required, and the alignment error of exposure has a great influence on the improvement of the quality of products and the improvement of the yield at present.

【0005】半導体製造装置用として一般に用いられて
きたアルミナ、窒化ケイ素などのセラミックスの室温付
近における熱膨張係数はそれぞれ5×10-6/℃、1.
5×10-6/℃程度であり、確かに金属よりは熱膨張係
数が小さいものの、それでも雰囲気温度が0.1℃変化
すると数100nm(0.1μm)の変形が発生するこ
とになる。半導体製造工程のうち露光等の精密な工程で
はこの変化が大きな問題となってきており、従来のセラ
ミックスでは精度が低く生産性の低下をもたらしてい
る。
The thermal expansion coefficients of ceramics such as alumina and silicon nitride generally used for semiconductor manufacturing equipment near room temperature are 5 × 10 -6 / ° C.
It is about 5 × 10 −6 / ° C., and although the coefficient of thermal expansion is certainly smaller than that of metal, deformation of several hundred nm (0.1 μm) still occurs when the ambient temperature changes by 0.1 ° C. This change has become a serious problem in precision processes such as exposure in the semiconductor manufacturing process, and the conventional ceramics have low accuracy and lower productivity.

【0006】これに対して、ユークリプタイト系焼結体
は、熱膨張係数が小さく、上記のような露光精度に対す
る問題点はある程度解決されると考えられる。
On the other hand, the eucryptite-based sintered body has a small coefficient of thermal expansion, and it is considered that the above-mentioned problem with respect to the exposure accuracy can be solved to some extent.

【0007】ところが、従来のユークリプタイト系焼結
体は焼成温度幅が狭いため、緻密化が難しく、緻密化し
ても液相生成によると思われるボイドの多い焼結体しか
得られない。したがって、露光装置のステージ位置測定
用ミラーや真空チャック等の表面コーティングが必要な
部材のように表面の平滑性が必要となる場合には適用が
困難である。例えば、露光位置測定用ミラーの場合に
は、ボイド等の凹凸の存在は測距用レーザーの乱反射の
原因となり、位置測定に致命的な問題となる。
However, since the conventional eucryptite-based sintered body has a narrow firing temperature range, it is difficult to densify it, and even if it is densified, only a sintered body having many voids, which is considered to be caused by liquid phase generation, can be obtained. Therefore, it is difficult to apply this method when the surface needs to be smooth, such as a mirror that requires surface coating, such as a stage position measuring mirror or a vacuum chuck of an exposure apparatus. For example, in the case of an exposure position measuring mirror, the presence of irregularities such as voids causes irregular reflection of the distance measuring laser, which is a fatal problem in position measurement.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、低熱膨張性で気孔率が小
さくボイドの少ない緻密質低熱膨張セラミックスおよび
その製造方法を提供することを目的とする。また、この
ような緻密質低熱膨張を用いた半導体製造装置用部材を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a dense low-thermal-expansion ceramic having a low thermal expansion property, a small porosity and a small number of voids, and a method for producing the same. And Another object of the present invention is to provide a member for a semiconductor manufacturing apparatus using such a dense and low thermal expansion.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究を重ねた結果、低熱膨張のユーク
リプタイトに窒化ケイ素および/または炭化ケイ素を複
合することにより優れた低熱膨張特性を維持しつつ気孔
率が小さくボイドの少ない焼結体が得られ、半導体製造
装置用部材として適したものとなることを見出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by combining silicon nitride and / or silicon carbide with eucryptite having low thermal expansion, excellent low heat resistance was obtained. The present inventors have found that a sintered body having a small porosity and a small number of voids can be obtained while maintaining the expansion characteristics, and the sintered body is suitable for a member for a semiconductor manufacturing apparatus. Thus, the present invention has been completed.

【0010】すなわち、本発明は、第1に、ユークリプ
タイトと窒化ケイ素および/または炭化ケイ素とから実
質的になり、気孔率が0.5%以下、最大ボイド径10
μm以下、10〜40℃における熱膨張係数が1×10
-6/℃以下であることを特徴とする緻密質低熱膨張セラ
ミックスを提供する。
That is, the present invention firstly comprises eucryptite and silicon nitride and / or silicon carbide, having a porosity of 0.5% or less and a maximum void diameter of 10%.
μm or less, the coefficient of thermal expansion at 10 to 40 ° C. is 1 × 10
A dense low-thermal-expansion ceramic characterized by having a temperature of -6 / ° C or lower.

【0011】本発明は、第2に、上記第1において、ユ
ークリプタイト25〜95重量%、窒化ケイ素および/
または炭化ケイ素5〜75重量%から実質的になること
を特徴とする緻密質低熱膨張セラミックスを提供する。
The present invention is, secondly, in the above-mentioned first, 25 to 95% by weight of eucryptite, silicon nitride and / or
Alternatively, there is provided a dense low-thermal-expansion ceramic substantially consisting of 5 to 75% by weight of silicon carbide.

【0012】本発明は、第3に、ユークリプタイト25
〜95重量%、窒化ケイ素および/または炭化ケイ素5
〜75重量%から実質的になる原料粉末を所定形状に成
形後、相対密度90%以上に焼結し、さらに1000〜
1550℃の温度の加圧雰囲気で熱処理することを特徴
とする緻密質低熱膨張セラミックスの製造方法を提供す
る。
[0013] Third, the present invention relates to eucryptite 25.
~ 95% by weight, silicon nitride and / or silicon carbide 5
After shaping a raw material powder substantially consisting of 7575% by weight into a predetermined shape, sintering to a relative density of 90% or more,
Provided is a method for producing a dense low-thermal-expansion ceramic, which is characterized by performing heat treatment in a pressurized atmosphere at a temperature of 1550 ° C.

【0013】本発明は、第4に、ユークリプタイトと窒
化ケイ素および/または炭化ケイ素とから実質的にな
り、気孔率が0.5%以下、最大ボイド径10μm以
下、10〜40℃における熱膨張係数が1×10-6/℃
以下の緻密質低膨張セラミックスで構成されたことを特
徴とする半導体製造装置用部材を提供する。
[0013] Fourth, the present invention is characterized by comprising eucryptite and silicon nitride and / or silicon carbide, having a porosity of 0.5% or less, a maximum void diameter of 10 µm or less, and a heat treatment at 10 to 40 ° C. Expansion coefficient is 1 × 10 -6 / ℃
Provided is a member for a semiconductor manufacturing apparatus, which is made of the following dense low-expansion ceramic.

【0014】本発明は、第5に、上記第4において、緻
密質低膨張セラミックスが、ユークリプタイト25〜9
5重量%、窒化ケイ素および/または炭化ケイ素5〜7
5重量%から実質的になることを特徴とする半導体製造
装置用部材を提供する。
Fifth, in the fourth aspect, the dense low-expansion ceramic is eucryptite 25-9.
5% by weight, silicon nitride and / or silicon carbide 5-7
A member for a semiconductor manufacturing apparatus characterized by being substantially 5% by weight.

【0015】[0015]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の緻密質低熱膨張セラミックスは、ユーク
リプタイトと窒化ケイ素および/または炭化ケイ素とか
ら実質的になり、気孔率が0.5%以下、最大ボイド径
10μm以下、10〜40℃における熱膨張係数が1×
10-6/℃以下である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The dense low thermal expansion ceramic of the present invention is substantially composed of eucryptite and silicon nitride and / or silicon carbide, has a porosity of 0.5% or less, a maximum void diameter of 10 μm or less, and a thermal expansion at 10 to 40 ° C. Coefficient is 1 ×
10 −6 / ° C. or less.

【0016】ユークリプタイトは、一般式Li2O・A
23・2SiO2で表され、熱膨張係数が小さく焼結
体を低熱膨張化するための重要な成分である。また、ユ
ークリプタイトに窒化ケイ素、炭化ケイ素を複合化させ
ることにより、焼結体の熱膨張係数をあまり上昇させる
ことなく焼結性を向上させ、焼結体の気孔率を小さくか
つボイドを少なくして緻密化することができる。
The eucryptite has the general formula Li 2 O · A
It is represented by l 2 O 3 · 2SiO 2 and has a small thermal expansion coefficient and is an important component for lowering the thermal expansion of a sintered body. In addition, by combining silicon nitride and silicon carbide with eucryptite, the sinterability is improved without significantly increasing the thermal expansion coefficient of the sintered body, the porosity of the sintered body is reduced, and voids are reduced. And can be densified.

【0017】気孔率を0.5%以下、最大ボイド径10
μm以下としたのは、これらの値を超えると表面に均質
なコーティングを形成することが困難になり、露光装置
のステージ位置測定用ミラーや真空チャック等の表面コ
ーティングが必要な部材に適さないものとなるからであ
る。より好ましくは気孔率0.1%、最大ボイド径5μ
m以下である。
The porosity is 0.5% or less, and the maximum void diameter is 10
The value of μm or less means that if these values are exceeded, it becomes difficult to form a uniform coating on the surface, and it is not suitable for members that require surface coating, such as mirrors for measuring the stage position of exposure equipment and vacuum chucks. This is because More preferably, the porosity is 0.1%, and the maximum void diameter is 5μ.
m or less.

【0018】10〜40℃における熱膨張係数を1×1
-6/℃以下としたのは、1×10 -6/℃を超えると僅
かな温度差によっても膨張量や収縮量が要求を満たすこ
とができなくなり、半導体製造装置用部材として適用が
困難となるからである。より好ましくは0.7×10-6
/℃以下、さらに好ましくは0.5×10-6/℃以下で
ある。
The coefficient of thermal expansion at 10 to 40 ° C. is 1 × 1
0-6/ ° C or less is 1 × 10 -6Slightly over / ℃
The amount of expansion and contraction can meet the requirements even with a slight temperature difference.
Can no longer be applied, and it can be applied as a member for semiconductor manufacturing equipment.
This is because it becomes difficult. More preferably 0.7 × 10-6
/ ° C or lower, more preferably 0.5 × 10-6/ C or less
is there.

【0019】本発明の緻密質低膨張セラミックスは、ユ
ークリプタイト25〜95重量%、窒化ケイ素および/
または炭化ケイ素5〜75重量%から実質的になること
が好ましい。
The dense low-expansion ceramic of the present invention comprises 25 to 95% by weight of eucryptite, silicon nitride and / or
Alternatively, it is preferable that it substantially consists of 5 to 75% by weight of silicon carbide.

【0020】焼結体を低熱膨張化するユークリプタイト
の量が25重量%より少ないと熱膨張係数が高くなり、
逆にユークリプタイトが95重量%を超えるとユークリ
プタイト100%に近づき焼結体中にマイクロクラック
が発生するため好ましくない。より好ましくは35〜8
5重量%であり、さらに好ましくは45〜80重量%で
ある。なお、上記マイクロクラックは、ユークリプタイ
トの結晶軸毎の熱膨張係数の異方性によって生じるもの
である。
If the amount of eucryptite for lowering the thermal expansion of the sintered body is less than 25% by weight, the thermal expansion coefficient increases,
Conversely, if eucryptite exceeds 95% by weight, it approaches 100% eucryptite and microcracks occur in the sintered body, which is not preferable. More preferably 35 to 8
It is 5% by weight, more preferably 45 to 80% by weight. The microcracks are caused by the anisotropy of the thermal expansion coefficient for each crystal axis of eucryptite.

【0021】また、窒化ケイ素および/または炭化ケイ
素の量が5重量%より少ないとマイクロクラックの多い
焼結体となり、75重量%を超えると熱膨張係数が大き
くなって1×10-6/℃以下を達成することができず、
焼結性も悪くなる。より好ましくは15〜65重量%、
さらに好ましくは20〜55重量%である。なお、10
〜40℃における熱膨張係数は、窒化ケイ素が1.5×
10-6/℃程度であり、炭化ケイ素が2.5×10-6
℃程度であるから、10〜40℃における熱膨張係数が
1×10-6/℃以下の範囲になる量は自ずから両者で異
なっている。ユークリプタイトに窒化ケイ素のみを添加
する場合には75重量%程度で1×10 -6/℃以下の値
が得られるが、炭化ケイ素のみの場合には55重量%を
超えると1×10-6/℃以下の値は困難となる。
Further, silicon nitride and / or silicon carbide
If the amount of element is less than 5% by weight, many micro cracks
It becomes a sintered body, and when it exceeds 75% by weight, the coefficient of thermal expansion is large.
1 × 10-6/ ° C or less cannot be achieved,
Sinterability also deteriorates. More preferably 15 to 65% by weight,
More preferably, the content is 20 to 55% by weight. In addition, 10
The coefficient of thermal expansion at 4040 ° C. is 1.5 × silicon nitride.
10-6/ ° C and silicon carbide is 2.5 × 10-6/
℃, so the coefficient of thermal expansion at 10-40 ℃
1 × 10-6The amount in the range of / C or less naturally differs between the two.
Has become. Adding only silicon nitride to eucryptite
1 × 10 at about 75% by weight -6Value less than / ℃
Is obtained, but in the case of only silicon carbide, 55% by weight
1x10 if exceeded-6Values below / ° C are difficult.

【0022】本発明の緻密質低熱膨張セラミックスは、
気孔率が0.5%以下、最大ボイド径10μm以下、1
0〜40℃における熱膨張係数が1×10-6/℃以下を
満たす限り、ユークリプタイトならびに窒化ケイ素およ
び/または炭化ケイ素以外に、製造上の不可避的不純物
や、焼結性や特性向上のために他の微量成分を含有して
もよい。また、ユークリプタイト粒子と窒化ケイ素粒子
との界面および/またはユークリプタイト粒子と炭化ケ
イ素粒子との界面にはガラス相または結晶相として粒界
相が存在してもよい。ただし、このような粒界相が量的
に多すぎると、焼結体の熱膨張率が大きくなり、ユーク
リプタイトの優れた低熱膨張特性が発揮されないため好
ましくない。
The dense low-thermal-expansion ceramic of the present invention comprises:
Porosity of 0.5% or less, maximum void diameter of 10 μm or less, 1
As long as the coefficient of thermal expansion at 0 to 40 ° C. satisfies 1 × 10 −6 / ° C. or less, in addition to eucryptite and silicon nitride and / or silicon carbide, unavoidable impurities in production and sinterability and property improvement. For this purpose, other minor components may be contained. Further, at the interface between the eucryptite particles and the silicon nitride particles and / or the interface between the eucryptite particles and the silicon carbide particles, a grain boundary phase may exist as a glass phase or a crystal phase. However, when the amount of such a grain boundary phase is too large, the coefficient of thermal expansion of the sintered body increases, and the excellent low thermal expansion characteristics of eucryptite cannot be exhibited, which is not preferable.

【0023】本発明の緻密質低熱膨張セラミックスは、
半導体素子を製造する際に用いられる真空装置構造体、
サセプタ、真空チャック、静電チャック、露光装置にお
けるステージやステージ位置測定用ミラー、あるいはこ
れらの支持部材、さらには半導体製造プロセスに用いら
れる各種治具等の半導体製造装置部材に好適に使用する
ことができ、本発明は上記緻密質熱膨張セラミックスで
構成されたこれら半導体製造装置部材をも対象とする。
特に、露光装置の位置測定用ミラーや、真空チャックな
どの表面コーティングが必要な部材のように表面の平滑
性が必要な場合に最も好適である。
The dense low-thermal-expansion ceramic of the present invention comprises:
Vacuum apparatus structure used when manufacturing semiconductor elements,
It can be suitably used for a susceptor, a vacuum chuck, an electrostatic chuck, a stage in an exposure apparatus, a mirror for measuring a stage position, or a supporting member thereof, and also a semiconductor manufacturing apparatus member such as various jigs used in a semiconductor manufacturing process. The present invention is also applicable to these semiconductor manufacturing apparatus members made of the dense thermal expansion ceramics.
In particular, it is most suitable when the surface needs to be smooth, such as a position measurement mirror of an exposure apparatus or a member requiring a surface coating such as a vacuum chuck.

【0024】セラミックス表面に施されるコーティング
としては、TiN、Al23、ダイヤモンド、ダイヤモ
ンドライクカーボン(DLC)等を好適に用いることが
でき、これらを0.5〜10μmの膜厚で被覆すること
が好ましい。
As the coating applied to the ceramic surface, TiN, Al 2 O 3 , diamond, diamond-like carbon (DLC), or the like can be preferably used, and these are coated in a thickness of 0.5 to 10 μm. Is preferred.

【0025】本発明の緻密質低熱膨張セラミックスを製
造するためには、例えば平均粒径が10μm以下のユー
クリプタイト粉末25〜95重量%、好ましくは35〜
85重量%に対して、平均粒径が10μm以下の窒化ケ
イ素および/または炭化ケイ素粉末を5〜75重量%、
好ましくは15〜65重量%の割合で秤量し配合する。
このような比率で各粉末を配合した後、ボールミルなど
により十分に混合し、所定形状に所望の成形手段、例え
ば、金型プレス、冷間静水圧プレス、押出し成形等によ
り任意の形状に成形する。
In order to produce the dense low thermal expansion ceramic of the present invention, for example, 25 to 95% by weight, preferably 35 to 95% by weight of eucryptite powder having an average particle diameter of 10 μm or less.
85% by weight, 5 to 75% by weight of silicon nitride and / or silicon carbide powder having an average particle size of 10 μm or less,
Preferably, it is weighed and blended at a ratio of 15 to 65% by weight.
After blending the respective powders in such a ratio, they are sufficiently mixed by a ball mill or the like, and molded into a desired shape by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding, or the like. .

【0026】次に、このようにして作製した成形体を相
対密度90%以上、好ましくは95%以上に焼成する。
相対密度90%以上に緻密化するためには、上記の組成
からなる成形体を例えばN2等の不活性ガス雰囲気中で
1100〜1550℃で1〜10時間程度焼成する。こ
の際に、焼結体の密度を90%以上にするのは、90%
未満では、焼結体中の気孔中に高圧ガスがトラップされ
てしまい、その後に以下に示す高圧雰囲気での熱処理を
施してもボイドを減少することができないためである。
Next, the compact thus produced is fired to a relative density of 90% or more, preferably 95% or more.
In order to densify to a relative density of 90% or more, a compact having the above composition is fired at 1100 to 1550 ° C. for about 1 to 10 hours in an inert gas atmosphere such as N 2 . At this time, the density of the sintered body is set to 90% or more by 90%.
If it is less than 3, the high-pressure gas is trapped in the pores of the sintered body, and the voids cannot be reduced even after the following heat treatment in a high-pressure atmosphere.

【0027】得られた焼結体に、例えばN2、Ar等の
ガスの加圧雰囲気で熱処理を施す。この際の加圧熱処理
は、圧力10MPa程度、温度1000〜1550℃、
好ましくは1100〜1400℃で1〜5時間程度行う
ことにより、相対密度99.5%以上、すなわち気孔率
0.5%以下、最大ボイド径10μm以下に緻密化する
ことができる。処理温度が1000℃よりも低いとボイ
ドを低減することができず、1550℃を超えると試料
の一部が溶融するおそれがある。
The obtained sintered body is subjected to a heat treatment in a pressurized atmosphere of a gas such as N 2 or Ar. The pressure heat treatment at this time is performed at a pressure of about 10 MPa, at a temperature of 1000 to 1550 ° C.,
Preferably, the heat treatment is performed at 1100 to 1400 ° C. for about 1 to 5 hours, whereby the relative density can be reduced to 99.5% or more, that is, the porosity is 0.5% or less, and the maximum void diameter is 10 μm or less. If the processing temperature is lower than 1000 ° C., voids cannot be reduced, and if it exceeds 1550 ° C., a part of the sample may be melted.

【0028】以上のような製造方法によって、最終的
に、気孔率0.5%以下、最大ボイド径10μm以下の
緻密質の低熱膨張セラミックスを得ることができる。
By the above manufacturing method, a dense, low-thermal-expansion ceramic having a porosity of 0.5% or less and a maximum void diameter of 10 μm or less can be finally obtained.

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。ま
ず、平均粒径が3μmのユークリプタイト粉末、窒化ケ
イ素粉末、炭化ケイ素粉末を表1に示す割合で配合し、
ボールミルで24時間混合した。この混合粉末を1to
nf/cm2の圧力で金型成形して成形体を作製した。
Embodiments of the present invention will be described below. First, eucryptite powder, silicon nitride powder, and silicon carbide powder having an average particle size of 3 μm were blended in the proportions shown in Table 1,
The mixture was mixed in a ball mill for 24 hours. This mixed powder is 1 to
Molding was performed at a pressure of nf / cm 2 to form a molded body.

【0030】この成形体を窒素雰囲気中で表1に示す温
度で5時間焼成した。得られた焼結体についてアルキメ
デス法によって相対密度を測定し、その結果を表1に示
した。焼成後、さらに、表1に示した温度における圧力
150MPaの高圧雰囲気中で熱処理を1時間施した。
The compact was fired in a nitrogen atmosphere at the temperature shown in Table 1 for 5 hours. The relative density of the obtained sintered body was measured by the Archimedes method, and the results are shown in Table 1. After the firing, a heat treatment was further performed for 1 hour in a high-pressure atmosphere at a temperature shown in Table 1 and a pressure of 150 MPa.

【0031】この熱処理後または熱処理前の焼結体を研
磨し、3×4×15mmの大きさに研削加工し、このセ
ラミックスの10〜40℃の熱膨張係数を測定した。ま
た、熱処理後に室温での気孔率および最大ボイド径を測
定した。その結果を表1に示す。
The sintered body after or before the heat treatment was polished and ground to a size of 3 × 4 × 15 mm, and the thermal expansion coefficient of this ceramic at 10 to 40 ° C. was measured. After the heat treatment, the porosity and the maximum void diameter at room temperature were measured. Table 1 shows the results.

【0032】表1に示すように、窒化ケイ素および/ま
たは炭化ケイ素の含有量が5重量%未満である試料N
o.1(ユークリプタイト100重量%)では、焼結体
中に亀裂が発生し、本質的に問題を有するものであった
ため、気孔率ボイド径の確認を行うまでに至らなかっ
た。また、窒化ケイ素100重量%の試料No.2、炭
化ケイ素100重量%の試料No.3は、熱処理前にい
ずれも熱膨張係数が1×10-6/℃を超えていた。その
ため加圧熱処理は行わなかった。また、窒化ケイ素が7
5重量%を超えた試料No.4については熱膨張係数が
1×10-6/℃を超えているため、半導体製造装置用部
材としては不適当であった。また、炭化ケイ素が単独で
添加され、その量が60重量%の試料No.15、なら
びに窒化ケイ素および炭化ケイ素が35重量%ずつ添加
された試料No.23も熱膨張係数が1×10-6/℃を
超えているため、半導体製造装置用部材としては不適当
であった。このため、これらについては、他の特性は評
価しなかった。
As shown in Table 1, Sample N containing less than 5% by weight of silicon nitride and / or silicon carbide
o. In the case of 1 (100% by weight of eucryptite), cracks were generated in the sintered body, which inherently had a problem, so that it was not possible to confirm the porosity void diameter. Sample No. 100% silicon nitride was used. 2. Sample No. 2 containing 100% by weight of silicon carbide. Sample No. 3 had a coefficient of thermal expansion exceeding 1 × 10 −6 / ° C. before heat treatment. Therefore, no pressure heat treatment was performed. In addition, silicon nitride is 7
Sample No. exceeding 5% by weight. Sample No. 4 was unsuitable as a member for semiconductor manufacturing equipment because its thermal expansion coefficient exceeded 1 × 10 −6 / ° C. In addition, silicon carbide alone was added, and the amount thereof was 60% by weight. Sample No. 15 to which 35% by weight of silicon nitride and 35% by weight of silicon carbide were added, respectively. 23 also had a coefficient of thermal expansion exceeding 1 × 10 −6 / ° C., and was therefore unsuitable as a member for semiconductor manufacturing equipment. For this reason, these were not evaluated for other properties.

【0033】これに対して、ユークリプタイト25〜9
5重量%、窒化ケイ素および/または炭化ケイ素5〜7
5重量%の試料No.5〜14、16〜22、24〜3
9は、気孔率が0.5%以下、最大ボイド径10μm以
下であり、10〜40℃における熱膨張係数が1×10
-6/℃以下を満たしており、半導体製造装置用部材とし
て適したものであった。
On the other hand, eucryptite 25-9
5% by weight, silicon nitride and / or silicon carbide 5-7
5% by weight of sample no. 5-14, 16-22, 24-3
No. 9 has a porosity of 0.5% or less, a maximum void diameter of 10 μm or less, and a coefficient of thermal expansion at 10 to 40 ° C. of 1 × 10
−6 / ° C. or less, which was suitable as a member for semiconductor manufacturing equipment.

【0034】次に、ユークリプタイト粉末75重量%に
それぞれ窒化ケイ素および炭化ケイ素を25重量%を加
えた成形体を1250℃で焼成し、900℃および16
50℃で高圧熱処理した(試料No.30,31)。ま
た、1050℃で焼成した後に1350℃で高圧熱処理
した(試料No.32)。
Next, a compact obtained by adding 25% by weight of silicon nitride and 25% by weight of silicon carbide to 75% by weight of eucryptite powder was fired at 1250 ° C.
High pressure heat treatment was performed at 50 ° C. (Sample Nos. 30, 31). After firing at 1050 ° C., high-pressure heat treatment was performed at 1350 ° C. (Sample No. 32).

【0035】高圧熱処理の温度が1550℃を超える試
料No.31は試料の一部が溶融した。また、高圧熱処
理の温度が1000℃よりも低い試料No.30は気孔
率が0.5%を超えた。また、加圧前の相対密度が90
%よりも低い試料No.32は高圧熱処理後の、気孔率
が0.5%以下、最大ボイド径が10μm以下にならな
かった。
Sample No. 1 in which the high-pressure heat treatment temperature exceeded 1550 ° C. In No. 31, a part of the sample was melted. Further, the sample No. in which the high-pressure heat treatment temperature was lower than 1000 ° C. In No. 30, the porosity exceeded 0.5%. The relative density before pressurization is 90
% Of the sample no. Sample No. 32 had a porosity of 0.5% or less and a maximum void diameter of 10 μm or less after high-pressure heat treatment.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
低熱膨張のユークリプタイトに窒化ケイ素および/また
は炭化ケイ素を複合することにより、優れた低熱膨張特
性と緻密性を有するセラミックスが得られる。このよう
な緻密質低熱膨張セラミックスを真空装置構造体、サセ
プタ、真空チャック、静電チャック、露光装置における
ステージやステージ位置測定用ミラー、あるいはこれら
の支持部材、さらには半導体製造プロセスに用いられる
各種治具等の半導体製造装置用部材に用いることによ
り、雰囲気の温度変化に対しても寸法の変化が少なく、
また表面の平滑性を向上させることができ、著しく処理
精度を高めることができ、半導体素子の品質と量産性を
高めることができる。
As described above, according to the present invention,
By combining silicon nitride and / or silicon carbide with eucryptite having low thermal expansion, a ceramic having excellent low thermal expansion characteristics and denseness can be obtained. Such a dense, low-thermal-expansion ceramic is applied to a vacuum apparatus structure, a susceptor, a vacuum chuck, an electrostatic chuck, a stage or a mirror for measuring the position of a stage in an exposure apparatus, or a support member for these, and various treatments used in a semiconductor manufacturing process. By using it for members of semiconductor manufacturing equipment such as tools, there is little dimensional change even with changes in ambient temperature,
Further, the smoothness of the surface can be improved, the processing accuracy can be remarkably improved, and the quality and mass productivity of the semiconductor element can be improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/68 H01L 21/30 503Z Fターム(参考) 4G001 BA22 BA32 BA65 BB22 BB32 BB65 BC52 BC55 BD05 BE33 4G030 AA02 AA36 AA37 AA47 AA52 AA67 BA18 BA24 HA25 5F031 HA02 PA11 5F045 BB08 EC05 EM09 5F046 CB02 CC01 CC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/68 H01L 21/30 503Z F-term (Reference) 4G001 BA22 BA32 BA65 BB22 BB32 BB65 BC52 BC55 BD05 BE33 4G030 AA02 AA36 AA37 AA47 AA52 AA67 BA18 BA24 HA25 5F031 HA02 PA11 5F045 BB08 EC05 EM09 5F046 CB02 CC01 CC10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ユークリプタイトと窒化ケイ素および/
または炭化ケイ素とから実質的になり、気孔率が0.5
%以下、最大ボイド径10μm以下、10〜40℃にお
ける熱膨張係数が1×10-6/℃以下であることを特徴
とする緻密質低熱膨張セラミックス。
1. A method according to claim 1, wherein the eucryptite and silicon nitride and / or
Or silicon carbide, having a porosity of 0.5
%, A maximum void diameter of 10 μm or less, and a coefficient of thermal expansion at 10 to 40 ° C. of 1 × 10 −6 / ° C. or less.
【請求項2】 ユークリプタイト25〜95重量%、窒
化ケイ素および/または炭化ケイ素5〜75重量%から
実質的になることを特徴とする請求項1に記載の緻密質
低熱膨張セラミックス。
2. The dense, low-thermal-expansion ceramic according to claim 1, wherein the ceramic consists essentially of 25 to 95% by weight of eucryptite, 5 to 75% by weight of silicon nitride and / or silicon carbide.
【請求項3】 ユークリプタイト25〜95重量%、窒
化ケイ素および/または炭化ケイ素5〜75重量%から
実質的になる原料粉末を所定形状に成形後、相対密度9
0%以上に焼結し、さらに1000〜1550℃の温度
の加圧雰囲気で熱処理することを特徴とする緻密質低熱
膨張セラミックスの製造方法。
3. A raw material powder consisting essentially of 25 to 95% by weight of eucryptite, 5 to 75% by weight of silicon nitride and / or silicon carbide, is formed into a predetermined shape, and then has a relative density of 9%.
A method for producing a dense low-thermal-expansion ceramic, comprising sintering to 0% or more and heat-treating in a pressurized atmosphere at a temperature of 1000 to 1550 ° C.
【請求項4】 ユークリプタイトと窒化ケイ素および/
または炭化ケイ素とから実質的になり、気孔率が0.5
%以下、最大ボイド径10μm以下、10〜40℃にお
ける熱膨張係数が1×10-6/℃以下の緻密質低膨張セ
ラミックスで構成されたことを特徴とする半導体製造装
置用部材。
4. The method according to claim 1, wherein the eucryptite and silicon nitride and / or
Or silicon carbide, having a porosity of 0.5
%, A maximum void diameter of 10 μm or less, and a coefficient of thermal expansion at 10 to 40 ° C. of 1 × 10 −6 / ° C. or less.
【請求項5】 前記緻密質低膨張セラミックスは、ユー
クリプタイト25〜95重量%、窒化ケイ素および/ま
たは炭化ケイ素5〜75重量%から実質的になることを
特徴とする請求項4に記載の半導体製造装置用部材。
5. The method of claim 4, wherein the dense low-expansion ceramic is substantially composed of 25 to 95% by weight of eucryptite, 5 to 75% by weight of silicon nitride and / or silicon carbide. A member for semiconductor manufacturing equipment.
JP2000122549A 2000-04-24 2000-04-24 High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device Pending JP2001302340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122549A JP2001302340A (en) 2000-04-24 2000-04-24 High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122549A JP2001302340A (en) 2000-04-24 2000-04-24 High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JP2001302340A true JP2001302340A (en) 2001-10-31

Family

ID=18633012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122549A Pending JP2001302340A (en) 2000-04-24 2000-04-24 High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2001302340A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696116B2 (en) 2006-03-23 2010-04-13 Colorado School Of Mines Implementing a pressure-induced phase transformation in beta-eucryptite to impart toughening
US20120115707A1 (en) * 2010-04-30 2012-05-10 Thales Process for Manufacturing a Ceramic Composite Based on Silicon Nitride and Beta-Eucryptite
JP2014065635A (en) * 2012-09-26 2014-04-17 Taiheiyo Cement Corp Low thermal expansion ceramics and manufacturing method thereof
CN107324809A (en) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 Porous silicon carbide ceramic and its preparation method and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696116B2 (en) 2006-03-23 2010-04-13 Colorado School Of Mines Implementing a pressure-induced phase transformation in beta-eucryptite to impart toughening
US20120115707A1 (en) * 2010-04-30 2012-05-10 Thales Process for Manufacturing a Ceramic Composite Based on Silicon Nitride and Beta-Eucryptite
US8486851B2 (en) * 2010-04-30 2013-07-16 Thales Process for manufacturing a ceramic composite based on silicon nitride and β-eucryptite
JP2014065635A (en) * 2012-09-26 2014-04-17 Taiheiyo Cement Corp Low thermal expansion ceramics and manufacturing method thereof
CN107324809A (en) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 Porous silicon carbide ceramic and its preparation method and application
CN107324809B (en) * 2017-07-11 2020-04-03 深圳市商德先进陶瓷股份有限公司 Porous silicon carbide ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US20100129670A1 (en) Protective coatings resistant to reactive plasma processing
JPH1179830A (en) Low-thermal expansion ceramics, their production and part for producing semiconductor
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP4446611B2 (en) Black low thermal expansion ceramics and exposure apparatus components
JP2010114416A (en) Wafer placing table and method of manufacturing the same
JP2001237303A (en) Vacuum chuck for wafer and its manufacturing method
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
US5407750A (en) High purity dense silicon carbide sintered body and process for making same
JP4460804B2 (en) Low thermal expansion ceramics and exposure device components
JPH11130520A (en) Low thermally expandable ceramic and its production
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP2006182641A (en) Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP3970629B2 (en) Low thermal expansion ceramics and method for producing the same
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001172090A (en) Ceramics
JP7402344B2 (en) High purity cordierite material for semiconductor applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215