JP2001294617A - Proton electroconductive polymer electrolyte - Google Patents

Proton electroconductive polymer electrolyte

Info

Publication number
JP2001294617A
JP2001294617A JP2000111277A JP2000111277A JP2001294617A JP 2001294617 A JP2001294617 A JP 2001294617A JP 2000111277 A JP2000111277 A JP 2000111277A JP 2000111277 A JP2000111277 A JP 2000111277A JP 2001294617 A JP2001294617 A JP 2001294617A
Authority
JP
Japan
Prior art keywords
compound
group
hydrogen atom
polymer electrolyte
methyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000111277A
Other languages
Japanese (ja)
Inventor
Noboru Nakanishi
暢 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000111277A priority Critical patent/JP2001294617A/en
Publication of JP2001294617A publication Critical patent/JP2001294617A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To obtain a proton electroconductive polymer electrolyte having no undesirable effect such as the problem of fluorocarbons on the environment even if the electrolyte material is disposed because of containing no fluorine atom, capable of being expected that the material cost may be reduced because the raw material is only hydrocarbons, and capable of being stably supplied compared to a fluorine-based material even when a large amount thereof is supplied in the future. SOLUTION: This proton electroconductive polymer electrolyte is characterized in that the electrolyte contains a sulfonated product of a compound represented by general formula (I) (wherein, R1 is hydrogen atom, methyl group or ethyl group; R2 is hydrogen atom or methyl group; R3 is an alkyl group; (n) is an integer; R4 and R4' are each hydrogen atom, methyl group or ethyl group; M and M' are each phenyl group or a substituted phenyl group; and (k), (m) and (k)' are each an integer).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に高分子電解質
燃料電池(PEFC)に有効に用いられるプロトン導電
性高分子電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proton conductive polymer electrolyte which can be used effectively in a polymer electrolyte fuel cell (PEFC).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】燃料電
池に用いられる高分子材料としては、従来、フッ素系高
分子をスルホン化あるいはカルボン酸化した化合物が用
いられており、例えばデュポン社の登録商標Nafio
n、旭硝子(株)の登録商標Flemion等の高分子
が商品化されている(Platinum Metals
Rev.,1997,41(3),102−11
3)。一方、高分子固体電解質燃料電池を動力とした電
気自動車の開発が世界的に行われており、主に上記のフ
ッ素系高分子を燃料電池の電解質として用いた研究が行
われてきた。しかしながら、上記のフッ素系高分子は、
(i)製造コストが高い、(ii)フッ素を含んでいる
ために燃料電池を廃棄する場合、フッ素ガスが大気中に
放出される可能性があり、地球温暖化に悪影響を及ぼす
懸念がある、(iii)自動車に燃料電池が搭載される
とすると一台当たり10kg程度の高分子が必要とな
り、主成分であるフッ素の供給不足が懸念される、(i
v)フッ素が主成分であるために電解質膜の疎水性が高
く、一般的なPEFCの運転条件である80℃/加湿下
の状態では水分が枯渇し発電能力が低下し易い等の課題
があり、PEFCの実用化に向けての大きな障害になっ
ている。
2. Description of the Related Art Conventionally, as a polymer material used for a fuel cell, a compound obtained by sulfonating or carboxylating a fluoropolymer has been used. Nafio
Polymers such as Flemion (registered trademark of Asahi Glass Co., Ltd.) are commercially available (Platinum Metals).
Rev .. , 1997, 41 (3), 102-11.
3). On the other hand, the development of electric vehicles powered by solid polymer electrolyte fuel cells has been conducted worldwide, and research has mainly been conducted using the above-mentioned fluoropolymers as electrolytes for fuel cells. However, the above fluoropolymers are
(I) the production cost is high; (ii) when the fuel cell is discarded because it contains fluorine, there is a possibility that fluorine gas may be released into the atmosphere, which may adversely affect global warming; (Iii) If a fuel cell is mounted on an automobile, about 10 kg of a polymer is required for each vehicle, and there is a concern that the supply of fluorine as a main component may be insufficient.
v) Since fluorine is the main component, the hydrophobicity of the electrolyte membrane is high, and there is a problem that the water is depleted and the power generation capacity is apt to be reduced under a general PEFC operating condition of 80 ° C / humidification. Has become a major obstacle to the practical use of PEFC.

【0003】上記の課題を解決すべく、近年、炭化水素
系高分子材料のPEFCへの適用検討が行われてきてい
る(T.Kobayashi et al.,Soli
dState Ionics,106,219−225
(1998)、M.Jacoby,C&EN,June
14,(1999))が、まだフッ素系高分子材料に
替わる炭化水素系高分子材料は得られていない。
[0003] In order to solve the above-mentioned problems, application of hydrocarbon-based polymer materials to PEFC has recently been studied (T. Kobayashi et al., Soli).
dState Ionics, 106, 219-225
(1998); Jacoby, C & EN, June
14, (1999)), but a hydrocarbon-based polymer material that replaces a fluorine-based polymer material has not yet been obtained.

【0004】本発明は上記事情に鑑みなされたもので、
PEFCに有効に用いられる、フッ素を含まない炭化水
素系高分子材料を使用したプロトン導電性高分子電解質
を提供することを目的とする。
[0004] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a proton conductive polymer electrolyte using a hydrocarbon-based polymer material containing no fluorine, which is effectively used for PEFC.

【0005】[0005]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、下記一般式(I)で示される化合物のスルホン化物
が、プロトン導電性高分子固体電解質に有効に使用され
ることを知見した。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies in order to achieve the above object, and as a result, a sulfonated product of the compound represented by the following general formula (I) was converted to a proton conductive compound. It has been found that it can be used effectively for conductive polymer solid electrolytes.

【0006】即ち、本出願人は、先に本発明に用いられ
る式(I)で示される化合物のモデル化合物の合成方法
について提案した(特許第1842047号、Macr
omol.Chem.Macromol.Symp.2
5(1989)169−182、J.Poly.Sc
i.,Poly.Chem.,36(1998)302
1−3034)。
That is, the present applicant has previously proposed a method for synthesizing a model compound of the compound represented by formula (I) used in the present invention (Japanese Patent No. 1842047, Macr).
omol. Chem. Macromol. Symp. 2
5 (1989) 169-182; Poly. Sc
i. , Poly. Chem. , 36 (1998) 302
1-3034).

【0007】[0007]

【化2】 (式中、R1は水素原子、メチル基又はエチル基、R2
水素原子又はメチル基、R3はアルキル基、nは整数、
4,R4 は水素原子、メチル基又はエチル基、M,
M’はフェニル基又は置換フェニル基である。また、
k,m,k’は整数である。)
Embedded image (Wherein, R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a hydrogen atom or a methyl group, R 3 is an alkyl group, n is an integer,
R 4 and R 4 represent a hydrogen atom, a methyl group or an ethyl group, M,
M ′ is a phenyl group or a substituted phenyl group. Also,
k, m, and k 'are integers. )

【0008】本発明者は、この式(I)の化合物をスル
ホン化することでプロトン導電性高分子電解質を作製し
た場合、このプロトン導電性高分子電解質はプロトン導
電性を担う成分が膜中で連続相を形成し、一方、膜の吸
水性、保液性を高める親水性基を含有する成分の高分子
鎖がその両末端を上記の連続相を形成する高分子鎖で支
えられているために比較的安定に球状で膜中に存在して
いるために、従来のフッ素系高分子電解質にはない優れ
た吸水性、保液性を示すことを知見し、本発明をなすに
至った。
The inventor of the present invention has prepared a proton conductive polymer electrolyte by sulfonating the compound of the formula (I). In this proton conductive polymer electrolyte, a component having proton conductivity is contained in the membrane. Forming a continuous phase, on the other hand, the polymer chains of the component containing a hydrophilic group that enhances the water absorption and liquid retention of the membrane are supported at both ends by the polymer chains forming the continuous phase. The present invention was found to exhibit excellent water absorption and liquid retention properties, which are not present in conventional fluorine-based polymer electrolytes, because of their relatively stable spherical shape and existence in the membrane, leading to the present invention.

【0009】以下、本発明につき更に詳しく説明する。
本発明のプロトン導電性高分子電解質は、下記一般式
(I)で示される化合物のスルホン化物を含有するもの
である。
Hereinafter, the present invention will be described in more detail.
The proton conductive polymer electrolyte of the present invention contains a sulfonated compound of a compound represented by the following general formula (I).

【0010】[0010]

【化3】 Embedded image

【0011】ここで、R1は水素原子、メチル基又はエ
チル基、R2は水素原子又はメチル基、R3はアルキル
基、R4,R4 は水素原子、メチル基又はエチル基、
M,M’はフェニル基又は置換フェニル基である。
Here, R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a hydrogen atom or a methyl group, R 3 is an alkyl group, R 4 and R 4 are a hydrogen atom, a methyl group or an ethyl group,
M and M 'are a phenyl group or a substituted phenyl group.

【0012】この場合、R1,R2はそれぞれ水素原子で
あることが好ましい。また、R3のアルキル基として
は、炭素数1〜10、特に1〜2のものが好ましく、更
に好ましくはメチル基である。M,M’としては、フェ
ニル基、トリル基、キシリル基などが例示され、好まし
くはフェニル基である。
In this case, each of R 1 and R 2 is preferably a hydrogen atom. As the alkyl group for R 3 , an alkyl group having 1 to 10 carbon atoms, particularly 1 to 2 carbon atoms is preferable, and a methyl group is more preferable. Examples of M and M 'include a phenyl group, a tolyl group, a xylyl group and the like, and a phenyl group is preferable.

【0013】更に、一般式(I)において、k,m,
k’及びnは整数であるが、(k+k’):mが30:
1〜2:1であり、k+m+k’が200以上、より好
ましくは200〜20,000、更に好ましくは400
〜5,000を満足することが、本発明の効果をより有
効に発揮させる点で好適である。また、nは、好ましく
は1〜100の整数であるが、一般式(I)において
(k+m+k’):nが1,000:1〜10:1を満
たすことが好ましく、より好ましくは700:1〜5
0:1、更に好ましくは300:1〜100:1であ
る。この比率が1,000:1より大きい場合は、親水
性基であるCH2CHR2Oの比率が低下し、本発明の目
的の一つである膜の吸水性、保湿性が低下するおそれが
あり、一方、10:1より小さい場合には膜強度の低下
をきたすおそれがある。
Further, in the general formula (I), k, m,
k 'and n are integers, and (k + k'): m is 30:
1-2: 1, and k + m + k ′ is 200 or more, more preferably 200 to 20,000, further preferably 400.
Satisfaction of 5,000 is preferable in that the effects of the present invention are more effectively exhibited. Further, n is preferably an integer of 1 to 100, but in the general formula (I), (k + m + k ′): n preferably satisfies 1,000: 1 to 10: 1, and more preferably 700: 1. ~ 5
0: 1, more preferably 300: 1 to 100: 1. When this ratio is larger than 1,000: 1, the ratio of CH 2 CHR 2 O, which is a hydrophilic group, is reduced, and the water absorption and moisture retention of the film, which is one of the objects of the present invention, may be reduced. On the other hand, if it is smaller than 10: 1, the film strength may be reduced.

【0014】なお、上記式(I)の化合物の数平均分子
量は、25,000〜2,000,000、特に4,0
00〜150,000であることが好ましい。
The compound of the formula (I) has a number average molecular weight of 25,000 to 2,000,000, particularly preferably 4.0 to 2.0.
It is preferably from 00 to 150,000.

【0015】一般式(I)で示される化合物は、下記の
方法により製造することができる。十分に脱水、精製し
たTHF中に−78℃の条件でアニオン発生剤であるs
ec−ブチルリチウムを加え、水分、酸素等の不純物が
混入しない雰囲気下でスチレンモノマー、tert−ブ
トキシスチレンモノマー、スチレンモノマーを順次滴下
重合していくことでまずトリブロックポリマーを合成す
る。最初に添加するスチレンモノマーのmol比とse
c−ブチルリチウムのmol比の比率によって得られる
トリブロックポリマーの鎖長が厳密に決定される。次
に、このトリブロックポリマーのtert−ブトキシ基
を塩酸により水酸基に戻す。反応溶媒としてはアセトン
が用いられ、アセトンを還流させながら反応を進行させ
る。次に、水酸基に変換した部分を水酸化カリウムでカ
リウム化した後、エチレンオキサイドモノマーを加え、
グラフト鎖を成長させる。このときの反応溶媒としては
THFが挙げられる。このようにして目的の化合物
(I)が得られる。
The compound represented by the general formula (I) can be produced by the following method. In a sufficiently dehydrated and purified THF at −78 ° C., an anion generator s
First, a styrene monomer, a tert-butoxystyrene monomer, and a styrene monomer are sequentially dropped and polymerized in an atmosphere in which ec-butyllithium is added and impurities such as moisture and oxygen are not mixed to synthesize a triblock polymer. Mol ratio of styrene monomer added first and se
The chain length of the resulting triblock polymer is strictly determined by the molar ratio of c-butyllithium. Next, the tert-butoxy group of this triblock polymer is returned to a hydroxyl group with hydrochloric acid. Acetone is used as a reaction solvent, and the reaction proceeds while refluxing acetone. Next, after the portion converted to a hydroxyl group is potassiumified with potassium hydroxide, an ethylene oxide monomer is added,
Grow the graft chains. The reaction solvent at this time includes THF. Thus, the desired compound (I) is obtained.

【0016】本発明においては、上記式(I)の化合物
のスルホン化物が用いられるものであるが、この場合、
スルホン化は、式(I)において、ベンゼン環に対して
スルホン酸基SO3Hが導入される。またこの場合、ス
ルホン化率(スルホン酸基の導入割合は、PEFC用高
分子電解質における表記法EW(高分子電解質重量g/
SO3H基mol数)値)に従うと200〜2,000
となる。
In the present invention, a sulfonated product of the compound of the above formula (I) is used.
In the sulfonation, a sulfonic acid group SO 3 H is introduced into a benzene ring in the formula (I). Further, in this case, the sulfonation ratio (the introduction ratio of the sulfonic acid group is represented by the notation EW (polymer electrolyte weight g / g) in the polymer electrolyte for PEFC.
According to SO 3 H groups mol number) value) 200 to 2,000
Becomes

【0017】上記スルホン化法については一般的な芳香
族化合物のスルホン化反応が適用できる。例えば特公平
5−82401号公報、特開平10−17616号公報
の方法を用いることができ、具体的には炭素数1〜2の
脂肪族ハロゲン化炭化水素(例えば塩化メチレン、1,
2−ジクロルエタン、塩化エチル、四塩化炭素、1,1
−ジクロルエタン、クロロホルム)、環状パラフィン化
合物(例えばシクロヘキサン)、その他にTHF、DM
E、MEK、アセトン等を反応溶媒として化合物(I)
を溶解する。但し、ハロゲン系の有機溶剤については合
成時の廃液がフロンの発生源となり環境に悪影響を与え
ることから、非ハロゲン系の環状パラフィン(例えばシ
クロヘキサン)、その他の溶媒としてTHF、DME、
MEK、アセトン等を用いることが望ましい。更に、溶
剤のコストや回収のし易さを勘案すると、シクロヘキサ
ンを主成分とすることが望ましく、特に本発明において
はポリマーの溶解性を高める点でシクロヘキサンとTH
Fの混合溶媒とすることが最も好ましい。このときの高
分子濃度は0.1〜20重量%の範囲が好ましい。これ
より高濃度の場合には化合物(I)の溶解が不十分にな
り、かつスルホン化反応と共に反応物のゲル化が起こる
おそれがある。スルホン化剤としては無水硫酸、発煙硫
酸、濃硫酸、クロルスルホン酸等が用いられるが、この
際にルイス塩基を添加すると効果的にスルホン化が行え
る。例示すると、リン酸トリエチル、リン酸トリメチ
ル、トリエチルアミン、1,4−ジオキサン、酢酸エチ
ル等が挙げられ、この塩基を予め化合物(I)の溶液に
先に溶解させた後に上記のスルホン化剤を徐々に加えな
がらスルホン化を行うことが好ましい。ルイス塩基の添
加量は化合物(I)のベンゼン環1molに対して0.
01〜2molが好適であり、このルイス塩基も化合物
(I)を溶解した溶媒と同じ溶媒で予め溶液として用い
るのが望ましい。以上の溶液を十分混合させた上で30
〜80℃で0.5〜10時間反応させることで、化合物
(I)のスルホン化物を得ることができる。
As the above sulfonation method, a general sulfonation reaction of an aromatic compound can be applied. For example, the methods of Japanese Patent Publication No. 5-82401 and Japanese Patent Application Laid-Open No. 10-17616 can be used. Specifically, aliphatic halogenated hydrocarbons having 1 to 2 carbon atoms (for example, methylene chloride, 1,
2-dichloroethane, ethyl chloride, carbon tetrachloride, 1,1
-Dichloroethane, chloroform), cyclic paraffin compounds (for example, cyclohexane), and THF, DM
Compound (I) using E, MEK, acetone or the like as a reaction solvent
Dissolve. However, with respect to halogen-based organic solvents, waste liquid during synthesis becomes a source of chlorofluorocarbons and adversely affects the environment. Therefore, non-halogen-based cyclic paraffin (for example, cyclohexane) and other solvents such as THF, DME,
It is desirable to use MEK, acetone or the like. Further, considering the cost of the solvent and the ease of recovery, it is preferable that cyclohexane be the main component. Particularly, in the present invention, cyclohexane and TH are preferred in terms of enhancing the solubility of the polymer.
It is most preferable to use a mixed solvent of F. The polymer concentration at this time is preferably in the range of 0.1 to 20% by weight. If the concentration is higher than this, the compound (I) may be insufficiently dissolved, and the reaction product may be gelled together with the sulfonation reaction. As the sulfonating agent, sulfuric anhydride, fuming sulfuric acid, concentrated sulfuric acid, chlorosulfonic acid, and the like are used. At this time, sulfonation can be effectively performed by adding a Lewis base. Examples thereof include triethyl phosphate, trimethyl phosphate, triethylamine, 1,4-dioxane, ethyl acetate and the like. After dissolving this base in advance in the solution of compound (I), the above sulfonating agent is gradually added. It is preferred to carry out the sulfonation in addition to. The amount of the Lewis base added is 0.1 to 1 mol of the benzene ring of the compound (I).
The amount is preferably from 1 to 2 mol, and this Lewis base is desirably used as a solution in advance with the same solvent as that in which the compound (I) is dissolved. After thoroughly mixing the above solutions, 30
By reacting at 8080 ° C. for 0.5 to 10 hours, a sulfonated compound of compound (I) can be obtained.

【0018】なお、スルホン化剤の使用量は、化合物
(I)のベンゼン環1mol当たり0.5〜2molに
なるように加えることが望ましい。このようにしてスラ
リー状のスルホン化高分子を得ることができる。更に溶
媒を揮発させ、メタノール中で洗浄を繰り返すことで、
本発明のスルホン化物を含有したプロトン導電性高分子
電解質を得ることができる。なお、揮発させた反応溶媒
に関しては、蒸留操作によりリサイクルが可能であり生
産性の向上に寄与する。
It is desirable that the sulfonating agent be used in an amount of 0.5 to 2 mol per 1 mol of the benzene ring of the compound (I). In this way, a slurry-like sulfonated polymer can be obtained. By further evaporating the solvent and repeating washing in methanol,
A proton conductive polymer electrolyte containing the sulfonated product of the present invention can be obtained. The volatilized reaction solvent can be recycled by a distillation operation, which contributes to an improvement in productivity.

【0019】上記のスルホン化物を溶媒に溶かした後、
適当な基板上に塗布し、溶媒を揮発させることで本発明
のプロトン導電性高分子電解質膜を得ることができる。
実際に燃料電池に組み込む場合には、電極上に高分子溶
液を塗布し、同様に乾燥することで、燃料電池に適用で
きる電解質膜となる。更に、燃料電池として作動させる
場合には、上述のように加湿下で得られた電解質膜を吸
湿させた後に80℃/加湿下にて行うことになる。従っ
て、実際に利用する際には化合物(I)のスルホン化物
と水の複合膜となる。
After dissolving the above sulfonate in a solvent,
The proton conductive polymer electrolyte membrane of the present invention can be obtained by applying the composition on an appropriate substrate and volatilizing the solvent.
When actually incorporated in a fuel cell, a polymer solution is applied on the electrode and dried in the same manner to obtain an electrolyte membrane applicable to the fuel cell. Further, when operating as a fuel cell, the operation is performed at 80 ° C./humidification after absorbing the electrolyte membrane obtained under humidification as described above. Therefore, when actually used, it becomes a composite membrane of a sulfonated compound of compound (I) and water.

【0020】[0020]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。なお、実施例中の化合物(I)の原料と
なるトリブロック共重合体は、各成分を−b−で繋いで
例えばポリスチレン、ポリ−p−ヒドロキシスチレン、
ポリスチレンの3成分ブロック共重合体をポリ(スチレ
ン−b−p−ヒドロキシスチレン−b−スチレン)と表
記する。また、グラフト鎖は−g−で表記する。従っ
て、化合物(I)の内、上記のトリブロック共重合体の
p−ヒドロキシスチレンの水酸基にエチレンオキサイド
をグラフトした化合物はポリ[スチレン−b−(p−ヒ
ドロキシスチレン−g−エチレンオキサイド)−b−ス
チレン]と表記する。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In addition, the triblock copolymer used as the raw material of the compound (I) in an example connects each component with -b-, for example, polystyrene, poly-p-hydroxystyrene,
The three-component block copolymer of polystyrene is referred to as poly (styrene-bp-hydroxystyrene-b-styrene). The graft chain is represented by -g-. Therefore, among the compounds (I), the compound obtained by grafting ethylene oxide to the hydroxyl group of p-hydroxystyrene of the above triblock copolymer is poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b -Styrene].

【0021】[実施例1] (化合物(I),No.1の合成) 分子構造;ポリ[スチレン−b−(p−ヒドロキシスチ
レン−g−エチレンオキサイド)−b−スチレン] 一般式(I)において、R1=R2=水素原子、R3=メ
チル基、R4=R4 =水素原子、M=M’=フェニル
基、k=k’=500、m=250、n=5 (k+k’):m=4:1 k+k’+m=1,250 (k+m+k’):n=250:1 上記の化合物を以下に示した合成法により得た。
Example 1 (Synthesis of Compound (I), No. 1) Molecular structure: poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b-styrene] General formula (I) , R 1 = R 2 = hydrogen atom, R 3 = methyl group, R 4 = R 4 = hydrogen atom, M = M ′ = phenyl group, k = k ′ = 500, m = 250, n = 5 ( k + k ′): m = 4: 1 k + k ′ + m = 1,250 (k + m + k ′): n = 250: 1 The above compound was obtained by the following synthesis method.

【0022】アルゴンガス雰囲気下において十分に脱水
精製したTHF900cc中に重合開始剤としてsec
−ブチルリチウム1mmolを加えた。この溶液を−7
8℃に保ち、THF100ccで希釈したスチレンモノ
マー52gを添加して30分間撹拌しながら重合させ
た。引き続きTHF100ccで希釈したtert−ブ
トキシスチレンモノマー44.1gを添加し、更に30
分間撹拌しながら重合させた。更にTHF100ccで
希釈したスチレンモノマー52gを添加し、30分間撹
拌重合を行った。この溶液をメタノール中に注ぎ、得ら
れたトリブロック化合物を沈殿させた後、分離乾燥させ
てトリブロック化合物190gを得た(収率99%)。
In an argon gas atmosphere, 900 cc of THF sufficiently dehydrated and purified was used as a polymerization initiator in sec.
1 mmol of -butyllithium was added. This solution was
While maintaining the temperature at 8 ° C., 52 g of a styrene monomer diluted with 100 cc of THF was added, and polymerization was carried out with stirring for 30 minutes. Subsequently, 44.1 g of tert-butoxystyrene monomer diluted with 100 cc of THF was added, and 30
The polymerization was carried out with stirring for minutes. Further, 52 g of a styrene monomer diluted with 100 cc of THF was added, and stirring polymerization was performed for 30 minutes. This solution was poured into methanol to precipitate the obtained triblock compound, which was separated and dried to obtain 190 g of the triblock compound (yield: 99%).

【0023】次に、上記のトリブロック化合物をアセト
ンに溶解し、塩酸を用いて還流下10時間の反応を行う
ことで、tert−ブトキシ基を加水分解し、p(スチ
レン−b−ヒドロキシスチレン−b−スチレン)160
gを得た。
Next, the above-mentioned triblock compound is dissolved in acetone, and a reaction is carried out under reflux with hydrochloric acid for 10 hours to hydrolyze the tert-butoxy group and to give p (styrene-b-hydroxystyrene- b-styrene) 160
g was obtained.

【0024】次に、上記の加水分解されたトリブロック
化合物100gを4リットルのTHFに溶解し、ter
t−ブトキシカリウム0.373molを加え、この溶
液を1時間撹拌後、エチレンオキサイドモノマー41g
を添加した。この溶液を70℃に保ち、24時間撹拌を
行ったのち、ヨウ化メチルを加えて反応を停止させた
後、反応物をヘキサン中に注いで沈殿させた。この重合
物をメタノール、水で洗浄乾燥を繰り返して、目的とす
る化合物(I),No.1を得た(反応収率99%)。
重合物について13C−NMRによる定量測定を行い、N
o.1の構造を上記のように決定した。
Next, 100 g of the hydrolyzed triblock compound was dissolved in 4 liters of THF.
0.373 mol of potassium t-butoxide was added, and the solution was stirred for 1 hour, and then 41 g of ethylene oxide monomer was added.
Was added. The solution was kept at 70 ° C. and stirred for 24 hours. After stopping the reaction by adding methyl iodide, the reaction product was poured into hexane to precipitate. This polymer was washed and dried with methanol and water repeatedly to obtain the desired compound (I), 1 was obtained (reaction yield: 99%).
The polymer was quantitatively measured by 13 C-NMR,
o. The structure of 1 was determined as described above.

【0025】(上記化合物(I),No.1のスルホン
化)化合物(I),No.1 50gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒0.5kgに
溶解した。別途、リン酸トリエチル5gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒0.5kgに
溶解し、この溶液中に化合物(I),No.1溶液を加
えた後、十分撹拌した。更に無水硫酸25gを用意し、
この溶液に1時間かけて滴下した。その後、反応温度7
0℃にて10時間スルホン化反応を行った。この後に溶
媒を飛ばし、メタノール中で洗浄した後、乾燥すること
で、化合物(I),No.1のスルホン化物を得た。上
記スルホン化物にTHFを加え、ぺースト状にした後、
テフロン(登録商標)基板上に塗布、乾燥してプロトン
導電性高分子電解質膜を得た。
(Sulfonation of Compound (I), No. 1) Compound (I), No. 1 150 g was dissolved in 0.5 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio). Separately, 5 g of triethyl phosphate was dissolved in 0.5 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio), and Compound (I), No. 1 was added to this solution. After adding one solution, the mixture was sufficiently stirred. Further prepare 25g of sulfuric anhydride,
The solution was added dropwise over 1 hour. Then, the reaction temperature 7
The sulfonation reaction was performed at 0 ° C. for 10 hours. Thereafter, the solvent was removed, and the residue was washed in methanol and then dried, whereby Compound (I), No. 1 was obtained. 1 was obtained. After adding THF to the above sulfonated product to form a paste,
The resultant was applied on a Teflon (registered trademark) substrate and dried to obtain a proton conductive polymer electrolyte membrane.

【0026】(本発明の高分子電解質の評価方法)この
膜を水中にて80℃、24時間保持し吸水させた後、2
5℃でイオン導電性を測定した。また、含水率も測定し
た。更に30℃、湿度50%の室内雰囲気において24
時間放置し、含水率の変化を測定した。これらの値は試
験前の膜重量Pに対する水分重量Wの比率(%)で表し
た(含水率(%)=100×W/P)。別途、加湿しな
いで十分乾燥させた膜について、OsO4で染色した膜
の切片について、透過電子顕微鏡観察を行い膜の構造を
観察した。親水性基CH2CHR2Oの成分はOsO4
より染色され、TEM像では黒い部分として観察され、
それ以外の成分は染色されないために白い部分として観
察される。また、酸滴定法によりEW(高分子電解質重
量g/SO3H基mol数)値を決定した。
(Method for Evaluating Polymer Electrolyte of the Present Invention) This membrane was kept in water at 80 ° C. for 24 hours to absorb water.
The ionic conductivity was measured at 5 ° C. The moisture content was also measured. Furthermore, in an indoor atmosphere at 30 ° C. and 50% humidity, 24
After allowing to stand for a time, the change in water content was measured. These values were expressed as the ratio (%) of the water weight W to the membrane weight P before the test (water content (%) = 100 × W / P). Separately, a membrane dried sufficiently without humidification, a section of the membrane stained with OsO 4 was observed with a transmission electron microscope to observe the structure of the membrane. The component of the hydrophilic group CH 2 CHR 2 O was stained with OsO 4 and observed as a black portion in the TEM image,
Other components are observed as white parts because they are not stained. Further, the EW (weight of polymer electrolyte g / mol of SO 3 H group) value was determined by an acid titration method.

【0027】[実施例2] (化合物(I),No.2の合成) 分子構造;ポリ[スチレン−b−(p−ヒドロキシスチ
レン−g−エチレンオキサイド)−b−スチレン] 一般式(I)において、R1=R2=水素原子、R3=メ
チル基、R4=R4 =水素原子、M=M’=フェニル
基、k=k’=250、m=100、n=5 (k+k’):m=5:1 k+k’+m=650 (k+m+k’):n=130:1
Example 2 (Synthesis of Compound (I), No. 2) Molecular structure: poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b-styrene] General formula (I) In the formula, R 1 = R 2 = hydrogen atom, R 3 = methyl group, R 4 = R 4 = hydrogen atom, M = M ′ = phenyl group, k = k ′ = 250, m = 100, n = 5 ( k + k '): m = 5: 1 k + k' + m = 650 (k + m + k '): n = 130: 1

【0028】上記の化合物を実施例1と同様の方法で合
成した。但し、sec−ブチルリチウム1.93mmo
l、スチレンモノマー50g、tert−ブトキシスチ
レンモノマー34g、スチレンモノマー50gの分量で
トリブロック共重合体を合成した後、実施例1と同様に
加水分解を行った。加水分解物100gを用い、ter
t−ブトキシカリウム0.312mol、エチレンオキ
サイドモノマー34gの分量で更にグラフト鎖を成長さ
せた。分析結果は上記の通りである。
The above compound was synthesized in the same manner as in Example 1. However, sec-butyl lithium 1.93mmo
1, a styrene monomer 50 g, a tert-butoxystyrene monomer 34 g, and a styrene monomer 50 g were synthesized to prepare a triblock copolymer, and hydrolysis was carried out in the same manner as in Example 1. Using 100 g of hydrolyzate, ter
Graft chains were further grown with 0.312 mol of potassium t-butoxide and 34 g of ethylene oxide monomer. The analysis results are as described above.

【0029】(上記化合物(I),No.2のスルホン
化)化合物(I),No.2 50gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒1kgに溶解
した。別途、リン酸トリエチル2.5gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒1kgに溶解
し、この溶液中に化合物(I),No.2溶液を加えた
後、十分撹拌した。更に無水硫酸30gを上記の溶液に
1時間かけて滴下した。その後、反応温度70℃にて1
0時間スルホン化反応を行った。この後に溶媒を飛ば
し、メタノール中で洗浄した後、乾燥することで、化合
物(I),No.2のスルホン化物を得た。得られたス
ルホン化物について実施例1と同様の評価を行った。
(Sulfonation of Compound (I), No. 2) Compound (I), No. 2 250 g was dissolved in 1 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio). Separately, 2.5 g of triethyl phosphate was dissolved in 1 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio), and Compound (I), No. After adding the two solutions, the mixture was sufficiently stirred. Further, 30 g of sulfuric anhydride was dropped into the above solution over 1 hour. Thereafter, at a reaction temperature of 70 ° C., 1
The sulfonation reaction was performed for 0 hours. Thereafter, the solvent was removed, and the residue was washed in methanol and then dried, whereby Compound (I), No. 1 was obtained. 2 was obtained. The same evaluation as in Example 1 was performed for the obtained sulfonated product.

【0030】[実施例3]化合物(I)として実施例1
のNo.1を用いた。 分子構造;ポリ[スチレン−b−(p−ヒドロキシスチ
レン−g−エチレンオキサイド)−b−スチレン] 一般式(I)において、R1=R2=水素原子、R3=メ
チル基、R4=R4 =水素原子、M=M’=フェニル
基、k=k’=500、m=250、n=5 (k+k’):m=4:1 k+k’+m=1,250 (k+m+k’):n=250:1
Example 3 Example 1 was used as compound (I).
No. 1 was used. Molecular structure: poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b-styrene] In the general formula (I), R 1 = R 2 = hydrogen atom, R 3 = methyl group, R 4 = R 4 = hydrogen atom, M = M ′ = phenyl group, k = k ′ = 500, m = 250, n = 5 (k + k ′): m = 4: 1 k + k ′ + m = 1,250 (k + m + k ′) : N = 250: 1

【0031】(上記化合物(I),No.1のスルホン
化)化合物(I),No.1 50gをシクロヘキサ
ン:THF(10:1、体積比)1kgに溶解した。別
途、リン酸トリメチル5gと60重量%発煙硫酸15g
をシクロヘキサン:THF(10:1、体積比)0.5
kgに溶解し、この溶液中に化合物(I),No.1溶
液を加えた後、十分撹拌した。更に60重量%発煙硫酸
30gをこの溶液に1時間かけて滴下した。その後、反
応温度70℃にて10時間スルホン化反応を行った。こ
の後に溶媒を飛ばし、メタノール中で洗浄した後、乾燥
することで化合物(I),No.1のスルホン化物を得
た。得られたスルホン化物について実施例1と同様の評
価を行った。
(Sulfonation of Compound (I), No. 1) Compound (I), No. 1 150 g was dissolved in 1 kg of cyclohexane: THF (10: 1, volume ratio). Separately, 5 g of trimethyl phosphate and 15 g of 60% by weight fuming sulfuric acid
With cyclohexane: THF (10: 1, volume ratio) 0.5
kg of the compound (I), no. After adding one solution, the mixture was sufficiently stirred. Further, 30 g of fuming sulfuric acid of 60% by weight was added dropwise to this solution over 1 hour. Thereafter, a sulfonation reaction was performed at a reaction temperature of 70 ° C. for 10 hours. After that, the solvent is removed, washed in methanol, and then dried to obtain Compound (I), No. 1 1 was obtained. The same evaluation as in Example 1 was performed for the obtained sulfonated product.

【0032】[実施例4] (化合物(I),No.3の合成) 分子構造;ポリ[スチレン−b−(p−ヒドロキシスチ
レン−g−エチレンオキサイド)−b−スチレン] 一般式(I)において、R1=R2=水素原子、R3=メ
チル基、R4=R4 =水素原子、M=M’=フェニル
基、k=k’=250、m=150、n=3 (k+k’):m=3.3:1 k+k’+m=450 (k+m+k’):n=150:1
Example 4 (Synthesis of Compound (I), No. 3) Molecular structure: poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b-styrene] General formula (I) In the formula, R 1 = R 2 = hydrogen atom, R 3 = methyl group, R 4 = R 4 ' = hydrogen atom, M = M' = phenyl group, k = k '= 250, m = 150, n = 3 ( k + k '): m = 3.3: 1 k + k' + m = 450 (k + m + k '): n = 150: 1

【0033】上記の化合物を実施例1と同様の方法で合
成した。但し、sec−ブチルリチウム1.92mmo
l、スチレンモノマー50g、tert−ブトキシスチ
レンモノマー34.3g、スチレンモノマー50gの分
量でトリブロック共重合体を合成した後、その加水分解
物100gを用い、tert−ブトキシカリウム0.4
28mol、エチレンオキサイドモノマー28gの分量
で更にグラフト鎖を成長させた。分析結果は上記の通り
である。
The above compound was synthesized in the same manner as in Example 1. However, sec-butyl lithium 1.92 mmo
l, 50 g of a styrene monomer, 34.3 g of a tert-butoxystyrene monomer, and 50 g of a styrene monomer to synthesize a triblock copolymer, and 100 g of the hydrolyzate was used to prepare 0.4 g of potassium tert-butoxide.
A graft chain was further grown in an amount of 28 mol, 28 g of ethylene oxide monomer. The analysis results are as described above.

【0034】(上記化合物(I),No.3のスルホン
化)化合物(I),No.3 50gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒0.8kgに
溶解した。別途、リン酸トリエチル5g、無水硫酸5g
をシクロヘキサン:THF(9:1、体積比)の混合溶
媒0.5kgに溶解し、この溶液中に化合物(I),N
o.3溶液を加えた後、十分撹拌した。更に無水硫酸2
5gを上記の溶液に1時間かけて滴下した。その後、反
応温度70℃にて10時間スルホン化反応を行った。こ
の後に溶媒を飛ばし、メタノール中で洗浄した後、乾燥
することで化合物(I),No.3のスルホン化物を得
た。得られたスルホン化物について実施例1と同様の評
価を行った。
(Sulfonation of Compound (I), No. 3) Compound (I), No. 3 350 g was dissolved in 0.8 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio). Separately, 5 g of triethyl phosphate, 5 g of sulfuric anhydride
Is dissolved in 0.5 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio), and Compound (I), N
o. After adding the three solutions, the mixture was sufficiently stirred. Furthermore, sulfuric anhydride 2
5 g was added dropwise to the above solution over 1 hour. Thereafter, a sulfonation reaction was performed at a reaction temperature of 70 ° C. for 10 hours. After that, the solvent is removed, washed in methanol, and then dried to obtain Compound (I), No. 1 3 was obtained. The same evaluation as in Example 1 was performed for the obtained sulfonated product.

【0035】[実施例5] (化合物(I),No.4の合成) 分子構造;ポリ[スチレン−b−(p−ヒドロキシスチ
レン−g−エチレンオキサイド)−b−スチレン] 一般式(I)において、R1=R2=水素原子、R3=メ
チル基、R4=R4 =水素原子、M=M’=フェニル
基、k=k’=500、m=100、n=5 (k+k’):m=10:1 k+k’+m=1,100 (k+m+k’):n=220:1
Example 5 (Synthesis of Compound (I), No. 4) Molecular structure: poly [styrene-b- (p-hydroxystyrene-g-ethylene oxide) -b-styrene] General formula (I) , R 1 = R 2 = hydrogen atom, R 3 = methyl group, R 4 = R 4 = hydrogen atom, M = M ′ = phenyl group, k = k ′ = 500, m = 100, n = 5 ( k + k '): m = 10: 1 k + k' + m = 1,100 (k + m + k '): n = 220: 1

【0036】上記の化合物を実施例1と同様の方法で合
成した。但し、sec−ブチルリチウム0.96mmo
l、スチレンモノマー50g、tert−ブトキシスチ
レンモノマー16.9g、スチレンモノマー50gの分
量でトリブロック共重合体を合成した後、その加水分解
物100gを用い、tert−ブトキシカリウム0.1
72mol、エチレンオキサイドモノマー18.5gの
分量で更にグラフト鎖を成長させた。分析結果は上記の
通りである。
The above compound was synthesized in the same manner as in Example 1. However, sec-butyl lithium 0.96mmo
l, 50 g of styrene monomer, 16.9 g of tert-butoxystyrene monomer and 50 g of styrene monomer to synthesize a triblock copolymer, and 100 g of the hydrolyzate was used to prepare 0.1 g of potassium tert-butoxide.
A graft chain was further grown in an amount of 72 mol and 18.5 g of ethylene oxide monomer. The analysis results are as described above.

【0037】(上記化合物(I),No.4のスルホン
化)化合物(I),No.4 50gをシクロヘキサ
ン:THF(9:1、体積比)の混合溶媒1kgに溶解
した。別途、リン酸トリエチル7g、発煙硫酸5gをシ
クロヘキサン:THF(9:1、体積比)の混合溶媒
0.5kgに溶解し、この溶液中に化合物(I),N
o.4溶液を加えた後、十分撹拌した。更に無水硫酸3
0gを上記の溶液に1時間かけて滴下した。その後、反
応温度70℃にて10時間スルホン化反応を行った。こ
の後に溶媒を飛ばし、メタノール中で洗浄した後、乾燥
することで化合物(I),No.4のスルホン化物を得
た。得られたスルホン化物について実施例1と同様の評
価を行った。
(Sulfonation of Compound (I), No. 4) Compound (I), No. 4 450 g was dissolved in 1 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio). Separately, 7 g of triethyl phosphate and 5 g of fuming sulfuric acid are dissolved in 0.5 kg of a mixed solvent of cyclohexane: THF (9: 1, volume ratio), and the compound (I), N
o. After adding the 4 solutions, the mixture was sufficiently stirred. Furthermore, sulfuric anhydride 3
0 g was added dropwise to the above solution over 1 hour. Thereafter, a sulfonation reaction was performed at a reaction temperature of 70 ° C. for 10 hours. After that, the solvent is removed, washed in methanol, and then dried to obtain Compound (I), No. 1 4 was obtained. The same evaluation as in Example 1 was performed for the obtained sulfonated product.

【0038】(評価結果)上記のようにして得られたプ
ロトン導電性高分子電解質についての評価結果を表1に
示す。比較例としてフッ素骨格を持つプロトン導電性高
分子、登録商標Nafion117(デュポン社製)に
ついても測定をした。
(Evaluation Results) The evaluation results of the proton conductive polymer electrolyte obtained as described above are shown in Table 1. As a comparative example, a proton conductive polymer having a fluorine skeleton, Nafion 117 (manufactured by DuPont) was also measured.

【0039】[0039]

【表1】 EO:エチレンオキサイド *:カタログ値による[Table 1] EO: Ethylene oxide *: According to catalog values

【0040】表1に示す結果から明らかなように、本発
明のプロトン導電性高分子電解質は、成膜すると親水性
基成分が球状に集合し、残りの成分が連続相を形成して
おり、膜の吸水性、保液性に特に優れた炭化水素系高分
子電解質であることがわかった。
As is evident from the results shown in Table 1, the proton conductive polymer electrolyte of the present invention, when formed into a film, has a hydrophilic group component aggregated spherically and the remaining components form a continuous phase. It was found to be a hydrocarbon-based polymer electrolyte that was particularly excellent in water absorption and liquid retention of the membrane.

【0041】上述したように、一般的なPEFC燃料電
池の運転条件は80℃、加湿雰囲気であり、本発明では
一般式(I)の中のCH2CHR2Oで示される親水性基
の存在によって、従来のフッ素系高分子で問題となって
いた燃料電池作動時の水分の枯渇、吸水性の低さの問題
が改良されるのであるが、本発明の上記の効果は以下の
ように推察される。親水性基成分であるCH2CHR2
が膜中でミクロ相分離を起こし、親水性基成分の分子鎖
が凝集し球状の相を形成し、他方の芳香族成分は本来C
2CHR2Oで示される親水性基成分とマクロには相溶
しないためにCH2CHR2O成分と分離して連続相を形
成する。このことによって芳香族成分からなる連続相中
をスルホン基を介したプロトンが伝導し、球状に分散し
ているCH2CHR2Oで示される親水性基成分が電解質
と複合化して用いる水分の吸収、保持(保湿)の効果を
与えていると考えられる。
As described above, the general operating conditions of the PEFC fuel cell are 80 ° C. and a humidified atmosphere, and in the present invention, the presence of the hydrophilic group represented by CH 2 CHR 2 O in the general formula (I) is carried out. This improves the problem of water depletion and low water absorption during operation of the fuel cell, which have been problems with conventional fluoropolymers, but the above effects of the present invention are presumed as follows. Is done. CH 2 CHR 2 O which is a hydrophilic group component
Causes microphase separation in the membrane, the molecular chains of the hydrophilic group component aggregate to form a spherical phase, and the other aromatic component is originally C
Since the hydrophilic group component represented by H 2 CHR 2 O is not compatible with the macro, it is separated from the CH 2 CHR 2 O component to form a continuous phase. This allows protons to be conducted via the sulfone group through the continuous phase composed of the aromatic component, and the hydrophilic group component represented by CH 2 CHR 2 O dispersed in a spherical shape is combined with the electrolyte to absorb the water used. It is considered that the effect of holding (moisturizing) is given.

【0042】また、本発明においては、化合物(I)に
示したようにトリブロック化合物を用いることが必須で
あり、このことによってトリブロックの中心部に集中的
にグラフトされている親水性基がより安定に膜中に存在
することが可能になると考えられる。これはグラフト基
を持つ芳香族部分がその両端の芳香族化合物の分子鎖で
支えられているからであり、この効果は単にジブロック
化合物の一方のブロック鎖に親水性基をグラフトする場
合や親水性基と他の高分子鎖をブロック共重合した化合
物に比ベ、グラフト基の膜中での安定性が格段に向上す
ると考えられる。
Further, in the present invention, it is essential to use a triblock compound as shown in the compound (I), whereby the hydrophilic group which is intensively grafted to the center of the triblock can be reduced. It is thought that it is possible to more stably exist in the film. This is because the aromatic moiety having the graft group is supported by the molecular chain of the aromatic compound at both ends, and this effect is obtained only when a hydrophilic group is grafted to one of the block chains of the diblock compound. It is considered that the stability of the graft group in the film is remarkably improved as compared with a compound obtained by block copolymerizing a functional group and another polymer chain.

【0043】[0043]

【発明の効果】本発明のプロトン導電性高分子電解質
は、全くフッ素原子を含まないために、仮に本発明の電
解質材料が廃棄される場合でもフロン問題等の環境への
悪影響は存在しない。また、原材料が炭化水素のみであ
り、材料コストが大幅に低下することが期待される。更
に、将来的に大量供給を行う場合でも、フッ素系材料に
比べて本発明の電解質はより安定に供給することが可能
である。
Since the proton conductive polymer electrolyte of the present invention does not contain any fluorine atoms, even if the electrolyte material of the present invention is discarded, there is no adverse effect on the environment such as the chlorofluorocarbon problem. In addition, since the raw material is only hydrocarbon, it is expected that the material cost is significantly reduced. Furthermore, even when a large amount is to be supplied in the future, the electrolyte of the present invention can be supplied more stably than a fluorine-based material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で示される化合物のス
ルホン化物を含有することを特徴とするプロトン導電性
高分子電解質。 【化1】 (式中、R1は水素原子、メチル基又はエチル基、R2
水素原子又はメチル基、R3はアルキル基、nは整数、
4,R4 は水素原子、メチル基又はエチル基、M,
M’はフェニル基又は置換フェニル基である。また、
k,m,k’は整数である。)
1. A proton-conductive polymer electrolyte comprising a sulfonated compound of a compound represented by the following general formula (I). Embedded image (Wherein, R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a hydrogen atom or a methyl group, R 3 is an alkyl group, n is an integer,
R 4 and R 4 represent a hydrogen atom, a methyl group or an ethyl group, M,
M ′ is a phenyl group or a substituted phenyl group. Also,
k, m, and k 'are integers. )
【請求項2】 一般式(I)において、(k+k’):
mが30:1〜2:1であり、k+m+k’が200以
上であり、かつ(k+m+k’):nが1,000:1
〜10:1である化合物のスルホン化物を含有する請求
項1記載のプロトン導電性高分子電解質。
2. In the general formula (I), (k + k ′):
m is 30: 1 to 2: 1, k + m + k 'is 200 or more, and (k + m + k'): n is 1,000: 1.
The proton conductive polymer electrolyte according to claim 1, which contains a sulfonated product of a compound having a ratio of 10 to 10: 1.
【請求項3】 一般式(I)において、R1,R2がそれ
ぞれ水素原子、R3がメチル基、R4,R4 がそれぞれ
水素原子、M,M’がそれぞれフェニル基である化合物
のスルホン化物を含有する請求項1又は2記載のプロト
ン導電性高分子電解質。
3. A compound of the formula (I) wherein R 1 and R 2 are each a hydrogen atom, R 3 is a methyl group, R 4 and R 4 are each a hydrogen atom, and M and M ′ are each a phenyl group. The proton conductive polymer electrolyte according to claim 1, which comprises a sulfonated product of the above.
【請求項4】 式(I)で示される化合物のスルホン化
物が、式(I)で示される化合物を炭化水素系の環状パ
ラフィンを含む混合溶媒中でスルホン化することによっ
て得られるものであることを特徴とする請求項1,2又
は3記載のプロトン導電性高分子電解質。
4. A sulfonated compound of the formula (I) obtained by sulfonating a compound of the formula (I) in a mixed solvent containing a hydrocarbon-based cyclic paraffin. The proton conductive polymer electrolyte according to claim 1, 2, or 3, wherein:
【請求項5】 式(I)で示される化合物のスルホン化
物が、シクロヘキサンとテトラヒドロフランの混合溶媒
中でスルホン化することによって得られるものであるこ
とを特徴とする請求項4記載のプロトン導電性高分子電
解質。
5. The proton conductive material according to claim 4, wherein the sulfonated product of the compound represented by the formula (I) is obtained by sulfonating in a mixed solvent of cyclohexane and tetrahydrofuran. Molecular electrolyte.
JP2000111277A 2000-04-12 2000-04-12 Proton electroconductive polymer electrolyte Pending JP2001294617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111277A JP2001294617A (en) 2000-04-12 2000-04-12 Proton electroconductive polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111277A JP2001294617A (en) 2000-04-12 2000-04-12 Proton electroconductive polymer electrolyte

Publications (1)

Publication Number Publication Date
JP2001294617A true JP2001294617A (en) 2001-10-23

Family

ID=18623637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111277A Pending JP2001294617A (en) 2000-04-12 2000-04-12 Proton electroconductive polymer electrolyte

Country Status (1)

Country Link
JP (1) JP2001294617A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2003272664A (en) * 2002-03-18 2003-09-26 Asahi Kasei Corp Impregnated film and its manufacturing method
KR100506096B1 (en) * 2003-10-27 2005-08-03 삼성에스디아이 주식회사 Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP2006244994A (en) * 2005-02-07 2006-09-14 Fuji Photo Film Co Ltd Solid electrolyte, manufacturing method of solid electrolyte, electrode membrane junction and fuel cell
JP2016539239A (en) * 2013-12-06 2016-12-15 エルジー・ケム・リミテッド Block copolymer
JP2017501267A (en) * 2013-12-06 2017-01-12 エルジー・ケム・リミテッド Block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US10253130B2 (en) 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
CN109890857A (en) * 2016-11-30 2019-06-14 株式会社Lg化学 Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2003272664A (en) * 2002-03-18 2003-09-26 Asahi Kasei Corp Impregnated film and its manufacturing method
KR100506096B1 (en) * 2003-10-27 2005-08-03 삼성에스디아이 주식회사 Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP2006244994A (en) * 2005-02-07 2006-09-14 Fuji Photo Film Co Ltd Solid electrolyte, manufacturing method of solid electrolyte, electrode membrane junction and fuel cell
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
JP2016539239A (en) * 2013-12-06 2016-12-15 エルジー・ケム・リミテッド Block copolymer
JP2017501267A (en) * 2013-12-06 2017-01-12 エルジー・ケム・リミテッド Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10253130B2 (en) 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer
CN109890857A (en) * 2016-11-30 2019-06-14 株式会社Lg化学 Block copolymer
US11078318B2 (en) 2016-11-30 2021-08-03 Lg Chem, Ltd. Block copolymer

Similar Documents

Publication Publication Date Title
JP2001294617A (en) Proton electroconductive polymer electrolyte
Hu et al. Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery
US6100324A (en) Ionomers and ionically conductive compositions
KR100756457B1 (en) Block copolymers containing perfluorocyclobutane rings and electrolyte membranes using the same
EP2554579B1 (en) Proton conducting materials
JP3802556B2 (en) Polymers obtained from perhalogenated sultone derived monomers.
EP2084166B1 (en) Preparation process of aromatic sulfonylimides
CN1982357B (en) Polymer membrane for fuel cell, method of preparing same and membrane-electrode assembly comprising same
EP0671386B1 (en) Monomers derived from perhalogeneted sultones and polymers derived therefrom
JPH11116679A (en) Polymer electrode, polymer electrode membrane, and fuel battery
US7771891B2 (en) Ionic conductor, process for production thereof, and electrochemical device
JP4930690B2 (en) Ion conductive polymers and imide monomers
CN109575267A (en) Polyether-based polymers, cross-linked network polymer and electrochemical device
JP2001210336A (en) Membrane for a fuel cell and fuel cell using it
JP5032843B2 (en) Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell
JP3105137B2 (en) Composite solid electrolyte
WO2006047158A2 (en) Novel compositions of monomers, oligomers and polymers and methods for making the same
US7592375B2 (en) Ion conductive polymers and imide monomers
CA2563040C (en) Polymer having oxocarbon group, and use thereof
US9012598B2 (en) Poly(ethyleneoxide) functionalization through alkylation
JP2003147076A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
CN1395585A (en) Process for making graft copolymers
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof
JP2005054170A (en) Copolymer and its application
Sutrisno et al. Surface modification of heteropolyacids (HPAs) for proton exchange membrane fuel cells (PEMFCs)