JP2001286883A - 下水道終末処理場流入水の処理方法および処理装置 - Google Patents

下水道終末処理場流入水の処理方法および処理装置

Info

Publication number
JP2001286883A
JP2001286883A JP2000106591A JP2000106591A JP2001286883A JP 2001286883 A JP2001286883 A JP 2001286883A JP 2000106591 A JP2000106591 A JP 2000106591A JP 2000106591 A JP2000106591 A JP 2000106591A JP 2001286883 A JP2001286883 A JP 2001286883A
Authority
JP
Japan
Prior art keywords
treatment
wastewater
bod
industrial wastewater
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000106591A
Other languages
English (en)
Inventor
Tatsuo Takechi
辰夫 武智
Toshiaki Tsubone
俊明 局
Jun Miyata
純 宮田
Kei Baba
圭 馬場
Shinichi Endo
伸一 遠藤
Masahisa Tanabe
正久 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000106591A priority Critical patent/JP2001286883A/ja
Publication of JP2001286883A publication Critical patent/JP2001286883A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

(57)【要約】 【課題】 BOD除去処理と同時に窒素除去処理及びリ
ン除去処理の少なくとも一種を行ない、下水道終末処理
場での処理反応を比較的短時間で進行させさせ、良好な
窒素除去処理水又はリン除去処理水を経済的に得ること
ができ、かつ軽減された費用で運転可能な下水道終末処
理場流入水の処理装置を提供する。 【解決手段】 BOD濃度が比較的高く、窒素濃度及び
リン濃度が比較的低い産業廃水を、この産業廃水の発生
工場で生物処理する生物処理装置、前記生物処理装置で
処理された産業廃水を、下水道終末処理場へ導入する導
入手段、および、前記下水道終末処理場に生活系廃水を
導入して、前記産業廃水と混合処理する手段を具備する
処理装置である。前記産業廃水の発生工場における前記
産業廃水の生物処理装置は、BODの酸化除去能力が比
較的低く、この生物処理装置で得られた処理水は、下水
道へ放出可能な比較的高いBOD濃度を有することを特
徴とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、廃水の処理方法お
よび処理装置に係り、特に、下水道終末処理場に流入す
る廃水、すなわち産業廃水と生活系廃水との混合廃水の
処理に当たって、BOD除去処理とともに生物学的窒素
除去処理や生物学的リン除去処理を行なう処理方法およ
び処理装置に関する。
【0002】
【従来の技術】有機物等の汚泥物質を廃水から除去する
ための手法として、生物学的処理技術が広く用いられて
おり、活性汚泥法およびその装置は代表的な例である。
活性汚泥法設備で処理することによって、主にBODお
よびSSを廃水から除去することができる。すなわち、
BODの少なくとも一部は、活性汚泥法設備の曝気槽に
おいて好気的に酸化分解される。また、BODの少なく
とも一部はSSとして測定される微生物体へと転換し、
廃水中に元来含まれていたSSは、BODの酸化処理の
結果発生したSSとともに、処理設備の最初沈澱池およ
び最終沈澱池において沈降分離除去される。
【0003】近年、閉鎖性水域の富栄養化を防止するた
めに、BOD、SSのみならず、窒素およびリンをも除
去することのできる廃水処理技術が用いられるに至って
いる。このような技術に属するものとしては、活性汚泥
法の変法である、活性汚泥硝化液循環変法や嫌気−無酸
素−好気活性汚泥法や嫌気−好気活性汚泥法を挙げるこ
とができる。
【0004】活性汚泥硝化液循環変法と称される方法を
用いた従来の廃水処理装置の例を、図3に示す。図示す
るように、この廃水処理装置は、最初沈澱池2と好気槽
4と無酸素槽3と最終沈澱池7とから構成される。好気
槽4内には散気装置5が配設されており、廃水中の窒素
化合物を硝酸性窒素または亜硝酸性窒素にまで酸化する
反応(硝化反応)、およびその他の反応が好気槽4にお
いて行われる。また、無酸素槽3においては、硝酸性窒
素または亜硝酸性窒素を窒素ガスにまで還元する反応
(脱窒反応)およびその他の反応が行われる。
【0005】廃水1は、まず最初沈澱池2に導入され、
ここで比較的大きく重い固形物を除去した後、反応槽へ
導入される。廃水中の窒素は、硝化反応および脱窒反応
を受け、最終的に窒素ガスの形で大気中に放散されるこ
とによって廃水中から除去される。硝化処理を受けた後
の好気槽4流出液の少なくとも一部は、硝化循環液6と
して無酸素槽3へ循環返送される。最終沈澱池7におい
て処理水9が得られるとともに、ここで生じた沈澱汚泥
の一部は返送汚泥8として無酸素槽3へ導入される。
【0006】この無酸素槽3内での脱窒反応は、硝酸分
子もしくは亜硝酸分子に含まれる結合酸素で有機物(B
OD)を酸化する反応である。この反応には還元剤が必
要とされ、無酸素槽3へ導入される廃水中の有機物が還
元剤として利用される。またこの反応は、遊離酸素の存
在しない条件、すなわち無酸素条件下で進行する。BO
D等として測定される廃水中の有機物は、無酸素槽3お
よび好気槽4の双方において除去され、SSは最初沈澱
池2および最終沈澱池7で除去される。
【0007】嫌気−無酸素−好気活性汚泥法あるいはA
2O法と称される従来の方法による廃水処理装置の例
を、図4に示す。図示するように、この廃水処理装置
は、最初沈澱池2、嫌気槽10、無酸素槽3、好気槽4
および最終沈澱池7から主に構成される。嫌気槽10に
おいては、活性汚泥が細胞内のリン酸イオンを廃水中に
放出する生物学的リン放出反応、およびその他の反応が
行われ、無酸素槽3においては、活性汚泥が廃水中のリ
ン酸イオンを細胞内に摂取する生物学的リン摂取反応、
脱窒反応およびその他の反応が行われる。好気槽4内に
は散気装置5が配設されており、活性汚泥が廃水中のリ
ン酸イオンを細胞内に摂取する生物学的リン摂取反応、
硝化反応およびその他の反応が、好気槽4において行わ
れる。
【0008】硝化処理を受けた後の好気槽4流出液の少
なくとも一部は、硝化循環液6として無酸素槽3へ循環
返送される。また、最終沈澱池7で得られた沈澱汚泥の
一部は、返送汚泥8として嫌気槽10へ導入される。無
酸素工程および好気工程における活性汚泥のリン摂取量
は、嫌気工程でのリン放出量よりも大であり、このリン
摂取量とリン放出量との差が、廃水からのリン除去量に
相当する。
【0009】図4に示した嫌気−無酸素−好気活性汚泥
法装置は、生物学的な脱リン反応と脱窒素反応とを行わ
せて、廃水中のBODおよびSSとともに、リンおよび
窒素を除去処理するものである。生物学的リン放出反応
および生物学的リン摂取反応のいずれもが有機物(BO
D)を必要とする反応であり、リン放出反応は遊離酸素
および結合酸素の存在しない条件下、すなわち嫌気条件
下で進行する。このため、図示する装置においては、硝
化循環液6を嫌気槽10へ導入していない。これは、硝
化循環液6中の硝酸、亜硝酸分子に含まれる結合酸素
が、嫌気槽10へ導入されてリン放出反応が抑制される
のを防止するためである。
【0010】図4には示していないが、アルミニウム塩
もしくは鉄塩などの凝集剤を、例えば、反応槽の流入部
あるいは流出部などへ添加することによって、生物脱リ
ン処理法と物理化学的脱リン処理法とを併用した装置と
することもできる。また、図3に示した活性汚泥硝化液
循環変法による生物学的硝化脱窒装置において、この物
理化学的脱リン処理法を併用する場合もある。
【0011】嫌気−好気活性汚泥法と称される従来の方
法による廃水処理装置の例を、図5に示す。図示するよ
うに、この装置は、主に最初沈澱池2、嫌気槽10、好
気槽4、および最終沈澱池7から構成される。嫌気槽1
0においては、活性汚泥が細胞内のリン酸イオンを廃水
中に放出する生物学的リン放出反応、およびその他の反
応が行われる。好気槽4内には散気装置5が配設されて
おり、活性汚泥が廃水中のリン酸イオンを細胞内に摂取
する生物学的リン摂取反応、およびその他の反応が好気
槽4において行われる。
【0012】最終沈澱池7で得られた沈澱汚泥の一部
は、返送汚泥8として嫌気槽10へ導入される。好気工
程における活性汚泥のリン摂取量は、嫌気工程でのリン
放出量よりも大であり、このリン摂取量とリン放出量と
の差が、廃水からのリン除去量に相当する。
【0013】図5に示した嫌気−好気活性汚泥法処置
は、生物学的な脱リン反応を行わせ、廃水中のBODお
よびSSとともに、リンを除去処理するものである。図
5には示していないが、凝集剤を添加することによっ
て、生物脱リン処理法と物理的脱リン処理法とを併用し
た装置とする場合もある。
【0014】前述の図3および図4に示した装置におい
て、浮遊生物(活性汚泥)のみを利用して硝化脱窒反応
を起こさせようとした場合には、次のような問題が生じ
る。すなわち、硝化細菌の増殖速度は、BOD除去細菌
や脱窒細菌の増殖速度に比べて小さいため、一つの活性
汚泥系の中で硝化細菌の濃度と活性とを維持するには、
活性汚泥系の汚泥令(汚泥の滞留時間)を大とする必要
がある。結果として、反応槽内に多量の汚泥を保持する
ためには、反応槽を大きくしなければならない。このよ
うな問題に対処するために、反応槽の少なくとも一部へ
粒状担体を投入し、固定化微生物に硝化反応を担わせる
ことが提案されている。これによって、全体滞留時間が
6〜8時間程度の反応槽においてBODおよびSS除去
処理と、硝化脱窒処理と、場合によってはさらに生物学
的リン除去処理を行うという技術も近年実用化されるに
至っている。
【0015】産業廃水の処理に用いられる方法および装
置は、その産業廃水の性状、処理量や目標処理水質等に
よって種々である。ここで、食品工場廃水など、窒素や
リンの濃度に比してBODの濃度の高い廃水の処理に用
いられる従来の装置の一例を、図6に示す。図示する処
理装置においては、産業廃水21は、いったん廃水貯留
槽22へ貯留されて、その廃水の元来の性状に応じて、
薬剤が添加される。具体的には、後段での生物処理ある
いは処理水の放流に適したpHに調整するためのpH調
整剤26、窒素分を補給するための窒素系薬剤27、お
よびリン分を補給するためのリン系薬剤28が、廃水貯
留槽22に添加される。こうした薬剤の添加によって、
廃水の性状を後段での活性汚泥処理等の生物処理に適し
たものへ調整するとともに、その容量を利用して処理量
の均一化を可能にする。
【0016】その後、廃水は曝気槽23へ導入され、活
性汚泥8と混合しつつ、散気装置5を通じて供給される
空気中の酸素を利用して廃水21中のBODが酸化処理
される。曝気槽23での処理を終えた汚泥混合液は沈澱
池24へ導入され、ここで固液分離されて上澄水として
処理水9を得るとともに沈澱汚泥が得られる。沈澱汚泥
の一部は返送汚泥8として曝気槽23へ返送され、残部
は余剰汚泥として引き抜いて汚泥の処理処分を行う。な
お、産業廃水の性状等によっては、図6に示した処理設
備の他に、凝集沈澱設備や砂ろ過設備や活性炭処理設備
等が備えられている場合もある。
【0017】図6は、活性汚泥法による産業廃水の処理
の例を示したものであるが、処理対象となる廃水中にシ
アンや重金属等の毒物がほとんど含まれていない場合に
は、食品工業廃水に限らず活性汚泥法に代表される生物
処理法設備で処理される場合が多い。これは、生物処理
法設備の運転費が、活性炭吸着法や凝集沈澱法等の物理
化学的処理設備のそれに比べて一般的に安価なことによ
る。
【0018】下水道が整備されている場合、生活系廃水
は基本的に下水管路へ放出され、下水道終末処理場で処
理されて河川もしくは海域等へ放流されることになる。
一方、産業廃水に関しては、発生者がその発生工場内で
その廃水を処理し、直接河川もしくは海域等へ放流する
場合と、発生工場からの廃水を下水道へ放出し、最終的
に終末処理場で処理を行ってから河川もしくは海域等へ
放流する場合とがある。産業廃水の処理と下水道との関
わりの例を、模式的に図7に示す。同図において、A工
場の産業廃水A1をA工場内の処理設備A2で処理して
得られたA工場の処理水A3は、河川もしくは海域等へ
放流され、B工場の産業廃水B1をB工場の処理設備B
2で処理して得たB工場の処理水B3は、下水道へ放出
される。
【0019】産業廃水が下水道へ放流される場合、その
廃水の量および濃度によっては、終末処理場の処理機能
に支障を来すおそれがあるため、工場の排水量に応じて
下水道への受け入れ条件(BODやSS濃度の上限等)
が定められているのが通例である。発生した産業廃水が
そのまま下水道へ放出される場合もあるが、発生者が必
要に応じていったん自社工場内で産業廃水の処理を行っ
たうえで下水道へ放出する場合もある。例えば、下水道
で受け入れる廃水のBODが300mg/L以下と定め
られている場合、BOD濃度600mg/L程度の廃水
を発生する工場において、処理水のBODが300mg
/L弱となるまでの低級処理を行った後に処理水を下水
道へ放出し、終末処理場において、受け入れた該産業廃
水を家庭下水等とともに処理してBODを20mg/L
以下とし、河川へ放流するような場合がこれに相当す
る。
【0020】図7に示した例においては、B工場の産業
廃水B1は処理設備B2で処理した後、下水道へ放出さ
れている。この場合、B工場の産業廃水処理水B3は、
生活系廃水等からなる下水C1と混合された後、下水道
終末処理場処理設備C2で処理され、得られた下水処理
水C3が河川もしくは海域等へ放流されることになる。
【0021】図7における下水処理設備C2は、現時点
では標準活性汚泥法によるものが多いが、先に述べた活
性汚泥硝化液循環変法や嫌気−無酸素−好気活性汚泥法
や嫌気−好気発生汚泥法等による高度処理設備も徐々に
増加しつつある。
【0022】
【発明が解決しようとする課題】生物学的硝化脱窒法に
よって下水の窒素除去処理を行うにおいては、次のよう
な問題がある。すなわち、終末処理場へ流入した汚水に
対しては、まずスクリーンや最初沈澱池によって固形汚
濁物質の除去処理が行われるため、最初沈澱池を経由し
て脱窒工程へ供給される廃水は、溶解性汚濁物質を主体
とした構成となる。この際、脱窒工程へ供給される廃水
中の汚濁物質、特に溶解性汚濁物質の有機物濃度/窒素
濃度比が低い場合には、有機物(還元剤)不足のために
脱窒反応の進行が不充分となって処理水の水質が悪化し
てしまう。
【0023】生物学的リン除去処理においても、その嫌
気反応および好気反応に有機物が必要とされる。したが
って、反応槽へ流入する有機物(BOD)の濃度がリン
の濃度に比べて不足している場合には、リン放出反応も
しくはリン摂取反応もしくはその双方が不充分となっ
て、前述と同様に処理水水質が悪化するという問題があ
る。
【0024】下水の処理に関する本発明者の実験的知見
によれば、下水中における全窒素濃度は20〜30mg
/Lであり、BOD濃度/窒素濃度比が3.1程度より
高くなると、生物学的窒素除去処理水の窒素濃度を7m
g/L以下とすることは比較的容易となる。しかしなが
ら、BOD濃度/窒素濃度比が2.8程度より低い場合
には、生物学的窒素除去処理水の窒素濃度を7mg/L
以下とすることは比較的困難となる。
【0025】すなわち、廃水中のBODの比率が高い場
合、生物学的窒素除去反応のうちの硝化反応が比較的低
速に進行するというデメリットはあるものの、脱窒素反
応に用いられる有機物が充分に存在している点では有利
である。このため、硝化反応が充分に生じるようにすれ
ば、最終的には窒素濃度の低い処理水を比較的容易に得
ることが可能である。廃水中のBODの比率が高い場合
の硝化反応は、例えば硝化細菌固定化担体を利用するこ
とによって促進させることができる。あるいは、硝化反
応槽滞留時間を大きくするといった手段を採用しても、
硝化反応を促進することができる。これらの手段を用い
るに際には、磨耗が少なく補充の必要性の小さい担体を
使用する等の注意を払えば、BODの除去処理のみを行
う場合に比べて運転費が大幅に増加するという問題を生
じることはなく、良好な処理水を得ることができる。
【0026】これに対して、廃水中のBODの比率が低
い場合には、生物学的窒素除去反応のうちの硝化反応が
比較的高速に進行するというメリットはあるものの、生
物学的窒素除去反応のうちの脱窒反応は比較的低速で進
行する。また、硝酸性窒素もしくは亜硝酸性窒素の還元
剤が、化学量論的に不足することになる。その結果、硝
酸性窒素もしくは亜硝酸性窒素の除去が不充分となり、
最終処理水中には比較的高濃度の窒素が残留することが
多かった。終末処理場流入下水中のBODの比率が低い
場合には、窒素除去処理を目的とした高度処理を行った
ところで、良好な処理水を得ることが困難であり、これ
は大きな問題であった。
【0027】終末処理場流入下水中のBODの比率が低
い場合には、リン除去処理を目的とした高度処理を行う
場合でも、前述と同様の理由から良好な処理水を得るこ
とは困難であった。
【0028】上述のように終末処理場流入下水の組成が
有機物(BOD)の比率の低いものとなる大きな原因の
1つとして、下水の由来および組成を挙げることができ
る。例えば、トイレ廃水や台所廃水等を総合したもので
ある、いわゆる生活系廃水は、そのBOD濃度と窒素濃
度との比が3対1内外である。これに対して、例えば、
製餡廃水やアルコール系醸造廃水等の産業廃水は、BO
Dの比率の非常に高いものであり、コークス製造時に発
生する廃水(安水)や皮革製造廃水は、窒素の比率の非
常に高い産業廃水である。都市下水は、一般には多くの
生活系廃水を含有するものであるが、産業廃水が混入す
ることも多い。その産業廃水の種類や混入比によって
は、産業廃水の混入した下水のBOD濃度/窒素濃度比
が低くなって、終末処理場で窒素除去処理やリン除去処
理を行う場合に、良好な処理水を得ることが困難となっ
ていた。
【0029】前述の製餡廃水やアルコール系醸造廃水等
のようにBODの比率の極めて高い産業廃水を、当該工
場の活性汚泥処理設備等で高度に処理することによっ
て、その処理水はBODの比率の低いものとなる。した
がって、元来BODの比率の高い産業廃水であっても、
比較的高級な処理、すなわちBOD除去率の高い処理を
施した後の処理水を下水道へ放出した場合には、次のよ
うな問題が生じる。具体的には、下水道終末処理場が受
け入れた廃水、すなわち産業廃水と生活系廃水等との混
合廃水のBODの比率は、窒素除去処理あるいはリン除
去処理を行うのに必ずしも適した充分高いものとはなら
なかった。
【0030】さらに、一般的に、BOD除去処理を主目
的とした活性汚泥処理においては、処理すべき廃水の組
成は、BOD:窒素:リン=100:5:1程度が好ま
しいとされている。したがって、BODの比率の高い産
業廃水に対して良好なBOD除去処理を施すために、元
来の廃水中の成分のみでは不足する窒素やリンを補うべ
く、硫安やリン酸アンモニウムやリン酸を人工的に廃水
へ添加してから活性汚泥処理を行うという技術も用いら
れてきた。窒素濃度あるいはリン濃度を相対的に高める
ことによってBODを良好に除去処理した処理水は、B
OD濃度が相対的に低く、窒素濃度あるいはリン濃度が
相対的に高いものとなる。このように処理された産業廃
水の処理水が下水道へ放出された場合には、終末処理場
流入水は、必ずしも窒素除去処理あるいはリン除去処理
を行うのに適した、BODの比率が充分に高いものとは
なっていなかった。
【0031】窒素除去処理およびリン除去処理の少なく
とも一方の処理をBOD除去処理と同時に行なう場合、
処理対象廃水の組成が、BOD濃度/窒素濃度比あるい
はBOD濃度/リン濃度比の小さなものである場合に
は、廃水中のBODの不足に起因して目標とする水質の
処理水を得ることが困難となることがある。こうした問
題に対処するために、脱窒工程もしくは生物学的リン除
去処理工程へ廃水とともにメタノール等の有機薬剤を供
給し、廃水中の有機物濃度の不足を補うことによって良
好な窒素除去処理水もしくはリン除去処理水を得るとい
う方法が用いられてきた。しかしながら、メタノール等
の有機薬剤を脱窒工程もしくは生物学的リン除去処理工
程へ流入させた場合には、薬剤費がかかるため運転費の
増加を招いてしまう。さらに、種類や濃度によっては危
険物である有機薬剤を大量に貯蔵・供給するための設備
が必要となるので設備費が高くなり、設備の運転管理の
ために高度の安全上の配慮を必要とするといった問題を
生じることになっていた。
【0032】生物処理の対象となる汚水において、BO
D濃度/窒素濃度比あるいはBOD濃度/リン濃度比が
小さいという条件は、例えば標準活性汚泥法などの従来
の技術においては、特に大きな問題とはなっていなかっ
た。従来の処理技術では、BOD濃度/窒素濃度比ある
いはBOD濃度/リン濃度比の小さな汚水に対して主に
好気性処理を施して、BODおよびSSが良好に除去さ
れればよく、窒素あるいはリンが除去対象ではなかった
ためである。
【0033】本発明は、BOD除去処理と同時に窒素除
去処理およびリン除去処理の少なくとも一種を行なう下
水道終末処理場流入水の処理方法であって、下水道終末
処理場において比較的短時間の反応により処理し、良好
な窒素除去処理水もしくはリン除去処理水を経済的に得
ることができ、かつ運転費の負担を軽減し得る下水道終
末処理場流入水の処理方法を提供することを目的とす
る。
【0034】また本発明は、BOD除去処理と同時に窒
素除去処理およびリン除去処理の少なくとも一種を行な
う下水道終末処理場流入水の処理装置であって、下水道
終末処理場において比較的短時間で処理反応が行なわ
れ、良好な窒素除去処理水もしくはリン除去処理水を経
済的に得ることができ、かつ軽減された費用で運転可能
な下水道終末処理場流入水の処理装置を提供することを
目的とする。
【0035】
【課題を解決するための手段】上記課題を解決するため
に、本発明は、嫌気槽もしくは無酸素槽で処理する工程
を少なくとも反応槽の一部に有し、生物学的窒素除去処
理および生物学的リン除去処理の少なくとも一方を行な
う下水道終末処理場流入水の処理方法であって、BOD
濃度が比較的高く、窒素またはリンの濃度の比較的低い
産業廃水を、この産業廃水の発生工場において生物処理
してBODを除去する工程、前記BOD除去後の産業廃
水を下水道終末処理場へ導入する工程、および前記下水
道終末処理場へ生活系廃水を導入して、前記産業廃水と
混合処理する工程を具備し、前記産業廃水の発生工場に
おける前記産業廃水の生物処理は、BODの酸化除去能
力の比較的低い条件下で行なわれ、下水道へ放出可能な
上限に近いBOD濃度の処理水がこの工程で得られるこ
とを特徴とする下水道終末処理場流入水の処理方法を提
供する。
【0036】また本発明は、反応槽の少なくとも一部に
嫌気槽または無酸素槽を有し、生物学的窒素除去処理お
よび生物学的リン除去処理の少なくとも一方を行なう下
水道終末処理場流入水の処理装置であって、BOD濃度
が比較的高く、窒素濃度およびリン濃度が比較的低い産
業廃水を、この産業廃水の発生工場において生物処理す
るための生物処理装置、前記生物処理装置で処理された
産業廃水を、下水道終末処理場へ導入する導入手段、お
よび前記下水道終末処理場に生活系廃水を導入して、前
記産業廃水と混合処理する手段を具備し、前記産業廃水
の発生工場における前記産業廃水の生物処理装置は、B
ODの酸化除去能力が比較的低く、この生物処理装置で
得られた処理水は、下水道へ放出可能な上限に近いBO
D濃度を有することを特徴とする下水道終末処理場流入
水の処理装置を提供する。
【0037】本発明の下水道終末処理場流入水の処理方
法においては、前記産業廃水を前記産業廃水の発生工場
において生物処理する工程中に、制限曝気処理;窒素化
合物およびリン化合物の少なくとも1種の、前記産業廃
水への制限添加;返送汚泥流量の制限;曝気槽の有効容
量の制限;および温度調整操作の度合いの制限から選択
される少なくとも1種が行なわれることが好ましい。
【0038】本発明の下水道終末処理場流入水の処理装
置においては、前記産業廃水の発生工場において前記産
業廃水を生物処理するための生物処理装置は、制限曝気
手段;窒素化合物およびリン化合物の少なくとも1種
を、前記産業廃水に制限添加する手段、返送汚泥流量を
制限する手段、曝気槽の有効容量を制限する手段、およ
び温度調整操作の度合いを制限する手段から選択される
少なくとも1種の手段を具備することが好ましい。
【0039】本発明において、下水道終末処理場流入水
とは、下水道終末処理場に流入する廃水、すなわち産業
廃水と生活系廃水との混合廃水をさす。
【0040】
【発明の実施の形態】以下、図面を参照して、本発明に
関わる下水道終末処理場流入水の処理方法および処理装
置を説明する。
【0041】図1は、本発明に係る下水道終末処理場流
入水の処理装置の一部を構成する産業廃水の処理装置の
一例を表す概略図である。図示する装置においては、産
業廃水21は、まず廃水貯留槽22へ貯留される。ここ
では、その廃水の元来の性状に応じて、後段での生物処
理および処理水の放流に適したpHへと調整するための
pH調整剤26を添加するとともに、処理量の均一化を
可能とする。その後、曝気槽23および沈澱槽25より
なる活性汚泥処理設備へ廃水を導入して、返送汚泥8と
混合しつつ、散気装置5を通じて供給される空気中の酸
素を利用して廃水21中のBODを酸化処理する。曝気
槽23での処理を終えた汚泥混合液は沈澱池24へ導入
され、ここで固液分離されて、上澄水として処理水9を
得るとともに、沈澱汚泥が得られる。沈澱汚泥の一部は
返送汚泥8として曝気槽23へ返送され、残部は余剰汚
泥として引き抜いて汚泥の処理処分を行なう。
【0042】図1に示した本発明の装置が図6に示した
従来の装置と異なる点の1つは、廃水の性状を調整する
ために廃水貯留槽22への窒素系薬剤27およびリン系
薬剤28の添加ラインを有しないことである。
【0043】本発明のねらいとするところは、BOD濃
度の比較的高い下水道終末処理場流入水に対して下水道
終末処理場で窒素除去処理もしくはリン除去処理を行な
い、下水道終末処理場流入水中のBODを有効に利用し
て良好な処理水を得ることにある。これを達成するため
に、BOD濃度の比較的高い産業廃水を必要に応じてい
ったん処理し、この処理水を下水道へ放出する際の処理
水のBOD濃度を、下水道への放出の可能な上限に近い
濃度としている。
【0044】上述したような本発明の目的を達成するた
めの手段の1つとして、図1に示したように、窒素系薬
剤27およびリン系薬剤28を添加せずに、その廃水を
工場内で生物処理して比較的BOD濃度の高い産業廃水
を得て、これを下水道へ放出する。この場合、工場内の
生物処理設備へ流入する時点での産業廃水のBOD濃度
/窒素濃度比が100/5より大きいか、もしくはBO
D濃度/リン濃度比が100/1より大きなものである
ことが好ましい。
【0045】ただし、産業廃水の元々の性状によって
は、窒素系薬剤27もしくはリン酸系薬剤28を無添加
で処理すると、BOD濃度/窒素濃度比もしくはBOD
濃度/リン酸濃度比が過大となって、下水道への放出可
能なBOD濃度の処理水が得られない場合がある。この
場合には、産業廃水に対して少量の窒素系薬剤27もし
くはリン酸系薬剤28もしくはその両者を添加し、下水
道への放出可能な程度にまでBODを除去処理すること
が望まれる。
【0046】本発明の処理技術において、窒素系薬剤2
7もしくはリン系薬剤28を無添加とするか否か、こう
した薬剤を添加する際の添加量については、産業廃水の
性状および発生量と下水道への受け入れ基準等を勘案し
て決定することができる。いずれの場合においても、産
業廃水が工場内の生物処理設備へ流入する時点でのBO
D濃度/窒素濃度比が100/5より大きいか、もしく
はBOD濃度/リン濃度比が100/1より大きいか、
もしくはその両者であることが好ましい。
【0047】産業廃水における元来のBOD濃度の比率
が高いためにこれらの薬剤を添加して運転する場合にお
いても、BODの高度な除去を主目的として処理する従
来の技術では、これらの薬剤の添加量は、BOD濃度/
窒素濃度比が100/5程度、もしくはBOD濃度/リ
ン濃度比が100/1程度が目処とされていた。これに
対して本発明においては、これらの濃度比をより高いも
のとし、薬剤の添加量は少ないものとする。こうした薬
剤が無添加の場合および比較的少量を添加する場合を合
わせて、本発明においては制限添加と定義する。
【0048】産業廃水の処理において、窒素系薬剤27
もしくはリン系薬剤28を制限添加とすることによっ
て、薬剤費は従来の活性汚泥処理において必要とされた
費用より低減される。このため、産業廃水生産者にとっ
ては、処理設備の運転費の負担が軽減されるという利点
がある。
【0049】先に述べたように、本発明のねらいとする
ところは、下水道終末処理場流入水のBOD濃度を比較
的高いものとし、下水道終末処理場で窒素除去処理もし
くはリン除去処理を行なうに当たって、下水道終末処理
場流入中のBODを有効に利用して良好な処理水を得る
ことにある。これを達成するために、BOD濃度の比較
的高い産業廃水を必要に応じていったん処理し、この処
理水を下水道へ放出する際の処理水のBOD濃度を、下
水道への放出の可能な上限に近い濃度としている。
【0050】したがって、本発明に係る下水道終末処理
場流入水の処理装置を構成する産業廃水の生物処理装置
は、BODの酸化除去能力が比較的小さく、下水道への
放出の可能な上限に近いBOD濃度の処理水の得られる
ものである必要がある。図1に示した産業廃水の活性汚
泥処理設備においては、散気装置5を通じて曝気槽23
へ供給される酸素量を制限することによって、返送汚泥
30の流量を制限して曝気槽23内の活性汚泥濃度を低
下させることによって、あるいは、曝気槽23の有効容
量を制限して曝気・反応に係わる時間を低減することに
よって、これを達成することができる。また、反応温度
を適正化するために加温もしくは冷却操作を施している
場合には、温度調整操作の度合いを制限してもよい。特
に、これらの手段を組み合わせて使用することは、産業
廃水処理装置におけるBODの酸化除去処理能力を小さ
くするために有効である。
【0051】さらに、これらの手段を、前述の窒素系薬
剤27またはリン系薬剤28を制限添加して処理すると
いう手段と組み合わせることも可能であり、かつこの手
法は有効である。
【0052】本発明における産業廃水の生物処理設備に
おいて、制限曝気とする場合、極端な場合には無曝気と
することが可能である。しかしながら、処理対象である
産業廃水が貯留槽22および曝気槽23へ滞留する時間
や産業廃水の性状等によっては、産業廃水中に含まれる
有機物が腐敗して、悪臭を発生することがある。このた
め、腐敗の進行を妨げるための少量の曝気が必要となる
場合もある。この制限曝気という手段のなかには、曝気
槽への空気吹き込みに関して、空気流量を低減化する、
あるいは送気を間歇化することによって吹き込み空気量
を低減するという手段のみならず、次のような手段も含
まれる。具体的には、例えば粗大気泡型の散気装置を用
いる、あるいは散気水深を低減する等、酸素溶解効率の
比較的低い散気システムを適用して曝気槽への空気吹き
込みを実施するという手段である。吹き込み空気による
気泡径が大きい場合には、単位吹き込み空気量当たりの
気液接触面積が小さくなり、散気水深が小さい場合に
は、気液接触時間が小さくなって液側への酸素の溶解効
率が低下する。こうして、いずれの場合も、生物酸化処
理に利用される酸素量が制限される結果、産業廃水処理
装置のBODの酸化除去処理能力は小さくなる。
【0053】本発明において、産業廃水を活性汚泥生物
処理する設備の返送汚泥8の流量を制限する場合、極端
な場合には無返送とすることも可能である。この場合、
曝気槽23内の活性汚泥(微生物)濃度は極めて低くな
るため、生物処理としての機能は大幅に低下することに
なる。通常、産業廃水処理のための活性汚泥処理設備の
曝気槽における活性汚泥濃度(MLSS濃度)は、20
00〜5000mg/L程度で運転されるが、返送流量
を低下させてMLSS濃度を低下させると、活性汚泥処
理設備のBODの酸化除去処理能力は、曝気槽内のML
SS濃度にほぼ比例して低下する。返送汚泥の流量を低
減するためには、汚泥返送ポンプの流量を小とすること
も可能であり、汚泥返送ポンプの稼動時間を制限して間
歇運転とすることも可能である。
【0054】また本発明において産業廃水を生物処理す
る設備の曝気槽23の有効容量を制限する場合、極端な
場合には、曝気槽23をバイパスして運転することも可
能である。曝気槽23の一部のみを使用する場合、曝気
槽23の一部を埋め殺す、あるいは流下式多段曝気槽の
途中へ産業廃水を導入する、あるいは曝気槽の流出レベ
ルを下げて有効水深を低下させる等の手段を用いること
ができる。
【0055】産業廃水処理設備において、曝気槽23の
有効容量が比較的小さい場合や発生する廃水の温度が例
えば0℃程度の低いものである場合、産業廃水処理設備
が寒冷地にある場合などには、廃水貯留槽22および曝
気槽23の少なくとも一方をスチーム等によって加熱し
て、曝気槽23の温度を例えば30℃程度のような生物
処理に有効な温度に近づけて処理するという技術が用い
られている。
【0056】一方、発生する工場廃水の有機物(BO
D)の濃度が例えば20000mg/L以上といった極
めて高いものである場合には、曝気槽23での生物酸化
反応に伴って発熱し、水温が高くなりすぎて廃水処理効
率の低下することがある。その対策として、曝気槽23
を冷却し、曝気槽の温度を生物処理に好適な条件に近づ
けて処理するという技術が用いられている。
【0057】上述したような場合には、温度調整操作の
度合いを制限し、廃水処理反応温度が好適な領域からは
ずれるようにすることによって、微生物の活性を低下さ
せることができる。その結果、廃水処理装置のBODの
酸化処理能力を小さくすることが可能となる。
【0058】以上の手段のうちで、曝気槽23へ導入す
る空気量(酸素量)を低下させる、あるいは返送汚泥3
0の流量を低下させて曝気槽23内の活性汚泥濃度を低
下させるという手段を採用することは、曝気用送風機の
負荷あるいは汚泥返送用ポンプの負荷の低減につなが
る。このため、モーター動力が低減されて運転費が低減
できる場合が多い。特に、送風機またはポンプが複数基
設置されていて、稼動基数を低減できる場合には顕著な
経済的効果が期待できる。また、酸素溶解効率の比較的
低い散気システムを用いる場合においても、散気装置を
通じて曝気槽内部へ空気が吹き込まれる際の通気抵抗が
小さくなるため、送風機動力が低減できる場合が多い。
【0059】通常の生物処理においては、曝気動力は比
較的大きい。このため、上述した手段のなかでも、制限
曝気を施す、すなわち曝気風量を低減する、あるいは酸
素溶解効率の比較的小さな散気システムを用いるという
手段を採用することによって、運転費を大幅に削減する
という効果が得られる場合が多い。
【0060】産業廃水の処理に係わる上述した手段は、
産業廃水処理設備の新規設備のみならず、既存設備の改
造あるいは改良運転にも適用することができる。産業廃
水処理の既存の装置に対して本発明を適用する際には、
次のような手段を採用することが好ましい。具体的に
は、曝気風量を低減する、汚泥返送流量を低減する、薬
剤添加量を低減する、あるいは加温温度を低減するとい
う手段である。こうした手段を採用する場合には、既存
設備の改造を伴うことなく運転条件の変更のみで対処で
きることが多い。
【0061】これに対して、酸素溶解効率の低い散気シ
ステムを用いる、あるいは曝気槽有効容量を低減すると
いう手段を採用する際には、処理装置の一部の改造を要
することが多い。
【0062】このような運転・処理を行って、下水の窒
素除去処理あるいはリン除去処理のためにBODが有効
利用される処理対象となる産業廃水としては、製餡廃水
やアルコール系醸造廃水や製麺廃水や弁当製造工場廃水
等の食品系廃水が一般的である。さらに、毒物が含まれ
ておらず生物処理に適しており、かつBODの比較的高
い産業廃水であれば、ここでの処理対象として用いるこ
とができる。
【0063】本発明の方法により処理される産業廃水の
性状等によっては、図1に示した処理設備の他に、凝集
沈澱設備や砂ろ過設備や活性炭処理設備等を備えること
も可能である。
【0064】図2は、本発明に係る下水道終末処理場流
入水の処理装置の一例を示したものである。同図におい
て、A工場の産業廃水A1をA工場の処理設備A2で処
理して得られたA工場の処理水A3は、下水道へ放出さ
れる。また、B工場の産業廃水B1をB工場の処理設備
B2で処理して得た処理水B3も、下水道へ放出され
る。処理水A3および処理水B3は、生活系廃水等から
なる下水C1と混合された後、下水高度処理設備(終末
処理場高度処理設備)C4によって処理され、得られた
処理水C3が河川もしくは海域等へ放出されることにな
る。
【0065】同図における産業廃水の処理装置(A2お
よびB2)は、図1を参照して説明したような手段を用
いて、下水道放出の可能な上限に近いBOD濃度を有す
る処理水を得るものとする。これによって、下水道終末
処理場高度処理設備C4へ流入する下水中のBOD濃度
を高めることができる。
【0066】また、同図における下水道終末処理場高度
処理設備C4は、図3、図4および図5において説明し
たような、活性汚泥硝化液循環変法や嫌気−無酸素−好
気活性汚泥法や嫌気−好気活性汚泥法等による高度処理
設備であり、生物学的BOD除去処理と同時に、生物学
的窒素除去処理および生物学的リン除去処理の少なくと
も一方の処理を行なうものである。BOD濃度の比率の
高い下水が終末処理場へ流入するため、窒素除去処理や
リン除去処理を行なう際には、良好な処理水を得ること
ができる。もちろん、下水道終末処理場高度処理設備C
4は、反応槽設備の少なくとも一部に担体が内在された
ものを用いることもでき、物理化学的リン除去処理法を
併用したものでもよい。さらには、砂ろ過等の別の処理
技術を組み合わせたものを用いることもできる。
【0067】本発明を示す図2が、従来技術を示す図7
と異なる点は、A工場の産業廃水処理水A3が、図7で
は直接河川もしくは海域等へ放流されているのに対し、
図2においては下水道へ放出されている点である。しか
しながら、本発明は、従来直接河川もしくは海域等へ放
流されていた産業廃水を下水道へ放出するように変更す
るという点のみに限定されるものではない。例えば、従
来より下水道へ放出されていた工場廃水処理水のBOD
を高めるよう処理することのみでも、充分効果を得るこ
とができる。
【0068】本発明を用いることにより、下水道終末処
理場において、生物学的窒素除去処理あるいは生物学的
リン除去処理を施す際の、終末処理場流入下水中のBO
D濃度の比率を高めることができる。したがって、その
産業廃水中のBODを有効利用して良好な下水高度処理
水を得ることが可能となる。
【0069】
【実施例】以下、具体例を示して本発明をさらに詳細に
説明する。
【0070】図4に示したような、嫌気−無酸素−好気
法による2組の実験装置(以下、第1系列および第2系
列と称する)を用いて、1.2m3/日の処理量で下水
処理実験を行った。ただし、いずれの組も最初沈澱池は
設置せず、下水処理場より採取した最初沈澱池越流水を
下水貯留タンクに一時貯留して反応槽へ導入した。ま
た、弁当製造工場廃水の油水分離処理水(曝気生物処理
前の汚水)を産業廃水貯留タンクへ一時貯留して実験に
供した。
【0071】供試下水および供試産業廃水は、2〜3日
毎に現場より採取して、それぞれの貯留タンクへ補充し
た。第1系列においては、下水貯留タンクの下水をポン
プで輸送して嫌気槽水面直上へ供給するとともに、下水
の流量の1/5の流量で産業廃水を同様に嫌気槽へ供給
した。一方、第2系列においては、下水のみを同様に嫌
気槽へ供給した。嫌気槽へ導入される総廃水量は、いず
れの系列においても等しくなるよう設定した。第1系列
は、原理的に本発明と同様の技術を用いているので、本
発明の実施例である。
【0072】また、いずれの系列の装置も、嫌気槽滞留
時間を1時間、無酸素槽滞留時間を4時間、好気槽滞留
時間を3時間とし、好気槽には内径3mm、外径4m
m、長さ5mmのポリプロピレン製中空担体を、その見
かけ容量が好気槽容量の15%となるように収容した。
最終沈澱池に相当する沈澱池の滞留時間は2.5時間と
した。
【0073】反応槽内のMLSS濃度は、2000〜2
300mg/Lとなるようにコントロールした。好気槽
から無酸素槽へ返送される硝酸性窒素および亜硝酸性窒
素の量が脱窒反応の制御因子となることを防止するため
に、返送汚泥流量と硝化循環液流量との合計の、廃水流
量に対する比率すなわち循環比は、いずれの系列におい
ても400%として運転した。また、いずれの系列にお
いても、嫌気槽および無酸素槽の機械攪拌条件と好気槽
の曝気条件は同一とし、好気槽内のDOを3mg/L以
上に維持した。実験時の水温は16ないし18℃にコン
トロールして、下水の処理を行なった。
【0074】2ヶ月の馴養期間を経た後に、5回の分析
を実施して、第1系列における原水(下水と産業廃水と
の混合比が5:1のもの)および処理水について、p
H、SS、BOD、T−NおよびT−Pを測定した。第
2系列における原水(下水のみのもの)および処理水に
ついても同様に測定して、得られた分析データの最小値
と最大値を下記表1にまとめる。
【0075】
【表1】
【0076】表1に示されるように、第1系列の原水と
第2系列の原水とを比較すると、原理的に本発明と同じ
技術を用いた第1系列での原水のBODおよびSSは、
第2系列のそれに比して高く、pH、T−NおよびT−
Pに関しては、両者の間で大きな違いはみられなかっ
た。すなわち、第1系列での原水におけるBOD濃度/
窒素濃度比およびBOD濃度/リン濃度比は、第2系列
におけるそれに比して高いものとすることができた。
【0077】第1系列の処理水と第2系列の処理水とを
比較すると、BODおよびSSは同程度であることがわ
かる。しかしながら、原理的に本発明と同じ技術を用い
た第1系列の処理水の窒素濃度およびリン濃度は、第2
系列の処理水のそれより低く、第1系列の処理水のほう
が良好であった。
【0078】本実施例の結果から、下水に対して産業廃
水由来のBODを導入し、下水の高度処理を実施する際
の原水のBOD濃度比を高めることによって、良好な窒
素除去処理水やリン除去処理水が得られることが明らか
になった。
【0079】
【発明の効果】以上説明したように本発明によれば、B
OD除去処理と同時に窒素除去処理およびリン除去処理
の少なくとも一種を行なう下水道終末処理場流入水の処
理方法であって、下水道終末処理場において比較的短時
間の反応により処理し、良好な窒素除去処理水もしくは
リン除去処理水を経済的に得ることができ、かつ運転費
の負担を軽減し得る下水道終末処理場流入水の処理方法
が提供される。また本発明によれば、BOD除去処理と
同時に窒素除去処理およびリン除去処理の少なくとも一
種を行なう下水道終末処理場流入水の処理装置であっ
て、下水道終末処理場において比較的短時間で処理反応
が行われ、良好な窒素除去処理水もしくはリン除去処理
水を経済的に得ることができ、かつ軽減された費用で運
転可能な下水道終末処理場流入水の処理装置が提供され
る。
【0080】本発明を用いることにより、下水道終末処
理場において生物学的窒素除去処理や生物学的リン除去
処理を行なう際に、脱窒反応や生物学的リン除去反応の
ために化学量論的に好ましい有機物を供給することがで
きる。したがって、終末処理場での脱窒反応や生物学的
リン除去反応の反応速度は大となり、比較的短時間の処
理で良好な処理水を得ることができる。
【0081】しかも、本発明により、メタノール等の有
機薬剤の添加必要性を低減できるため、終末処理場にお
ける運転費を軽減することができる。
【0082】本発明を用いることより、産業廃水の処理
において曝気風量、あるいは窒素化合物やリン化合物の
添加の必要性や温度調整の度合いを低減することができ
るため、下水道終末処理場流入水の処理における運転費
の軽減にも有効であり、その工業的価値は大きい。
【図面の簡単な説明】
【図1】本発明における産業廃水の処理装置の一例の構
成を表す概略図。
【図2】本発明における産業廃水処理と下水道設備との
関わりを示す模式図。
【図3】従来の廃水の処理装置の構成を表す概略図。
【図4】従来の廃水の処理装置の構成を表す概略図。
【図5】従来の廃水の処理装置の構成を表す概略図。
【図6】従来の廃水の処理装置の構成を表す概略図。
【図7】従来の廃水の処理装置と下水道設備との関わり
を表す模式図。
【符号の説明】
1…廃水 2…最初沈澱池 3…無酸素槽(脱窒槽) 4…好気槽(硝化槽) 5…散気装置 6…硝化循環液 7…最終沈澱池 8…返送汚泥 9…処理水 10…嫌気槽 21…産業廃水 22…廃水貯留槽 23…曝気槽 24…沈澱池 26…pH調整剤 27…窒素系薬剤 28…リン系薬剤 A1…A工場の産業廃水 A2…A工場の産業廃水処理設備 A3…A工場の産業廃水処理水 B1…B工場の産業廃水 B2…B工場の産業廃水処理設備 B3…B工場の産業廃水処理水 C1…下水 C2…下水場終末処理場処理設備 C3…下水処理水 C4…下水場終末処理場高度処理設備
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 遠藤 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田辺 正久 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D028 AB00 AB03 BC22 BD01 CA09 CA11 CB01 4D040 BB05 BB32 BB42 BB52 BB72 BB82 DD03 DD18

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 嫌気槽もしくは無酸素槽で処理する工程
    を少なくとも反応槽の一部に有し、生物学的窒素除去処
    理および生物学的リン除去処理の少なくとも一方を行な
    う下水道終末処理場流入水の処理方法であって、 BOD濃度が比較的高く、窒素またはリンの濃度の比較
    的低い産業廃水を、この産業廃水の発生工場において生
    物処理してBODを除去する工程、 前記BOD除去後の産業廃水を下水道終末処理場へ導入
    する工程、および前記下水道終末処理場へ生活系廃水を
    導入して、前記産業廃水と混合処理する工程を具備し、 前記産業廃水の発生工場における前記産業廃水の生物処
    理は、BODの酸化除去能力の比較的低い条件下で行な
    われ、下水道へ放出可能な上限に近いBOD濃度の処理
    水がこの工程で得られることを特徴とする下水道終末処
    理場流入水の処理方法。
  2. 【請求項2】 前記産業廃水を前記産業廃水の発生工場
    において生物処理する工程中に、制限曝気処理;窒素化
    合物およびリン化合物の少なくとも1種の、前記産業廃
    水への制限添加;返送汚泥流量の制限;曝気槽の有効容
    量の制限;および温度調整操作の度合いの制限から選択
    される少なくとも1種が行なわれることを特徴とする請
    求項1に記載の下水道終末処理場流入水の処理方法。
  3. 【請求項3】 反応槽の少なくとも一部に嫌気槽または
    無酸素槽を有し、生物学的窒素除去処理および生物学的
    リン除去処理の少なくとも一方を行なう下水道終末処理
    場流入水の処理装置であって、 BOD濃度が比較的高く、窒素濃度およびリン濃度が比
    較的低い産業廃水を、この産業廃水の発生工場において
    生物処理するための生物処理装置、 前記生物処理装置で処理された産業廃水を、下水道終末
    処理場へ導入する導入手段、および前記下水道終末処理
    場に生活系廃水を導入して、前記産業廃水と混合処理す
    る手段を具備し、 前記産業廃水の発生工場における前記産業廃水の生物処
    理装置は、BODの酸化除去能力が比較的低く、この生
    物処理装置で得られた処理水は、下水道へ放出可能な上
    限に近いBOD濃度を有することを特徴とする下水道終
    末処理場流入水の処理装置。
  4. 【請求項4】 前記産業廃水の発生工場において前記産
    業廃水を生物処理するための生物処理装置は、制限曝気
    手段;窒素化合物およびリン化合物の少なくとも1種
    を、前記産業廃水に制限添加する手段、返送汚泥流量を
    制限する手段、曝気槽の有効容量を制限する手段、およ
    び温度調整操作の度合いを制限する手段から選択される
    少なくとも1種の手段を具備することを特徴とする請求
    項3に記載の下水道終末処理場流入水の処理装置。
JP2000106591A 2000-04-07 2000-04-07 下水道終末処理場流入水の処理方法および処理装置 Pending JP2001286883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106591A JP2001286883A (ja) 2000-04-07 2000-04-07 下水道終末処理場流入水の処理方法および処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106591A JP2001286883A (ja) 2000-04-07 2000-04-07 下水道終末処理場流入水の処理方法および処理装置

Publications (1)

Publication Number Publication Date
JP2001286883A true JP2001286883A (ja) 2001-10-16

Family

ID=18619735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106591A Pending JP2001286883A (ja) 2000-04-07 2000-04-07 下水道終末処理場流入水の処理方法および処理装置

Country Status (1)

Country Link
JP (1) JP2001286883A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083193A (ja) * 2005-09-26 2007-04-05 Kazuo Murakami 微生物固定化担体を用いた水質浄化方法及びその水質浄化装置
JP2014018744A (ja) * 2012-07-19 2014-02-03 Yachiyo Industry Co Ltd 排水処理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083193A (ja) * 2005-09-26 2007-04-05 Kazuo Murakami 微生物固定化担体を用いた水質浄化方法及びその水質浄化装置
JP2014018744A (ja) * 2012-07-19 2014-02-03 Yachiyo Industry Co Ltd 排水処理システム

Similar Documents

Publication Publication Date Title
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
WO2010074008A1 (ja) 生物学的窒素除去方法、装置、及びそのための担体
US6830689B2 (en) Process for removing phosphorus from wastewater utilizing a triple basin wastewater treatment system
JP2006281003A (ja) 生物学的排水処理方法
US20060226068A1 (en) Water treatment
JPH09122682A (ja) 汚水処理方法
KR20080019975A (ko) 생물학적 활성조 및 전극시스템이 결합된 하이브리드형생물―전기화학적 생물막 연속회분식 반응기를 이용한오폐수 처리장치
JPH11156387A (ja) 廃水処理装置
JP4114128B2 (ja) 廃水浄化装置および方法
JP2661093B2 (ja) 活性汚泥法による廃水処理方法
KR100705541B1 (ko) 하·폐수에서 영양염류를 제거하기 위한 하·폐수처리방법 및장치
JPH0722757B2 (ja) 窒素と燐の生物学的除去方法及びその処理装置
JPS6254075B2 (ja)
JPH08318292A (ja) 廃水処理方法および廃水処理装置
KR100438323B1 (ko) 생물학적 고도처리에 의한 하수, 폐수 처리방법
JP2001286883A (ja) 下水道終末処理場流入水の処理方法および処理装置
HU205330B (en) Process for purifying sewage containing organic material, by increased removal of phosphorus and nitrogen
JP2001212592A (ja) 排水からの窒素の除去方法
JP2004105872A (ja) 廃水処理方法
KR960011888B1 (ko) 질소, 인제거 겸용 생물학적 하,폐수처리장치 및 그 처리방법
JPS6222678B2 (ja)
JP3819457B2 (ja) 排水の生物学的脱窒法
JPS6048196A (ja) 有機性廃液からのリン除去法
KR20010091457A (ko) 질소제거 효율향상을 도모한 하수처리방법 및 장치
KR200235030Y1 (ko) 폐자재를 이용한 하수의 고도처리장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602