JP2001283941A - Photoelectric transfer element - Google Patents

Photoelectric transfer element

Info

Publication number
JP2001283941A
JP2001283941A JP2000091769A JP2000091769A JP2001283941A JP 2001283941 A JP2001283941 A JP 2001283941A JP 2000091769 A JP2000091769 A JP 2000091769A JP 2000091769 A JP2000091769 A JP 2000091769A JP 2001283941 A JP2001283941 A JP 2001283941A
Authority
JP
Japan
Prior art keywords
electrode
current collecting
dye
collecting electrode
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000091769A
Other languages
Japanese (ja)
Other versions
JP4415448B2 (en
Inventor
Takashi Sekiguchi
隆史 関口
Katsunori Kojima
克典 児島
Shoji Nishihara
昭二 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000091769A priority Critical patent/JP4415448B2/en
Publication of JP2001283941A publication Critical patent/JP2001283941A/en
Application granted granted Critical
Publication of JP4415448B2 publication Critical patent/JP4415448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric transfer element which has a new structure that has improved greatly the photoelectric transfer efficiency by suppressing the loss arising from internal resistance of the current collector electrode. SOLUTION: The photoelectric transfer element comprises at least a pigment- carrying semiconductor layer, a current collector electrode, an electrolyte layer, and a counter electrode between two sheets of substrates, of which at least one is made of a light-transmitting material. On one face of the substrate made of light-transmitting material, the pigment-carrying semiconductor layer is provided, and on the other face of the pigment-carrying semiconductor layer, the porous current collector electrode is provided. On one face of the other substrate, the counter electrode is provided and the electrolyte layer is provided between the above current collector electrode and the counter electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換素子に関す
る。更に詳細には、本発明は入射光量に対する電池出力
の比で表される光電変換効率が飛躍的に向上された新規
な構造を有する光電変換素子に関する。
[0001] The present invention relates to a photoelectric conversion element. More specifically, the present invention relates to a photoelectric conversion element having a novel structure in which the photoelectric conversion efficiency represented by the ratio of the battery output to the amount of incident light is dramatically improved.

【0002】[0002]

【従来の技術】例えば、太陽電池などの光電変換素子は
クリーンなエネルギー源として非常に期待されており、
すでにpn接合型太陽電池などが実用化されている。し
かしながら、前記シリコン系太陽電池は、高純度材料を
原料とし、あるいは1000℃程度の高温プロセスや真
空プロセスを必要とするため、製造コストの低減が大き
な課題となっている。そこで、近年、高純度材料・高エ
ネルギープロセスを比較的必要としない、固液界面に生
じる電位勾配により電荷分離を行う太陽電池が注目を集
めている。
2. Description of the Related Art For example, photoelectric conversion elements such as solar cells are very expected as a clean energy source.
A pn junction type solar cell and the like have already been put to practical use. However, since the silicon-based solar cell uses a high-purity material as a raw material or requires a high-temperature process of about 1000 ° C. or a vacuum process, reduction of manufacturing cost is a major issue. Therefore, in recent years, a solar cell that does not relatively require a high-purity material and high-energy process and performs charge separation by a potential gradient generated at a solid-liquid interface has attracted attention.

【0003】半導体が金属と接触した場合、金属と半導
体の仕事関数の関係によりショットキー接合ができる
が、半導体と溶液が接している時も同様な接合ができ
る。例えば、溶液中にFe2+/Fe3+、Fe(CN)6
4-/Fe(CN)6 3-、I-/I2、Br-/Br2、ハイ
ドロキノン/キノンなどの酸化還元系が含まれている
時、n型半導体を溶液に浸けると半導体の表面付近の電
子が溶液中の酸化剤へ移動し平衡状態に達する。その結
果、半導体の表面付近は正に帯電し電位勾配が生じる。
これにともない半導体の伝導帯および価電子帯にも勾配
が生じる。
When a semiconductor comes into contact with a metal, a Schottky junction can be formed due to the work function of the metal and the semiconductor. The same junction can be made when the semiconductor is in contact with the solution. For example, Fe 2+ / Fe 3+ , Fe (CN) 6
4- / Fe (CN) 6 3- , I - / I 2, Br - / Br 2, when it contains a redox system such as hydroquinone / quinone, a semiconductor near the surface when immersed the n-type semiconductor in a solution Electrons move to the oxidizing agent in the solution to reach an equilibrium state. As a result, the vicinity of the surface of the semiconductor is positively charged and a potential gradient is generated.
Accordingly, a gradient also occurs in the conduction band and the valence band of the semiconductor.

【0004】この電位勾配を利用して電荷分離をしよう
とするものが湿式太陽電池であり、半導体電極と金属の
対向電極および酸化還元溶液より構成される。その機構
は、酸化還元溶液に浸けた半導体電極の表面に光を照射
すると、半導体のバンドギャップ以上のエネルギーを持
つ光が吸収され、表面付近で伝導帯に電子を、価電子帯
に正孔を生成する。伝導帯に励起された電子は上述した
半導体の表面付近に存在する電位勾配により半導体内部
へ伝達され、一方、価電子帯に生成された正孔は酸化還
元溶液中の還元体から電子を奪う。
A device which attempts to separate electric charges by utilizing this potential gradient is a wet solar cell, which comprises a semiconductor electrode, a metal counter electrode, and an oxidation-reduction solution. The mechanism is that when light is applied to the surface of a semiconductor electrode immersed in an oxidation-reduction solution, light having energy equal to or greater than the band gap of the semiconductor is absorbed, and electrons near the surface and electrons in the conduction band and holes in the valence band. Generate. The electrons excited in the conduction band are transmitted to the inside of the semiconductor by the above-described potential gradient existing near the surface of the semiconductor, while the holes generated in the valence band rob electrons from the reductant in the redox solution.

【0005】酸化還元溶液に金属電極を浸して金属電極
と半導体間で回路を作ると、正孔に電子を奪われた還元
体は溶液中を拡散して金属電極から電子を受け取り、再
び還元される。このサイクルを繰り返し、半導体電極は
負極として、金属電極は正極としてそれぞれ働き、外部
へ電力を供給することができる。したがって、光起電力
は酸化還元溶液の酸化還元準位と半導体中のフェルミ準
位との差になる。
When a circuit is formed between a metal electrode and a semiconductor by immersing the metal electrode in an oxidation-reduction solution, the reduced form whose electrons have been deprived of holes diffuses through the solution, receives electrons from the metal electrode, and is reduced again. You. By repeating this cycle, the semiconductor electrode functions as a negative electrode and the metal electrode functions as a positive electrode, so that electric power can be supplied to the outside. Therefore, the photovoltaic power is the difference between the redox level of the redox solution and the Fermi level in the semiconductor.

【0006】光起電力を大きくするためには、酸化還
元準位の低い、すなわち酸化力の強い酸化還元溶液を用
いること、酸化還元準位と半導体中のフェルミ準位と
の間に大きな差を作り出せる、すなわちバンドギャップ
の大きい半導体を用いることである。
In order to increase the photovoltaic power, a redox solution having a low oxidation-reduction level, that is, a redox solution having a strong oxidizing power is used, and a large difference is generated between the oxidation-reduction level and the Fermi level in a semiconductor. That is, a semiconductor which can be produced, that is, has a large band gap is used.

【0007】しかしながら、酸化還元溶液の酸化力があ
まり大きすぎると半導体自身の表面に酸化膜を形成し、
光電流は短時間のうちにストップする。また、バンドギ
ャップについては、一般にバンドギャップが3.0eV
以下の半導体は光電変換の際に流れる電流により溶液中
に溶解しやすい問題があることから、バンドギャップが
3.0eV超の半導体が利用されているが、強度のピー
クが2.5eV付近にある太陽光を効率よく吸収するに
は大きすぎる。そのため、太陽光の大部分を占める可視
域を全く吸収できず、紫外部しか吸収できないため、光
電変換効率は極めて低くなる。
However, if the oxidizing power of the redox solution is too large, an oxide film is formed on the surface of the semiconductor itself,
The photocurrent stops within a short time. The band gap is generally 3.0 eV.
The following semiconductors have a problem that they are easily dissolved in a solution due to a current flowing during photoelectric conversion. Therefore, semiconductors having a band gap of more than 3.0 eV are used, but the intensity peak is around 2.5 eV. Too large to absorb sunlight efficiently. For this reason, the visible region occupying most of sunlight cannot be absorbed at all, and only ultraviolet light can be absorbed, so that the photoelectric conversion efficiency is extremely low.

【0008】前記のように、湿式太陽電池で光電変換を
行おうとする際、バンドギャップの小さい半導体を用い
ると効率は向上するが、電極の溶解が起こりやすく、寿
命が低下する。逆にバンドギャップが広い半導体では、
寿命は増大するが、短波長の光しか吸収せず効率が低
い。そこで、バンドギャップが広い半導体の安定性を生
かし、色素により長波長の光まで吸収しようとする試み
が行われた。これを色素増感太陽電池という。すなわ
ち,色素増感太陽電池は半導体電極の表面に光を吸収す
る色素を吸着させ半導体電極のバンドギャップより長波
長の可視光を色素で吸収しようとするものである。
As described above, when a photoelectric conversion is carried out in a wet solar cell, the efficiency is improved by using a semiconductor having a small band gap, but the electrode is easily dissolved and the life is shortened. Conversely, in a semiconductor with a wide band gap,
The service life is increased, but only short wavelength light is absorbed and efficiency is low. Therefore, an attempt was made to take advantage of the stability of a semiconductor having a wide band gap to absorb long-wavelength light with a dye. This is called a dye-sensitized solar cell. That is, the dye-sensitized solar cell is intended to absorb a dye that absorbs light on the surface of the semiconductor electrode to absorb visible light having a wavelength longer than the band gap of the semiconductor electrode.

【0009】従来の湿式太陽電池と異なるところは、光
の吸収を半導体のみでなく、表面に塗布した有機色素で
も行い、吸収する光を増やしたことである。光によって
励起された色素内の電子は半導体表面から半導体内へ注
入される。電子の移動によって酸化された色素は酸化還
元溶液の還元体により還元される。それ以外の機構は従
来からの湿式太陽電池と同じであり、半導体内へ注入さ
れた電子は背面電極から取り出され、酸化された酸化還
元溶液の還元体は金属の対向電極で還元される。
The difference from the conventional wet solar cell is that light is absorbed not only by the semiconductor but also by an organic dye applied to the surface, so that the absorbed light is increased. Electrons in the dye excited by light are injected into the semiconductor from the semiconductor surface. The dye oxidized by the transfer of electrons is reduced by the reductant of the redox solution. Otherwise, the mechanism is the same as that of a conventional wet solar cell. The electrons injected into the semiconductor are taken out from the back electrode, and the reduced form of the oxidized redox solution is reduced by the metal counter electrode.

【0010】色素増感太陽電池は光合成と関連づけてと
らえられることが多い。当初、色素としては光合成と同
様にクロロフィルが考えられていたが、絶えず新しい葉
緑素と交換される自然のクロロフィルと違い、太陽電池
に用いる色素では安定性の面で問題があり、また、太陽
電池としての光電変換効率も0.5%に満たないもので
あった。自然界の光合成の過程をそのまま模擬し、太陽
電池を構成することは非常に困難である。
Dye-sensitized solar cells are often considered in connection with photosynthesis. At first, chlorophyll was considered as a pigment, as in photosynthesis.However, unlike natural chlorophyll, which is constantly replaced with new chlorophyll, pigments used in solar cells have problems in terms of stability. Also had a photoelectric conversion efficiency of less than 0.5%. It is very difficult to simulate the process of photosynthesis in nature as it is to construct a solar cell.

【0011】このように、色素増感太陽電池は、光合成
からヒントを得て長波長の可視光を吸収しようというも
のであるが、実際には電子の伝導機構が複雑になったた
め、却って損失の増大が問題となった。また、表面に担
持された単分子層の光の吸収効率は1%にも満たない。
固体の太陽電池では、光を吸収する層を厚くすれば吸収
効率は上げることができる。しかしながら、色素増感太
陽電池に関しては、半導体電極に電子を注入できるのは
表面上の単分子層のみである。そのため無駄な光の吸収
をなくすために、半導体表面上の色素は単分子層とする
ことが望ましいくらいである。
As described above, the dye-sensitized solar cell is intended to absorb long-wavelength visible light by taking a hint from photosynthesis. However, in reality, the electron conduction mechanism becomes complicated, and the loss is rather reduced. Growth was a problem. The light absorption efficiency of the monomolecular layer supported on the surface is less than 1%.
In a solid-state solar cell, the absorption efficiency can be increased by increasing the thickness of the light-absorbing layer. However, for dye-sensitized solar cells, electrons can be injected into the semiconductor electrode only from the monolayer on the surface. Therefore, in order to eliminate useless light absorption, it is desirable that the dye on the semiconductor surface be a monomolecular layer.

【0012】しかも励起された色素内の電子が効率的に
半導体内に注入されるためには、半導体表面と化学的に
結合していることが好ましい。例えば、酸化チタンに関
しては、半導体表面と化学的に結合するために、色素に
カルボキシル基があることなどが重要である。
In order to efficiently inject electrons in the excited dye into the semiconductor, the dye is preferably chemically bonded to the semiconductor surface. For example, with respect to titanium oxide, it is important that the dye has a carboxyl group in order to chemically bond to the semiconductor surface.

【0013】この点に関して、重要な改善をしたのはFu
jihiraらのグループである。彼らはローダミンBのカル
ボキシル基がSnO2表面の水酸基とエステル結合する
ことにより、光電流が従来の吸着法の10倍以上になっ
たことを1977年に雑誌Natureに報告している。これ
は従来のアミド結合よりエステル結合の方が色素内で光
のエネルギーを吸収した電子の存在するπ軌道が半導体
の表面に近いためとしている。
An important improvement in this regard is that of Fu.
It is a group of jihira and others. They reported in 1977 to Nature in 1977 that the photocurrent was more than 10 times that of the conventional adsorption method due to the ester bond of the carboxyl group of rhodamine B with the hydroxyl group on the SnO 2 surface. This is because the ester bond of the ester bond is closer to the surface of the semiconductor in the dye than the conventional amide bond, in which the electron which absorbed light energy exists.

【0014】しかしながら、半導体に電子を有効に注入
できたとしても伝導帯内にある電子は、色素の基底準位
と再結合する可能性や、酸化還元物質と再結合する可能
性などがある。このような問題点があったため、電子注
入について上記の改善にも関わらず光電変換効率は低い
ままであった。
However, even if electrons can be effectively injected into the semiconductor, the electrons in the conduction band may recombine with the ground level of the dye or may recombine with the redox substance. Due to such a problem, the photoelectric conversion efficiency remained low despite the above-described improvement in electron injection.

【0015】以上のように、従来の色素増感太陽電池の
大きな問題点として、半導体表面に単層で担持された増
感色素しか半導体へ電子を注入することができないこと
である。すなわち、これまで半導体電極によく用いられ
ていた単結晶や多結晶半導体は、表面が平滑で内部に細
孔を持たず、増感色素が担持される有効面積は電極面積
に等しく、増感色素の担持量が少ない。
As described above, a major problem of the conventional dye-sensitized solar cells is that only a sensitizing dye carried in a single layer on the semiconductor surface can inject electrons into the semiconductor. In other words, single-crystal and polycrystalline semiconductors, which have been often used for semiconductor electrodes, have a smooth surface and no pores inside, and the effective area where the sensitizing dye is carried is equal to the electrode area. Is small.

【0016】従って、このような電極を用いた場合、そ
の電極に担持された単分子層の増感色素は最大吸収波長
でも入射光の1%以下しか吸収できず、光の利用効率が
極めて悪くなる。光捕集力を高めるために増感色素を多
層にする試みも提案されているが、概して充分な効果が
得られていない。
Therefore, when such an electrode is used, the sensitizing dye of the monolayer supported on the electrode can absorb only 1% or less of the incident light even at the maximum absorption wavelength, and the light use efficiency is extremely poor. Become. Attempts have been made to increase the number of sensitizing dyes in order to increase the light-collecting power, but generally no sufficient effect has been obtained.

【0017】グレッツェル等は、このような問題を解決
する手段として、酸化チタン電極を多孔質化し、増感色
素を担持させ、内部面積を著しく増大させた(例えば、
B.Oregan,M.Gratzel,Nature,353,737(1991)及び特開平
1−220380号公報参照)。ゾル・ゲル法によりこ
の酸化チタン多孔質膜を作製し、膜のポロシティーは約
50%ほどであり、非常に高い内部表面積を有するナノ
多孔性構造が形成されている。たとえば、8μmの膜厚
ではラフネスファクター(基板面積に対する多孔質内部
の実面積の割合)は約720にも達する。この表面を幾
何学的に計算すると、増感色素の濃度は1.2×10-7
mol/cm2に達し、実に、最大吸収波長で入射光の
約98%が吸収されることになる。
Grettzel et al., As a means for solving such a problem, made the titanium oxide electrode porous, carried a sensitizing dye, and significantly increased the internal area (for example,
B. Oregan, M. Gratzel, Nature, 353, 737 (1991) and JP-A-1-220380). This titanium oxide porous film was prepared by a sol-gel method, and the porosity of the film was about 50%, and a nanoporous structure having a very high internal surface area was formed. For example, with a film thickness of 8 μm, the roughness factor (the ratio of the actual area inside the porous body to the substrate area) reaches about 720. When the surface is geometrically calculated, the concentration of the sensitizing dye is 1.2 × 10 −7.
mol / cm 2 , indeed about 98% of the incident light will be absorbed at the wavelength of maximum absorption.

【0018】このグレッツェル・セルとも呼ばれる新し
い色素増感太陽電池は、上述の酸化チタンの多孔質化に
よる増感色素の飛躍的な担持量の増大と、太陽光を効率
よく吸収しかつ半導体への電子注入速度が著しく速い増
感色素の開発した点が大きな特徴である。
The new dye-sensitized solar cell, also referred to as a Gretzell cell, has a dramatic increase in the amount of the sensitizing dye carried by the above-mentioned porous titanium oxide, and has an ability to efficiently absorb sunlight and apply it to semiconductors. A major feature is that a sensitizing dye having an extremely high electron injection speed has been developed.

【0019】グレッツェルらは、色素増感太陽電池のた
めにビス(ビピリジル)Ru(II)錯体を開発した。その
Ru錯体は一般式シス−X2ビス(2,2’−ビピリジ
ル−4,4’−ジカルボキシレート)Ru(II)の構造を
持つ。XはCl−,CN−,SCN−である。これらに
ついて蛍光、可視光吸収、電気化学的および光酸化還元的
挙動について系統的な研究が行われた。これらのうち、
シス−(ジイソシアネート)−ビス(2,2’−ビピリ
ジル−4,4’−ジカルボキシレート)Ru(II)は、太
陽光吸収剤および色素増感剤として格段に優れた性能を
持つことが示された。
Have developed bis (bipyridyl) Ru (II) complexes for dye-sensitized solar cells. The Ru complex has the structure of the general formula cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) Ru (II). X is Cl-, CN-, SCN-. A systematic study was performed on the fluorescence, visible light absorption, electrochemical and photo-redox behavior of these. Of these,
It has been shown that cis- (diisocyanate) -bis (2,2′-bipyridyl-4,4′-dicarboxylate) Ru (II) has remarkably excellent performance as a solar absorber and a dye sensitizer. Was done.

【0020】この色素増感剤の可視光吸収は、金属から
配位子への電荷移動遷移である。また、配位子のカルボ
キシル基は表面のTiイオンに直接配位して、色素増感
剤と酸化チタンの間に密接な電子的接触を形成してい
る。この電子的な接触により、色素増感剤から酸化チタ
ンの伝導帯への電子注入が1ピコ秒以下の極めて速い速
度で起こり、その逆方向の酸化された色素増感剤による
酸化チタンの伝導帯へ注入された電子の再捕獲はマイク
ロ秒のオーダーで起こるとされている。この速度差が光
励起電子の方向性を生み出し、電荷分離が極めて高い効
率で行われる理由である。そして、これがpn接合面の
電位勾配により電荷分離を行うpn接合太陽電池との違
いであり、グレツェル・セルの本質的な特徴である。
The visible light absorption of the dye sensitizer is a charge transfer transition from a metal to a ligand. Also, the carboxyl group of the ligand coordinates directly to the Ti ion on the surface, forming a close electronic contact between the dye sensitizer and titanium oxide. Due to this electronic contact, electron injection from the dye sensitizer into the conduction band of titanium oxide occurs at a very high speed of 1 picosecond or less, and the conduction band of titanium oxide by the oxidized dye sensitizer in the opposite direction. It is said that the re-capture of the injected electrons occurs on the order of microseconds. This difference in speed produces the directionality of photoexcited electrons, which is the reason why charge separation is performed with extremely high efficiency. This is a difference from a pn junction solar cell that separates electric charges by a potential gradient of a pn junction surface, and is an essential feature of the Gretzell cell.

【0021】図7は前掲のB.Oregan,M.Gratzel,Natur
e,353,737(1991)に記載されている色素増感太陽電池の
セルの断面構造を示す模式図である。図7において、符
号71はガラス基板を、符号72はガラス基板71の下
面に設けられた集電電極をそれぞれ示す。光はガラス基
板71の上面側から入射する。集電電極72としては、
光電変換層が集電電極下部に存在するため酸化スズ膜の
ような透明導電膜が用いられる。符号73は色素を担持
した半導体層を示す。半導体層73は粒径がほぼ50n
m以下の酸化チタンなどよりなる半導体粒子が集電電極
72に焼結した状態の多孔質構造をとる。符号74は電
解質溶液を示し、前記色素を担持した半導体層73に浸
潤するように設けられている。符号75はPt膜を示
す。このPt膜はガラス基板77上の透明導電膜76の
上に設けられている。
FIG. 7 shows B. Oregan, M. Gratzel, Natur, supra.
FIG. 3 is a schematic diagram showing a cross-sectional structure of a cell of a dye-sensitized solar cell described in e, 353, 737 (1991). In FIG. 7, reference numeral 71 denotes a glass substrate, and reference numeral 72 denotes a current collecting electrode provided on the lower surface of the glass substrate 71, respectively. Light enters from the upper surface side of the glass substrate 71. As the collecting electrode 72,
Since the photoelectric conversion layer exists under the current collecting electrode, a transparent conductive film such as a tin oxide film is used. Reference numeral 73 denotes a semiconductor layer that carries a dye. The semiconductor layer 73 has a particle size of approximately 50 n.
m and a porous structure in which semiconductor particles made of titanium oxide or less are sintered on the current collecting electrode 72. Reference numeral 74 denotes an electrolyte solution, which is provided so as to infiltrate the semiconductor layer 73 supporting the dye. Reference numeral 75 indicates a Pt film. This Pt film is provided on the transparent conductive film 76 on the glass substrate 77.

【0022】上記構成からなる色素増感太陽電池は以下
の作用機構で光電変換を行う。まず、色素増感太陽電池
に入射した光は、ガラスおよび透光性のある集電電極を
通り、半導体に吸着した増感色素により吸収され、太陽
光を吸収した増感色素では励起電子が発生する。発生し
た励起電子は半導体の伝導体に移動し、焼結した半導体
粒子間を伝って負極に達する。励起電子を失った色素は
電解液中に含まれる酸化還元体のうち還元状態の電解質
から電子を受け取り元の状態に戻る。電子を失い酸化状
態となった電解液中に含まれる酸化還元体はPt膜のあ
る対極から電子を受け取り還元状態に戻る。なお、この
明細書で使用される「集電電極」という用語は、色素よ
り半導体中に注入された電子を外部に効率よく取り出す
ために設けられた半導体に接する形で存在する電極を意
味する。
The dye-sensitized solar cell having the above structure performs photoelectric conversion by the following operation mechanism. First, the light incident on the dye-sensitized solar cell passes through the glass and the translucent current collecting electrode, is absorbed by the sensitizing dye adsorbed on the semiconductor, and the sensitizing dye that absorbs sunlight generates excited electrons. I do. The generated excited electrons move to the conductor of the semiconductor, travel between the sintered semiconductor particles, and reach the negative electrode. The dye that has lost the excited electrons receives electrons from the reduced electrolyte of the redox substances contained in the electrolyte and returns to the original state. The redox body contained in the electrolyte solution that has lost electrons and is in the oxidized state receives electrons from a certain counter electrode of the Pt film and returns to the reduced state. Note that the term "collecting electrode" used in this specification means an electrode which is provided in contact with a semiconductor and is provided for efficiently extracting electrons injected into the semiconductor from a dye to the outside.

【0023】色素増感太陽電池では、透明導電膜からな
る集電電極と半導体膜との界面、および半導体粒子同士
の界面に生じる内部抵抗が太陽電池の変換効率低下要因
となる。そのため、一般に、半導体粒子を分散させた溶
液を透明導電膜からなる集電電極付きのガラス基板に塗
布した後、高温焼結して半導体粒子の孤立化を避け電子
伝達経路を確保することが行われている。
In the dye-sensitized solar cell, the internal resistance generated at the interface between the current collecting electrode made of a transparent conductive film and the semiconductor film and at the interface between the semiconductor particles causes a reduction in the conversion efficiency of the solar cell. Therefore, in general, after applying a solution in which semiconductor particles are dispersed to a glass substrate having a current collecting electrode made of a transparent conductive film, high-temperature sintering is performed to avoid isolation of the semiconductor particles and to secure an electron transfer path. Have been done.

【0024】しかし、前記の方法では、焼成時に加える
熱により透明導電膜からなる集電電極の抵抗が上昇し、
太陽電池の変換効率低下要因となる。ここで、透明導電
膜からなる集電電極の厚みを大きくすれば前記抵抗によ
る損失を低減できるが、新たに透明導電膜の透過率が減
少することによる太陽電池の光電変換効率低下が問題と
なる。
However, in the above method, the resistance of the current collecting electrode made of a transparent conductive film increases due to the heat applied at the time of firing.
This is a factor in lowering the conversion efficiency of the solar cell. Here, if the thickness of the current collecting electrode made of a transparent conductive film is increased, the loss due to the resistance can be reduced. However, a decrease in the photoelectric conversion efficiency of the solar cell due to a decrease in the transmittance of the transparent conductive film becomes a problem. .

【0025】集電電極部の抵抗損失を低減させるという
観点から集電電極材としては、透明導電膜よりもさらに
抵抗率の低く、かつ、焼成時の熱によっても抵抗率が上
昇することがない、例えば、Au、Pt、Ag、Cu、
Al、Ni、Zn、Ti及びCrからなる群から選ばれ
る少なくとも一種以上の元素が含まれるものがよい。し
かしながら、図7の構成において、集電電極をこれまで
の透明導電膜からAu、Pt、Ag、Cu、Al、N
i、Zn、Ti及びCrからなる群から選ばれる少なく
とも一種以上の元素が含まれる電極材に置き換えた場
合、電極材の透過率が低いことにより光電変換層に到達
する光量が著しく減少する問題が生じる。そのため、半
導体粒子を固定する集電電極として前記電極材が利用さ
れることはなかった。
From the viewpoint of reducing the resistance loss of the current collecting electrode portion, the current collecting electrode material has a lower resistivity than the transparent conductive film, and the resistivity does not increase even by heat during firing. For example, Au, Pt, Ag, Cu,
It is preferable that at least one element selected from the group consisting of Al, Ni, Zn, Ti and Cr is included. However, in the configuration of FIG. 7, the current-collecting electrode is made of Au, Pt, Ag, Cu, Al, N
When replaced with an electrode material containing at least one or more elements selected from the group consisting of i, Zn, Ti and Cr, there is a problem that the amount of light reaching the photoelectric conversion layer is significantly reduced due to the low transmittance of the electrode material. Occurs. Therefore, the electrode material has not been used as a current collecting electrode for fixing the semiconductor particles.

【0026】[0026]

【発明が解決しようとする課題】従って、本発明の目的
は、集電電極の内部抵抗により生じる損失を抑制するこ
とにより光電変換効率が飛躍的に向上された新規な構造
を有する光電変換素子を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a photoelectric conversion element having a novel structure in which the photoelectric conversion efficiency is dramatically improved by suppressing the loss caused by the internal resistance of the current collecting electrode. To provide.

【0027】[0027]

【課題を解決するための手段】前記課題は、少なくとも
一方が光透過性の素材からなる2枚の基板の間に、少な
くとも、色素担持半導体層と、集電電極と、電解質層と
対電極とを有する光電変換素子において、前記光透過性
素材からなる基板の一方の面上に色素担持半導体層が配
設され、該色素担持半導体層の他方の面上に有孔集電電
極が配設され、他方の基板の一方の面上に対電極が配設
され、前記有孔集電電極と対電極との間に電解質層が存
在する光電変換素子により解決される。
The object of the present invention is to provide at least one of a dye-supporting semiconductor layer, a current collecting electrode, an electrolyte layer and a counter electrode between two substrates at least one of which is made of a light-transmitting material. In the photoelectric conversion element having, a dye-carrying semiconductor layer is provided on one surface of the substrate made of the light-transmitting material, and a perforated current collecting electrode is provided on the other surface of the dye-carrying semiconductor layer. The problem is solved by a photoelectric conversion element in which a counter electrode is provided on one surface of the other substrate, and an electrolyte layer exists between the perforated current collecting electrode and the counter electrode.

【0028】本発明の光電変換素子では、集電電極とし
て多数の貫通孔を有する集電電極を使用する。集電電極
に設けられた貫通孔を介して、電解質層の電解質溶液は
透明基板の受光面側に設けられた色素担持半導体層と接
触することができる。
In the photoelectric conversion element of the present invention, a current collecting electrode having a large number of through holes is used as the current collecting electrode. The electrolyte solution of the electrolyte layer can come into contact with the dye-carrying semiconductor layer provided on the light-receiving surface side of the transparent substrate through the through-hole provided in the current collecting electrode.

【0029】[0029]

【発明の実施の形態】以下、図面を参照しながら本発明
の光電変換素子の一例について具体的に説明する。図1
は本発明の光電変換素子の一例の概要断面図である。図
示されているように、本発明の光電変換素子1において
は、光透過性の透明な基板2の一方の面上に色素担持半
導体層3が配設されている。この色素担持半導体層3の
他方の面に有孔集電電極4が配設されている。透明基板
2への色素担持半導体層3と集電電極4の配設順序が逆
である点で、本発明の光電変換素子は図7に示された従
来の光電変換素子と決定的に相違する。他方の基板7は
光透過性又は光不透過性の素材からなり、その一方の面
上に対電極となる導電膜8とPt膜9が配設されてい
る。そして、このPt膜9と有孔集電電極4との間に電
解質溶液からなる電解質層5が存在する。従って、電解
質溶液は集電電極4の貫通孔を介して透明基板の受光面
側に配設された色素担持半導体層と自在に接触すること
ができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of the photoelectric conversion device of the present invention will be specifically described with reference to the drawings. FIG.
1 is a schematic sectional view of an example of the photoelectric conversion element of the present invention. As shown in the figure, in the photoelectric conversion element 1 of the present invention, a dye-carrying semiconductor layer 3 is provided on one surface of a light-transmitting transparent substrate 2. A perforated current collecting electrode 4 is provided on the other surface of the dye-carrying semiconductor layer 3. The photoelectric conversion device of the present invention is crucially different from the conventional photoelectric conversion device shown in FIG. 7 in that the order of disposing the dye-carrying semiconductor layer 3 and the current collecting electrode 4 on the transparent substrate 2 is reversed. . The other substrate 7 is made of a light-transmitting or light-impermeable material, and a conductive film 8 and a Pt film 9 serving as counter electrodes are provided on one surface thereof. Then, an electrolyte layer 5 made of an electrolyte solution exists between the Pt film 9 and the perforated current collecting electrode 4. Therefore, the electrolyte solution can freely contact the dye-carrying semiconductor layer disposed on the light receiving surface side of the transparent substrate through the through hole of the current collecting electrode 4.

【0030】集電電極の受光面側に光電変換の場を設け
た構造の光電変換素子は特開平10−112337号公
報に記載されている。ただし、特開平10−11233
7号公報に記載された光電変換素子の構造では、集電電
極の受光面側に可視光に吸収を持つ電解液層が存在する
ため、入射光が光電変換層に到達するまでの間に電解液
による光透過損失がある。これに対し、本発明の構成で
は、集電電極の受光面側に存在する電解液は、焼結した
半導体粒子の間隙に浸潤しているものに限られるので、
入射光が光電変換層に到達するまでの間の電解液による
光透過損失は極めて小さい。また、本発明の構成におい
ては、集電電極に反射率の大きい材料を用いることで、
光電変換層を通り抜けた光の再利用を行うことができ、
かつ、集電電極に接する形で色素を担持した半導体膜が
存在するために、再利用光に関しても電解液による光透
過損失の影響を極めて抑制することができる。
A photoelectric conversion element having a structure in which a photoelectric conversion field is provided on the light receiving surface side of the current collecting electrode is described in JP-A-10-112337. However, JP-A-10-11233
In the structure of the photoelectric conversion element described in Japanese Patent Publication No. 7, there is an electrolyte layer that absorbs visible light on the light receiving surface side of the current collecting electrode. There is light transmission loss due to liquid. On the other hand, in the configuration of the present invention, the electrolyte existing on the light receiving surface side of the current collecting electrode is limited to the electrolyte infiltrating into the gap between the sintered semiconductor particles.
Light transmission loss due to the electrolytic solution until the incident light reaches the photoelectric conversion layer is extremely small. In the configuration of the present invention, by using a material having a high reflectance for the current collecting electrode,
Light that has passed through the photoelectric conversion layer can be reused,
In addition, the presence of the semiconductor film supporting the dye in contact with the current collecting electrode can significantly suppress the effect of light transmission loss due to the electrolytic solution on reused light.

【0031】基板2及び7としては、ガラス又はプラス
チックなどを使用できる。プラスチックは可撓性なの
で、柔軟性を必要とする用途に適する。基板7に被着さ
れている導電膜8は透明又は不透明な薄膜である。導電
膜8は金属(例えば白金、金、銀、銅、アルミニウム、
ロジウム、インジウム等)、炭素、もしくは金属酸化物
(インジウム−錫複合酸化物、フッ素をドープした酸化
錫等)などが挙げられる。基板7が透明基板である場
合、導電膜8も透明であることが好ましい。
As the substrates 2 and 7, glass or plastic can be used. Because plastic is flexible, it is suitable for applications requiring flexibility. The conductive film 8 attached to the substrate 7 is a transparent or opaque thin film. The conductive film 8 is made of a metal (for example, platinum, gold, silver, copper, aluminum,
Rhodium, indium, etc.), carbon, or metal oxide (indium-tin composite oxide, fluorine-doped tin oxide, etc.). When the substrate 7 is a transparent substrate, the conductive film 8 is also preferably transparent.

【0032】本発明の光電変換素子1における色素担持
半導体層3自体は、従来の光電変換素子で使用されてい
る色素担持半導体層と同じものを使用することができ
る。半導体層は色素を担持させることにより、光電変換
効率の高い光電変換素子を得ることができる。半導体層
に担持させるために使用される色素としては、従来の色
素増感性光電変換素子で常用の色素であれば全て使用で
きる。このような色素は当業者に公知である。このよう
な色素は例えば、RuL2(H2O)2タイプのルテニウム−シス
−ジアクア−ビピリジル錯体又はルテニウム−トリス(R
uL3)、ルテニウム−ビス(RuL2)、オスニウム−トリス(O
sL3)、オスニウム−ビス(OsL2)タイプの遷移金属錯体若
しくは、亜鉛−テトラ(4−カルボキシフェニル)ポル
フィリン、鉄−ヘキサシアニド錯体、フタロシアニンな
どが挙げられる。有機色素としては、9-フェニルキサン
テン系色素、クマリン系色素、アクリジン系色素、トリ
フェニルメタン系色素、テトラフェニルメタン系色素、
キノン系色素、アゾ系色素、インジゴ系色素、シアニン
系色素、メロシアニン系色素、キサンテン系色素などが
挙げられる。この中でもルテニウム−ビス(RuL2)誘導体
が好ましい。半導体層への増感色素の担持量としては、
10-8〜10-6mol/cm2の範囲にあればよく、特
に0.1〜9.0×10-7mol/cm2が好ましい。
As the dye-carrying semiconductor layer 3 in the photoelectric conversion element 1 of the present invention, the same dye-carrying semiconductor layer used in a conventional photoelectric conversion element can be used. By supporting the dye on the semiconductor layer, a photoelectric conversion element with high photoelectric conversion efficiency can be obtained. As the dye used to be carried on the semiconductor layer, any dye commonly used in conventional dye-sensitized photoelectric conversion elements can be used. Such dyes are known to those skilled in the art. Such dyes are, for example, RuL 2 (H 2 O) 2 type ruthenium-cis-diaqua-bipyridyl complexes or ruthenium-tris (R
uL 3 ), ruthenium-bis (RuL 2 ), osmium-tris (O
sL 3 ), a transition metal complex of osnium-bis (OsL 2 ) type, zinc-tetra (4-carboxyphenyl) porphyrin, an iron-hexacyanide complex, phthalocyanine, and the like. As organic dyes, 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes,
Examples include quinone dyes, azo dyes, indigo dyes, cyanine dyes, merocyanine dyes, and xanthene dyes. Among them, a ruthenium-bis (RuL 2 ) derivative is preferable. As the amount of sensitizing dye carried on the semiconductor layer,
The concentration may be in the range of 10 -8 to 10 -6 mol / cm 2 , and particularly preferably 0.1 to 9.0 × 10 -7 mol / cm 2 .

【0033】半導体層を形成する材料としては、Cd、
Zn、In、Pb、Mo、W、Sb、Bi、Cu、H
g、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、
Ga、Si、Crの酸化物、SrTiO3、CaTiO3
のようなペロブスカイト、または、CdS、ZnS、I
23、PbS、Mo2S、WS2、Sb23、Bi
23、ZnCdS2、Cu2Sの硫化物、CdSe、In
2Se3、WSe2、HgS、PbSe、CdTeの金属
カルコゲナイド、その他GaAs、Si、Se、Cd 2
3、Zn23、InP、AgBr、PbI2、Hg
2、BiI3が好ましい。または、前記半導体から選ば
れる少なくとも一種以上を含む複合体、例えば、CdS
/TiO2、CdS/AgI、Ag2S/AgI、CdS
/ZnO、CdS/HgS、CdS/PbS、ZnO/
ZnS、ZnO/ZnSe、CdS/HgS、CdSx
/CdSe1-x、CdSx/Te1-x、CdSex/Te
1-x、ZnS/CdSe、ZnSe/CdSe、CdS
/ZnS、TiO2/Cd32、CdS/CdSeCdy
Zn1-yS、CdS/HgS/CdSが好ましい。中で
も、半導体層に酸化物を使用することにより、前記の増
感色素との担持反応が、より速やかに進行する。
As a material for forming the semiconductor layer, Cd,
Zn, In, Pb, Mo, W, Sb, Bi, Cu, H
g, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr,
Ga, Si, Cr oxide, SrTiOThree, CaTiOThree
Or CdS, ZnS, I
nTwoSThree, PbS, MoTwoS, WSTwo, SbTwoSThree, Bi
TwoSThree, ZnCdSTwo, CuTwoS sulfide, CdSe, In
TwoSeThree, WSeTwo, HgS, PbSe, CdTe metals
Chalcogenide, other GaAs, Si, Se, Cd Two
PThree, ZnTwoPThree, InP, AgBr, PbITwo, Hg
ITwo, BiIThreeIs preferred. Or selected from the above semiconductors
Complex containing at least one of the following, for example, CdS
/ TiOTwo, CdS / AgI, AgTwoS / AgI, CdS
/ ZnO, CdS / HgS, CdS / PbS, ZnO /
ZnS, ZnO / ZnSe, CdS / HgS, CdSx
/ CdSe1-x, CdSx/ Te1-x, CdSex/ Te
1-x, ZnS / CdSe, ZnSe / CdSe, CdS
/ ZnS, TiOTwo/ CdThreePTwo, CdS / CdSeCdy
Zn1-yS and CdS / HgS / CdS are preferred. Inside
In addition, the use of an oxide for the semiconductor layer increases the above-mentioned increase.
The carrying reaction with the sensitizing dye proceeds more rapidly.

【0034】色素担持半導体層3の厚さは0.1〜10
0μmの範囲の厚さであればよい。色素担持半導体層3
の厚さが0.1μm未満の場合には、十分な光電変換効
果が得られない可能性がある。一方、厚さが100μm
超の場合には、可視光および近赤外光に対する透過性が
著しく悪化するなどの不都合が生じるので好ましくな
い。
The thickness of the dye-carrying semiconductor layer 3 is 0.1 to 10
The thickness may be in the range of 0 μm. Dye-carrying semiconductor layer 3
If the thickness is less than 0.1 μm, a sufficient photoelectric conversion effect may not be obtained. On the other hand, the thickness is 100 μm
If the ratio is more than 1, it is not preferable because inconveniences such as remarkable deterioration in transmittance of visible light and near-infrared light occur.

【0035】本発明の光電変換素子1における電解質層
5は、電解質を溶媒に溶解させることにより生成される
電解質溶液からなる。このような目的に使用可能な電解
質は例えば、酸化体と還元体からなる一対の酸化還元系
構成物質が溶媒中に含まれていれば、特に限定されない
が、酸化体と還元体が同一電荷を持つ酸化還元系構成物
質が好ましい。この明細書における、酸化還元系構成物
質とは、酸化還元反応において、可逆的に酸化体及び還
元体の形で存在する一対の物質を意味する。このような
酸化還元系構成物質自体は当業者に公知である。本発明
で使用できる酸化還元系構成物質は例えば、塩素化合物
−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タ
リウムイオン(III)−タリウムイオン(I)、水銀イオン(I
I)−水銀イオン(I)、ルテニウムイオン(III)−ルテニウ
ムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン
(III)−鉄イオン(II)、バナジウムイオン(III)−バナジ
ウムイオン(II)、マンガン酸イオン−過マンガン酸イオ
ン、フェリシアン化物−フェロシアン化物、キノン−ヒ
ドロキノン、フマル酸−コハク酸などが挙げられる。言
うまでもなく、その他の酸化還元系構成物質も使用でき
る。中でも、ヨウ素化合物−ヨウ素が好ましく、ヨウ素
化合物としては、ヨウ化リチウム、ヨウ化カリウム等の
金属ヨウ化物、テトラアルキルアンモニウムヨージド、
ピリジニウムヨージド等のヨウ化4級アンモニウム塩化
合物、ヨウ化ジメチルプロピルイミダゾリウム等のヨウ
化ジイミダゾリウム化合物が特に好ましい。
The electrolyte layer 5 in the photoelectric conversion element 1 of the present invention is made of an electrolyte solution generated by dissolving an electrolyte in a solvent. The electrolyte that can be used for such a purpose is not particularly limited, for example, as long as a pair of redox-based constituents composed of an oxidant and a reductant is contained in a solvent, but the oxidant and the reductant have the same charge. Oxidation-reducing constituent materials are preferred. In this specification, the oxidation-reduction constituent material means a pair of substances that are reversibly present in the form of an oxidized form and a reduced form in a redox reaction. Such redox components are known to those skilled in the art. The redox constituents usable in the present invention include, for example, chlorine compounds-chlorine, iodine compounds-iodine, bromine compounds-bromine, thallium ions (III)-thallium ions (I), mercury ions (I
I) -mercury ion (I), ruthenium ion (III) -ruthenium ion (II), copper ion (II) -copper ion (I), iron ion
(III) -iron ion (II), vanadium ion (III) -vanadium ion (II), manganate ion-permanganate ion, ferricyanide-ferrocyanide, quinone-hydroquinone, fumaric acid-succinic acid and the like. No. Needless to say, other redox components can also be used. Among them, an iodine compound-iodine is preferable, and examples of the iodine compound include metal iodides such as lithium iodide and potassium iodide, tetraalkylammonium iodide,
Particularly preferred are quaternary ammonium iodide compounds such as pyridinium iodide and diimidazolium iodide compounds such as dimethylpropyl imidazolium iodide.

【0036】電解質を溶解するために使用される溶媒
は、酸化還元系構成物質を溶解しイオン伝導性に優れた
化合物が好ましい。溶媒としては水性溶媒及び有機溶媒
の何れも使用できるが、酸化還元系構成物質をより安定
するため、有機溶媒が好ましい。例えば、ジメチルカー
ボネート、ジエチルカーボネート、メチルエチルカーボ
ネート、エチレンカーボネート、プロピレンカーボネー
ト等のカーボネ−ト化合物、酢酸メチル、プロピオン酸
メチル、ガンマーブチロラクトン等のエステル化合物、
ジエチルエーテル、1,2−ジメトキシエタン、1,3
−ジオキソシラン、テトラヒドロフラン、2−メチルー
テトラヒドラフラン等のエーテル化合物、3−メチル−
2−オキサゾジリノン、2−メチルピロリドン等の複素
環化合物、アセトニトリル、メトキシアセトニトリル、
プロピオニトリル等のニトリル化合物、スルフォラン、
ジジメチルスルフォキシド、ジメチルフォルムアミド等
の非プロトン性極性化合物などが挙げられる。これらは
それぞれ単独で用いることもできるし、また、2種類以
上を混合して併用することもできる。中でも、エチレン
カーボネート、プロピレンカーボネート等のカーボネ−
ト化合物、3−メチル−2−オキサゾジリノン、2−メ
チルピロリドン等の複素環化合物、アセトニトリル、メ
トキシアセトニトリル、プロピオニトリル等のニトリル
化合物が特に好ましい。
The solvent used for dissolving the electrolyte is preferably a compound which dissolves a redox constituent and has excellent ion conductivity. As the solvent, any of an aqueous solvent and an organic solvent can be used, but an organic solvent is preferable in order to further stabilize the oxidation-reduction constituent material. For example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, carbonate compounds such as propylene carbonate, methyl acetate, methyl propionate, ester compounds such as gamma-butyrolactone,
Diethyl ether, 1,2-dimethoxyethane, 1,3
Ether compounds such as dioxosilane, tetrahydrofuran and 2-methyl-tetrahydrafuran, 3-methyl-
Heterocyclic compounds such as 2-oxazodilinone and 2-methylpyrrolidone, acetonitrile, methoxyacetonitrile,
Nitrile compounds such as propionitrile, sulfolane,
Aprotic polar compounds such as didimethylsulfoxide and dimethylformamide; Each of these can be used alone, or two or more of them can be used in combination. Among them, carbonates such as ethylene carbonate and propylene carbonate
Compounds, heterocyclic compounds such as 3-methyl-2-oxazodylinone and 2-methylpyrrolidone, and nitrile compounds such as acetonitrile, methoxyacetonitrile and propionitrile are particularly preferred.

【0037】本発明の光電変換素子1において有孔集電
電極4に用いる電極材は、Au、Pt、Ag、Cu、A
l、Ni、Zn、Ti及びCrからなる群から選ばれる
少なくとも一種以上の元素を含むものが好ましい。有孔
集電電極4の構造としては、電解質層5の電解液中に含
まれる酸化還元体の移動を妨げないようにするために、
液体が透過可能な網目状の構造が好ましい。網目状電極
の目の粗さ自体は特に限定されない。電解質層5の電解
質溶液中に含まれる酸化還元体の移動を可能にするのに
必要十分な目の粗さを有すればよい。一般的に、このよ
うな網目状電極の目の粗さが20メッシュから500メ
ッシュの範囲内であればよい。網目状電極の目の粗さが
500メッシュ超の場合、電解質溶液中に含まれる酸化
還元体の移動が阻害される恐れがある。一方、網目状電
極の目の粗さが20メッシュ未満の場合、半導体に注入
される電子が網目状集電電極に到達するまでに移動距離
が長くなり、抵抗損失の増大を招くなどの問題が生じる
ので好ましくない。
The electrode material used for the perforated current collecting electrode 4 in the photoelectric conversion element 1 of the present invention is Au, Pt, Ag, Cu, A
Those containing at least one or more elements selected from the group consisting of 1, Ni, Zn, Ti and Cr are preferable. The structure of the perforated current collecting electrode 4 is such that the movement of the redox substance contained in the electrolyte solution of the electrolyte layer 5 is not hindered.
A network-like structure through which a liquid can pass is preferable. The roughness of the mesh electrode itself is not particularly limited. It suffices if the electrolyte layer 5 has sufficient and sufficient mesh roughness to enable the movement of the redox substance contained in the electrolyte solution of the electrolyte layer 5. Generally, it is sufficient that the mesh of such a mesh electrode is in the range of 20 mesh to 500 mesh. If the mesh of the mesh electrode is more than 500 mesh, the movement of the redox substance contained in the electrolyte solution may be hindered. On the other hand, when the mesh of the mesh electrode has a roughness of less than 20 mesh, there is a problem in that electrons to be injected into the semiconductor have a long moving distance until reaching the mesh current collecting electrode, which causes an increase in resistance loss. It is not preferable because it occurs.

【0038】有孔集電電極4の構造は、電極の貫通孔を
通して電解質溶液中に含まれる酸化還元体の移動が可能
な構造であれば特に限定されない。例えば、図2に示さ
れるような細線状の電極材を網目状に配列した網目状電
極構造又は図3に示されるような薄板状の電極材を縦横
に組み込んだ格子状の構造を採用することができる。
The structure of the perforated current collecting electrode 4 is not particularly limited as long as the structure allows the redox substance contained in the electrolyte solution to move through the through hole of the electrode. For example, a mesh-like electrode structure in which fine wire-like electrode materials are arranged in a mesh shape as shown in FIG. 2 or a lattice-like structure in which thin plate-like electrode materials are vertically and horizontally incorporated as shown in FIG. 3 is adopted. Can be.

【0039】図2及び図3に示されるような有孔集電電
極4の場合、貫通孔の中に、色素担持半導体層を、液体
堆積法、電解メッキ法又は無電解メッキ法などの方法で
成膜することもできる。これにより、集電電極の抵抗損
失を低減でき、かつ、半導体に注入された電子が集電電
極に到達するまでに移動する距離を短くすることができ
る。その結果、半導体中を移動する際に生じる抵抗によ
る損失を低減することができ、光電変換効率を飛躍的に
向上させることができる。
In the case of the perforated current collecting electrode 4 as shown in FIGS. 2 and 3, the dye-carrying semiconductor layer is formed in the through-hole by a method such as liquid deposition, electrolytic plating or electroless plating. A film can also be formed. Accordingly, the resistance loss of the current collecting electrode can be reduced, and the distance that electrons injected into the semiconductor travel until reaching the current collecting electrode can be shortened. As a result, it is possible to reduce the loss due to the resistance generated when moving through the semiconductor, and to dramatically improve the photoelectric conversion efficiency.

【0040】なお、有孔集電電極4がPtから形成され
ている場合、対電極のPt膜9と同じ素材なので、対電
極で行われるのと同じ還元反応が有孔集電電極4の表面
でおこなわれてしまう。このため、有孔集電電極表面で
電解質溶液中の酸化体の還元反応が進行しないように半
導体被膜で覆うことが必要となる。このような目的のた
めの半導体被膜形成法としては、例えば,酸化チタン半
導体被膜の場合、TiCl4水溶液への浸漬、電解メッ
キ、無電解メッキ、液相堆積法などの方法を使用するこ
とができる。有孔集電電極表面を被覆するための半導体
としては、酸化チタンの他、五酸化タングステン、スト
ロンチウムタングステン酸、ストロンチウムチタン酸、
五酸化ニオビウム、硫化カドミウム、酸化亜鉛、酸化ス
ズ、三酸化インジウムなどの公知の半導体の一種または
二種以上を用いることができる。特に、安定性や環境対
応性の点から酸化チタンが好ましい。
When the perforated current collecting electrode 4 is made of Pt, since the same material as the Pt film 9 of the counter electrode is used, the same reduction reaction as performed by the counter electrode is performed on the surface of the perforated current collecting electrode 4. It is done in. For this reason, it is necessary to cover the surface of the perforated current collecting electrode with a semiconductor film so that the reduction reaction of the oxidant in the electrolyte solution does not proceed. As a method of forming a semiconductor film for such a purpose, for example, in the case of a titanium oxide semiconductor film, methods such as immersion in an aqueous solution of TiCl 4 , electrolytic plating, electroless plating, and liquid phase deposition can be used. . Semiconductors for covering the surface of the perforated current collecting electrode include, in addition to titanium oxide, tungsten pentoxide, strontium tungstate, strontium titanate,
One or more known semiconductors such as niobium pentoxide, cadmium sulfide, zinc oxide, tin oxide, and indium trioxide can be used. In particular, titanium oxide is preferable in terms of stability and environmental compatibility.

【0041】前記のように、有孔集電電極4が対電極形
成材料と同じ素材で形成されている場合、有孔集電電極
4における電解質溶液中の酸化体の還元反応の進行を阻
止するために、有孔集電電極4を半導体被膜で被覆する
必要があるが、有孔集電電極4が対電極形成材料と異な
る素材から形成されている場合、電解質溶液中の酸化体
の還元反応が有孔集電電極4で生起することはないの
で、有孔集電電極4の表面を半導体被膜で被覆する必要
はない。
As described above, when the perforated current collecting electrode 4 is formed of the same material as the counter electrode forming material, the progress of the reduction reaction of the oxidant in the electrolyte solution at the perforated current collecting electrode 4 is prevented. Therefore, it is necessary to cover the perforated current collecting electrode 4 with a semiconductor film. However, when the perforated current collecting electrode 4 is formed from a material different from the counter electrode forming material, the reduction reaction of the oxidant in the electrolyte solution is performed. Does not occur on the perforated current collecting electrode 4, so that it is not necessary to cover the surface of the perforated current collecting electrode 4 with a semiconductor film.

【0042】有孔集電電極4の表面を半導体被膜で被覆
する場合、この半導体被膜に増感色素を担持させること
もできる。この場合、基板表面に色素担持半導体層を別
途設ける必要性が無くなる。
When the surface of the perforated current collecting electrode 4 is coated with a semiconductor film, a sensitizing dye can be carried on the semiconductor film. In this case, there is no need to separately provide a dye-carrying semiconductor layer on the substrate surface.

【0043】有孔集電電極4による抵抗損失を小さくす
るため、有孔集電電極4の表面抵抗は低い程よい。有孔
集電電極4の表面抵抗は50Ω/□以下であることが好
ましい。30Ω/□以下の表面抵抗値が一層好ましい。
有孔集電電極4の表面抵抗の下限値に特に制限はない
が、通常0.1Ω/□である。
In order to reduce the resistance loss caused by the perforated current collecting electrode 4, the lower the surface resistance of the perforated current collecting electrode 4, the better. The perforated current collecting electrode 4 preferably has a surface resistance of 50Ω / □ or less. A surface resistance value of 30Ω / □ or less is more preferable.
Although the lower limit of the surface resistance of the perforated current collecting electrode 4 is not particularly limited, it is usually 0.1 Ω / □.

【0044】[0044]

【実施例】つぎに、実施例を挙げて本発明を具体的に例
証する。ただし、本発明は下記の実施例のみに限定され
るものではない。
EXAMPLES Next, the present invention will be specifically illustrated with examples. However, the present invention is not limited to only the following examples.

【0045】実施例1 界面活性剤を含む水とアセチルアセトンとの混合液(容
量混合比=20/1)中に酸化チタン粒子(日本アエロ
ジル社製,P25,平均粒径20nm)を濃度約2wt%
で分散させてスラリー液を調製した。次に、このスラリ
ー液を厚さ1mmのガラス基板上に塗布し、さらに、塗
布膜上に、図2で示される構造の厚さ5μmで、目の粗
さが200メッシュの網目状Pt集電電極を載置し、塗
布膜を乾燥した後、500℃で30分間空気中で焼成し
た。なお、前記網目状Pt集電電極にはあらかじめ酸化
チタンの被膜を被覆しておいた。酸化チタン被膜は、網
目状Pt集電電極をフルオロチタンアンモニウム2.0
g/L,ホウ酸1.2g/Lを含む水に浸漬し25℃で3
時間放置することからなる液相堆積法により形成した。
次に、この網目状Pt集電電極を備えた多孔質酸化チタ
ン膜をガラス基板とともに、[Ru(4,4’-ジカルボキシ
ル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶
液中に浸漬し、80℃で還流を行いながら色素吸着処理
を行った。
Example 1 Titanium oxide particles (manufactured by Nippon Aerosil Co., Ltd., P25, average particle diameter: 20 nm) were mixed in a mixed solution of water containing a surfactant and acetylacetone (volume mixing ratio = 20/1) at a concentration of about 2 wt%.
To prepare a slurry liquid. Next, this slurry liquid was applied on a glass substrate having a thickness of 1 mm, and further, on the coating film, a mesh-like Pt current collector having a structure shown in FIG. After the electrode was placed and the coating film was dried, it was baked at 500 ° C. for 30 minutes in air. The meshed Pt current collecting electrode was previously coated with a titanium oxide film. The titanium oxide film is formed by coating the mesh-like Pt current collecting electrode with fluorotitanium ammonium 2.0.
g / L, water containing 1.2 g / L of boric acid.
It was formed by a liquid phase deposition method consisting of standing for a period of time.
Next, the porous titanium oxide film provided with this network-like Pt current collecting electrode was represented by [Ru (4,4′-dicarboxyl-2,2′-bipyridine) 2- (NCS) 2 ] together with the glass substrate. The dye was immersed in a sensitizing dye solution and refluxed at 80 ° C. to perform dye adsorption treatment.

【0046】前記のようにして得た網目状Pt集電電極
を備えた半導体電極とその対電極とを電解質溶液に接触
させ光電変換素子を構成した。なお、電解質溶液は網目
状Pt集電電極を備えた半導体電極とその対電極と封止
材とにより封止した。対電極としてはPtを20nm厚
さに成膜した厚さ1mmの導電性ガラス基板(F−Sn
2,10Ω/sq,旭硝子製)を用いた。電解質溶液
としては、テトラプロピルアンモニウムヨーダイド
(0.46M)とヨウ素(0.6M)を含むエチレンカ
ーボネートとアセトニトリルとの混合液(容量混合比=
80/20)を用いた。前記のようにして得られた色素
増感電池の断面構造の模式図を図4に示す。また、前記
太陽電池にキセノンランプを用い450W/m2の照度
の光を照射した時の太陽電池出力を測定したところ光電
変換効率は7.1%であった。
The photoelectric conversion element was formed by bringing the semiconductor electrode provided with the mesh-like Pt current collecting electrode obtained as described above and its counter electrode into contact with an electrolyte solution. The electrolyte solution was sealed with a semiconductor electrode provided with a meshed Pt current collecting electrode, its counter electrode, and a sealing material. As a counter electrode, a conductive glass substrate (F-Sn) having a thickness of 1 mm in which Pt was deposited to a thickness of 20 nm.
O 2 , 10Ω / sq, manufactured by Asahi Glass). As the electrolyte solution, a mixture of ethylene carbonate containing tetrapropylammonium iodide (0.46 M) and iodine (0.6 M) and acetonitrile (volume mixing ratio =
80/20). FIG. 4 shows a schematic diagram of the cross-sectional structure of the dye-sensitized battery obtained as described above. When the solar cell was irradiated with light having an illuminance of 450 W / m 2 using a xenon lamp, the output of the solar cell was measured, and the photoelectric conversion efficiency was 7.1%.

【0047】実施例2 界面活性剤を含む水とアセチルアセトンとの混合液(容
量混合比=20/1)中に酸化チタン粒子(日本アエロ
ジル社製,P25,平均粒径20nm)を濃度約2wt%
で分散させてスラリー液を調製した。次に、このスラリ
ー液を厚さ1mmのガラス基板上に、図3で示される構
造の厚さ20μmの格子状のPt集電電極をのせた上か
ら塗布し、塗布膜を乾燥し、500℃で30分間空気中
で焼成し、酸化チタン膜が格子状Pt集電電極の格子内
を埋めるような形とした。なお、この格子状Pt集電電
極の外表面は、予め酸化チタン被膜で被覆しておいた。
この酸化チタン被膜は、格子状Pt集電電極をフルオロ
チタンアンモニウム2.0g/L、ホウ酸1.2g/Lを
含む水に浸漬し、25℃で3時間放置することからなる
液相堆積法により形成した。次に、この格子状Pt集電
電極を備えた多孔質酸化チタン膜をガラス基板ととも
に、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-
(NCS)2]で表される増感色素溶液中に浸漬し、80℃で
還流を行いながら色素吸着処理を行った。
Example 2 Titanium oxide particles (manufactured by Nippon Aerosil Co., Ltd., P25, average particle diameter: 20 nm) were mixed in a mixed solution of surfactant-containing water and acetylacetone (volume mixing ratio = 20/1) at a concentration of about 2 wt%.
To prepare a slurry liquid. Next, this slurry liquid was applied on a 1 mm-thick glass substrate on which a 20 μm-thick lattice-shaped Pt collecting electrode having the structure shown in FIG. 3 was placed, and the applied film was dried. For 30 minutes in air, so that the titanium oxide film fills the lattice of the lattice-shaped Pt current collecting electrode. The outer surface of the grid-shaped Pt current collecting electrode was previously coated with a titanium oxide film.
This titanium oxide film is formed by immersing a lattice-shaped Pt current collecting electrode in water containing 2.0 g / L of fluorotitanium ammonium and 1.2 g / L of boric acid, and leaving it at 25 ° C. for 3 hours. Formed. Next, a porous titanium oxide film provided with this lattice-shaped Pt current collecting electrode was used together with a glass substrate together with [Ru (4,4'-dicarboxyl-2,2'-bipyridine) 2-
(NCS) 2 ], and the dye was adsorbed while refluxing at 80 ° C.

【0048】前記のようにして得た格子状Pt集電電極
を備えた半導体電極とその対電極とを電解質溶液に接触
させ、光電変換素子を構成した。なお、電解質溶液は格
子状Pt集電電極を備えた半導体電極とその対電極と封
止材とにより封止した。対電極としてはPtを20nm
厚さ成膜した厚さ1mmの導電性ガラス基板(F−Sn
2,10Ω/sq,旭硝子製)を用いた。電解質溶液
としては、テトラプロピルアンモニウムヨーダイド
(0.46M)とヨウ素(0.6M)を含むエチレンカ
ーボネートとアセトニトリルとの混合液(容量混合比=
80/20)を用いた。前記のようにして得られた色素
増感電池の断面構造の模式図を図5に示す。また、前記
太陽電池にキセノンランプを用い450W/m2の照度
の光を照射した時の太陽電池出力を測定したところ光電
変換効率は7.4%であった。
The semiconductor electrode provided with the grid-like Pt current collecting electrode obtained as described above and its counter electrode were brought into contact with an electrolyte solution to form a photoelectric conversion element. The electrolyte solution was sealed with a semiconductor electrode having a lattice-shaped Pt current collecting electrode, its counter electrode, and a sealing material. 20 nm Pt as counter electrode
1 mm thick conductive glass substrate (F-Sn
O 2 , 10Ω / sq, manufactured by Asahi Glass). As the electrolyte solution, a mixture of ethylene carbonate containing tetrapropylammonium iodide (0.46 M) and iodine (0.6 M) and acetonitrile (volume mixing ratio =
80/20). FIG. 5 shows a schematic diagram of the cross-sectional structure of the dye-sensitized battery obtained as described above. When the solar cell was irradiated with light having an illuminance of 450 W / m 2 using a xenon lamp, the output of the solar cell was measured. As a result, the photoelectric conversion efficiency was 7.4%.

【0049】実施例3 格子状のPt集電電極をフルオロチタンアンモニウム
2.0g/L及びホウ酸1.2g/Lを含む水に浸漬し、
25℃で6日間放置することからなる液相堆積法によ
り、格子状Pt集電電極表面に厚さ2μmの酸化チタン
膜を形成し、乾燥後、500℃で30分間空気中で焼成
した。次に、この格子状Pt集電電極表面全体を被覆す
る酸化チタン膜を[Ru(4,4’-ジカルボキシル-2,2’-ビ
ピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬
し、80℃で還流を行いながら色素吸着処理を行った。
Example 3 A grid-like Pt collecting electrode was immersed in water containing 2.0 g / L of fluorotitanium ammonium and 1.2 g / L of boric acid.
A titanium oxide film having a thickness of 2 μm was formed on the surface of the grid-like Pt current collecting electrode by a liquid phase deposition method consisting of leaving it at 25 ° C. for 6 days, dried, and then baked at 500 ° C. for 30 minutes in air. Next, the titanium oxide film covering the entire surface of the lattice-shaped Pt current collecting electrode is sensitized by [Ru (4,4'-dicarboxyl-2,2'-bipyridine) 2- (NCS) 2 ]. The sample was immersed in a dye solution and subjected to dye adsorption treatment while refluxing at 80 ° C.

【0050】前記のようにして得た格子状Pt集電電極
を備えた半導体電極とその対電極とを電解質溶液に接触
させ、光電変換素子を構成した。なお、電解質溶液は、
格子状Pt集電電極を備えた半導体電極とその対電極と
封止材とにより封止した。対電極としてはPtを20n
m厚さ成膜した厚さ1mmの導電性ガラス基板(F−S
nO2,10Ω/sq,旭硝子製)を用いた。電解質溶
液液としては、テトラプロピルアンモニウムヨーダイド
(0.5M)とヨウ素(0.04M)を含むエチレンカ
ーボネートとアセトニトリルとの混合液(容量混合比=
80/20)を用いた。前記のようにして得られた色素
増感電池の断面構造の模式図を図6に示す。また、前記
太陽電池にキセノンランプを用い450W/m2の照度
の光を照射した時の太陽電池出力を測定したところ光電
変換効率は6.9%であった。
The semiconductor electrode provided with the lattice-shaped Pt current collecting electrode obtained as described above and its counter electrode were brought into contact with an electrolyte solution to form a photoelectric conversion element. The electrolyte solution is
It was sealed with a semiconductor electrode provided with a lattice-shaped Pt current collecting electrode, its counter electrode, and a sealing material. 20n of Pt as counter electrode
1 mm thick conductive glass substrate (FS
nO 2 , 10Ω / sq, manufactured by Asahi Glass). As the electrolyte solution, a mixed solution of ethylene carbonate containing tetrapropylammonium iodide (0.5 M) and iodine (0.04 M) and acetonitrile (volume mixing ratio =
80/20). FIG. 6 shows a schematic diagram of the cross-sectional structure of the dye-sensitized battery obtained as described above. When the solar cell was irradiated with light having an illuminance of 450 W / m 2 using a xenon lamp, the output of the solar cell was measured, and the photoelectric conversion efficiency was 6.9%.

【0051】実施例4 界面活性剤を含む水とアセチルアセトンとの混合液(容
量混合比=20/1)中に酸化チタン粒子(日本アエロ
ジル社製,P25,平均粒径20nm)を濃度約2wt%
で分散させてスラリー液を調製した。次に、このスラリ
ー液を厚さ1mmのガラス基板上に塗布し、更に、塗布
膜上に厚さ5μmで200メッシュの網目状Au電極を
のせ、塗布膜を乾燥した後、500℃で30分間空気中
で焼成した。次に、この網目状Au電極を備えた多孔質
酸化チタン膜をガラス基板と共に、[Ru(4,4’-ジカル
ボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感
色素溶液中に浸漬し、80℃で還流を行いながら色素吸
着処理を行った。
Example 4 Titanium oxide particles (manufactured by Nippon Aerosil Co., Ltd., P25, average particle diameter 20 nm) were mixed in a mixed solution of water containing surfactant and acetylacetone (volume mixing ratio = 20/1) at a concentration of about 2 wt%.
To prepare a slurry liquid. Next, this slurry liquid was applied on a glass substrate having a thickness of 1 mm, and a mesh-like Au electrode having a thickness of 5 μm and 200 mesh was placed on the coating film. The coating film was dried, and then dried at 500 ° C. for 30 minutes. Fired in air. Next, the porous titanium oxide film provided with the network Au electrode is represented by [Ru (4,4'-dicarboxyl-2,2'-bipyridine) 2- (NCS) 2 ] together with the glass substrate. The sample was immersed in a sensitizing dye solution and subjected to dye adsorption while refluxing at 80 ° C.

【0052】前記のようにして得た網目状Au電極を備
えた半導体電極とその対電極とを電解質溶液に接触さ
せ、光電変換素子を構成した。なお、電解質溶液は網目
状Au電極を備えた半導体電極とその対電極と封止材と
により封止した。対電極としてはPtを20nm厚さ成
膜した厚さ1mmの導電性ガラス基板(F−SnO2
10Ω/sq,旭硝子製)を用いた。電解質溶液として
は、テトラプロピルアンモニウムヨーダイド(0.46
M)とヨウ素(0.6M)を含むエチレンカーボネート
とアセトニトリルとの混合液(容量混合比=80/2
0)を用いた。前記のようにして得られた色素増感電池
の断面構造の模式図を図2に示す。また、前記太陽電池
にキセノンランプを用い450W/m2の照度の光を照
射した時の太陽電池出力を測定したところ光電変換効率
は6.8%であった。
The semiconductor electrode provided with the network-like Au electrode obtained as described above and its counter electrode were brought into contact with an electrolyte solution to form a photoelectric conversion element. The electrolyte solution was sealed with a semiconductor electrode provided with a mesh Au electrode, its counter electrode, and a sealing material. As the counter electrode, a conductive glass substrate (F-SnO 2 ,
10 Ω / sq, manufactured by Asahi Glass). As an electrolyte solution, tetrapropylammonium iodide (0.46
M) and a mixture of ethylene carbonate containing iodine (0.6 M) and acetonitrile (volume mixing ratio = 80/2)
0) was used. FIG. 2 shows a schematic diagram of the cross-sectional structure of the dye-sensitized battery obtained as described above. Further, when the solar cell was irradiated with light having an illuminance of 450 W / m 2 using a xenon lamp, the output of the solar cell was measured, and the photoelectric conversion efficiency was 6.8%.

【0053】比較例1 界面活性剤を含む水とアセチルアセトンとの混合液(容
量混合比=20/1)中に酸化チタン粒子(日本アエロ
ジル社製,P25,平均粒径20nm)を濃度約1wt%
で分散させてスラリー液を調製した。次に、このスラリ
ー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−
SnO2,10Ω/sq)上に塗布し、、乾燥し、得ら
れた乾燥物を500℃で30分間、空気中で焼成し、基
板上に厚さ10μmの多孔質酸化チタン膜を形成した。
次に、この多孔質酸化チタン膜を設けた基板とともに,
[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)
2]で表される増感色素溶液中に浸漬し、80℃で還流
を行いながら色素吸着処理を行った。
Comparative Example 1 Titanium oxide particles (P25, manufactured by Nippon Aerosil Co., Ltd., average particle diameter: 20 nm) were mixed in a mixed solution of water containing a surfactant and acetylacetone (volume mixing ratio = 20/1) at a concentration of about 1 wt%.
To prepare a slurry liquid. Next, this slurry liquid was applied to a conductive glass substrate having a thickness of 1 mm (made by Asahi Glass, F-
(SnO 2 , 10Ω / sq), and dried. The obtained dried product was fired at 500 ° C. for 30 minutes in air to form a porous titanium oxide film having a thickness of 10 μm on the substrate.
Next, together with the substrate provided with the porous titanium oxide film,
[Ru (4,4'-dicarboxyl-2,2'-bipyridine) 2- (NCS)
2 ], and the dye was adsorbed while refluxing at 80 ° C.

【0054】前記のようにして得た半導体電極とその対
電極とを電解質溶液に接触させて光電変換素子を構成し
た。この場合、対電極としては,20nmのPtを成膜
した導電性ガラスを用いた。両電極間の距離は0.1m
mとした。電解質溶液としては,テトラプロピルアンモ
ニウムヨーダイド(0.5M)とヨウ素(0.04M)
を含むエチレンカーボネートとアセトニトリルとの混合
液(容量混合比=80/20)を用いた。前記のように
して得られた色素増感電池にキセノンランプヲ用い45
0W/m2の照度の光を照射した時の太陽電池出力を測
定したところ光電変換効率は5.2%であった。
The photoelectric conversion element was formed by bringing the semiconductor electrode obtained as described above and its counter electrode into contact with an electrolyte solution. In this case, as the counter electrode, a conductive glass on which Pt of 20 nm was formed was used. The distance between both electrodes is 0.1m
m. As the electrolyte solution, tetrapropylammonium iodide (0.5M) and iodine (0.04M)
Of a mixture of ethylene carbonate and acetonitrile (volume mixing ratio = 80/20). A xenon lamp was used for the dye-sensitized battery obtained as described above.
When the output of the solar cell when irradiated with light having an illuminance of 0 W / m 2 was measured, the photoelectric conversion efficiency was 5.2%.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
色素を担持した半導体層を、集電電極の受光面側に配置
し、集電電極として多数の貫通孔を有する網目状又は格
子状の集電電極を使用することにより、電解質溶液がこ
の集電電極の貫通孔を介して色素担持半導体層と接触で
きるようにしたことにより、受光面から入射した光が色
素担持半導体層に直接作用することが可能となるので、
光電変換素子(例えば、太陽電池)の光電変換効率を飛
躍的に向上させることができる。
As described above, according to the present invention,
By disposing the semiconductor layer supporting the dye on the light receiving surface side of the current collecting electrode, and using a mesh-like or grid-like current collecting electrode having a large number of through holes as the current collecting electrode, the electrolyte solution allows the current to be collected. By making it possible to contact the dye-carrying semiconductor layer through the through-hole of the electrode, light incident from the light-receiving surface can directly act on the dye-carrying semiconductor layer,
The photoelectric conversion efficiency of a photoelectric conversion element (for example, a solar cell) can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換素子の一例の概要断面図であ
る。
FIG. 1 is a schematic sectional view of an example of a photoelectric conversion element of the present invention.

【図2】図1に示された光電変換素子で使用される集電
電極の一例の概要斜視図である。
FIG. 2 is a schematic perspective view of an example of a current collecting electrode used in the photoelectric conversion element shown in FIG.

【図3】図1に示された光電変換素子で使用される集電
電極の別の例の概要斜視図である。
FIG. 3 is a schematic perspective view of another example of a current collecting electrode used in the photoelectric conversion element shown in FIG.

【図4】実施例1で作製された本発明の光電変換素子の
概要断面図である。
FIG. 4 is a schematic sectional view of the photoelectric conversion element of the present invention produced in Example 1.

【図5】実施例2で作製された本発明の光電変換素子の
概要断面図である。
FIG. 5 is a schematic sectional view of the photoelectric conversion element of the present invention produced in Example 2.

【図6】実施例3で作製された本発明の光電変換素子の
概要断面図である。
FIG. 6 is a schematic sectional view of the photoelectric conversion element of the present invention manufactured in Example 3.

【図7】従来技術による光電変換素子の一例の概要断面
図である。
FIG. 7 is a schematic cross-sectional view of an example of a conventional photoelectric conversion element.

【符号の説明】[Explanation of symbols]

1 本発明の光電変換素子 2 透明基板 3 色素担持半導体層 4 有孔集電電極 5 電解質層 7 基板 8 導電膜 9 Pt膜 REFERENCE SIGNS LIST 1 photoelectric conversion element of the present invention 2 transparent substrate 3 dye-carrying semiconductor layer 4 perforated current collecting electrode 5 electrolyte layer 7 substrate 8 conductive film 9 Pt film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西原 昭二 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5F051 AA14 CB27 CB30 FA03 FA04 FA06 FA14 GA03 GA05 5H032 AA06 AS16 CC13 EE01 EE07 EE16 EE18  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shoji Nishihara 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. (reference) 5F051 AA14 CB27 CB30 FA03 FA04 FA06 FA14 GA03 GA05 5H032 AA06 AS16 CC13 EE01 EE07 EE16 EE18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が光透過性の素材からな
る2枚の基板の間に、少なくとも、色素担持半導体層
と、集電電極と、電解質層と対電極とを有する光電変換
素子において、 前記光透過性素材からなる基板の一方の面上に色素担持
半導体層が配設され、該色素担持半導体層の他方の面上
に有孔集電電極が配設され、他方の基板の一方の面上に
対電極が配設され、前記集電電極と対電極との間に電解
質層が配設されていることを特徴とする光電変換素子。
1. A photoelectric conversion element having at least one of a dye-carrying semiconductor layer, a current collecting electrode, an electrolyte layer and a counter electrode between two substrates at least one of which is made of a light-transmitting material, A dye-supporting semiconductor layer is provided on one surface of a substrate made of a light-transmitting material, a perforated current collecting electrode is provided on the other surface of the dye-supporting semiconductor layer, and one surface of the other substrate is provided. A photoelectric conversion element, wherein a counter electrode is provided thereon, and an electrolyte layer is provided between the current collecting electrode and the counter electrode.
【請求項2】 前記有孔集電電極は、細線状の電極材を
縦横に組み合わせた網目状の構造を有することを特徴と
する請求項1に記載の光電変換素子。
2. The photoelectric conversion element according to claim 1, wherein the perforated current collecting electrode has a mesh-like structure in which thin line-shaped electrode materials are combined vertically and horizontally.
【請求項3】 前記有孔集電電極は、薄板状の電極材を
縦横に組み合わせた格子状の構造を有することを特徴と
する請求項1に記載の光電変換素子。
3. The photoelectric conversion element according to claim 1, wherein the perforated current collecting electrode has a lattice-like structure in which thin plate-like electrode materials are combined vertically and horizontally.
【請求項4】 前記有孔集電電極は、Au、Pt、A
g、Cu、Al、Ni、Zn、Ti及びCrからなる群
から選ばれる少なくとも一種以上の元素からからなる電
極材から形成されていることを特徴とする請求項1〜3
の何れかに記載の光電変換素子。
4. The perforated current collecting electrode is made of Au, Pt, A
4. An electrode material comprising at least one element selected from the group consisting of g, Cu, Al, Ni, Zn, Ti and Cr.
The photoelectric conversion element according to any one of the above.
【請求項5】 前記有孔集電電極がPtから形成され、
該有孔集電電極の表面が半導体被膜で被覆されているこ
とを特徴とする請求項1〜4の何れかに記載の光電変換
素子。
5. The perforated current collecting electrode is made of Pt,
The photoelectric conversion element according to claim 1, wherein a surface of the perforated current collecting electrode is covered with a semiconductor film.
【請求項6】 前記有孔集電電極の表面を被覆する半導
体被膜が前記色素担持半導体層を構成することを特徴と
する請求項5に記載の光電変換素子。
6. The photoelectric conversion device according to claim 5, wherein a semiconductor coating covering the surface of the perforated current collecting electrode constitutes the dye-carrying semiconductor layer.
JP2000091769A 2000-03-29 2000-03-29 Photoelectric conversion element Expired - Fee Related JP4415448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091769A JP4415448B2 (en) 2000-03-29 2000-03-29 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091769A JP4415448B2 (en) 2000-03-29 2000-03-29 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2001283941A true JP2001283941A (en) 2001-10-12
JP4415448B2 JP4415448B2 (en) 2010-02-17

Family

ID=18607196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091769A Expired - Fee Related JP4415448B2 (en) 2000-03-29 2000-03-29 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4415448B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346927A (en) * 2002-05-27 2003-12-05 Sony Corp Photoelectric converting device
JP2004319383A (en) * 2003-04-18 2004-11-11 Sharp Corp Dye-sensitized solar cell module
JP2005129259A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and solar cell
WO2005053081A1 (en) * 2003-11-25 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2005530069A (en) * 2002-06-18 2005-10-06 フォトソーラー・アンパーツゼルスカブ Optical element for shading
JP2005293862A (en) * 2004-03-31 2005-10-20 Sekisui Jushi Co Ltd Solar cell
JP2005302499A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005317453A (en) * 2004-04-30 2005-11-10 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2006060146A (en) * 2004-08-23 2006-03-02 Gunze Ltd Dye-sensitized solar battery
JPWO2004055934A1 (en) * 2002-12-16 2006-04-20 株式会社林原生物化学研究所 Photoelectrochemical solar cell
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2006324100A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
JP2008181691A (en) * 2007-01-23 2008-08-07 Fujikura Ltd Photoelectric conversion element and first electrode used for the same
WO2009075101A1 (en) * 2007-12-11 2009-06-18 Nippon Steel Chemical Co., Ltd. Dye-sensitized solar cell and manufacturing method of same
WO2009075229A1 (en) * 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
JP2009193854A (en) * 2008-02-15 2009-08-27 Oki Semiconductor Co Ltd Dye-sensitized solar cell
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
WO2009148181A1 (en) * 2008-06-06 2009-12-10 株式会社フジクラ Photoelectric conversion element
JP2010015830A (en) * 2008-07-03 2010-01-21 Fujikura Ltd Photoelectric conversion element
JP2010021091A (en) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology Semiconductor electrode, and dye-sensitized photo-electrochemical cell using the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010153293A (en) * 2008-12-26 2010-07-08 Okayama Univ Structure connecting dye to conductive substrate through peptide and photoelectric conversion element including the same
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same
JP2010225317A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method of the laminate for dye-sensitized solar cell
JP2010225315A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method for the laminate for dye-sensitized solar cell
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
CN101901697A (en) * 2009-06-01 2010-12-01 韩国电子通信研究院 Dye-sensitized solar cell and method of fabricating the same
WO2010150461A1 (en) 2009-06-24 2010-12-29 新日鐵化学株式会社 Dye-sensitized solar cell
JP2011023173A (en) * 2009-07-14 2011-02-03 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011023297A (en) * 2009-07-17 2011-02-03 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011044434A (en) * 2010-10-04 2011-03-03 Oki Semiconductor Co Ltd Dye-sensitized solar cell
JP2011060663A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011060662A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011060664A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Method of manufacturing dye-sensitized photoelectric conversion element, and dye-sensitized photoelectric conversion element
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011070864A (en) * 2009-09-25 2011-04-07 Fujikura Ltd Dye-sensitized photoelectric conversion element
US20110226325A1 (en) * 2010-03-17 2011-09-22 Sony Corporation Photoelectric conversion device
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP2012074195A (en) * 2010-09-28 2012-04-12 Nippon Steel Chem Co Ltd Method of manufacturing three-dimensional electrode of dye-sensitized solar cell
WO2012086377A1 (en) * 2010-12-20 2012-06-28 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
WO2012121134A1 (en) * 2011-03-10 2012-09-13 パナソニック株式会社 Photoelectric conversion element and manufacturing method thereof
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
KR101189578B1 (en) 2011-09-07 2012-10-11 현대자동차주식회사 Dye-sensitized solar cell
WO2013047615A1 (en) 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
WO2013094446A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
WO2013094445A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
JP2013219046A (en) * 2013-06-11 2013-10-24 Nippon Steel & Sumikin Chemical Co Ltd Dye-sensitized solar cell manufacturing method
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631988B1 (en) 2010-10-18 2018-11-07 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing same

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346927A (en) * 2002-05-27 2003-12-05 Sony Corp Photoelectric converting device
JP2005530069A (en) * 2002-06-18 2005-10-06 フォトソーラー・アンパーツゼルスカブ Optical element for shading
US7825330B2 (en) 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
JPWO2004055934A1 (en) * 2002-12-16 2006-04-20 株式会社林原生物化学研究所 Photoelectrochemical solar cell
JP2004319383A (en) * 2003-04-18 2004-11-11 Sharp Corp Dye-sensitized solar cell module
JP2005129259A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and solar cell
WO2005053081A1 (en) * 2003-11-25 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
AU2004310584C1 (en) * 2003-11-28 2009-10-08 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
AU2004310584B2 (en) * 2003-11-28 2007-11-29 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2005293862A (en) * 2004-03-31 2005-10-20 Sekisui Jushi Co Ltd Solar cell
JP2005302499A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005317453A (en) * 2004-04-30 2005-11-10 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2006060146A (en) * 2004-08-23 2006-03-02 Gunze Ltd Dye-sensitized solar battery
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2006324100A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
JP2008181691A (en) * 2007-01-23 2008-08-07 Fujikura Ltd Photoelectric conversion element and first electrode used for the same
WO2009075101A1 (en) * 2007-12-11 2009-06-18 Nippon Steel Chemical Co., Ltd. Dye-sensitized solar cell and manufacturing method of same
WO2009075229A1 (en) * 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
JP5377327B2 (en) * 2007-12-12 2013-12-25 シャープ株式会社 Photosensitized solar cell module and manufacturing method thereof
EP2897144A1 (en) * 2007-12-12 2015-07-22 Sharp Kabushiki Kaisha Photosensitized solar cell module and production method thereof
JP2009193854A (en) * 2008-02-15 2009-08-27 Oki Semiconductor Co Ltd Dye-sensitized solar cell
JP4620748B2 (en) * 2008-02-15 2011-01-26 Okiセミコンダクタ株式会社 Dye-sensitized solar cell
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
US8841543B2 (en) 2008-06-06 2014-09-23 Fujikura Ltd. Photoelectric conversion element
WO2009148181A1 (en) * 2008-06-06 2009-12-10 株式会社フジクラ Photoelectric conversion element
JP2010015830A (en) * 2008-07-03 2010-01-21 Fujikura Ltd Photoelectric conversion element
JP2010021091A (en) * 2008-07-14 2010-01-28 National Institute Of Advanced Industrial & Technology Semiconductor electrode, and dye-sensitized photo-electrochemical cell using the same
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010153293A (en) * 2008-12-26 2010-07-08 Okayama Univ Structure connecting dye to conductive substrate through peptide and photoelectric conversion element including the same
JP2010225315A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method for the laminate for dye-sensitized solar cell
JP2010225317A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method of the laminate for dye-sensitized solar cell
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same
JP5589164B2 (en) * 2009-03-23 2014-09-17 新日鉄住金化学株式会社 Dye-sensitized solar cell and method for producing the same
CN101901697A (en) * 2009-06-01 2010-12-01 韩国电子通信研究院 Dye-sensitized solar cell and method of fabricating the same
EP2448058A1 (en) * 2009-06-24 2012-05-02 Nippon Steel Chemical Co., Ltd. Dye-sensitized solar cell
EP2448058A4 (en) * 2009-06-24 2013-06-05 Nippon Steel & Sumikin Chem Co Dye-sensitized solar cell
US8921689B2 (en) 2009-06-24 2014-12-30 Nippon Steel & Sumikin Chemical Co., Ltd. Dye-sensitized solar cell
WO2010150461A1 (en) 2009-06-24 2010-12-29 新日鐵化学株式会社 Dye-sensitized solar cell
JP2011023173A (en) * 2009-07-14 2011-02-03 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011023297A (en) * 2009-07-17 2011-02-03 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011060664A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Method of manufacturing dye-sensitized photoelectric conversion element, and dye-sensitized photoelectric conversion element
JP2011060662A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011060663A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Dye-sensitized photoelectric conversion element
JP2011070864A (en) * 2009-09-25 2011-04-07 Fujikura Ltd Dye-sensitized photoelectric conversion element
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US20110226325A1 (en) * 2010-03-17 2011-09-22 Sony Corporation Photoelectric conversion device
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP2012074195A (en) * 2010-09-28 2012-04-12 Nippon Steel Chem Co Ltd Method of manufacturing three-dimensional electrode of dye-sensitized solar cell
JP2011044434A (en) * 2010-10-04 2011-03-03 Oki Semiconductor Co Ltd Dye-sensitized solar cell
WO2012086377A1 (en) * 2010-12-20 2012-06-28 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
WO2012121134A1 (en) * 2011-03-10 2012-09-13 パナソニック株式会社 Photoelectric conversion element and manufacturing method thereof
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
KR101189578B1 (en) 2011-09-07 2012-10-11 현대자동차주식회사 Dye-sensitized solar cell
WO2013047615A1 (en) 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
WO2013094445A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
WO2013094446A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
JPWO2013094446A1 (en) * 2011-12-22 2015-04-27 シャープ株式会社 Photoelectric conversion element
JPWO2013094445A1 (en) * 2011-12-22 2015-04-27 シャープ株式会社 Photoelectric conversion element
US9330853B2 (en) 2011-12-22 2016-05-03 Sharp Kabushiki Kaisha Photoelectric conversion element
JP2013219046A (en) * 2013-06-11 2013-10-24 Nippon Steel & Sumikin Chemical Co Ltd Dye-sensitized solar cell manufacturing method

Also Published As

Publication number Publication date
JP4415448B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4415448B2 (en) Photoelectric conversion element
USRE39445E1 (en) Solar cell and solar cell unit
JP4415481B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5070704B2 (en) Photoelectric conversion device
JP4172239B2 (en) Photoelectric conversion element
JP2004220920A (en) Photoelectric conversion element
JP2009037861A (en) Dye-sensitized solar cell module
JP4479108B2 (en) Photoelectric conversion element
JP2000285975A (en) Semiconductor for photoelectric conversion and photoelectric conversion element
JP2008027860A (en) Photoelectric conversion element
JP4423735B2 (en) Photoelectric conversion element
JP2003187883A (en) Photoelectric conversion element
JP4135323B2 (en) Method for manufacturing photoelectric conversion element
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4716636B2 (en) Compound semiconductor
JP4415482B2 (en) Photoelectric conversion element
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4320869B2 (en) Method for manufacturing photoelectric conversion element
JP2004119082A (en) Photoelectric conversion element module
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2004119305A (en) Photoelectric conversion element and photoelectric conversion element module using the same
JP4455868B2 (en) Dye-sensitized solar cell
JP2003297445A (en) Coating composition for photoelectric conversion element
JP4537693B2 (en) Dye-sensitized solar cell
JP2008186632A (en) Photoelectric conversion element and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4415448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees