JP2001283828A - Polymer lithium secondary battery - Google Patents

Polymer lithium secondary battery

Info

Publication number
JP2001283828A
JP2001283828A JP2000093166A JP2000093166A JP2001283828A JP 2001283828 A JP2001283828 A JP 2001283828A JP 2000093166 A JP2000093166 A JP 2000093166A JP 2000093166 A JP2000093166 A JP 2000093166A JP 2001283828 A JP2001283828 A JP 2001283828A
Authority
JP
Japan
Prior art keywords
battery
lithium secondary
secondary battery
temperature
polymer lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093166A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000093166A priority Critical patent/JP2001283828A/en
Publication of JP2001283828A publication Critical patent/JP2001283828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer lithium secondary battery which has an over- current restraining mechanism breaking current in response to the temperature rise accompanying over-charging process, and further, can restrain firing even under exposure to an extremely high temperature in a state of charging or over-charging, without jeopardizing the battery characteristics. SOLUTION: A mechanism for breaking electric conduction of a cathode or an anode when the battery temperature exceeds 60 deg.C and another mechanism for short-circuiting the cathode and the anode when the surrounding temperature of battery exceeds 70 deg.C are constituted with the use of a shape-memory alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリマーリチウム二
次電池の改良に関し、さらに詳しくは安全性が向上した
ポリマーリチウム二次電池に関する。
The present invention relates to an improvement in a polymer lithium secondary battery, and more particularly, to a polymer lithium secondary battery having improved safety.

【0002】[0002]

【従来の技術】小型、軽量、高エネルギー密度、高電圧
を特徴とするリチウムイオン二次電池は電子技術の進歩
により、電子機器の性能が向上し、小型、ポータブル化
が進み、その電源として高エネルギー密度化が望まれて
いるため、安全性の向上が不可欠である。このことは、
イオン伝導性のポリマー材料であるポリマー電解質を用
いるポリマーリチウム二次電池についても同様である。
ポリマーリチウム二次電池はリチウムイオン二次電池で
使用していた電解液をゲル状のポリマー電解質に置き換
えることによって漏液を防ぐことができるため、金属フ
ィルム等を外装体にすることができるので、リチウムイ
オン二次電池よりも薄型化に有利となる二次電池であ
る。しかし、ポリマーリチウム二次電池は通常、電解質
に可燃性の非水電解液を含有するポリマーゲルを使用し
ている。従って、電池が過充電になったときや、充電状
態で電池を極端に加熱したときなど、電池温度が上昇し
た場合は、電解液の温度も同時に上昇し、電解液が燃焼
するような温度にまで達するおそれがある。また、充電
状態の電池は高温環境下ではガス発生が認められ、電池
の膨れを生じ、高温環境下での電池の信頼性を損なうお
それもある。
2. Description of the Related Art With the advance of electronic technology, the performance of electronic devices has been improved, and the performance of electronic devices has been improved, and the size and weight of lithium ion secondary batteries, which are characterized by high energy density and high voltage, have been improved. Since energy density is desired, improvement of safety is indispensable. This means
The same applies to a polymer lithium secondary battery using a polymer electrolyte which is an ion conductive polymer material.
Since the polymer lithium secondary battery can prevent liquid leakage by replacing the electrolyte used in the lithium ion secondary battery with a gel polymer electrolyte, a metal film or the like can be used as an exterior body, This is a secondary battery that is more advantageous in reducing the thickness than a lithium ion secondary battery. However, polymer lithium secondary batteries usually use a polymer gel containing a flammable non-aqueous electrolyte in the electrolyte. Therefore, when the battery temperature rises, for example, when the battery is overcharged or when the battery is extremely heated in a charged state, the temperature of the electrolyte also rises at the same time, and reaches a temperature at which the electrolyte burns. May reach up to In addition, in a charged battery, gas generation is observed in a high-temperature environment, and the battery swells, which may impair the reliability of the battery in a high-temperature environment.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、電池の電気特性を低下させず、かつ、ポリ
マーリチウム二次電池が過充電状態の場合、および過充
電状態で極端な高温にさらされた場合、充電状態で極端
な高温にさらされた場合でも電池が異常発熱しないよう
にすることと、充電状態の電池が高温環境下で発生する
ガス量を減らすことである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to reduce the electric characteristics of the battery and to prevent the polymer lithium secondary battery from being overcharged and from being exposed to extremely high temperatures in the overcharged state. When the battery is exposed to extreme temperatures, it is necessary to prevent the battery from generating abnormal heat even when the battery is exposed to an extremely high temperature in the charged state, and to reduce the amount of gas generated by the charged battery in a high temperature environment.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明のポリマーリチウム二次電池は、電池温度が6
0℃を越えたときに正極または負極の電気的導通を遮断
させる機構を有しており、また、電池温度が更に高温に
なったときには正極と負極を短絡させることを特徴とす
る。上記機構を有することでポリマーリチウム二次電池
の安全性、高温環境下での電池の信頼性を確保できる理
由を説明する。
Means for Solving the Problems In order to solve the above problems, the polymer lithium secondary battery of the present invention has a battery temperature of 6 ° C.
It has a mechanism to cut off electrical conduction between the positive electrode and the negative electrode when the temperature exceeds 0 ° C., and short-circuits the positive electrode and the negative electrode when the battery temperature further rises. The reason why the above mechanism can ensure the safety of the polymer lithium secondary battery and the reliability of the battery in a high-temperature environment will be described.

【0005】充電器の故障を想定した場合、充電が連続
し、過充電状態になる。このとき、電池内部の化学反応
による発熱がみられ、そのまま充電を続けると、充電電
流によっては、熱暴走に至り電池の異常発熱を招くこと
になる。そこで、電池温度が通常の使用温度(−20℃
〜60℃)を越えたとき正極または負極のどちらかの電
気的導通を遮断すれば、電池の充電が止まる。この機能
を持たせることで、充電器の故障を想定した過充電に対
する安全性が向上する。このときは、電池温度が25℃
付近に戻った場合に、正極または負極の電気的導通が回
復し、電池が正常に復帰する。また、過充電状態の電池
は熱安定性に劣ることから、電池の周囲温度が90℃付
近を越えたときに正、負極を短絡させれば、電池が放電
する。すると電気エネルギーが減少するので、異常加熱
をおこさなくなり、過充電に対する安全性が向上する。
このときは、電池温度が25℃付近に戻った場合でも
正、負極間は短絡状態を維持し、電池は正常に復帰でき
ない。更に、電池周囲温度が70℃付近を越えたときに
も正、負極を短絡させ、放電することで電気エネルギー
を減少させる。すると、ガス発生を伴う化学反応を起こ
すエネルギーを低下させることができ、電池の膨れが抑
えられ、高温環境下での電池の信頼性を確保できる。こ
のときは、電池温度が25℃付近に戻ったところで正、
負極間がオープン状態になり、電池が正常に復帰する。
[0005] When a failure of the charger is assumed, charging is continued and the battery is overcharged. At this time, heat is generated due to a chemical reaction inside the battery, and if charging is continued as it is, thermal runaway may occur depending on the charging current, causing abnormal heat generation of the battery. Therefore, the battery temperature is reduced to the normal operating temperature (−20 ° C.).
If the electric conduction of either the positive electrode or the negative electrode is interrupted when the temperature exceeds (−60 ° C.), charging of the battery is stopped. By providing this function, safety against overcharging assuming a failure of the charger is improved. At this time, the battery temperature is 25 ° C.
When the battery returns to the vicinity, the electrical conduction of the positive electrode or the negative electrode is restored, and the battery returns to normal. Also, since the battery in an overcharged state has poor thermal stability, if the positive and negative electrodes are short-circuited when the ambient temperature of the battery exceeds about 90 ° C., the battery is discharged. Then, since the electric energy decreases, abnormal heating does not occur, and the safety against overcharging is improved.
At this time, even if the battery temperature returns to around 25 ° C., the short circuit between the positive and negative electrodes is maintained, and the battery cannot return to normal. Further, even when the battery ambient temperature exceeds about 70 ° C., the positive and negative electrodes are short-circuited, and electric energy is reduced by discharging. Then, the energy that causes a chemical reaction accompanied by gas generation can be reduced, the swelling of the battery can be suppressed, and the reliability of the battery in a high-temperature environment can be ensured. At this time, when the battery temperature returns to around 25 ° C.,
An open state is established between the negative electrodes, and the battery returns to normal.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】図1および図2は本発明のポリマーリチウ
ム二次電池の上面図および断面図である。
FIGS. 1 and 2 are a top view and a sectional view, respectively, of a polymer lithium secondary battery of the present invention.

【0008】正極1はラス加工したアルミニウム箔を集
電体1aとして、この両面に正極活物質であるLiCo
2と導電剤としてのアセチレンブラックおよび結着剤
兼電解液保持剤としてのポリマー、例えばフッカビニリ
デン(VDF)とヘキサフルオロプロピレン(HFP)
との共重合体P(VDF−HFP)を有機溶媒に混練分
散させたペーストを塗着乾燥し、正極活物質層1bとし
たものである。この2枚の正極の間に、前記のP(VD
F−HFP)のフィルムからなるポリマー製セパレータ
ー3を位置させ、このセパレーター3間にラス加工した
銅箔からなる集電体2aの両面にカーボン粉末と前記P
(VDF−HFP)の粉末を有機溶媒に混練分散させた
ペーストを塗着乾燥し、負極活物質層2bを形成した負
極2があり、全体が図2に示すように積層一体化されて
発電要素4が構成される。1cは正極の集電体に設けた
リード取り付け部であり、ここにはアルミニウム箔製正
極リード5が溶接されている。2cは負極の集電体に設
けたリード取り付け部であり、ここには銅箔製負極リー
ド6が溶接されている。7はアルミニウム箔を中間の一
層とし、その内側にポリプロピレンフィルムを、外側に
ポリエチレンテレフタレートフィルムとナイロンフィル
ムをそれぞれラミネートで一体化したアルミラミネート
フィルムから形成されたアルミラミネート袋である。こ
のアルミラミネート袋7の内部に収容された発電要素4
は、正極のリード5および負極のリード6がアルミラミ
ネート袋の外部へ引き出され、その先端が出入力端子
8、9とされている。10、11はリード5、6の中間
部分に設けられた絶縁保護フィルムであり、袋7の開口
部を熱融着などで封口する際にリード5、6の電気的絶
縁と気密を確保するものである。尚、アルミラミネート
袋7は、前記のアルミラミネートフィルムを帯状に切断
し、その長さ方向の中央部Tで2つ折りし、上下の2辺
P1とP2を予め熱融着したものであり、開口している
残り1辺のP3部分から発電要素4を挿入し、所定量の
電解液の注入後に、ここも熱融着で閉じられる。
The positive electrode 1 has a current collector 1a made of a lath-processed aluminum foil, and has LiCo as a positive electrode active material on both surfaces thereof.
O 2 and acetylene black as a conductive agent and a polymer as a binder / electrolyte retainer, for example, fukavinylidene (VDF) and hexafluoropropylene (HFP)
And a paste obtained by kneading and dispersing a copolymer P (VDF-HFP) with an organic solvent, and then drying the paste to form a positive electrode active material layer 1b. The P (VD
F-HFP), a polymer separator 3 made of a film, and carbon powder and the P powder on both surfaces of a current collector 2a made of a lathed copper foil between the separators 3.
There is a negative electrode 2 in which a paste obtained by kneading and dispersing (VDF-HFP) powder in an organic solvent is applied and dried to form a negative electrode active material layer 2b, and the whole is laminated and integrated as shown in FIG. 4 are configured. Reference numeral 1c denotes a lead mounting portion provided on the positive electrode current collector, to which an aluminum foil positive electrode lead 5 is welded. Reference numeral 2c denotes a lead mounting portion provided on the current collector of the negative electrode, to which a negative electrode lead 6 made of copper foil is welded. Reference numeral 7 denotes an aluminum laminate bag formed from an aluminum laminate film in which an aluminum foil is used as an intermediate layer, a polypropylene film is laminated on the inner side, and a polyethylene terephthalate film and a nylon film are laminated on the outer side. The power generating element 4 housed inside the aluminum laminate bag 7
The lead 5 of the positive electrode and the lead 6 of the negative electrode are pulled out of the aluminum laminate bag, and the leading ends thereof are input / output terminals 8 and 9. Reference numerals 10 and 11 denote insulating protective films provided at intermediate portions of the leads 5 and 6, which secure electrical insulation and airtightness of the leads 5 and 6 when the opening of the bag 7 is sealed by heat sealing or the like. It is. The aluminum laminate bag 7 is obtained by cutting the above-described aluminum laminate film into a band shape, folding the aluminum laminate film at the center T in the length direction thereof, and heat-sealing the upper and lower sides P1 and P2 in advance. The power generating element 4 is inserted from the P3 portion of the remaining one side, and after a predetermined amount of electrolyte is injected, this is also closed by heat fusion.

【0009】請求項1に記載の発明は、図3に示すよう
に、アルミラミネート袋の外部へ引き出された正極のリ
ード5に、電池の温度を感知できるようにアルミラミネ
ート袋に貼り付けた状態で形状記憶合金A1を取りつ
け、電池温度が60℃を越えた時に形状記憶合金A1が
その温度で変形し、オープン状態となり、電流を遮断す
る機構を備えている。そのため、充電器が故障した場合
に想定される連続充電による過充電や大電流充電および
外部短絡の場合に、電池の異常発熱を防ぐことができ
る。この場合、負極のリード6に、上記と同様に形状記
憶合金A1を取りつけてもかまわない。また、ここで使
用の形状記憶合金A1は電池温度が25℃付近に下がる
と、オープン状態からショート状態に戻る復帰型であ
る。
As shown in FIG. 3, the invention according to claim 1 is a state in which the battery is stuck to the lead 5 of the positive electrode drawn out of the aluminum laminate bag so that the temperature of the battery can be sensed. A shape memory alloy A1 is attached at a temperature, and when the battery temperature exceeds 60 ° C., the shape memory alloy A1 is deformed at that temperature, becomes an open state, and has a mechanism for interrupting a current. Therefore, abnormal overheating of the battery can be prevented in the case of overcharging due to continuous charging assumed in the case of failure of the charger, large current charging, and external short circuit. In this case, the shape memory alloy A1 may be attached to the lead 6 of the negative electrode in the same manner as described above. The shape memory alloy A1 used here is of a return type that returns from an open state to a short-circuit state when the battery temperature drops to around 25 ° C.

【0010】請求項2に記載の発明は、過充電状態の電
池の高温環境下での安全性を確保するためのものであ
る。図4に示すように、リード5、6にオープン状態の
形状記憶合金A2を取りつけ、電池の周囲温度が90℃
を越えた時に形状記憶合金A2がその温度で変形し、シ
ョート状態となり、放電する機構を備えている。この場
合、大電流が流れないように適度な抵抗体(例えば10
Ω)も取りつけ、放電による発熱を防ぐ。これにより、
正極活物質、負極活物質を放電状態にするので、不活性
な状態になり、電池の異常発熱を防ぐことができる。ま
た、ここで使用の形状記憶合金A2は電池周囲温度が2
5℃付近に下がっても、ショート状態を維持する非復帰
型である。
The second aspect of the present invention is to ensure the safety of a battery in an overcharged state in a high temperature environment. As shown in FIG. 4, an open shape memory alloy A2 was attached to the leads 5 and 6, and the ambient temperature of the battery was 90 ° C.
When the temperature exceeds the threshold value, the shape memory alloy A2 is deformed at that temperature, becomes short-circuited, and has a discharge mechanism. In this case, an appropriate resistor (for example, 10
Ω) to prevent heat generation due to discharge. This allows
Since the positive electrode active material and the negative electrode active material are in a discharged state, they are in an inactive state, and abnormal heat generation of the battery can be prevented. The shape memory alloy A2 used here has a battery ambient temperature of 2
It is a non-return type that maintains a short circuit state even when the temperature drops to around 5 ° C.

【0011】請求項3に記載の発明は、充電状態の電池
の高温環境下での安全性と信頼性を確保するためのもの
である。図5に示すように、リード5、6にオープン状
態の形状記憶合金A3を取りつけ、電池の周囲温度が7
0℃を越えた時に形状記憶合金A3がその温度で変形
し、ショート状態となり、放電する機構を備えている。
この場合、大電流が流れないように適度な抵抗体(例え
ば10Ω)も取りつけ、放電による発熱を防ぐ。これに
より、電池の周囲温度が70℃を越えると早期に、正極
活物質、負極活物質を放電状態にするので、電池温度が
上昇する前に、正極活物質、負極活物質を不活性な状態
にすることができるため、電池の異常発熱を防ぐことが
できる。また、高温環境下で発生するガス量が減り、電
池の膨張を抑えることになるので、高温環境下での信頼
性も確保できる。ここで使用の形状記憶合金A3は電池
周囲温度が25℃付近に下がると、ショート状態からオ
ープン状態に戻る復帰型である。
The third aspect of the present invention is to ensure the safety and reliability of a charged battery in a high temperature environment. As shown in FIG. 5, an open shape memory alloy A3 was attached to the leads 5 and 6, and the ambient temperature of the battery was set to 7
When the temperature exceeds 0 ° C., the shape memory alloy A3 is deformed at that temperature, a short circuit state occurs, and a discharge mechanism is provided.
In this case, an appropriate resistor (for example, 10Ω) is also attached so that a large current does not flow, thereby preventing heat generation due to discharge. As a result, when the ambient temperature of the battery exceeds 70 ° C., the positive electrode active material and the negative electrode active material are discharged in an early stage. Therefore, before the battery temperature rises, the positive electrode active material and the negative electrode active material are brought into an inactive state. Therefore, abnormal heat generation of the battery can be prevented. In addition, the amount of gas generated in a high-temperature environment is reduced, and expansion of the battery is suppressed, so that reliability in a high-temperature environment can be ensured. Here, the shape memory alloy A3 used is a return type that returns from the short-circuit state to the open state when the battery ambient temperature drops to around 25 ° C.

【0012】請求項4に記載の発明を図6に示す。これ
は、図3に示すような、アルミラミネート袋の外部へ引
き出された正極のリード5に、電池の温度を感知できる
ようにアルミラミネート袋に貼り付けた状態で形状記憶
合金A1を取りつけ、電池温度が60℃を越えた時に形
状記憶合金A1がその温度で変形し、オープン状態とな
り、電流を遮断する機構と、図4に示すような、リード
5、6にオープン状態の形状記憶合金A2を取りつけ、
電池の周囲温度が90℃を越えた時に形状記憶合金A2
がその温度で変形し、ショート状態となり、放電する機
構を備えている。これらの形状記憶合金により、充電器
が故障した場合に想定される連続充電による過充電や大
電流充電および外部短絡の場合に、電池の異常発熱を防
ぐことができ、過充電状態の電池の高温環境下での安全
性を確保することもできる。ここで使用の形状記憶合金
の電流を遮断するタイプA1は、電池温度が25℃付近
に下がると、オープン状態からショート状態に戻る復帰
型で、短絡させるタイプA2は電池周囲温度が25℃付
近に下がっても、ショート状態を維持する非復帰型であ
る。
FIG. 6 shows the fourth embodiment of the present invention. As shown in FIG. 3, the shape memory alloy A1 is attached to the positive electrode lead 5 drawn out of the aluminum laminate bag while being attached to the aluminum laminate bag so that the temperature of the battery can be sensed. When the temperature exceeds 60 ° C., the shape memory alloy A1 is deformed at that temperature and becomes an open state, and a mechanism for interrupting a current, and a lead-shaped shape memory alloy A2 as shown in FIG. Mounting,
Shape memory alloy A2 when ambient temperature of battery exceeds 90 ° C
Have a mechanism that deforms at that temperature, becomes short-circuited, and discharges. These shape memory alloys can prevent abnormal heating of the battery in the event of overcharging due to continuous charging and large current charging and external short-circuiting that are assumed when the charger breaks down. It can also ensure safety in the environment. Here, the type A1 that interrupts the current of the shape memory alloy used is a return type that returns from an open state to a short state when the battery temperature drops to around 25 ° C. It is a non-return type that maintains a short-circuit state even if it goes down.

【0013】請求項5に記載の発明を図7に示す。これ
は、図3に示すような、アルミラミネート袋の外部へ引
き出された正極のリード5に、電池の温度を感知できる
ようにアルミラミネート袋に貼り付けた状態で形状記憶
合金A1を取りつけ、電池温度が60℃を越えた時に形
状記憶合金A1がその温度で変形し、オープン状態とな
り、電流を遮断する機構と、図5に示すように、リード
5、6にオープン状態の形状記憶合金A3を取りつけ、
電池の周囲温度が70℃を越えた時に形状記憶合金A3
がその温度で変形し、ショート状態となり、放電する機
構を備えている。これらの形状記憶合金により、充電器
が故障した場合に想定される連続充電による過充電や大
電流充電および外部短絡の場合に、電池の異常発熱を防
ぐことができ、充電状態の電池の高温環境下での安全性
および信頼性を確保することもできる。ここで使用の形
状記憶合金の電流を遮断するタイプA1は、電池温度が
25℃付近に下がると、オープン状態からショート状態
に戻る復帰型で、短絡させるタイプA3は電池周囲温度
が25℃付近に下がると、ショート状態からオープン状
態に戻る復帰型である。
FIG. 7 shows the fifth embodiment of the present invention. As shown in FIG. 3, the shape memory alloy A1 is attached to the positive electrode lead 5 drawn out of the aluminum laminate bag while being attached to the aluminum laminate bag so that the temperature of the battery can be sensed. When the temperature exceeds 60 ° C., the shape memory alloy A1 is deformed at that temperature and becomes an open state, and a mechanism for interrupting the current, and as shown in FIG. Mounting,
Shape memory alloy A3 when ambient temperature of battery exceeds 70 ° C
Have a mechanism that deforms at that temperature, becomes short-circuited, and discharges. With these shape memory alloys, it is possible to prevent abnormal heat generation of the battery in the event of overcharging due to continuous charging and large current charging and external short-circuiting assumed when the charger breaks down, and the high temperature environment of the charged battery Safety and reliability can be ensured underneath. Here, the type A1 for interrupting the current of the shape memory alloy used is a return type that returns from an open state to a short-circuit state when the battery temperature drops to around 25 ° C. When it goes down, it is a return type that returns from the short state to the open state.

【0014】請求項6に記載の発明を図8に示す。これ
は、図4に示すような、リード5、6にオープン状態の
形状記憶合金A2を取りつけ、電池の周囲温度が90℃
を越えた時に形状記憶合金A2がその温度で変形し、シ
ョート状態となり、放電する機構と、図5に示すよう
に、リード5、6にオープン状態の形状記憶合金A3を
取りつけ、電池の周囲温度が70℃を越えた時に形状記
憶合金A3がその温度で変形し、ショート状態となり、
放電する機構を備えている。これらの形状記憶合金によ
り、過充電状態の電池の高温環境下での安全性を確保す
ることができ、充電状態の電池の高温環境下での安全性
および信頼性を確保することもできる。ここで使用の形
状記憶合金の短絡させるタイプA2は電池周囲温度が2
5℃付近に下がっても、ショート状態を維持する非復帰
型で、短絡させるタイプA3は電池周囲温度が25℃付
近に下がると、ショート状態からオープン状態に戻る復
帰型である。
FIG. 8 shows an embodiment of the present invention. This is because an open shape memory alloy A2 is attached to the leads 5 and 6 as shown in FIG.
When the temperature exceeds the limit, the shape memory alloy A2 is deformed at that temperature and becomes short-circuited, and a discharging mechanism is attached. As shown in FIG. When the temperature exceeds 70 ° C., the shape memory alloy A3 is deformed at that temperature, and becomes short-circuited,
It has a discharging mechanism. With these shape memory alloys, the safety of the overcharged battery in a high temperature environment can be ensured, and the safety and reliability of the charged battery in a high temperature environment can also be ensured. Here, the type A2 for short-circuiting the shape memory alloy used has a battery ambient temperature of 2
The non-recovery type A3 that maintains a short-circuit state even when the temperature drops to around 5 ° C., and the short-circuit type A3 is a return type that returns from the short-circuit state to the open state when the battery ambient temperature drops to around 25 ° C.

【0015】請求項7に記載の発明を図9に示す。これ
は、図3に示すような、アルミラミネート袋の外部へ引
き出された正極のリード5に、電池の温度を感知できる
ようにアルミラミネート袋に貼り付けた状態で形状記憶
合金A1を取りつけ、電池温度が60℃を越えた時に形
状記憶合金A1がその温度で変形し、オープン状態とな
り、電流を遮断する機構と、図4に示すような、リード
5、6にオープン状態の形状記憶合金A2を取りつけ、
電池の周囲温度が90℃を越えた時に形状記憶合金A2
がその温度で変形し、ショート状態となり、放電する機
構と、図5に示すように、リード5、6にオープン状態
の形状記憶合金A3を取りつけ、電池の周囲温度が70
℃を越えた時に形状記憶合金A3がその温度で変形し、
ショート状態となり、放電する機構を備えている。これ
らの形状記憶合金により、充電器が故障した場合に想定
される連続充電による過充電や大電流充電および外部短
絡の場合に、電池の異常発熱を防ぐことができ、過充電
状態の電池の高温環境下での安全性を確保することもで
き、充電状態の電池の高温環境下での安全性および信頼
性を確保することもできる。ここで使用の形状記憶合金
の電流を遮断するタイプA1は、電池温度が25℃付近
に下がると、オープン状態からショート状態に戻る復帰
型で、電池周囲温度が90℃を越えた時に短絡させるタ
イプA2は電池周囲温度が25℃付近に下がっても、シ
ョート状態を維持する非復帰型であり、電池周囲温度が
70℃を越えた時に短絡させるタイプA3は電池周囲温
度が25℃付近に下がると、ショート状態からオープン
状態に戻る復帰型である。
FIG. 9 shows the seventh embodiment of the present invention. As shown in FIG. 3, the shape memory alloy A1 is attached to the positive electrode lead 5 drawn out of the aluminum laminate bag while being attached to the aluminum laminate bag so that the temperature of the battery can be sensed. When the temperature exceeds 60 ° C., the shape memory alloy A1 is deformed at that temperature and becomes an open state, and a mechanism for interrupting a current, and a lead-shaped shape memory alloy A2 as shown in FIG. Mounting,
Shape memory alloy A2 when ambient temperature of battery exceeds 90 ° C
5 is deformed at that temperature to be in a short-circuit state and discharge mechanism, and as shown in FIG. 5, an open shape memory alloy A3 is attached to the leads 5 and 6, and the ambient temperature of the battery is reduced to 70%.
When the temperature exceeds ℃, the shape memory alloy A3 is deformed at that temperature,
A short-circuit state is provided for discharging. These shape memory alloys can prevent abnormal heating of the battery in the event of overcharging due to continuous charging and large current charging and external short-circuiting that are assumed when the charger breaks down. Safety in an environment can be ensured, and safety and reliability of a charged battery in a high-temperature environment can also be ensured. The type A1 for interrupting the current of the shape memory alloy used here is a return type in which the battery returns to a short-circuit state from an open state when the battery temperature drops to around 25 ° C., and is a short-circuit type when the battery ambient temperature exceeds 90 ° C. A2 is a non-recovery type that maintains a short circuit state even when the battery ambient temperature drops to around 25 ° C. Type A3, which short-circuits when the battery ambient temperature exceeds 70 ° C, is used when the battery ambient temperature drops to around 25 ° C. And a return type that returns from the short state to the open state.

【0016】請求項1に記載の電池の導通を遮断する復
帰型のスイッチ、請求項2に記載の正極と負極を短絡さ
せる非復帰型のスイッチ、請求項3に記載の正極と負極
を短絡させる復帰型のスイッチは形状記憶合金で構成さ
れ、Ti―Ni合金系などの熱弾性型マルテンサイト変
態および逆変態に基づき、復元力を有する形状記憶合金
であれば良い。
A reset switch for interrupting conduction of a battery according to claim 1, a non-return switch for short-circuiting a positive electrode and a negative electrode according to claim 2, and a short-circuit between a positive electrode and a negative electrode according to claim 3. The return type switch is made of a shape memory alloy, and may be a shape memory alloy having a restoring force based on thermoelastic martensitic transformation and reverse transformation such as a Ti—Ni alloy.

【0017】[0017]

【発明の効果】以上のように本発明は、電池の温度が6
0℃を越えた場合に正極または負極をオープン状態にさ
せ、その後に25℃に下がった場合にショート状態に復
帰する機構と、電池の周囲温度が90℃を越えた場合に
正極と負極を短絡させ、その後に25℃に下がった場合
にも短絡状態を維持する機構と、電池の周囲温度が70
℃を越えた場合に正極と負極を短絡させ、その後に25
℃に下がった場合にオープン状態に復帰する機構とを有
することを特徴とするため、電池特性には何ら影響せず
に、電池が過充電状態、充電状態で室温または高温にお
いても異常発熱しない安全性、信頼性に優れた電池を提
供できる。
As described above, according to the present invention, the battery temperature is 6
A mechanism that opens the positive electrode or negative electrode when the temperature exceeds 0 ° C, and then returns to the short-circuit state when the temperature drops to 25 ° C, and short-circuits the positive electrode and the negative electrode when the ambient temperature of the battery exceeds 90 ° C And a mechanism for maintaining a short-circuit state even when the temperature drops to 25 ° C.
If the temperature exceeds 100 ° C, the positive and negative electrodes are short-circuited.
It has a mechanism to return to the open state when the temperature drops to ℃, so it does not affect the battery characteristics at all, and the battery does not overheat at room temperature or high temperature in overcharged state and charged state. Battery with excellent performance and reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象となるポリマーリチウム二次電池
の上面図
FIG. 1 is a top view of a polymer lithium secondary battery to which the present invention is applied.

【図2】同電池の断面図FIG. 2 is a sectional view of the battery.

【図3】本発明の一実施形態における電池を説明する図FIG. 3 is a diagram illustrating a battery in one embodiment of the present invention.

【図4】本発明の一実施形態における電池を説明する図FIG. 4 is a diagram illustrating a battery in one embodiment of the present invention.

【図5】本発明の一実施形態における電池を説明する図FIG. 5 illustrates a battery according to one embodiment of the present invention.

【図6】本発明の一実施形態における電池を説明する図FIG. 6 is a diagram illustrating a battery in one embodiment of the present invention.

【図7】本発明の一実施形態における電池を説明する図FIG. 7 is a diagram illustrating a battery in one embodiment of the present invention.

【図8】本発明の一実施形態における電池を説明する図FIG. 8 is a diagram illustrating a battery in one embodiment of the present invention.

【図9】本発明の一実施形態における電池を説明する図FIG. 9 illustrates a battery in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極活物質層 1c 正極リード取り付け部 2 負極 2a 負極集電体 2b 負極活物質層 2c 負極リード取り付け部 3 セパレーター 4 発電要素 5 正極リード 6 負極リード 7 アルミラミネート 8 正極出力端子 9 負極出力端子 10 正極リード絶縁保護フィルム 11 負極リード絶縁保護フィルム P1 アルミラミネートフィルム熱溶着部 P2 アルミラミネートフィルム熱溶着部 P3 アルミラミネートフィルム熱溶着部 T アルミラミネートフィルム折り曲げ部 A1 復帰型形状記憶合金 A2 非復帰型形状記憶合金 A3 復帰型形状記憶合金DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collector 1b Positive electrode active material layer 1c Positive electrode lead attachment part 2 Negative electrode 2a Negative electrode collector 2b Negative electrode active material layer 2c Negative electrode lead attaching part 3 Separator 4 Power generation element 5 Positive electrode lead 6 Negative electrode lead 7 Aluminum laminate bag 8 Positive electrode output terminal 9 Negative electrode output terminal 10 Positive electrode lead insulating protective film 11 Negative electrode lead insulating protective film P1 Aluminum laminated film heat welded part P2 Aluminum laminated film heat welded part P3 Aluminum laminated film heat welded part T Aluminum laminated film bent part A1 Returnable shape Memory alloy A2 Non-returnable shape memory alloy A3 Resettable shape memory alloy

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 充電、放電が繰り返し可能な正極、負極
活物質と有機電解液を保持させたポリマーゲルを備える
ポリマーリチウム二次電池において、過充電や外部短絡
等の異常が発生しても、電池温度が60℃を越えたとき
に電池の導通を遮断する復帰型のスイッチを具備したこ
とを特徴とするポリマーリチウム二次電池。
1. In a polymer lithium secondary battery including a polymer gel holding a positive electrode, a negative electrode active material, and an organic electrolyte capable of repeatedly charging and discharging, even if an abnormality such as overcharge or external short circuit occurs, A polymer lithium secondary battery comprising a reset switch for interrupting conduction of the battery when the battery temperature exceeds 60 ° C.
【請求項2】 充電、放電が繰り返し可能な正極、負極
活物質と有機電解液を保持させたポリマーゲルを備える
ポリマーリチウム二次電池において、電池が過充電状態
で高温にさらされたときに正極と負極を短絡させる非復
帰型のスイッチを具備したことを特徴とするポリマーリ
チウム二次電池。
2. A polymer lithium secondary battery comprising a positive electrode which can be repeatedly charged and discharged, and a polymer gel holding an anode active material and an organic electrolyte, when the battery is exposed to a high temperature in an overcharged state. A polymer lithium secondary battery comprising a non-return type switch for short-circuiting a negative electrode and a negative electrode.
【請求項3】 充電、放電が繰り返し可能な正極、負極
活物質と有機電解液を保持させたポリマーゲルを備える
ポリマーリチウム二次電池において、電気特性を低下さ
せず、電池が充電状態で高温にさらされたときに正極と
負極を短絡させる復帰型のスイッチを具備したことを特
徴とするポリマーリチウム二次電池。
3. A polymer lithium secondary battery comprising a polymer gel holding a positive electrode, a negative electrode active material and an organic electrolyte which can be repeatedly charged and discharged, without deteriorating the electric characteristics and maintaining a high temperature in the charged state. A polymer lithium secondary battery comprising a reset-type switch that short-circuits a positive electrode and a negative electrode when exposed.
【請求項4】 請求項1記載の該スイッチと請求項2記
載の該スイッチの両方を具備したことを特徴とするポリ
マーリチウム二次電池。
4. A polymer lithium secondary battery comprising both the switch according to claim 1 and the switch according to claim 2.
【請求項5】 請求項1記載の該スイッチと請求項3記
載の該スイッチの両方を具備したことを特徴とするポリ
マーリチウム二次電池。
5. A polymer lithium secondary battery comprising both the switch according to claim 1 and the switch according to claim 3.
【請求項6】 請求項2記載の該スイッチと請求項3記
載の該スイッチの両方を具備したことを特徴とするポリ
マーリチウム二次電池。
6. A polymer lithium secondary battery comprising both the switch according to claim 2 and the switch according to claim 3.
【請求項7】 請求項1記載の該スイッチと請求項2記
載の該スイッチと請求項3記載の該スイッチを具備した
ことを特徴とするポリマーリチウム二次電池。
7. A polymer lithium secondary battery comprising the switch according to claim 1, the switch according to claim 2, and the switch according to claim 3.
【請求項8】 請求項1乃至請求項7のいずれかに記載
の該スイッチが形状記憶合金からなるスイッチであるこ
とを特徴とするポリマーリチウム二次電池。
8. A polymer lithium secondary battery, wherein the switch according to claim 1 is a switch made of a shape memory alloy.
JP2000093166A 2000-03-30 2000-03-30 Polymer lithium secondary battery Pending JP2001283828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093166A JP2001283828A (en) 2000-03-30 2000-03-30 Polymer lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093166A JP2001283828A (en) 2000-03-30 2000-03-30 Polymer lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001283828A true JP2001283828A (en) 2001-10-12

Family

ID=18608386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093166A Pending JP2001283828A (en) 2000-03-30 2000-03-30 Polymer lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001283828A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354677B2 (en) 2003-01-27 2008-04-08 Matsushita Electric Industrial Co., Ltd. Battery pack
KR101146473B1 (en) * 2009-08-11 2012-05-21 삼성에스디아이 주식회사 Secondary battery
KR101272107B1 (en) 2013-03-22 2013-06-07 주식회사 사마스전자 A safeguard apparatus preventing overcharge for a secondary battery
CN103700803A (en) * 2014-01-16 2014-04-02 铂翔超精密模具科技(昆山)有限公司 Battery protection system
WO2015041201A1 (en) * 2013-09-17 2015-03-26 株式会社 東芝 Overcharging prevention unit and secondary battery
KR20200099391A (en) 2019-02-14 2020-08-24 주식회사 엘지화학 The Secondary Battery And The Battery Module
CN113270272A (en) * 2021-04-02 2021-08-17 章恒 Solid-state aluminum electrolytic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354677B2 (en) 2003-01-27 2008-04-08 Matsushita Electric Industrial Co., Ltd. Battery pack
KR101146473B1 (en) * 2009-08-11 2012-05-21 삼성에스디아이 주식회사 Secondary battery
US8518576B2 (en) 2009-08-11 2013-08-27 Samsung Sdi Co., Ltd. Secondary battery including a sensor to determine if battery is heated above a predetermined temperature
KR101272107B1 (en) 2013-03-22 2013-06-07 주식회사 사마스전자 A safeguard apparatus preventing overcharge for a secondary battery
WO2015041201A1 (en) * 2013-09-17 2015-03-26 株式会社 東芝 Overcharging prevention unit and secondary battery
CN105518925A (en) * 2013-09-17 2016-04-20 株式会社东芝 Overcharging prevention unit and secondary battery
CN103700803A (en) * 2014-01-16 2014-04-02 铂翔超精密模具科技(昆山)有限公司 Battery protection system
KR20200099391A (en) 2019-02-14 2020-08-24 주식회사 엘지화학 The Secondary Battery And The Battery Module
US11394093B2 (en) 2019-02-14 2022-07-19 Lg Energy Solution, Ltd. Secondary battery and battery module
CN113270272A (en) * 2021-04-02 2021-08-17 章恒 Solid-state aluminum electrolytic capacitor
CN113270272B (en) * 2021-04-02 2023-03-28 益阳市天成源电子有限公司 Solid-state aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4550078B2 (en) Safety switch using heat shrinkable tube and secondary battery including the same
KR100720282B1 (en) Secondary battery having an improved safety
US20040170887A1 (en) Non-aqueous electrolytic secondary battery
KR100305101B1 (en) Explosion-proof secondary battery
US20040110061A1 (en) Rechargeable, galvanic element with at least one lithium-intercalating electrode
JP2000512062A (en) Battery cap assembly with fragile tab breaking mechanism
JP2011077023A (en) Current breaking element, and secondary battery equipped with the same
KR20070012937A (en) Secondary battery with ptc device
JP2008507248A (en) Safety element for preventing overcharge of secondary battery and secondary battery having the safety element combined
JPH1140203A (en) Secondary battery
KR100662174B1 (en) Nonaqueous electrolyte secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
KR102185959B1 (en) Battery cell with improved safety
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
KR20180090100A (en) Short circuiting Structure for Lithium Secondary Battery Having Excellent Stability against Overcharge and Pouch Type Lithium Secondary Battery Comprising the Same
JPH1140204A (en) Secondary battery
JP3574843B2 (en) Lithium secondary battery with safety mechanism
JP2001283828A (en) Polymer lithium secondary battery
JPH06349480A (en) Composite protective element and battery pack with composite protective element
JP4751500B2 (en) Electrode wound type secondary battery
US7652860B2 (en) Polymer PTC device
JPH117932A (en) Secondary battery
JPH11144704A (en) Entire solid battery
JPH10188945A (en) Lithium secondary battery
JP4779287B2 (en) Battery plate manufacturing method