JPH1140204A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH1140204A
JPH1140204A JP9187960A JP18796097A JPH1140204A JP H1140204 A JPH1140204 A JP H1140204A JP 9187960 A JP9187960 A JP 9187960A JP 18796097 A JP18796097 A JP 18796097A JP H1140204 A JPH1140204 A JP H1140204A
Authority
JP
Japan
Prior art keywords
battery
terminal
contact
positive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9187960A
Other languages
Japanese (ja)
Inventor
Morio Kobayashi
守夫 小林
Yoshimi Miyamoto
好美 宮本
Akihiro Takanuma
明宏 高沼
Katsuyuki Matsuki
勝行 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9187960A priority Critical patent/JPH1140204A/en
Publication of JPH1140204A publication Critical patent/JPH1140204A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the safety of a battery by providing a safety device, which is connected to an internal terminal of each electrode and equipped with an outer terminal of each electrode, a terminal switching circuit by a thermally actuated switch or a pressure-actuated switch and a varistor element between positive and negative electrodes, in order to prevent overcharges and separate a battery with abnormal temperature rise. SOLUTION: A temperature switch 22 has a contact 22a on the both ends of a bimetal and is normally curved downward to a lower contact to short- circuit a contact 16a of a positive electrode outer terminal and a contact 6a of a positive electrode internal terminal. When the temperature rises to a level not less than a preset temperature, its curve is suddenly reversed upward to an upper contact to short-circuit a contact 16b of the positive electrode outer terminal and a contact 17a of a negative electrode outer terminal. That is, if the temperature rises abnormally, the conductivity between the positive electrode outer terminal 16 and a positive electrode 1 of a power-generating element is cut off to short-circuit between the outer terminals of the positive and negative electrodes. A varistor element 29 protects the overcharging of a battery by setting a varistor voltage higher than end of changing voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車,電動
カート等の移動体機器,ビデオカメラ,パソコン等の携
帯機器,停電時のバックアップ機器、及びセキュリテイ
機器等の製品の電源として使われる二次電池の過充電や
短絡等の異常発熱,圧力上昇による発火や爆発を防止
し、異常電池を切り離しバイパスして使用する電池の安
全性に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary device used as a power source for products such as mobile devices such as electric vehicles and electric carts, portable devices such as video cameras and personal computers, backup devices in the event of a power failure, and security devices. The present invention relates to safety of a battery used to prevent a battery from being fired or exploded due to abnormal heat generation or pressure rise such as overcharge or short circuit of the battery, and to disconnect and bypass the abnormal battery.

【0002】[0002]

【従来の技術】従来の二次電池の異常電極を切り離す安
全保護装置としては、特開平6− 290767号公報に示
されている通り、電池反応部と正又は負の極端子と他の
極端子を兼ねる電池容器とを有する化学電池で、電池の
異常反応時に発生するガス圧又は反応熱にて駆動する駆
動部材により、電極に接続され絶縁材を介して電池容器
を密封している仕切板と極端子間の導通を遮断し、極端
子と電池容器間を短絡する方法が知られている。
2. Description of the Related Art As a conventional safety protection device for separating an abnormal electrode of a secondary battery, as disclosed in JP-A-6-290767, a battery reaction part, a positive or negative pole terminal, and another pole terminal are disclosed. And a partition plate that is connected to the electrode and seals the battery container via an insulating material by a driving member driven by gas pressure or reaction heat generated at the time of an abnormal reaction of the battery. 2. Description of the Related Art There is known a method of interrupting conduction between pole terminals and short-circuiting between the pole terminals and the battery container.

【0003】また、特開平4−147574 号公報に示されて
いる通り、プラスチックフィルム基板上に金属皮膜を蒸
着し、金属皮膜の一部をパターニング除去して細いパタ
ーン幅のヒューズ部を形成し、さらに金属皮膜上に正極
活物質を塗布して正極板とする。この正極板と負極板を
セパレータを介して複数枚積層して電池としたものにお
いて、正負極間短絡が発生した場合、短絡電流により正
極板に設けた金属皮膜のヒューズが溶断し、異常正極板
を切り離す方法等が知られている。
As shown in Japanese Patent Application Laid-Open No. 4-147574, a metal film is deposited on a plastic film substrate, and a part of the metal film is removed by patterning to form a fuse portion having a narrow pattern width. Further, a positive electrode active material is applied on the metal film to form a positive electrode plate. When a battery is formed by laminating a plurality of positive and negative plates with a separator interposed therebetween, when a short circuit occurs between the positive and negative electrodes, the short-circuit current causes the fuse of the metal film provided on the positive plate to blow, and the abnormal positive plate There is a known method of separating the two.

【0004】また、従来の二次電池の過充電保護として
は、特開平5−234614 号公報に示されている通り、正極
と負極および電解液が密封された二次電池において、電
池容器内の空隙部分に温度スイッチ又は温度ヒューズが
電池に対して直列に、ツェナーダイオードが並列に電気
的接続されたもの、および、特開平5−325943 号公報に
示されている通り、正極と負極および電解液が密封され
た二次電池において、電池容器内の空隙部分に2個直列
の温度ヒューズが電池の正極端子に直列に接続され、か
つ2個の温度ヒューズの接続点と電池の負極端子間にツ
ェナーダイオードが接続されたものがある。
[0004] Further, as shown in Japanese Patent Application Laid-Open No. 5-234614, a conventional secondary battery in which a positive electrode, a negative electrode, and an electrolyte are sealed in a battery container is provided as overcharge protection for a secondary battery. A temperature switch or a temperature fuse is electrically connected in series to a battery in a gap portion, and a Zener diode is electrically connected in parallel to the battery. Also, as shown in JP-A-5-325943, a positive electrode, a negative electrode, and an electrolytic solution are provided. In a sealed secondary battery, two series-connected thermal fuses are connected in series to the positive terminal of the battery in a gap portion in the battery container, and a Zener is connected between the connection point of the two thermal fuses and the negative terminal of the battery. Some have diodes connected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開平6−290767 号公報の例では電気通路となり、かつシ
ール部材となる仕切板が絶縁材を介して電池容器の開口
部に加締め構造で電池容器を密封している。この内側に
曲げられた電池容器の開口端の内側と仕切板間に、電池
の外部と接続される極端子がガス圧により移動可能に設
置される構造となっている。従って電解液の漏れを防止
するパッキンの役目をするポリプロピレン等の軟質の厚
い絶縁材を介して仕切板を加締める必要があり、加締め
バラツキにより仕切板の位置が上下方向に安定しないば
かりか、軟質肉厚樹脂の経時温度変化により電池容器の
密封が緩み、液漏れを起こしやすい。
However, in the example of Japanese Patent Application Laid-Open No. 6-290767, a partition plate serving as an electric passage and serving as a sealing member is crimped to the opening of a battery container via an insulating material. Container is sealed. A pole terminal connected to the outside of the battery is installed movably by gas pressure between the inside of the opening end of the battery container bent inward and the partition plate. Therefore, it is necessary to caulk the partition plate through a soft thick insulating material such as polypropylene that serves as a packing to prevent leakage of the electrolyte, and not only the position of the partition plate is not stabilized in the vertical direction due to variations in caulking, The sealing of the battery container is loosened due to the temperature change of the soft thick resin over time, and liquid leakage is likely to occur.

【0006】また、電気接続部となる内側に曲げた電池
容器開口端部と仕切板の距離及び平行度がばらつくた
め、極端子との間の接触・開離が確実に行われない等の
不具合があった。また、極端子は外部と電気的に接続さ
れると共に極端子の移動可能が必須であり、一方の電極
接続部である電池容器開口端部も電池外郭を形成してい
るため、外力により接続部が変形したり、ゴミ等が侵入
したりしてスイッチ機能をさせるには実用上適さない構
造であった。さらに、電気接触部が電池内やガス通路に
あるため、電解液やその高温ガスにより電気接触部が腐
食して接触不良や端子の切り替え動作不良が発生し易い
ばかりでなく、可燃性の電解液の高温ガスが接点アーク
により着火する恐れもあった。
Further, the distance and parallelism between the opening end of the battery container which is bent inward to become the electrical connection portion and the partition plate vary, so that contact and separation between the pole terminals cannot be reliably performed. was there. In addition, it is essential that the pole terminal is electrically connected to the outside and the pole terminal is movable, and the opening end of the battery container, which is one of the electrode connection portions, also forms a battery outer shell. However, the structure was not practically suitable for performing a switch function due to deformation or intrusion of dust or the like. Further, since the electric contact portion is in the battery or in the gas passage, the electric contact portion is corroded by the electrolytic solution or its high-temperature gas, so that not only the contact failure and the terminal switching operation failure are likely to occur, but also the flammable electrolytic solution. The high-temperature gas may be ignited by the contact arc.

【0007】また、特開平4−147574 号公報の例ではプ
ラスチックフィルム基板上に蒸着した金属皮膜を正極の
集電材とし、電流ヒューズをも兼ねているので金属皮膜
厚さは200Å前後の薄いものであり、一般的に集電体
として使われている金属箔の厚さ20μmに比べて非常
に薄膜となってしまう。従って、電池の導電路である内
部電気抵抗が大きくなり放電負荷特性が悪く、大きな電
流が流せない基本特性の劣った電池となってしまう。
In the example of Japanese Patent Application Laid-Open No. 4-147574, a metal film deposited on a plastic film substrate is used as a current collector for the positive electrode, and also serves as a current fuse. In some cases, the thickness becomes extremely thin compared to the thickness of 20 μm of a metal foil generally used as a current collector. Therefore, the internal electric resistance, which is a conductive path of the battery, is increased, the discharge load characteristics are poor, and the battery is inferior in basic characteristics in which a large current cannot flow.

【0008】次に、上記特開平5−234614号公報や特開
平5−325943号公報の例では過充電保護回路であるツェ
ナーダイオードや電流遮断回路である温度ヒューズ,温
度スイッチが電解液が充填された電池容器内に設置され
ており、電解液による腐食や電池作用時の電気化学によ
る腐食から防御する必要がある。つまり、耐電解液性の
材料にてツェナーダイオードや温度スイッチを密閉しな
ければならない。しかし、ツェナーダイオードや温度ス
イッチ等の部品は耐電解液の樹脂等で密閉可能である
が、各電機部品と電極との接続部は密閉が難しい。しか
もツェナーダイオード,温度ヒューズ等の電気素子のリ
ード線は銅系金属であるのが一般的であり、また正極集
電体は電池の電気化学反応の関係からアルミニウム箔が
使われており、銅リード線とアルミニウム箔の溶接が難
しいことや電解液の中で異種金属を接続すると急速に腐
食断線に至るという問題がある。
Next, in the examples of JP-A-5-234614 and JP-A-5-325943, a Zener diode serving as an overcharge protection circuit, a temperature fuse serving as a current cutoff circuit, and a temperature switch are filled with an electrolytic solution. It must be protected from corrosion by the electrolyte and electrochemical corrosion during battery operation. That is, the Zener diode and the temperature switch must be sealed with an electrolyte-resistant material. However, components such as a Zener diode and a temperature switch can be hermetically sealed with an electrolyte-resistant resin or the like, but it is difficult to seal the connection between each electric component and an electrode. In addition, the lead wires of electrical elements such as zener diodes and thermal fuses are generally made of copper-based metal, and the positive electrode current collector is made of aluminum foil due to the electrochemical reaction of the battery. There are problems that it is difficult to weld the wire and the aluminum foil, and that when a dissimilar metal is connected in the electrolytic solution, corrosion breakage occurs rapidly.

【0009】本発明は上記従来技術の問題点に鑑みてな
されたものであり、その目的とするところは、過充電を
防止し、複数個直列接続された二次電池の内、異常温度
上昇した電池への通電を確実に遮断して異常電池のみを
切り離し、その他の正常な電池で電池機能を継続し、安
全性の向上を図ると共に、使い勝手の良い二次電池を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to prevent overcharging and increase an abnormal temperature among a plurality of secondary batteries connected in series. An object of the present invention is to provide a rechargeable battery that is easy to use, while ensuring that power to the battery is cut off and only the abnormal battery is disconnected, the battery function is continued with other normal batteries, and safety is improved.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極および負極をセパレータを介して対向
させた電極群と電解液からなる発電要素を電池ケース内
に収納し、各電極をリード線で封口部材に貫通設置され
た各極内部端子に接続し、前記封口部材と一体となり各
極外部端子を備え内部に熱応動または圧力応動のスイッ
チによる端子切り替え回路を有すると共に正負極端子間
にバリスタ素子を備えた安全装置を電池ケースの開口部
に設置し、防爆弁をスイッチのある密閉空間外としたも
のである。
According to the present invention, in order to achieve the above object, a power generating element comprising an electrode group and an electrolytic solution in which a positive electrode and a negative electrode face each other via a separator is housed in a battery case. Is connected to each of the internal terminals of the poles penetrating through the sealing member by a lead wire, and each of the pole external terminals is integrated with the sealing member, and a terminal switching circuit having a heat-responsive or pressure-responsive switch is provided inside and a positive / negative terminal. A safety device having a varistor element between them is installed in an opening of a battery case, and an explosion-proof valve is set outside a sealed space having a switch.

【0011】前記安全装置は、通常は同極内部端子と同
極外部端子間がスイッチを通して導通状態となり、温度
上昇時または圧力上昇時は異極外部端子間がスイッチを
通して導通状態となるようにしたので、異常電池のみが
切り離されると共にバイパスされて使用されるものであ
る。また、バリスタ素子のバリスタ電圧を電池の充電終
止電圧以上に設定することにより電池の過充電保護がで
きるものである。更に電池の複数個直列使用時に、安全
装置のスイッチが発電要素を切り離す際のスイッチ間に
かかる高電圧によるアーク発生をバリスタ電圧に抑える
ことにより防止し、安全にスイッチ切り替えができるも
のである。
In the above-mentioned safety device, normally, the same-polarity internal terminal and the same-polarity external terminal are brought into conduction through a switch, and at the time of temperature rise or pressure rise, the different polarity external terminals are brought into conduction through a switch. Therefore, only the abnormal battery is cut off and used by bypass. Further, by setting the varistor voltage of the varistor element to be equal to or higher than the charge end voltage of the battery, overcharge protection of the battery can be performed. Further, when a plurality of batteries are used in series, arcing due to a high voltage applied between the switches when the switch of the safety device disconnects the power generating element is prevented by suppressing the voltage to the varistor voltage, and the switches can be switched safely.

【0012】[0012]

【発明の実施の形態】以下、本発明に係わる二次電池の
一実施例を、リチウムイオン二次電池を例にして図面を
参照しながら説明する。図1は、本発明の二次電池の一
実施例を示す構造縦断面図であり、図2は図1のA−A
断面図、図3は図2のB−B断面図である。同図におい
て、1は正極であり、アルミ箔からなる正極集電体1a
の両面に無機リチウムインターカレーション材料を正極
活物質とする正極合剤1b(例えば活物質としてLiM
24,LiCoO2 ,LiNiO2 等、導電剤として
カーボン、結着剤としてポリフッ化ビニリデンを混合調
整したもの)を保持させたものである。2は負極であ
り、銅箔からなる負極集電体2aの両面にリチウムイン
ターカレーションカーボン材料を負極活物質とする負極
合剤2b(例えば活物質として黒鉛、結着剤としてポリ
フッ化ビニリデンを混合調整したもの)を保持させたも
のである。3はセパレータであり、微多孔性のポリエチ
レンフィルム、またはポリプロピレンフィルムからな
る。なお、ポリエチレンフィルムは温度が上昇した時、
フィルム自身の溶融によって前記微多孔が閉じるシャッ
トダウン開始温度が約130℃であり、ポリプロピレン
フィルムのシャットダウン開始温度は約150℃であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a secondary battery according to the present invention will be described below with reference to the drawings, taking a lithium ion secondary battery as an example. FIG. 1 is a structural vertical sectional view showing an embodiment of the secondary battery of the present invention, and FIG.
FIG. 3 is a cross-sectional view of FIG. In the figure, reference numeral 1 denotes a positive electrode, and a positive electrode current collector 1a made of aluminum foil
A positive electrode mixture 1b using an inorganic lithium intercalation material as a positive electrode active material (for example, LiM
n 2 O 4, LiCoO 2, LiNiO 2 or the like, carbon as a conductive agent, a mixture adjusted polyvinylidene fluoride as a binder) is obtained by holding the. Reference numeral 2 denotes a negative electrode, and a negative electrode mixture 2b (for example, a mixture of graphite as an active material and polyvinylidene fluoride as a binder) on both surfaces of a negative electrode current collector 2a made of a copper foil and having a lithium intercalation carbon material as a negative electrode active material. Adjusted). Reference numeral 3 denotes a separator made of a microporous polyethylene film or polypropylene film. When the temperature of the polyethylene film rises,
The shutdown start temperature at which the microporous closes due to the melting of the film itself is about 130 ° C, and the shutdown start temperature of the polypropylene film is about 150 ° C.

【0013】上記、正極1と負極2はセパレータ3を介
して対向した状態で渦巻き状に捲回され、電極群15を
形成している。この場合、セパレータ3は正極1,負極
2よりも若干幅広く巻かれており、さらに巻芯部および
巻き終り部において数回セパレータ3単独で巻かれてお
り、正極,負極間及び電極群周囲との絶縁性を持たせて
いる。この電極群15は電解液(図示せず)に浸漬され
て発電要素となる。上記電解液はLiPF6 ,LiBF
4 ,LiClO4 ,LiAsF6 等のリチウム塩を電解
質として有機溶媒(プロピレンカーボネート,エチレン
カーボネート,ジエチルカーボネート,ジメチルカーボ
ネート等の単独または混合物)に溶解したものが使われ
る。
The positive electrode 1 and the negative electrode 2 are spirally wound in a state where they face each other with the separator 3 interposed therebetween, and form an electrode group 15. In this case, the separator 3 is wound slightly wider than the positive electrode 1 and the negative electrode 2, and is further wound several times alone at the core portion and the end portion of the winding, so that the separator 3 can be wound between the positive electrode and the negative electrode and around the electrode group. Has insulation properties. The electrode group 15 is immersed in an electrolytic solution (not shown) to become a power generating element. The electrolyte is LiPF 6 , LiBF
4 , a solution in which a lithium salt such as LiClO 4 or LiAsF 6 is dissolved as an electrolyte in an organic solvent (single or mixture of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, etc.).

【0014】10は電池ケースでステンレス鋼,ニッケ
ルめっき鉄,ニッケルめっき銅やアルミニウムが使わ
れ、上記電極群15と電解液からなる発電要素を有底円
筒形の容器に収納し、封口部材11を有する安全装置2
0を被せてガスケット19を介して電池ケース10の開
口部に加締め密封したものである。封口部材11はステ
ンレス,ニッケルめっき鉄,ニッケルめっき銅,アルミ
ニウム等の熱伝導性の良い金属材料からなる。また、電
池ケース10内の封口部材11側および容器底部10a
には電池内充電部と電池ケース10との電気絶縁性を保
つために、絶縁板12a,12bが設置されている。4
はアルミニウム材の正極リードであり、正極1の正極集
電体1aとアルミニウム材の正極内部端子6に溶接等に
より接続されている。
Reference numeral 10 denotes a battery case which is made of stainless steel, nickel-plated iron, nickel-plated copper or aluminum. The power generation element comprising the electrode group 15 and the electrolyte is housed in a bottomed cylindrical container. Safety device 2 to have
The battery case 10 is sealed by caulking over the opening of the battery case 10 via the gasket 19 with the cover 0. The sealing member 11 is made of a metal material having good heat conductivity such as stainless steel, nickel-plated iron, nickel-plated copper, and aluminum. Further, the sealing member 11 side in the battery case 10 and the container bottom 10a
Are provided with insulating plates 12a and 12b in order to maintain electrical insulation between the battery charging section and the battery case 10. 4
Is a positive electrode lead of aluminum material, which is connected to the positive electrode current collector 1a of the positive electrode 1 and the positive electrode internal terminal 6 of aluminum material by welding or the like.

【0015】5はニッケル又は銅材の負極リードであ
り、負極2の負極集電体2aとニッケル又は銅材の負極
内部端子7に溶接等により接続されている。13は絶縁
デスタントであり、電極群15と封口部材11間に、正
極リード4および負極リード5を取りまとめて収納する
空間を確保すると共に、電極群15が電池ケース10内
で移動しないように抑さえている。正極内部端子6,負
極内部端子7は、封口部材11に、ガラスまたはプラス
チック層を介在させて電気絶縁をすると共に、密封性を
持たせたハーメチックシール8により貫通固定されてい
る。
Reference numeral 5 denotes a negative electrode lead made of nickel or copper material, which is connected to the negative electrode current collector 2a of the negative electrode 2 and a negative electrode internal terminal 7 made of nickel or copper material by welding or the like. Numeral 13 denotes an insulating destant which secures a space for collectively housing the positive electrode lead 4 and the negative electrode lead 5 between the electrode group 15 and the sealing member 11 and suppresses the electrode group 15 from moving in the battery case 10. ing. The positive electrode internal terminal 6 and the negative electrode internal terminal 7 are penetrated and fixed to the sealing member 11 by a hermetic seal 8 that is electrically insulated with a glass or plastic layer interposed and has a hermetic property.

【0016】封口部材11に設けられた防爆穴11a
は、切り込み等の弱点部を有する金属板や薄膜金属板か
らなる防爆弁9(図3)でシールされており、電池ケー
ス10内の圧力が異常温度上昇により高圧になった場合
に開裂し、電池ケース10の爆発を防止する。防爆弁9
の部分に位置するスイッチケース21の鍔部21aにも
ガス抜き穴21bが開けられてガスが直接外部の大気中
に放出できるようにしてある。防爆弁の設置場所として
は、噴出ガスが直接外部の大気中に放出される位置なら
ば、封口部材に限定されずどこでも良い。
Explosion-proof hole 11a provided in sealing member 11
Is sealed with an explosion-proof valve 9 (FIG. 3) made of a metal plate or a thin-film metal plate having a weak point such as a notch, and is broken when the pressure in the battery case 10 becomes high due to an abnormal temperature rise. The explosion of the battery case 10 is prevented. Explosion-proof valve 9
A gas vent hole 21b is also formed in the flange portion 21a of the switch case 21 located at the position (1), so that the gas can be directly discharged to the outside atmosphere. The installation location of the explosion-proof valve is not limited to the sealing member and may be any location as long as the ejected gas is directly discharged to the outside atmosphere.

【0017】防爆弁9の作動圧力としては、実使用時の
電池ケース内の圧力上昇限度と、電池ケース自身および
加締め部が先に破壊しない強度から決定され、10kg/
cm2〜20kg/cm2 が望ましい。安全装置20はプラス
チック等の絶縁材からなる鍔付き帽子形のスイッチケー
ス21とその鍔部21a周辺を前記封口部材11の周辺
部で包み込むように加締められて一体の密閉空間を形成
し、その内部に熱応動のバイメタル,形状記憶合金,熱
可溶体合金等からなる温度スイッチ22を内蔵してい
る。
The operating pressure of the explosion-proof valve 9 is determined from the pressure rise limit in the battery case in actual use and the strength at which the battery case itself and the crimped portion do not break first, and is determined to be 10 kg / hour.
cm 2 to 20 kg / cm 2 is desirable. The safety device 20 is swaged so as to wrap the periphery of the sealing member 11 around the flange 21a and the periphery of the flange portion 21a of a hat-shaped switch case 21 made of an insulating material such as plastic to form an integral closed space. A temperature switch 22 made of a thermally responsive bimetal, a shape memory alloy, a heat fusible alloy, or the like is built therein.

【0018】正極外部端子16および負極外部端子17
はスイッチケース21の底面に内外に貫通して取り付け
られており、スイッチケース外に出た部分が外部との電
気接続部となる単電池の各極端子となる。正極外部端子
16はスイッチケース21内ではコの字状をしており、
向かい合った平行部内側に接点16a,16bを有して
いる。負極外部端子17はスイッチケース21内でL字
状に曲げられた水平部に接点17aを有し、先端部は負
極内部端子7の先端部とハトメ18等により電気的に接
続されている。操作穴21cは前記ハトメ接続をスイッ
チケース21外から作業する穴であり、作業後はプラス
チック材の絶縁性のフタ26で塞がれ、スイッチケース
内は密閉される。
A positive external terminal 16 and a negative external terminal 17
Is attached to the bottom surface of the switch case 21 so as to penetrate inside and outside, and the portion outside the switch case serves as each electrode terminal of the unit cell serving as an electric connection part with the outside. The positive external terminal 16 has a U-shape in the switch case 21,
Contact points 16a and 16b are provided inside the opposed parallel portions. The negative external terminal 17 has a contact 17a in a horizontal portion bent in an L shape in the switch case 21, and the distal end is electrically connected to the distal end of the negative internal terminal 7 by an eyelet 18 or the like. The operation hole 21c is a hole for performing the eyelet connection from outside the switch case 21. After the operation, the operation hole 21c is closed by a plastic insulating lid 26, and the inside of the switch case is sealed.

【0019】一方、正極内部端子6のスイッチケース2
1内側ではL字状に曲げられた水平部に接点6aを有し
ている。正極外部端子16の下接点16aと正極内部端
子6の接点6aは下側に、正極外部端子16の上接点1
6bと負極外部端子17の接点17aは上側にそれぞれ
平行に対向している。また、下側接点16a部端子の下
側には絶縁台27が封口部材11に接着されて充電部と
非充電部間の絶縁を保っている。前記、上側接点16
b,17aと下側接点16a,6b間には温度スイッチ
22がスプリング24を介し支持棒23によりスイッチ
ケース21の底部にネジ込まれた後、ナット25により
固定されている。支持棒23のネジ込み量を調整するこ
とにより温度スイッチ22の位置が調整でき、バイメタ
ルの接点の接触圧力を適正にすることができる。
On the other hand, the switch case 2 of the positive electrode internal terminal 6
On the inner side, a contact 6a is provided on a horizontal portion bent in an L-shape. The lower contact 16a of the positive external terminal 16 and the contact 6a of the positive internal terminal 6 are on the lower side, and the upper contact 1 of the positive external terminal 16 is on the lower side.
6b and the contact 17a of the negative electrode external terminal 17 are respectively opposed to the upper side in parallel. An insulating base 27 is adhered to the sealing member 11 below the lower contact 16a terminal to maintain insulation between the charged part and the non-charged part. The upper contact 16
A temperature switch 22 is screwed to the bottom of the switch case 21 by a support rod 23 via a spring 24 between the b and 17a and the lower contacts 16a and 6b, and is fixed by a nut 25. By adjusting the screwing amount of the support rod 23, the position of the temperature switch 22 can be adjusted, and the contact pressure of the bimetal contact can be made appropriate.

【0020】温度スイッチ22はバイメタル両端の両側
に接点22aを有する両接点バイメタルであり、通常は
下側接点側に湾曲して正極外部端子の接点16aと正極
内部端子の接点6aを短絡し、設定温度以上に上昇する
と上側接点側に急激に反転湾曲して正極外部端子の接点
16bと負極外部端子の接点17aを短絡する。つま
り、温度上昇により異常温度になると正極外部端子と発
電要素である正電極の導通が遮断され、正負極の外部端
子間が短絡するものである。スプリング24は、温度ス
イッチ22を支持棒23の端部に抑えるのと、温度スイ
ッチ22が反転動作する時のバイメタル板の振動を吸収
して接点のチャタリング防止をする。
The temperature switch 22 is a double-contact bimetal having contacts 22a on both sides of both ends of the bimetal. Normally, the temperature switch 22 is bent to the lower contact side to short-circuit the contact 16a of the positive external terminal and the contact 6a of the positive internal terminal to set. When the temperature rises, the contact 16b of the positive external terminal and the contact 17a of the negative external terminal are short-circuited. That is, when the temperature rises to an abnormal temperature, conduction between the positive external terminal and the positive electrode, which is a power generating element, is interrupted, and the positive and negative external terminals are short-circuited. The spring 24 suppresses the temperature switch 22 to the end of the support bar 23 and absorbs the vibration of the bimetal plate when the temperature switch 22 performs the reversing operation, thereby preventing the contact from chattering.

【0021】29はバリスタ素子であり、スイッチケー
ス21内でバリスタ素子29の一方の端子が正極外部端
子16または正極内部端子6に、バリスタ素子29の他
方の端子が負極外部端子17または負極内部端子7に溶
接等により接続されている。図示は代表して一方の端子
を正極外部端子に、他方の端子を負極外部端子に接続し
てある。つまり、正負極端子間にバリスタ素子29が並
列接続されている。バリスタ素子29は酸化亜鉛と数種
の添加物を混合焼結したセラミックス半導体であり、両
端子間に正または負の電圧を印加し、徐々に電圧を上げ
てバリスタ電圧に達すると、この電圧を保ったまま端子
間に電流を流す働きがある。
Reference numeral 29 denotes a varistor element. One terminal of the varistor element 29 is connected to the positive external terminal 16 or the positive internal terminal 6 in the switch case 21, and the other terminal of the varistor element 29 is connected to the negative external terminal 17 or the negative internal terminal. 7 is connected by welding or the like. In the figure, one terminal is typically connected to a positive external terminal and the other terminal is connected to a negative external terminal. That is, the varistor element 29 is connected in parallel between the positive and negative terminals. The varistor element 29 is a ceramic semiconductor in which zinc oxide and several kinds of additives are mixed and sintered. A positive or negative voltage is applied between both terminals, and when the voltage is gradually increased and reaches the varistor voltage, this voltage is reduced. It has the function of flowing current between terminals while maintaining it.

【0022】図4は安全装置20の他の実施例を示す断
面図である。図5は図4のC−C断面図、図6は図4の
D−D断面図である。同図において安全装置20の構造
のみが図1から図3の一実施例と異なるものであり、電
池の正極,負極との接続や電池ケースとの結合は同じで
ある。つまり、安全装置20が熱応動の温度スイッチの
代わりに圧力駆動の圧力スイッチとなったものである。
30はベローズやダイヤフラム等の圧力により伸縮する
圧力可動体であり、封口部材11の開口穴11bを塞ぐよ
うに半田付けや溶接等により取り付けられている。31
はスイッチ片であり、バネ性を有する導電材の平板から
なり、一端部には両面に接点31aを有し、他端部は、
正極外部端子16が端子ケース21の内側でL字状に曲
げられた水平部に溶接またはリベット可締め等により接
続されている。
FIG. 4 is a sectional view showing another embodiment of the safety device 20. 5 is a cross-sectional view taken along line CC of FIG. 4, and FIG. 6 is a cross-sectional view taken along line DD of FIG. In this figure, only the structure of the safety device 20 is different from that of the embodiment shown in FIGS. 1 to 3, and the connection of the battery to the positive and negative electrodes and the connection to the battery case are the same. That is, the safety device 20 is a pressure-driven pressure switch instead of a thermally responsive temperature switch.
Reference numeral 30 denotes a pressure movable body that expands and contracts due to pressure of a bellows, a diaphragm, or the like, and is attached by soldering, welding, or the like so as to close the opening 11b of the sealing member 11. 31
Is a switch piece, which is made of a flat plate of a conductive material having a spring property, has a contact 31a on both sides at one end, and has
The positive external terminal 16 is connected to the horizontal portion bent in an L-shape inside the terminal case 21 by welding or rivet tightening.

【0023】スイッチ片31は絶縁材の押棒32と制動
バネ33に挟まれて圧力可動体30とスイッチケース2
1の底部間に移動可能に設置されている。スイッチ片3
1の接点31aは、上側の負極外部端子17の接点17
aと下側の正極内部端子6の接点6aの間に配置され、
各接点に対向している。通常電池ケース10内の圧力が
低いときは、圧力可動体30の膨張力よりも制動バネ3
3の力が強く、圧力可動体30は電池ケース側に押し下
げられてスイッチ片31の接点31aは正極内部端子の
接点6aと接触している。
The switch piece 31 is sandwiched between a push rod 32 made of an insulating material and a braking spring 33 so that the pressure movable body 30 and the switch case 2
It is installed movably between the bottoms of the two. Switch piece 3
The first contact 31a is connected to the contact 17 of the upper negative external terminal 17.
a and the contact 6 a of the lower positive electrode internal terminal 6,
It faces each contact. Normally, when the pressure in the battery case 10 is low, the braking spring 3
3, the pressure movable body 30 is pushed down to the battery case side, and the contact 31a of the switch piece 31 is in contact with the contact 6a of the positive electrode internal terminal.

【0024】逆に電池ケース内の圧力が設定圧力以上に
上昇すると、圧力可動体30の膨張力が制動バネ33の
力に打ち勝ち、圧力可動体が膨張してスイッチ片31を
押し上げ、接点31aは上側の負極外部端子の接点17
aと接触する。つまり、前記一実施例と同じように温度
上昇により二次的に圧力が上昇したり電解液分解ガスの
発生により圧力上昇すると正極外部端子と発電要素であ
る正電極の導通が遮断され、正負極の外部端子間が短絡
するものである。また前記一実施例と同じように、防爆
弁9はスイッチケース21のスイッチ内蔵密封空間外
に、バリスタ素子29の両端子が正極外部端子16また
は正極内部端子6と負極外部端子17または負極内部端
子7に溶接等により接続されている。
Conversely, when the pressure in the battery case rises above the set pressure, the expansion force of the pressure movable body 30 overcomes the force of the braking spring 33, the pressure movable body expands and pushes up the switch piece 31, and the contact point 31a becomes Contact 17 of upper negative external terminal
Contact with a. That is, as in the first embodiment, when the pressure rises secondary due to the temperature rise or the pressure rises due to the generation of the electrolytic solution decomposition gas, the conduction between the positive electrode external terminal and the positive electrode which is the power generation element is interrupted, and the positive electrode Are short-circuited between the external terminals. In the same manner as in the first embodiment, the explosion-proof valve 9 is provided outside the hermetically sealed space of the switch case 21 so that both terminals of the varistor element 29 have the positive external terminal 16 or the positive internal terminal 6 and the negative external terminal 17 or the negative internal terminal 17. 7 is connected by welding or the like.

【0025】図7は本発明の非水電解液二次電池を複数
個直列接続した場合の電気回路図である。同図ではn個
の単電池(40a〜40n)を直列接続した場合を示
し、単電池の電圧をE(V)とすると、組電池の出力端子
X−Y間の電圧はn×E(V)となる。cは正極外部端子
16、aは発電要素の正極に接続された正極内部端子
6、bは発電要素の負極に接続された負極外部端子17
を表している。通常は端子cは端子a側に接触してお
り、異常温度上昇すると端子cは端子b側に切り替わ
る。またVTはバリスタ素子29を表し、電池の正極端
子にカソードを負極端子にアノードを接続している。
FIG. 7 is an electric circuit diagram when a plurality of non-aqueous electrolyte secondary batteries of the present invention are connected in series. The figure shows a case in which n cells (40a to 40n) are connected in series. If the voltage of the cells is E (V), the voltage between the output terminals X and Y of the assembled battery is n × E (V ). c is a positive external terminal 16, a is a positive internal terminal 6 connected to the positive electrode of the power generating element, and b is a negative external terminal 17 connected to the negative electrode of the power generating element
Is represented. Normally, the terminal c is in contact with the terminal a, and when an abnormal temperature rises, the terminal c is switched to the terminal b. Further, VT represents a varistor element 29 in which a cathode is connected to the positive terminal of the battery and an anode is connected to the negative terminal.

【0026】次に、本発明による非水電解液二次電池の
組み立て方法について説明する。先ず、正極1および負
極2にそれぞれ正極リード4,負極リード5をスポット
溶接または超音波溶接により取り付けておく。このと
き、電池容量の大きさにより取り付けるリードの数は増
減される。上記正極1,負極2をセパレータ3を介して
捲回し、巻終わり部はテープ等で止めて電極群15を作
る。有底円筒形容器の底部10a側から絶縁板12b,
電極群15,絶縁デスタント13の順に入れ、正極リー
ド4,負極リード5をそれぞれ束ねてまとめておく。一
方、安全装置20はスイッチケース21内にバリスタ素
子29および温度スイッチ機構または圧力スイッチ機構
を組み込み、封口部材11で蓋をして密閉一体構造とし
ておく。次に、絶縁板12aを安全装置20の封口部材
11側に重ね合わせ、正極リード4,負極リード5を封
口部材11の正極内部端子6,負極内部端子7に溶接す
る。次に電池ケース10の開口部付近にネッキング成形
してから電解液を注入し、安全装置20をガスケット1
9を介して加締めにより密封して完成する。このよう
に、安全装置20を備えた二次電池を従来の組立工程と
変わりなく組立てられるので作業性が良い。
Next, a method for assembling the nonaqueous electrolyte secondary battery according to the present invention will be described. First, the positive electrode lead 4 and the negative electrode lead 5 are attached to the positive electrode 1 and the negative electrode 2, respectively, by spot welding or ultrasonic welding. At this time, the number of leads to be attached is increased or decreased depending on the size of the battery capacity. The positive electrode 1 and the negative electrode 2 are wound with the separator 3 interposed therebetween, and the end of the winding is stopped with a tape or the like to form an electrode group 15. The insulating plate 12b,
The positive electrode lead 4 and the negative electrode lead 5 are bundled and put together in the order of the electrode group 15 and the insulating detent 13. On the other hand, the safety device 20 incorporates a varistor element 29 and a temperature switch mechanism or a pressure switch mechanism in a switch case 21, and is covered with a sealing member 11 to form a hermetically sealed structure. Next, the insulating plate 12 a is overlapped on the sealing member 11 side of the safety device 20, and the positive electrode lead 4 and the negative electrode lead 5 are welded to the positive electrode internal terminal 6 and the negative electrode internal terminal 7 of the sealing member 11. Next, necking molding is performed near the opening of the battery case 10 and an electrolytic solution is injected, and the safety device 20 is attached to the gasket 1.
9 to complete by sealing by caulking. As described above, the secondary battery provided with the safety device 20 can be assembled without changing the conventional assembly process, so that the workability is good.

【0027】次に、本発明による二次電池の作用につい
て説明する。電池は充電回路の故障により設定電圧以上
に過充電されると、リチウムインターカレーションとし
ての電池反応以外の電解液を分解する化学反応を起こ
し、電池を劣化させると共に電池の温度を上昇させる。
さらに、過充電が進んだり急速充電されると、負極にデ
ンドライト反応によりリチウム金属が析出し、電極間の
絶縁材であるセパレータ3を突き破り、正・負極間短絡
を起こす事故となる。また、通常の電池の使用温度範囲
を越えた高温での使用や、誤使用による外部短絡、何ら
かの原因による電池内の内部短絡によっても、電池は発
熱し異常温度となる。二次電池の温度が上昇すると、正
極1,負極2間にあるセパレータ3のフィルムが130
℃〜150℃で溶融し、フィルムの微多孔が閉じて正負
電極間のリチウムイオンの移動を停止させるシャットダ
ウン効果により電流を遮断する働きがある。
Next, the operation of the secondary battery according to the present invention will be described. When the battery is overcharged to a voltage equal to or higher than the set voltage due to a failure in the charging circuit, a chemical reaction other than the battery reaction as lithium intercalation is performed to decompose the electrolytic solution, thereby deteriorating the battery and increasing the temperature of the battery.
Furthermore, when overcharging progresses or is rapidly charged, lithium metal is deposited on the negative electrode by a dendrite reaction, breaks through the separator 3 that is an insulating material between the electrodes, and causes a short circuit between the positive electrode and the negative electrode. In addition, the battery also generates heat and becomes an abnormal temperature due to use at a high temperature exceeding the normal use temperature range of the battery, external short-circuit due to misuse, and internal short-circuit in the battery for some reason. When the temperature of the secondary battery increases, the film of the separator 3 between the positive electrode 1 and the negative electrode 2 becomes 130
The film is melted at a temperature of from about 150 ° C. to about 150 ° C., and the microporous film of the film is closed to shut off the current by the shutdown effect of stopping the movement of lithium ions between the positive and negative electrodes.

【0028】しかしながら、セパレータの材料であるポ
リエチレンフィルムやポリプロピレンフィルムは、更な
る温度上昇により溶融収縮し、正負電極間の絶縁性が確
保できずに、電極間短絡に至ってしまう場合がある。電
池内温度が150℃を越えると、電極に使われている正
極活物質が熱暴走を起こし、発煙・発火・爆発に至る危
険な温度領域となる。つまり、正極活物質であるLiM
24,LiCoO2,LiNiO2 等の結晶格子からの
酸素脱離反応により急激な発熱を伴い熱暴走状態にな
る。酸素脱離開始温度は活物質の種類や各元素の構成
比,充電状態により異なるが150℃〜400℃の範囲
にある。
However, a polyethylene film or a polypropylene film, which is a material of the separator, may melt and shrink due to a further rise in temperature, and may not be able to secure insulation between the positive and negative electrodes, resulting in a short circuit between the electrodes. When the temperature inside the battery exceeds 150 ° C., the positive electrode active material used for the electrode causes a thermal runaway, which is a dangerous temperature range where smoke, ignition, and explosion occur. In other words, LiM which is a positive electrode active material
Due to the oxygen elimination reaction from the crystal lattice of n 2 O 4 , LiCoO 2 , LiNiO 2, etc., rapid heat generation occurs and a thermal runaway state occurs. The oxygen desorption starting temperature varies depending on the type of active material, the composition ratio of each element, and the state of charge, but is in the range of 150 ° C to 400 ° C.

【0029】ここで電池が何らかの原因により異常温度
上昇し、電池内の電解液が分解してガス発生したり、電
解液と正極,負極の活物質が化学反応を起こしてガス発
生して電池ケース内の圧力が上昇した場合を考えてみ
る。電池の異常温度上昇は熱伝導の良い封口部材11を
通して安全装置20の温度スイッチ22の温度を上昇さ
せ、バイメタルが反転して正極外部端子と発電要素であ
る正電極の導通が遮断され、正負極の外部端子間が短絡
するようにスイッチが切り替わる。
Here, the battery temperature rises abnormally for some reason, the electrolytic solution in the battery is decomposed to generate gas, or the electrolytic solution and the active material of the positive electrode and the negative electrode cause a chemical reaction to generate gas, resulting in a battery case. Consider the case where the pressure inside rises. The abnormal temperature rise of the battery raises the temperature of the temperature switch 22 of the safety device 20 through the sealing member 11 having good heat conduction, the bimetal is inverted, and the continuity between the positive electrode external terminal and the positive electrode, which is a power generation element, is cut off. The switches are switched so as to short-circuit between the external terminals.

【0030】または、電池ケース内の圧力上昇により圧
力可動体30が制動バネ33の力に打ち勝って膨張し、
スイッチ片31を押し上げて接点31aは正極内部端子
側から負極端子側に切り替わる。つまり、図7の異常単
電池のc−a間の導通が遮断され、c−b間が短絡され
る。従って、異常単電池が直列回路から切り離され、異
常単電池をバイパスした正常電池の直列回路が形成さ
れ、出力電圧は(n−1)×E(V)で運転を継続する。さ
らに電池内の圧力が上昇して10kg/cm2〜20kg/cm2
になると、防爆弁9が開裂しガスを電池ケース外に放
出して、電池の爆発力を軽減する。この時、高温ガスは
スイッチのある密閉空間外のガス抜き穴21bから放出
されるので、スイッチを腐食させたり、電解液の高温ガ
スに着火したりすることがない。温度スイッチの作動温
度としては電池の実用温度を阻害しない範囲と電池の劣
化が加速される温度以上およびセパレータ溶融温度以下
との関係から80℃〜130℃が望ましい。
Alternatively, the pressure movable body 30 expands by overcoming the force of the braking spring 33 due to the pressure increase in the battery case,
When the switch piece 31 is pushed up, the contact 31a is switched from the positive terminal to the negative terminal. That is, conduction between ca and c of the abnormal unit cell in FIG. 7 is interrupted, and c and b are short-circuited. Therefore, the abnormal unit cell is disconnected from the series circuit, a series circuit of normal cells bypassing the abnormal unit cell is formed, and the operation is continued at the output voltage of (n−1) × E (V). Further, the pressure in the battery rises to 10 kg / cm 2 to 20 kg / cm 2
, The explosion-proof valve 9 is opened to release gas out of the battery case, thereby reducing the explosive power of the battery. At this time, since the high-temperature gas is released from the gas vent hole 21b outside the closed space where the switch is located, the switch does not corrode or ignite the high-temperature gas of the electrolyte. The operating temperature of the temperature switch is desirably 80 ° C. to 130 ° C. in consideration of the range not impairing the practical temperature of the battery and the relationship between the temperature at which battery degradation is accelerated and the separator melting temperature.

【0031】また温度下降時の復帰温度は−20℃以下
にして、実用温度範囲では恒久的に作動した状態を継続
する又は非復帰とするのが望ましい。つまり、一度異常
温度により作動した後は強制的に温度スイッチを−20
℃以下に冷却しないと復帰しないようにしたので、異常
要因をチェックできると共に安全性を確保できるもので
ある。
It is desirable that the return temperature at the time of the temperature drop be -20 ° C. or lower, and that the device be permanently operated in a practical temperature range be maintained or not be recovered. In other words, once the temperature switch has been activated due to the abnormal temperature,
Since it does not return unless cooled down to below ℃, it is possible to check the cause of abnormalities and to ensure safety.

【0032】一方、圧力スイッチの作動値は防爆弁の解
放圧力より低く設定され、電池が異常と判定される初期
圧力の3kg/cm2 以上で作動させるのが望ましい。圧力
スイッチは電池異常の初期の段階で電池を切り離して電
流を遮断することにより、電池内の温度上昇および圧力
上昇の速度を抑え、防爆弁の作動にまで至るのを防止し
たり、防爆弁が作動するにしても爆発力を最小限度に抑
制して防爆弁の破裂を安全に導く効果がある。
On the other hand, the operation value of the pressure switch is set lower than the release pressure of the explosion-proof valve, and it is desirable to operate the battery at 3 kg / cm 2 or more of the initial pressure at which the battery is determined to be abnormal. The pressure switch disconnects the battery at the early stage of the battery abnormality and cuts off the current, thereby suppressing the temperature rise and the pressure rise speed inside the battery, preventing the explosion-proof valve from operating, and preventing the explosion-proof valve from operating. Even if it operates, there is an effect that explosion force is suppressed to a minimum and the explosion-proof valve is ruptured safely.

【0033】上記実施例では正極外部端子を基準端子と
して正極内部端子と負極端子を切り替える構造で説明し
たが、正極および負極をそれぞれ正極内部端子と負極内
部端子に逆に接続しても全く同じ機能を有するものであ
る。
In the above-described embodiment, the structure in which the positive external terminal is used as the reference terminal to switch between the positive internal terminal and the negative terminal is described. It has.

【0034】次に、充電回路が故障して例えばリチウム
イオン二次電池の電極間電圧が充電終止電圧の4.2V
になっても充電が止まらない場合を考えてみる。バリス
タ素子29のバリスタ電圧を充電終止電圧以上でこれよ
りも僅かに高い4.3V に設定しておけば、単電池電圧
が4.3V に達するとバリスタ素子はバリスタ電圧の
4.3V を保持したまま電流を流し、単電池へはこれ以
上の電圧がかからず過充電を防止できる。バリスタ電圧
の設定値は充電終止電圧以上で、限りなく充電終止電圧
に近いほど、過充電量が少なく保護できる。
Next, when the charging circuit fails, for example, the inter-electrode voltage of the lithium ion secondary battery becomes 4.2 V, which is the charging end voltage.
Consider the case where charging does not stop even when the power is turned off. If the varistor voltage of the varistor element 29 is set to 4.3 V which is higher than the charging end voltage and slightly higher than this, the varistor element maintains the varistor voltage of 4.3 V when the cell voltage reaches 4.3 V. The current is passed as it is, and no further voltage is applied to the cell, thereby preventing overcharging. The set value of the varistor voltage is equal to or higher than the end-of-charge voltage.

【0035】一般的にリチウムイオン二次電池の場合、
充電終止電圧以上に過充電されると電池の温度上昇や電
解液分解ガス発生による圧力上昇が生じ、5V以上にな
ると発火・爆発等の危険状態になる。この過充電の防止
は、バリスタ素子29の両端子を電池の正極外部端子1
6または正極内部端子6と負極外部端子17または負極
内部端子7に接続すれば、接続箇所には関係なく同じ効
果が得られる。
Generally, in the case of a lithium ion secondary battery,
If the battery is overcharged beyond the charge end voltage, the temperature of the battery rises and the pressure rises due to the generation of electrolytic decomposition gas. This overcharge is prevented by connecting both terminals of the varistor element 29 to the positive external terminal 1 of the battery.
6 or the positive electrode internal terminal 6 and the negative electrode external terminal 17 or the negative electrode internal terminal 7, the same effect can be obtained regardless of the connection location.

【0036】また、バリスタ素子29の一方の端子を正
極外部端子16に、他方の端子を負極端子16または6
に接続した場合には次の効果が得られる。図7におい
て、n個の単電池が直列接続された組電池のうち1個の
単電池が異常となり、正極外部端子cが正極内部端子a
から負極端子bに切り替わる際に、つまりa−c間の接
点が離れた瞬間にa−c間にはn×Eの高電圧がかか
り、アーク電流が発生して続流となり、直流電流のため
続流が切れないという問題がある。しかし、バリスタ素
子VTの端子間にスイッチのa−c端子があるために、
a−c端子間にかかる電圧はバリスタ電圧(ほぼ単電池
1個分の充電終止電圧)以下に抑えられ、アーク電流の
発生を防止できる。したがって、異常電池を切り離して
バイパスさせるスイッチ切り替えが、バリスタ素子のバ
リスタ電圧の効果により安全確実に行われるものであ
る。
One terminal of the varistor element 29 is connected to the positive external terminal 16 and the other terminal is connected to the negative terminal 16 or 6.
The following effects can be obtained when the connection is made. In FIG. 7, one of the assembled batteries in which n cells are connected in series becomes abnormal, and the positive external terminal c becomes the positive internal terminal a
When switching from to the negative terminal b, that is, at the moment when the contact between a and c is separated, a high voltage of nxE is applied between a and c, an arc current is generated, and a subsequent current is generated. There is a problem that the continuation flow cannot be cut off. However, since there is an ac terminal of the switch between the terminals of the varistor element VT,
The voltage applied between the a and c terminals is suppressed to a value equal to or lower than the varistor voltage (almost one cell end charging voltage), and the occurrence of arc current can be prevented. Therefore, the switch switching for disconnecting and bypassing the abnormal battery is performed safely and securely by the effect of the varistor voltage of the varistor element.

【0037】[0037]

【発明の効果】以上説明したように、本発明では、正極
および負極をセパレータを介して対向させた電極群と電
解液からなる発電要素を電池ケース内に収納し、各電極
を熱応動の温度スイッチまたは圧力駆動の圧力スイッチ
により端子切り替えができると共にバリスタ素子を正負
極端子間に接続した安全装置により電池ケースの開口部
を密封したものであり、前記安全装置は、通常は同極内
部端子と同極外部端子間がスイッチを通して導通状態と
なり、電池の温度上昇時または圧力上昇時は異極外部端
子間がスイッチを通して導通状態となるようにした。し
たがって、複数個の単電池が直列接続されて使用される
組電池の場合、ある単電池が異常温度上昇すると異常電
池のみが切り離され、残りの正常電池は継続使用できる
ので安全性が確保できると共に使い勝手が良い。
As described above, according to the present invention, a power generation element composed of an electrolyte solution and an electrode group in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween is accommodated in a battery case, and each electrode is heated to a temperature in response to heat. The terminal can be switched by a switch or a pressure-driven pressure switch, and the opening of the battery case is sealed by a safety device in which a varistor element is connected between the positive and negative terminals. The external terminals of the same polarity are made conductive through the switch, and the external terminals of the different polarity are made conductive through the switch when the temperature or pressure of the battery rises. Therefore, in the case of an assembled battery in which a plurality of cells are connected in series, when a certain cell rises in abnormal temperature, only the abnormal battery is separated and the remaining normal batteries can be continuously used, so that safety can be ensured and Easy to use.

【0038】また、接点を有するスイッチにより端子切
り替えを行うので動作が確実で接触抵抗も少ないので、
安全性の高い放電特性の優れた二次電池を提供できる。
また、安全装置の受熱板となる封口部材は熱伝導の良い
一枚の金属板であるので、電池内部の熱変化に対して熱
応答性が良く、電池ケース封口部の密閉信頼性が高い。
さらに、スイッチによる端子切り替え回路とバリスタ素
子が端子ケース21と封口部材11でインクローズされ
ており、電解液から隔離されるのでスイッチの接点やバ
リスタ素子等の電気品が、電解液により腐食される心配
がない。かつ、防爆弁がスイッチのある密閉空間外にあ
るので、ゴミやガス等が入る恐れがなく接点の接触不良
が少なく、接点アークにより噴出した可燃性電解液の高
温ガスに着火の恐れのない安全装置とすることができ
る。
Also, since the terminals are switched by a switch having a contact, the operation is reliable and the contact resistance is small, so that
A secondary battery with high safety and excellent discharge characteristics can be provided.
In addition, since the sealing member serving as the heat receiving plate of the safety device is a single metal plate having good heat conductivity, it has good thermal response to a change in heat inside the battery, and the sealing reliability of the battery case sealing portion is high.
Further, the terminal switching circuit by the switch and the varistor element are closed by the terminal case 21 and the sealing member 11, and are isolated from the electrolytic solution, so that the electrical contacts such as the switch and the varistor element are corroded by the electrolytic solution. Don't worry. In addition, since the explosion-proof valve is outside the enclosed space where the switch is located, there is no risk of dust or gas entering, there is little contact failure, and there is no risk of igniting the high-temperature gas of the flammable electrolyte ejected by the contact arc. It can be a device.

【0039】また、安全装置に内蔵されたバリスタ素子
のバリスタ電圧を単電池の充電終止電圧より僅かに高い
電圧に設定することにより、各単電池の過充電を防止で
きる。更にバリスタ素子を正極外部端子と負極端子間に
接続することにより、スイッチの接点切り替え時のアー
ク電流の発生が抑えられ、安全確実なスイッチ切り替え
ができるものである。
Further, by setting the varistor voltage of the varistor element incorporated in the safety device to a voltage slightly higher than the charge termination voltage of the unit cells, overcharge of each unit cell can be prevented. Further, by connecting the varistor element between the positive external terminal and the negative terminal, the occurrence of arc current when switching the contact of the switch is suppressed, and the switch can be switched safely and securely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池の一実施例を示す構造断面図
である。
FIG. 1 is a structural sectional view showing one embodiment of a secondary battery of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図2のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】本発明の二次電池の安全装置の他の実施例を示
す構造断面図である。
FIG. 4 is a structural sectional view showing another embodiment of the safety device for a secondary battery of the present invention.

【図5】図4のC−C断面図である。FIG. 5 is a sectional view taken along line CC of FIG. 4;

【図6】図4のD−D断面図である。FIG. 6 is a sectional view taken along line DD of FIG. 4;

【図7】本発明の二次電池を直列接続した電気回路図で
ある。
FIG. 7 is an electric circuit diagram in which the secondary batteries of the present invention are connected in series.

【符号の説明】[Explanation of symbols]

1…正極、1a…正極集電体、1b…正極合剤、2…負
極、2a…負極集電体、2b…負極合剤、3…セパレー
タ、4…正極リード、5…負極リード、6…正極内部端
子、6a…正極内部端子の接点、7…負極内部端子、8
…ハーメチクシール、9…防爆弁、10…電池ケース、
10a…容器底部、11…封口部材、11a…防爆穴、
11b…開口穴、12a,12b…絶縁板、13…絶縁
デスタント、15…電極群、16…正極外部端子、16
a,16b…正極外部端子の接点、17…負極外部端
子、17a…負極外部端子の接点、18…ハトメ、19
…ガスケット、20…安全装置、21…スイッチケー
ス、21a…鍔部、21b…ガス抜き穴、21c…操作
穴、22…温度スイッチ、22a…温度スイッチの接
点、23…支持棒、24…スプリング、25…ナット、
26…フタ、27…絶縁台、29…バリスタ素子、30
…圧力可動体、31…スイッチ片、31a…スイッチ片
の接点、32…押棒、33…制動バネ、40a,40
b,40n…単電池。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 1a ... Positive electrode collector, 1b ... Positive electrode mixture, 2 ... Negative electrode, 2a ... Negative electrode collector, 2b ... Negative electrode mixture, 3 ... Separator, 4 ... Positive electrode lead, 5 ... Negative electrode lead, 6 ... Positive electrode internal terminal, 6a ... Contact of positive electrode internal terminal, 7 ... Negative electrode internal terminal, 8
... Hermetic seal, 9 ... Explosion-proof valve, 10 ... Battery case,
10a: container bottom, 11: sealing member, 11a: explosion-proof hole,
11b: Opening holes, 12a, 12b: Insulating plate, 13: Insulating distant, 15: Electrode group, 16: Positive external terminal, 16
a, 16b: contact of positive external terminal, 17: negative external terminal, 17a: negative contact of external terminal, 18: eyelet, 19
... Gasket, 20 ... Safety device, 21 ... Switch case, 21a ... Flange, 21b ... Gas vent hole, 21c ... Operation hole, 22 ... Temperature switch, 22a ... Temperature switch contact, 23 ... Support rod, 24 ... Spring, 25 ... nut,
26: lid, 27: insulating stand, 29: varistor element, 30
... Pressure movable body, 31 ... Switch piece, 31a ... Contact of switch piece, 32 ... Push rod, 33 ... Brake spring, 40a, 40
b, 40n ... cell.

フロントページの続き (72)発明者 松木 勝行 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内Continuing on the front page (72) Inventor Katsuyuki Matsuki 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Pref.Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極および負極をセパレータを介して対向
させた電極群と電解液からなる発電要素を電池ケース内
に収納し、各正負極をリード線で封口部材に貫通設置さ
れた各極内部端子に接続し、前記封口部材と各極外部端
子を備えたスイッチケースが一体となり密閉されたスイ
ッチケース内部に熱応動または圧力応動のスイッチによ
る内外部端子の切り替え回路を有すると共に正負極端子
間に電池の充電終止電圧以上のバリスタ電圧のバリスタ
素子を接続した安全装置により電池ケースの開口部を密
封し、さらに前記スイッチケースの外部に電池ケース内
のガス圧が設定値を越えると開放する防爆弁の放出部を
設けたことを特徴とする二次電池。
An electrode group in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween and a power generating element composed of an electrolytic solution are housed in a battery case, and each positive electrode and the negative electrode are inserted through a sealing member through a lead wire. Connected to the terminal, the sealing member and the switch case having each pole external terminal are integrally formed.The sealed switch case has an internal / external terminal switching circuit by a heat-responsive or pressure-responsive switch inside the sealed switch case, and between the positive and negative terminals. An explosion-proof valve that seals the opening of the battery case with a safety device connected to a varistor element having a varistor voltage equal to or higher than the charge termination voltage of the battery, and opens outside when the gas pressure in the battery case exceeds a set value outside the switch case. A secondary battery characterized by having a discharge section.
JP9187960A 1997-07-14 1997-07-14 Secondary battery Pending JPH1140204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9187960A JPH1140204A (en) 1997-07-14 1997-07-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9187960A JPH1140204A (en) 1997-07-14 1997-07-14 Secondary battery

Publications (1)

Publication Number Publication Date
JPH1140204A true JPH1140204A (en) 1999-02-12

Family

ID=16215181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9187960A Pending JPH1140204A (en) 1997-07-14 1997-07-14 Secondary battery

Country Status (1)

Country Link
JP (1) JPH1140204A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357895A (en) * 2000-04-12 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6805993B2 (en) 2000-04-12 2004-10-19 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with temperature controlled switch
JP2005038702A (en) * 2003-07-15 2005-02-10 Sanyo Gs Soft Energy Co Ltd Battery
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
KR100745354B1 (en) * 2004-08-24 2007-08-02 주식회사 엘지화학 A safty device for preventing overcharge of secondary batteries and a secondary device therewith
US7429431B2 (en) 2001-11-19 2008-09-30 Nissan Motor Co., Ltd. Battery and related manufacturing method
US20100330415A1 (en) * 2009-06-29 2010-12-30 Samsung Sdi Co., Ltd. Secondary battery having an insulating case located between an electrode assembly and a cap assembly
JP2013098093A (en) * 2011-11-02 2013-05-20 Gs Yuasa Corp Safety element with battery terminal function, battery, and battery pack
KR20160131657A (en) * 2015-05-08 2016-11-16 주식회사 엘지화학 Lead Assembly for Preventing Explosion of Battery Cell and Battery Cell Including the Same
US9806324B2 (en) 2014-06-02 2017-10-31 Samsung Sdi Co., Ltd. Secondary battery
JP2018081912A (en) * 2016-11-15 2018-05-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Secondary battery and battery module
CN110364780A (en) * 2018-03-26 2019-10-22 比亚迪股份有限公司 A kind of battery pack, vehicle and energy storage device
JP2023512745A (en) * 2020-12-31 2023-03-29 寧徳時代新能源科技股▲分▼有限公司 Thermal runaway treatment method, device, system and storage medium
EP4164085A2 (en) 2021-10-08 2023-04-12 Eagle Technology, LLC High temperature hybrid battery pack

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670170B2 (en) * 2000-04-12 2011-04-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US6805993B2 (en) 2000-04-12 2004-10-19 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with temperature controlled switch
JP2001357895A (en) * 2000-04-12 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7429431B2 (en) 2001-11-19 2008-09-30 Nissan Motor Co., Ltd. Battery and related manufacturing method
US7556656B2 (en) 2001-11-19 2009-07-07 Nissan Motor Co., Ltd. Battery and related manufacturing method
JP2005038702A (en) * 2003-07-15 2005-02-10 Sanyo Gs Soft Energy Co Ltd Battery
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
KR100745354B1 (en) * 2004-08-24 2007-08-02 주식회사 엘지화학 A safty device for preventing overcharge of secondary batteries and a secondary device therewith
JP2008507248A (en) * 2004-08-24 2008-03-06 エルジー・ケム・リミテッド Safety element for preventing overcharge of secondary battery and secondary battery having the safety element combined
JP4663717B2 (en) * 2004-08-24 2011-04-06 エルジー・ケム・リミテッド Safety element for preventing overcharge of secondary battery, and secondary battery using the safety element
US20100330415A1 (en) * 2009-06-29 2010-12-30 Samsung Sdi Co., Ltd. Secondary battery having an insulating case located between an electrode assembly and a cap assembly
JP2013098093A (en) * 2011-11-02 2013-05-20 Gs Yuasa Corp Safety element with battery terminal function, battery, and battery pack
US9806324B2 (en) 2014-06-02 2017-10-31 Samsung Sdi Co., Ltd. Secondary battery
KR20160131657A (en) * 2015-05-08 2016-11-16 주식회사 엘지화학 Lead Assembly for Preventing Explosion of Battery Cell and Battery Cell Including the Same
JP2018081912A (en) * 2016-11-15 2018-05-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Secondary battery and battery module
CN110364780A (en) * 2018-03-26 2019-10-22 比亚迪股份有限公司 A kind of battery pack, vehicle and energy storage device
JP2023512745A (en) * 2020-12-31 2023-03-29 寧徳時代新能源科技股▲分▼有限公司 Thermal runaway treatment method, device, system and storage medium
EP4164085A2 (en) 2021-10-08 2023-04-12 Eagle Technology, LLC High temperature hybrid battery pack
US11750023B2 (en) 2021-10-08 2023-09-05 Eagle Technology, Llc High temperature hybrid battery pack

Similar Documents

Publication Publication Date Title
JP4802188B2 (en) Electrochemical element having electrode lead with built-in protective element
US6045939A (en) Lithium secondary battery having thermal switch
JPH10326610A (en) Non-aqueous electrolyte secondary battery
EP2827408B1 (en) Lithium-ion rechargeable battery
KR100477750B1 (en) Electorde assembly for lithium ion cell and lithium ion cell using the same
US9059459B2 (en) Secondary battery
JPH1140203A (en) Secondary battery
JP2000182598A (en) Nonaqueous electrolyte secondary battery and electrothermal relay for battery
JPH117931A (en) Secondary battery
EP1422771A1 (en) Non-aqueous electrolytic secondary battery
JP2000512062A (en) Battery cap assembly with fragile tab breaking mechanism
JPH0562664A (en) Explosion proof type nonaqueous secondary battery
JPH1140204A (en) Secondary battery
KR20150117937A (en) Rechargeable battery
US10644345B2 (en) Short circuiting structure for lithium secondary battery having excellent stability against overcharge and pouch type lithium secondary batter comprising the same
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP2000067847A (en) Secondary battery and assembled battery
JPH117932A (en) Secondary battery
JPH10261400A (en) Nonaqueous electrolyte secondary battery
JPH10233198A (en) Nonaqueous electrolyte battery
KR20160053735A (en) Rechargeable battery
JPH06349480A (en) Composite protective element and battery pack with composite protective element
JP2000208132A (en) Nonaqueous electrolyte secondary battery and battery thermal relay
JP2005251548A (en) Square shape secondary battery