JP2001279579A - Method for producing fibrous composite sheet - Google Patents

Method for producing fibrous composite sheet

Info

Publication number
JP2001279579A
JP2001279579A JP2000093995A JP2000093995A JP2001279579A JP 2001279579 A JP2001279579 A JP 2001279579A JP 2000093995 A JP2000093995 A JP 2000093995A JP 2000093995 A JP2000093995 A JP 2000093995A JP 2001279579 A JP2001279579 A JP 2001279579A
Authority
JP
Japan
Prior art keywords
heat
composite sheet
fiber
temperature
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093995A
Other languages
Japanese (ja)
Inventor
Hitoshi Ono
均 小野
Masayoshi Kikuchi
正芳 菊池
Nobuo Okawa
信夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000093995A priority Critical patent/JP2001279579A/en
Publication of JP2001279579A publication Critical patent/JP2001279579A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fibrous composite sheets, while suppressing organic solvent emission into the air and energy consumption, having a combination of flexibility with firm texture and intended for artificial leathers with dense and uniform structure. SOLUTION: This fibrous composite sheet is produced by the following process: a nonwoven fabric with heat-shrinkable fiber as at least one component is impregnated with a water-based polymeric elastomer emulsion having heat- sensitive coagulation tendency followed by making a treatment in a high- temperature and high-humidity atmosphere, i.e., at a temperature higher than both the shrink-beginning temperature of the heat-shrinkable fiber and the heat-sensitive coagulation temperature of the polymeric elastomer emulsion and at a relative humidity of >=80%, to simultaneously perform the shrinkage of the nonwoven fabric and the heat-sensitive coagulation of the polymeric elastomer emulsion. By virtue of the above process, the objective high-quality fibrous composite sheets can be produced environmentally friendly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工皮革用のベー
スとなる繊維複合シートの製造方法に関し、さらに詳し
くは、水系の高分子弾性体エマルジョンを不織布に含浸
し凝固を行わせることによって得られる柔軟性に優れ、
かつ腰のある繊維複合シートの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber composite sheet serving as a base for artificial leather, and more particularly, to a method of impregnating a nonwoven fabric with an aqueous polymer elastic emulsion and coagulating it. Excellent flexibility,
The present invention also relates to a method for producing a stiff fiber composite sheet.

【0002】[0002]

【従来の技術】近年、天然皮革代替物としての人工皮革
は、軽さ、イージーケアー、低価格などの特徴が消費者
に認められ、衣料、一般資材およびスポーツ分野などに
幅広く利用されるようになっている。これらの人工皮革
のベースとなる繊維複合シートの製造方法は、一般的
に、まず不織布を製造し、次いでこの不織布に高分子弾
性体の有機溶剤溶液を含浸またはコーティングする、と
いう2つのプロセスによって製造されている。不織布と
しては、ポリエステル系繊維、ポリアミド系繊維等から
構成される合成繊維を主体としたものが、高分子弾性体
としては、DMFなどの良溶剤で溶解された、有機溶剤
系のポリウレタンが多くは使われている。
2. Description of the Related Art In recent years, artificial leather as an alternative to natural leather has been recognized by consumers for features such as lightness, easy care, and low price, and has been widely used in clothing, general materials, and sports fields. Has become. The method of producing a fiber composite sheet serving as a base of these artificial leathers is generally performed by two processes of first producing a nonwoven fabric, and then impregnating or coating the nonwoven fabric with an organic solvent solution of a polymer elastic material. Have been. Non-woven fabrics are mainly made of synthetic fibers composed of polyester fibers, polyamide fibers, etc., and as the polymer elastics, organic solvent-based polyurethanes dissolved with a good solvent such as DMF are often used. It is used.

【0003】一方、最近では環境問題を考慮した製法と
して有機溶剤系では無く水性高分子弾性体による人工皮
革用の繊維複合シートが注目を浴びている。しかし、従
来の水性高分子弾性体によって得られた人工皮革用繊維
複合シートは、ドレープ性、低反発性といった特性にお
いて、天然皮革は勿論のこと、既存の人工皮革と比べて
も十分な水準には至っていない。この理由としては、水
性高分子弾性体を用いた場合、乾燥時に高分子弾性体の
マイグレーションがおこることが挙げられる。このマイ
グレーションを軽減するために、種々の感熱凝固法の検
討がなされてきた(例えば特公昭55−51076号公
報、特開平6−316877号公報など)。しかしいず
れの方法にせよ、特に腰の強さを出すために高分子弾性
体の含浸量を増加させた場合、座屈性や折れ皺が大き
く、品質は不満足で価格は割高であり、まだまだ市場を
満足させる水準には至っていないのが現状である。
On the other hand, recently, a fiber composite sheet for artificial leather made of an aqueous polymer elastic material instead of an organic solvent has attracted attention as a production method considering environmental issues. However, the fiber composite sheet for artificial leather obtained by the conventional aqueous polymer elastic material has characteristics such as drape property and low resilience, which are not only natural leather but also a sufficient level compared to existing artificial leather. Has not been reached. The reason for this is that when an aqueous polymer elastic body is used, migration of the polymer elastic body occurs during drying. In order to reduce this migration, various heat-sensitive coagulation methods have been studied (for example, Japanese Patent Publication No. 55-51076, Japanese Patent Application Laid-Open No. 6-316877). However, regardless of the method, especially when the impregnated amount of the elastic polymer is increased in order to increase the stiffness, buckling and creases are large, the quality is unsatisfactory, the price is relatively high, and the market is still high. Is not yet at a level that satisfies the requirements.

【0004】また、人工皮革の品質を上げるための手法
としては、収縮性を有する繊維を用いた不織布を収縮さ
せることにより高密度とし、その高密度不織布を人工皮
革用基材に用いる方法が提案されている。例えば特公昭
62−4661号公報では、高収縮性ポリエステル系繊
維を含む不織布を加熱処理により収縮させた人工皮革用
不織布の製造法が開示されている。しかし、従来から用
いられている有機溶剤系の高分子弾性体をこの高密度不
織布に処理した場合には高い品質が得られるが、水系の
高分子弾性体を処理した場合には、高分子弾性体のマイ
グレーションが発生し、得られた人工皮革の品質は満足
できるものではなかった。また、感熱凝固法を用いるこ
とにより乾燥時のマイグレーションは若干軽減されるも
のの、高密度の繊維間への高分子弾性体の含浸性に問題
が生じることも多く、出来上がった繊維複合シートでは
高分子弾性体は偏在しがちであった。特に極細繊維を用
いた場合には通常の繊維を用いた場合に比べて不織布中
の空間が少ないため、不織布内に均一に含浸させ、均一
に凝固させることが困難であった。結果的に繊維複合シ
ート内に空隙が不均一に分布するため、座屈性や折れ皺
が大きく、まだまだ市場を満足させる水準には至ってい
ないのが現状である。また、繊維の収縮と樹脂の感熱凝
固という同様の目的のために2度の熱処理をしなければ
ならず、エネルギー的にもロスが多かった。
As a technique for improving the quality of artificial leather, a method has been proposed in which a non-woven fabric using shrinkable fibers is shrunk to have a high density, and the high-density non-woven fabric is used as a base material for artificial leather. Have been. For example, Japanese Patent Publication No. Sho 62-4661 discloses a method for producing a nonwoven fabric for artificial leather in which a nonwoven fabric containing a highly shrinkable polyester fiber is shrunk by heat treatment. However, when high-density nonwoven fabric is treated with a conventionally used organic solvent-based polymer elastic body, high quality is obtained. Migration of the body occurred and the quality of the resulting artificial leather was not satisfactory. In addition, although the migration during drying is slightly reduced by using the heat-sensitive coagulation method, a problem often arises in the impregnation of the polymer elastic material between the high-density fibers. Elastic bodies tended to be unevenly distributed. In particular, when ultrafine fibers are used, there is less space in the nonwoven fabric than when ordinary fibers are used, so that it was difficult to uniformly impregnate and uniformly solidify the nonwoven fabric. As a result, voids are unevenly distributed in the fiber composite sheet, so that buckling and creases are large, and it is not yet at a level that satisfies the market. In addition, heat treatment must be performed twice for the same purpose of fiber shrinkage and heat-sensitive coagulation of the resin, resulting in a large energy loss.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来技術
の有する問題点を鑑みなされたもので、その目的は、柔
軟性と腰の強さの特性を同時に有する、緻密でかつ均質
な構造である、天然皮革ライクな人工皮革用の繊維複合
シートの製造法を提供することにある。または、有機溶
剤の大気放出と消費エネルギーを抑えた、地球環境にや
さしい製造法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a dense and homogeneous structure having both flexibility and stiffness characteristics. An object of the present invention is to provide a method for producing a fiber composite sheet for natural leather-like artificial leather. Another object of the present invention is to provide a production method that is friendly to the global environment and suppresses the emission of organic solvents to the atmosphere and energy consumption.

【0006】[0006]

【課題を解決するための手段】本発明の繊維複合シート
の製造法は、熱収縮性繊維を少なくとも1成分とする不
織布に、感熱凝固性を有する水系の高分子弾性体エマル
ジョンを含浸し、次に該熱収縮性繊維の収縮開始温度お
よび該高分子弾性体エマルジョンの感熱凝固温度以上、
かつ相対湿度80%以上の高温多湿雰囲気中にて処理す
ることにより、不織布の収縮および高分子弾性体エマル
ジョンの感熱凝固を同時に行わせることが特徴である。
さらに、該熱収縮性繊維が、2種以上の単繊維に分割可
能な複合繊維であり、該複合繊維を分割して発生するそ
れぞれの単繊維の熱収縮性が互いに異なると共に、それ
ぞれの単繊維の繊度が0.01dtex以上1.0dt
ex以下であることが好ましい。
According to a method for producing a fiber composite sheet of the present invention, a non-woven fabric containing at least one heat-shrinkable fiber is impregnated with an aqueous polymer elastic emulsion having thermosetting properties. The shrinkage initiation temperature of the heat-shrinkable fiber and the heat-sensitive coagulation temperature of the polymer elastic emulsion or higher,
In addition, by treating in a high-temperature and high-humidity atmosphere having a relative humidity of 80% or more, shrinkage of the nonwoven fabric and heat-sensitive coagulation of the elastic polymer emulsion are simultaneously performed.
Further, the heat-shrinkable fiber is a conjugate fiber that can be divided into two or more types of single fibers, and the heat-shrinkability of each of the single fibers generated by dividing the conjugate fiber is different from each other. Of fineness of 0.01 dtex or more and 1.0 dt
ex or less.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明に用いられる熱収縮性繊維としては、高温
多湿雰囲気中で収縮する合成繊維であればいずれでも良
いが、好ましくは収縮応力が大きい高収縮ポリエステル
系繊維である。例えばポリエチレンテレフタレートを主
成分とする繊維形成性ポリマーを紡糸した後、温水中で
低倍率で延伸して得られる熱収縮性繊維などである。さ
らに、該熱収縮性繊維は延伸条件などの制御により50
℃以上100℃以下で収縮特性を発現するものが好まし
い。50℃より低い温度で特性を発現するものは品質の
バラツキの要因になり、100℃より高い温度で特性を
発現するものは、多くの熱量を必要し生産性が悪くな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The heat-shrinkable fiber used in the present invention may be any synthetic fiber that shrinks in a high-temperature and high-humidity atmosphere, and is preferably a high-shrinkage polyester fiber having a large shrinkage stress. For example, a heat-shrinkable fiber obtained by spinning a fiber-forming polymer containing polyethylene terephthalate as a main component and then drawing it at a low magnification in warm water is used. Further, the heat-shrinkable fiber can be adjusted to 50
Those exhibiting shrinkage characteristics at 100 ° C. or higher and 100 ° C. or lower are preferred. Those exhibiting characteristics at a temperature lower than 50 ° C. cause a variation in quality, and those exhibiting characteristics at a temperature higher than 100 ° C. require a large amount of heat and deteriorate productivity.

【0008】また、該熱収縮性繊維が、2種以上の単繊
維に分割可能な複合繊維であり、該複合繊維を分割して
発生するそれぞれの単繊維の熱収縮性が互いに異なる場
合は、収縮処理時に複合繊維の分割がさらにすすみ、繊
維複合シート内の空隙が減少するためにさらに好まし
く、該複合繊維の分割後の単繊維の繊度が0.01dt
ex以上1.0dtex以下の極細繊維となる複合繊維
を使用した場合には、より緻密でかつ均質な構造を得る
ことが出来る。例えば、熱収縮性の高いポリエステル系
繊維と熱収縮性の低いポリアミド系繊維とに、最終的に
分割、極細繊維化される剥離分割型複合繊維などがあ
る。
In the case where the heat-shrinkable fiber is a conjugate fiber which can be split into two or more kinds of single fibers, and the heat-shrinkability of each single fiber generated by splitting the conjugate fiber is different from each other, The splitting of the conjugate fiber is further promoted during the shrinkage treatment, and the voids in the fiber conjugate sheet are further reduced, and the fineness of the single fiber after splitting the conjugate fiber is 0.01 dt.
When a composite fiber that is an ultrafine fiber having an ex or more and 1.0 dtex or less is used, a denser and more uniform structure can be obtained. For example, there are exfoliated splittable conjugate fibers which are finally split into ultrafine fibers and polyester fibers having high heat shrinkage and polyamide fibers having low heat shrinkage.

【0009】本発明で用いる不織布は、該熱収縮性繊維
を単独で用いる以外に他の繊維を一種類または数種類混
合しても良い。該熱収縮性繊維の収縮率にもよるが、繊
維複合シートの面積収縮率が10%以上になるように、
他の繊維の混合率は60重量%以下が好ましい。他の繊
維としてはポリエステル、ポリアミド、ポリアクリル、
ポリオレフィンなどの従来公知の繊維形成可能な合成樹
脂の一種、あるいは二種以上の樹脂からなる繊維が使用
出来、あるいは天然繊維を混合することが出来る。この
中でも、合成繊維を用いることが好ましく、ポリエステ
ル、ポリアミドまたはポリエステル/ポリアミド混合繊
維を用いることが特に好ましい。繊維となるポリエステ
ル系樹脂としては、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリプロピレンテレフタレー
トなどがあげられ、ポリアミド系樹脂としては、ナイロ
ン−6、ナイロン−66、ナイロン−12などがあげら
れる。中でもポリエチレンテレフタレート、ナイロン−
6などが、工程安定性やコスト面から好ましい。また、
繊維が海島型の混合紡糸繊維、複合紡糸繊維、あるいは
剥離分割型複合繊維等で、該繊維分割後の単繊度が、
0.01dtex以上1.0dtex以下のものがさら
に好ましい。
In the non-woven fabric used in the present invention, one kind of the heat-shrinkable fiber may be used alone or a mixture of several kinds of other fibers may be used. Depending on the shrinkage rate of the heat-shrinkable fiber, the area shrinkage rate of the fiber composite sheet is 10% or more.
The mixing ratio of other fibers is preferably 60% by weight or less. Other fibers include polyester, polyamide, polyacryl,
One of known synthetic resins capable of forming fibers, such as polyolefin, or a fiber composed of two or more resins can be used, or natural fibers can be mixed. Among them, it is preferable to use synthetic fibers, and it is particularly preferable to use polyester, polyamide or polyester / polyamide mixed fibers. Examples of the polyester-based resin to be the fiber include polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate, and examples of the polyamide-based resin include nylon-6, nylon-66, and nylon-12. Among them, polyethylene terephthalate, nylon-
6 and the like are preferable in terms of process stability and cost. Also,
The fiber is a sea-island type mixed spun fiber, a conjugate spun fiber, or a split-split conjugate fiber, etc., and the single fineness after the fiber split is
Those having 0.01 dtex or more and 1.0 dtex or less are more preferable.

【0010】これらの繊維を不織布に形成する方法は、
短繊維からのカーディング、交絡処理による方法、ある
いは長繊維のダイレクトシート化、交絡処理による方法
などの従来から公知の方法が採用できる。さらに緻密で
かつ均質な不織布を得るためには、極細繊維化される剥
離分割型複合繊維を用い、高圧水流により絡合させる方
法が好ましい。
[0010] A method for forming these fibers into a nonwoven fabric is as follows.
Conventionally known methods such as a method by carding and entanglement from short fibers or a method by direct sheeting and entanglement of long fibers can be adopted. In order to obtain a denser and more uniform nonwoven fabric, it is preferable to use an exfoliated splittable conjugate fiber which is turned into an ultrafine fiber and entangle with a high-pressure water flow.

【0011】本発明に用いる水系の高分子弾性体エマル
ジョンとしては、水の除去後にエラストマー性を示すも
のであればいずれでも良く、例えばポリウレタンエマル
ジョン、NBRエマルジョン、SBRエマルジョン、ア
クリルエマルジョン等の高分子弾性体エマルジョンがあ
げられる。中でもポリウレタンエマルジョンが柔軟性、
強度、耐候性などの点から好ましい。これらの高分子弾
性体エマルジョンは単独で使用しても、複数を併用して
使用してもよい。ポリウレタンエマルジョンを構成する
ポリウレタン成分について例示すると、ポリオール成分
としてはポリエチレンアジペートグリコール、ポリブチ
レンアジペートグリコールなどのポリエステルジオール
類、ポリエチレングリコール、ポリプロピレングリコー
ル、ポリテトラメチレングリコールなどのポリエーテル
グリコール類、ポリカーボネートジオール類等が使用で
き、イソシアネート成分としてはジフェニルメタン−
4,4’−ジイソシアネート等の芳香族ジイソシアネー
ト、ジシクロヘキシルメタン−4,4’−ジイソシアネ
ート等の脂環族ジイソシアネート、ヘキサメチレンイソ
シアネート等の脂肪族ジイソシアネート等が使用でき、
鎖伸長剤としてはエチレングリコール等のグリコール
類、エチレンジアミン、4,4’−ジアミノジフェニル
メタン等のジアミン類、更には3官能のアルコール、ア
ミン等を適宜選択使用することができる。水系エマルジ
ョンの製造方法としては、従来からよく知られているい
ずれの方法でも良く、例えば強制乳化重合法、イオン化
重合法などが用いられる。
The water-based polymer elastic emulsion used in the present invention may be any as long as it exhibits elastomeric properties after removal of water. For example, a polymer emulsion such as a polyurethane emulsion, an NBR emulsion, an SBR emulsion or an acrylic emulsion may be used. Body emulsions. Above all, polyurethane emulsion is flexible,
It is preferable in terms of strength, weather resistance, and the like. These polymer elastic emulsions may be used alone or in combination of two or more. Examples of the polyurethane component constituting the polyurethane emulsion include polyol components such as polyester diols such as polyethylene adipate glycol and polybutylene adipate glycol, polyether glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and polycarbonate diols. Can be used. As an isocyanate component, diphenylmethane-
Aromatic diisocyanates such as 4,4'-diisocyanate, alicyclic diisocyanates such as dicyclohexylmethane-4,4'-diisocyanate, and aliphatic diisocyanates such as hexamethylene isocyanate can be used.
As the chain extender, glycols such as ethylene glycol, diamines such as ethylenediamine and 4,4'-diaminodiphenylmethane, and trifunctional alcohols and amines can be appropriately selected and used. As a method for producing the water-based emulsion, any conventionally known method may be used, for example, a forced emulsion polymerization method, an ionization polymerization method, or the like is used.

【0012】また該高分子弾性体エマルジョンは、環境
問題の面から有機溶剤を含まない水系エマルジョンであ
ることが好ましい。無溶剤系で合成を行っても良いし、
例えば製造時に有機溶剤を使用する場合には密閉系で合
成を行い、次いで蒸留除去等の手段により無溶剤化して
も良い。そして完全密閉の難しい含浸、凝固等の加工時
には、該高分子弾性体エマルジョンが有機溶剤を含まな
いことが好ましい。
The polymer elastic emulsion is preferably an aqueous emulsion containing no organic solvent from the viewpoint of environmental problems. Synthesis may be performed in a solventless system,
For example, when an organic solvent is used at the time of production, synthesis may be performed in a closed system, and then the solvent may be removed by means such as distillation. It is preferable that the polymer elastic emulsion does not contain an organic solvent during processing such as impregnation or solidification that is difficult to completely seal.

【0013】また本発明においては、該高分子弾性体エ
マルジョンが感熱凝固特性を有していることが必要であ
る。高分子弾性体エマルジョンの凝固特性が発現する温
度は30℃以上90℃以下が好ましく、さらには50℃
以上80℃以下で凝固特性を発現するものが好ましい。
高分子弾性体エマルジョンの凝固特性が発現する温度と
は、種々の添加剤を配合したエマルジョンを攪拌しなが
ら昇温した時に、エマルジョンが流動性を失い凝固する
温度である。感熱凝固の方法は、樹脂中にポリエチレン
グリコール等のノニオン性親水基を導入するなどして自
己感熱凝固性を示すようにしても良いし、高分子弾性体
エマルジョンに非イオン系特殊界面活性剤、および金属
化合物などの感熱凝固剤を添加して感熱凝固性を示すよ
うにしても良い。金属化合物としては塩化カルシウムや
塩化アルミニウム等の無機塩や水酸化マグネシウム、水
酸化カルシウム等の水酸化金属化合物などが好ましい。
また、感熱凝固性促進剤として、セルロースメチルエー
テル、ポリビニルメチルエーテルなどのメチルエーテル
基を有する高分子化合物、ポリエーテルチオエーテルグ
リコール類、ポリエーテル変性ポリジメチルシロキサン
系化合物、でんぷん等を加えることで、高分子弾性体エ
マルジョンの凝固を促進させることが可能となる。
Further, in the present invention, it is necessary that the elastic polymer emulsion has heat-sensitive coagulation properties. The temperature at which the coagulation property of the polymer elastic emulsion is developed is preferably 30 ° C. or more and 90 ° C. or less, more preferably 50 ° C.
Those exhibiting coagulation characteristics at a temperature of 80 ° C. or lower are preferred.
The temperature at which the coagulation property of the polymer elastic emulsion is developed is the temperature at which the emulsion loses fluidity and coagulates when the temperature of the emulsion containing various additives is increased while stirring. The method of heat-sensitive coagulation may be such that a nonionic hydrophilic group such as polyethylene glycol is introduced into the resin so as to exhibit self-heat-sensitive coagulation property, or a nonionic special surfactant is added to the polymer elastic emulsion, Alternatively, a heat-sensitive coagulant such as a metal compound may be added so as to exhibit heat-sensitive coagulability. As the metal compound, inorganic salts such as calcium chloride and aluminum chloride, and metal hydroxide compounds such as magnesium hydroxide and calcium hydroxide are preferable.
Further, by adding a high molecular compound having a methyl ether group such as cellulose methyl ether and polyvinyl methyl ether, polyether thioether glycols, polyether-modified polydimethylsiloxane-based compound, starch, etc. Coagulation of the molecular elastic emulsion can be promoted.

【0014】また上記エマルジョンの耐光性、耐熱性、
耐水性、耐溶剤性等の各種耐久性を改善する目的で酸化
防止剤、紫外線吸収剤、加水分解防止剤等の安定剤や、
エポキシ樹脂、メラミン樹脂、イソシアネート化合物、
アジリジン化合物、ポリカルボジイミド化合物等の架橋
剤を配合して使用することもできる。さらに、着色を目
的として水溶性あるいは水分散性の各種無機、有機顔料
を配合することができる。また、シリコン系、フッ素系
などの各種撥水剤や、ポリエチレングリコールなどの親
水性の剤を加えることで、繊維と高分子弾性体との非接
合構造を調整し、繊維複合シートのドレープ性を向上さ
せることができる。
Further, light resistance, heat resistance,
For the purpose of improving various durability such as water resistance and solvent resistance, antioxidants, ultraviolet absorbers, stabilizers such as hydrolysis inhibitors,
Epoxy resin, melamine resin, isocyanate compound,
A crosslinker such as an aziridine compound or a polycarbodiimide compound may be used in combination. Further, various water-soluble or water-dispersible inorganic and organic pigments can be added for coloring. In addition, by adding various water repellents such as silicon and fluorine, and hydrophilic agents such as polyethylene glycol, the unbonded structure between the fiber and the polymer elastic body is adjusted, and the drape property of the fiber composite sheet is improved. Can be improved.

【0015】本発明の高分子弾性体エマルジョンの不織
布への含浸、塗布方法は、通常行われる方法であればい
ずれでも良く、例えばマングルによる含浸法、コーティ
ング法、スプレー法等が挙げられる。高分子弾性体の付
着量(固形分)は、目的に応じて任意の値が採用される
が、好ましくは、不織布100重量部に対し3〜150
重量部である。高分子弾性体付着量(固形分)が3重量
%未満では得られるシートの充実感が低下する傾向があ
る。一方150重量%を越えると、得られるシートは硬
くなり、皮革様の風合いが低下する傾向がある。
The method of impregnating and coating the non-woven fabric with the polymer elastic emulsion of the present invention may be any method as long as it is a commonly used method, and examples thereof include a mangle impregnation method, a coating method, and a spray method. The adhesion amount (solid content) of the polymer elastic body may be any value depending on the purpose, but is preferably 3 to 150 parts by weight per 100 parts by weight of the nonwoven fabric.
Parts by weight. If the attached amount (solid content) of the polymer elastic body is less than 3% by weight, the obtained sheet tends to be less satisfactory. On the other hand, if it exceeds 150% by weight, the resulting sheet tends to be hard and the leather-like texture tends to decrease.

【0016】本発明の高温多湿雰囲気の処理温度は、高
分子弾性体エマルジョンの感熱凝固温度および繊維収縮
開始温度以上とすれば加工可能である。処理温度は50
℃以上180℃以下が好ましいが、より安定的に生産を
行うためには感熱ゲル化温度の10℃以上とするのがさ
らに好ましい。また相対湿度は80%以上であれば問題
はないが、さらには100%に近づく程表面からの乾燥
が抑えられ好ましい。相対湿度が80%より低いと高分
子弾性体が凝固する際に充実膜になりやすく、本発明で
期待されるドレープ性、低反発性が悪化する。処理時間
は、目的とする面積収縮率によっても異なるが通常数秒
〜数分間である。この高温多湿条件をとるためには、例
えば処理室内にスチームを吹き込むスチーマーが使用で
き、100℃以上の過熱蒸気を使用することも好ましく
用いられる。また、多湿雰囲気が保たれればスチーム以
外の他の過熱方法も併用でき、例えば通常の熱媒や電気
による方法、赤外線、電磁波、高周波等の過熱方法が併
用できる。本発明の処理では、繊維の収縮処理と樹脂の
感熱凝固処理を一度に行うため、エネルギー消費量を抑
えることができる。従来の方法では、繊維の収縮処理の
後に乾燥、冷却を行わなければ感熱凝固性のエマルジョ
ンを含浸することはできず、さらに感熱凝固のための熱
処理が必要であった。
The processing temperature of the high-temperature and high-humidity atmosphere of the present invention can be processed if the temperature is higher than the heat-sensitive coagulation temperature and the fiber shrinkage starting temperature of the elastic polymer emulsion. Processing temperature is 50
The temperature is preferably from 180 ° C to 180 ° C, and more preferably 10 ° C or more of the thermal gelation temperature for more stable production. Although there is no problem if the relative humidity is 80% or more, it is preferable that the relative humidity approach 100% because drying from the surface is suppressed. When the relative humidity is lower than 80%, the polymer elastic body tends to become a solid film when solidified, and the drape property and low resilience expected in the present invention are deteriorated. The processing time varies depending on the desired area shrinkage, but is usually several seconds to several minutes. In order to achieve the high-temperature and high-humidity condition, for example, a steamer that blows steam into the processing chamber can be used, and the use of superheated steam of 100 ° C. or more is also preferably used. If a humid atmosphere is maintained, other superheating methods other than steam can be used together. For example, a normal heating medium or an electric heating method, or an overheating method such as infrared rays, electromagnetic waves, or high frequencies can be used in combination. In the treatment of the present invention, since the shrinkage treatment of the fiber and the heat-sensitive coagulation treatment of the resin are performed at one time, the energy consumption can be suppressed. In the conventional method, it is impossible to impregnate the heat-sensitive coagulable emulsion unless drying and cooling are performed after the fiber shrinkage treatment, and a heat treatment for heat-sensitive coagulation is required.

【0017】本発明において、高温多湿雰囲気下での処
理による繊維複合シートの好ましい面積収縮率は、10
%以上60%以下であり、より好ましくは20%以上5
0%以下である。面積収縮率が10%未満であると緻密
性および均質性が低下する傾向にある。一方、面積収縮
率が60%を超えると繊維間の空隙が小さくなり見掛け
密度が必要以上に高くなり、また繊維の自由度が損なわ
れるため、ドレープ性が低下する傾向にある。面積収縮
率が高いほど見掛け密度の高い繊維複合シートが得られ
るが、本発明の繊維複合シートの見掛け密度は0.20
g/cm3以上0.50g/cm3以下が好ましく、より
好ましくは0.25g/cm3以上0.45g/cm3
下である。面積収縮率および見掛け密度は該繊維複合シ
ートを構成する繊維成分の熱収縮率、混綿率、交絡度、
収縮・凝固工程の処理温度条件、および高分子弾性体の
含浸量によって容易に調節することが出来る。
In the present invention, the preferable area shrinkage of the fiber composite sheet by the treatment in a high-temperature and high-humidity atmosphere is 10%.
% To 60%, more preferably 20% to 5%.
0% or less. If the area shrinkage is less than 10%, the denseness and homogeneity tend to decrease. On the other hand, if the area shrinkage exceeds 60%, the voids between the fibers become smaller, the apparent density becomes higher than necessary, and the degree of freedom of the fibers is impaired, so that the drapability tends to decrease. A fiber composite sheet having a higher apparent density can be obtained as the area shrinkage ratio becomes higher, but the apparent density of the fiber composite sheet of the present invention is 0.20.
g / cm 3 or more 0.50 g / cm 3 or less, and more preferably 0.25 g / cm 3 or more 0.45 g / cm 3 or less. The area shrinkage and the apparent density are the heat shrinkage of the fiber component constituting the fiber composite sheet, the cotton mixing rate, the degree of entangling,
It can be easily adjusted by the processing temperature conditions of the shrinking / solidifying step and the amount of impregnation of the elastic polymer.

【0018】本発明の繊維複合シートは、更に収縮・凝
固後の処理として上記方法で得られた繊維複合シートを
熱水により洗浄抽出することが好ましい。この洗浄抽出
工程により、本発明の高分子弾性体エマルジョンに含ま
れる乳化剤、界面活性剤、更には必要に応じて添加され
た金属化合物、水溶性の感熱凝固促進剤などが抽出除去
され、さらには高分子弾性体の凝固がすすみ、最終製品
の繊維複合シートの耐光性、耐湿熱性などの各種耐久性
が向上するため好ましい。
In the fiber composite sheet of the present invention, it is preferable that the fiber composite sheet obtained by the above method is further washed and extracted with hot water as a treatment after shrinkage and coagulation. By this washing and extraction step, emulsifiers, surfactants, and, if necessary, metal compounds, water-soluble heat-sensitive coagulation accelerators, and the like contained in the elastic polymer emulsion of the present invention are extracted and removed. This is preferable because solidification of the polymer elastic body proceeds and various durability such as light resistance and heat and moisture resistance of the fiber composite sheet of the final product is improved.

【0019】本発明の方法により得られた繊維複合シー
トは、高分子弾性体の物性を発現させるために最後に乾
燥させる。その方法としては、例えば熱風加熱、赤外線
加熱、シリンダー加熱等任意の乾燥方法が可能である
が、一般的にはコスト面から熱風加熱が行われる。乾燥
温度は好ましくは80℃以上180℃以下で行う。これ
より低ければ水分が蒸発しにくい、高分子弾性体の造膜
性が不良となる等の傾向があり、高ければ樹脂や繊維の
熱劣化が起こる等の傾向がある。
The fiber composite sheet obtained by the method of the present invention is finally dried in order to exhibit the physical properties of the elastic polymer. As the method, for example, any drying method such as hot air heating, infrared heating, and cylinder heating can be used, but generally, hot air heating is performed in terms of cost. The drying temperature is preferably from 80 ° C to 180 ° C. If it is lower than this, there is a tendency that moisture hardly evaporates and the film-forming property of the polymer elastic body becomes poor, and if it is higher, there is a tendency that thermal degradation of the resin or fiber occurs.

【0020】本発明の該繊維複合シートにおいて、断面
における繊維間空隙の平均面積は走査型顕微鏡の画像解
析による測定方法では30μm2以上250μm2以下が
好ましい。該平均面積が30μm2未満である場合は、
ドレープ性が低下する傾向にあり、250μm2より大
きいと、表面に銀面層を形成させた場合などに折れ皺が
発生しやすくなる。
In the fiber composite sheet of the present invention, the average area of the interfiber voids in the cross section is preferably 30 μm 2 or more and 250 μm 2 or less in a measuring method by image analysis with a scanning microscope. When the average area is less than 30 μm 2 ,
Drapability tends to decrease, and if it is larger than 250 μm 2 , creases are likely to occur when a silver layer is formed on the surface.

【0021】本発明により得られる繊維複合シートは柔
軟性と腰の強さを同時に有し、人工皮革用基材として好
適に使用することができる。例えばこのようにして得ら
れた繊維複合シートの表面をバッフィングすることによ
りスエード調の人工皮革が得られ、また上記シートの片
面に既知の方法によりポリウレタンなどの弾性ポリマー
樹脂層を形成することにより銀面調の人工皮革が得られ
る。必要により、柔軟化のためのもみ処理や着色処理を
行ってもよい。このようにして得られた人工皮革は靴、
ボール、衣料、家具などのさまざまな用途に用いること
ができる。
The fiber composite sheet obtained by the present invention has both flexibility and stiffness at the same time, and can be suitably used as a base material for artificial leather. For example, suede-like artificial leather is obtained by buffing the surface of the fiber composite sheet thus obtained, and silver is formed by forming an elastic polymer resin layer such as polyurethane on one side of the sheet by a known method. An artificial leather with a good tone can be obtained. If necessary, a fir treatment or a coloring treatment for softening may be performed. Artificial leather obtained in this way is shoes,
It can be used for various applications such as balls, clothing, furniture and the like.

【0022】[0022]

【作用】本発明により風合いが向上する理由は明確では
ないが、以下のように推測される。まず、本発明では、
従来の方法のように不織布収縮後の緻密化された繊維間
空隙に高分子弾性体を含浸するのでは無く、繊維間空隙
が大きい収縮前の不織布に高分子弾性体を含浸するの
で、高分子弾性体の充填度を高めることができる。次い
で先に不織布を収縮させるのではなく、高分子弾性体の
感熱凝固と不織布の収縮との処理を同時に行う。この
時、高分子弾性体エマルジョンは感熱凝固により水を含
んだ柔軟な凝固物となるが、同時に繊維の収縮が起こる
ので、繊維の収縮力により凝固した高分子弾性体の脱水
化現象が生じ、感熱凝固がさらに促進され、高分子弾性
体の不織布表面へのマイグレーションが防止され、不織
布に高分子弾性体が均一に分布する。さらに繊維の収縮
力により、まだ柔軟である凝固した高分子弾性体が繊維
複合シート内部のより大きな空隙に移動し、大きな空隙
の無い緻密な構造が得られる。そして、その後の乾燥工
程で高分子弾性体が強固な弾性体となる結果、含浸され
た高分子弾性体と構成繊維とが均一で緻密な構造に固定
化され、ドレープ性、皺感といった風合いに優れたより
天然皮革ライクな繊維複合シートが得られる。
The reason why the present invention improves the texture is not clear, but is presumed as follows. First, in the present invention,
Rather than impregnating the densified inter-fiber spaces after shrinking of the non-woven fabric with the polymer elastic body as in the conventional method, the non-woven fabric before shrinking where the inter-fiber gaps are large is impregnated with the polymer elastic body. The degree of filling of the elastic body can be increased. Next, instead of first shrinking the nonwoven fabric, heat-sensitive coagulation of the elastic polymer and shrinkage of the nonwoven fabric are simultaneously performed. At this time, the polymer elastic material emulsion becomes a soft coagulated material containing water by heat-sensitive coagulation, but at the same time, the fiber shrinks, so the dehydration phenomenon of the coagulated polymer elastic material due to the contraction force of the fiber occurs, Thermal coagulation is further promoted, migration of the polymer elastic body to the surface of the nonwoven fabric is prevented, and the polymer elastic body is uniformly distributed in the nonwoven fabric. Furthermore, due to the contraction force of the fibers, the solidified polymer elastic body that is still flexible moves to the larger voids inside the fiber composite sheet, and a dense structure without large voids is obtained. Then, in the subsequent drying step, the polymer elastic body becomes a strong elastic body, so that the impregnated polymer elastic body and constituent fibers are fixed in a uniform and dense structure, and the texture such as drape property and wrinkle feeling is obtained. An excellent more natural leather-like fiber composite sheet is obtained.

【0023】[0023]

【実施例】以下に実施例をあげて本発明をさらに具体的
に説明するが、本発明はこれら実施例により限定される
ものではない。なお、実施例および比較例における部お
よび%は、特に断らない限り重量基準である。また、原
綿の温水収縮率、エマルジョンの感熱凝固温度、引張り
強力、破断伸度、曲げ硬さ、圧縮応力、皮革ライク性、
および繊維間空隙の平均面積はそれぞれ以下の方法で測
定したものである。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. Parts and% in Examples and Comparative Examples are based on weight unless otherwise specified. In addition, hot water shrinkage of raw cotton, heat-sensitive solidification temperature of emulsion, tensile strength, elongation at break, flexural hardness, compressive stress, leather-like property,
The average area of the voids between fibers was measured by the following method.

【0024】(1)原綿の温水収縮率 延伸後、機械捲縮を付与したクリンプトウを20cm採
取し、繊度1.1dtex当たり1mgの荷重がかかる
ように重りを吊るして引き伸ばした状態でトウの中央に
10cmの長さで2点の印を付ける。印を付けた後、荷
重を取り除き70℃の温水中にトウを30分間浸漬し、
浸漬後トウの水分を室温で風乾して取り除き、再度上記
の荷重をかけ、印の長さを測定し、収縮前後の印の長さ
の比を求める。
(1) Warm water shrinkage of raw cotton After stretching, a crimp tow with a mechanical crimp was sampled in a length of 20 cm, and the weight was suspended and stretched so that a load of 1 mg was applied per 1.1 dtex of fineness. Mark two points with a length of 10 cm. After marking, the load was removed and the tow was immersed in 70 ° C warm water for 30 minutes.
After immersion, the moisture of the tow is removed by air drying at room temperature, the above-mentioned load is applied again, the length of the mark is measured, and the ratio of the length of the mark before and after shrinkage is determined.

【0025】(2)エマルジョンの感熱凝固温度 高分子弾性体エマルジョンの凝固特性が発現する温度と
は、種々の添加剤を配合したエマルジョンを試験管に約
10g分取し、90℃の恒温熱水バス中で攪拌しながら
昇温し、エマルジョンが流動性を失い凝固する時のエマ
ルジョンの温度である。
(2) Thermosensitive Coagulation Temperature of Emulsion The temperature at which the coagulation characteristics of a polymer elastic emulsion is manifested is as follows. About 10 g of an emulsion containing various additives is placed in a test tube and heated at a constant temperature of 90 ° C. This is the temperature of the emulsion when the emulsion loses fluidity and solidifies while stirring in a bath.

【0026】(3)厚さ 厚み測定器(株式会社大栄科学精器製作所、商品名PE
ACOCKモデルH)を使用し、試料1cm2当たり1
80gの荷重を加えた状態で測定する。
(3) Thickness Thickness measuring device (Daiei Kagaku Seiki Seisakusho Co., Ltd., trade name PE
ACOCK model H) and 1 per cm 2 of sample
The measurement is performed with a load of 80 g applied.

【0027】(4)引張り張力および破断伸度 JIS L−1096法に準じ、幅5cm、長さ15c
mの試料片を、つかみ間隔10cmで把持し、定速伸長
型引張り試験機を用いて引張り速度30cm/分で伸長
し、切断時の荷重値および伸長率をそれぞれ引張り強
力、破断伸度とする。
(4) Tensile tension and elongation at break According to JIS L-1096 method, width 5 cm, length 15 c
The sample piece of m is gripped at a grip interval of 10 cm, and is stretched at a pulling speed of 30 cm / min using a constant-speed stretching type tensile tester. The load value and the elongation rate at cutting are defined as tensile strength and elongation at break, respectively. .

【0028】(5)曲げ硬さ 試験片25mm×90mmを準備し、長手方向片端の2
0mmを保持具で保持し、保持具より20mmの位置に
あるUゲージの測定部に試験片のもう一方の片端の先端
から20mmの中央部が当たるように保持具をスライド
させて固定し、固定してから5分後の応力を記録計で読
み取り、幅1cm当たりの応力に換算して曲げ硬さ(柔
軟度)とする。単位はg/cmで表す。
(5) Flexural hardness A test piece of 25 mm × 90 mm was prepared,
0 mm is held by the holder, and the holder is slid and fixed so that the center of 20 mm from the tip of the other end of the test piece hits the measuring part of the U gauge located 20 mm from the holder. After 5 minutes, the stress is read by a recorder, and is converted into the stress per 1 cm width to obtain the bending hardness (flexibility). The unit is expressed in g / cm.

【0029】(6)圧縮応力 試験片25mm×90mmを準備し、長手方向片端の3
0mmの位置で折り曲げて、20mmの間隔にセットさ
れた平板とUゲージの測定板との間に固定し、次いでU
ゲージの測定板を10mm/分の速度で平板と水平に下
方へ移動させて試験片を圧縮し、平板とUゲージとの間
隔が5mmとなった時の応力を記録計より読み取り、幅
1cm当たりの応力に換算して圧縮応力(腰の強さ)と
する。単位はg/cmで表す。
(6) Compressive stress A test piece of 25 mm × 90 mm was prepared, and 3
It is bent at a position of 0 mm and fixed between a flat plate set at an interval of 20 mm and a measuring plate of a U gauge.
The test piece is compressed by moving the gauge measuring plate horizontally downward with the flat plate at a speed of 10 mm / min. The stress when the distance between the flat plate and the U gauge becomes 5 mm is read from a recorder, and the stress is read from the recorder. Is converted into a compressive stress (lumbar strength). The unit is expressed in g / cm.

【0030】(7)皮革ライク性 天然皮革の特徴として、その構造の緻密性と均一性によ
ってもたらせれる柔らかくて腰が強い点がある。この指
標として(圧縮応力)/(曲げ硬さ)を皮革ライク性と
して表す。
(7) Leather-like characteristics Natural leather is characterized by its softness and strong stiffness provided by its dense and uniform structure. As this index, (compression stress) / (flexural hardness) is expressed as leather-like property.

【0031】(8)繊維間空隙の平均面積 本発明の繊維複合シートの断面における繊維間の空隙の
平均面積は、次のような走査型電子顕微鏡の画像解析に
よる方法で測定する。(イオンスパッタリング装置、走
査型電子顕微鏡および画像解析装置はいずれも同様の機
能および性能を有するものであれば他の装置を使用する
ことも出来る。)
(8) Average area of inter-fiber voids The average area of inter-fiber voids in the cross section of the fiber composite sheet of the present invention is measured by a method based on image analysis using a scanning electron microscope as follows. (Other devices can be used for the ion sputtering device, the scanning electron microscope, and the image analysis device as long as they have the same function and performance.)

【0032】(i)試料作成 測定しようとする繊維複合シートの断面試料を日本電子
(株)製のイオンスパッタリング装置JFC−1500
を使用して、使用圧力〜10-1Pa、コーティング膜圧
800オングストロームの条件下でイオンスパッタリン
グ法にて金の皮膜を形成させる。
(I) Preparation of Sample A cross-sectional sample of the fiber composite sheet to be measured was subjected to an ion sputtering apparatus JFC-1500 manufactured by JEOL Ltd.
To form a gold film by an ion sputtering method under the conditions of an operating pressure of 10 -1 Pa and a coating film pressure of 800 angstroms.

【0033】(ii)電子顕微鏡撮影 上記(i)で作成した試料を日本電子(株)製の走査型
電子顕微鏡JSM−6100を使用して、加速電圧;5
KV、フィラメント電流;2.2A、走査速度;15.
7sec/1ine(水平、60Hz)の条件下で観察
用CRTに画像信号波形を表示し、波形のピークと最低
レベルを電位目盛りのそれぞれ5Vと0Vに一致させ、
波形モニターをオフとして露出を決定する。次に倍率を
200に設定する。
(Ii) Electron Microscope Imaging The sample prepared in the above (i) was subjected to an accelerating voltage of 5 using a scanning electron microscope JSM-6100 manufactured by JEOL Ltd.
14. KV, filament current; 2.2 A, scanning speed;
The image signal waveform is displayed on the observation CRT under the condition of 7 sec / 1 line (horizontal, 60 Hz), and the peak and the minimum level of the waveform are matched with the potential scale of 5 V and 0 V, respectively.
Turn off the waveform monitor and determine the exposure. Next, the magnification is set to 200.

【0034】(iii)画像処理 旭化成(株)製高精細画像解析システムIP−1000
PCを使用して、画像を走査型電子顕微鏡より入力(自
動)し、開孔計測の画像処理を選択して測定する。この
場合の画像処理の2値化のしきい値は、輝度分布最大値
の1/2とする。
(Iii) Image processing High-definition image analysis system IP-1000 manufactured by Asahi Kasei Corporation
Using a PC, an image is input (automatically) from a scanning electron microscope, and image processing for aperture measurement is selected and measured. In this case, the threshold value for binarization of the image processing is set to の of the maximum value of the luminance distribution.

【0035】[実施例1]第1成分としてポリエチレン
テレフタレート、第2成分としてナイロン−6からなる
16分割歯車型の断面を有する剥離分割型複合繊維を溶
融紡糸し、40℃の温水中で2.0倍延伸し、捲縮、乾
燥後に繊維長45mmに切断し、第1成分が第2成分よ
り強い収縮特性を有する繊度4.4dtex、温水収縮
率9.5%の熱収縮性の剥離分割型複合短繊維を得た。
次にニードルパンチと高圧水流交絡処理により繊維の絡
合と分割処理を行い、厚さ0.82mm、目付170g
/m 2の3次元絡合した不織布を得た。
[Example 1] Polyethylene as the first component
Terephthalate, consisting of nylon-6 as second component
Melt peelable splittable conjugate fiber having 16-split gear type cross section
It is melt spun, stretched 2.0 times in warm water at 40 ° C., crimped and dried.
After drying, cut to a fiber length of 45 mm, the first component is the second component
Fineness of 4.4 dtex with strong shrinkage characteristics, shrink with warm water
A heat-shrinkable exfoliated splittable conjugate short fiber having a rate of 9.5% was obtained.
Next, the fiber is entangled by needle punching and high-pressure water entanglement.
After combining and dividing, the thickness is 0.82mm and the basis weight is 170g
/ M TwoWas obtained.

【0036】また、水系のポリウレタンエマルジョンと
して、ボンデックV1510(濃度40%、大日本イン
キ化学工業(株)製、エーテル系水性ポリウレタンエマ
ルジョン)23部、ハイドランWLアシスターT2(濃
度30%、大日本インキ化学工業(株)製)2倍希釈液
0.4部、Mg(OH)2(赤穂化成(株)製)0.3
部、デイックガードF−90N(濃度20%、大日本イ
ンキ化学工業(株)製)3部、ゲラネックスS−3(濃
度60%、松本油脂製薬(株)製)6部、クリスボンア
シスターSD−8i(濃度100%、大日本インキ化学
工業(株)製)1部、PEG6000(濃度100%、
日本油脂(株)製)0.3部に水を加え、100部とし
たポリウレタン濃度9%の配合液を得た。この配合液で
のエマルジョンの感熱凝固温度は70℃であった。
Further, as a water-based polyurethane emulsion, 23 parts of Bondec V1510 (concentration 40%, ether-based water-based polyurethane emulsion manufactured by Dainippon Ink and Chemicals, Inc.), Hydran WL Assister T2 (concentration 30%, Dainippon Ink and Chemicals, Inc.) Industrial Co., Ltd.) 0.4 part of 2 times diluent, Mg (OH) 2 (Ako Kasei Co., Ltd.) 0.3
Parts, Dicguard F-90N (concentration 20%, manufactured by Dainippon Ink and Chemicals, Inc.) 3 parts, Geranex S-3 (concentration 60%, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) 6 parts, Chrisbon Assister SD- 8i (concentration 100%, manufactured by Dainippon Ink and Chemicals, Inc.) 1 part, PEG6000 (concentration 100%,
Water was added to 0.3 part of Nippon Oil & Fats Co., Ltd. (100 parts) to obtain a mixed solution having a polyurethane concentration of 9%, which was 100 parts. The heat-sensitive coagulation temperature of the emulsion with this liquid mixture was 70 ° C.

【0037】次いで、不織布に配合液を含浸し、表面の
余分な配合液を掻き落とした後、温度97℃の飽和水蒸
気雰囲気下で1分間処理し、ポリウレタンの凝固および
不織布の収縮を行った。この時の不織布の面積収縮率は
32%であった。
Next, the nonwoven fabric was impregnated with the compounding solution, and excess compounding solution on the surface was scraped off, and then treated for 1 minute in a saturated steam atmosphere at a temperature of 97 ° C. to coagulate the polyurethane and shrink the nonwoven fabric. At this time, the area shrinkage of the nonwoven fabric was 32%.

【0038】さらに97℃の熱水槽で1分間処理し、1
10℃の熱風乾燥機で乾燥し、厚さ0.9mm、見掛け
密度0.37g/cm3の繊維複合シートを得た。
Further, the mixture is treated in a hot water bath at 97 ° C. for 1 minute,
The fiber composite sheet was dried with a hot air dryer at 10 ° C. to obtain a fiber composite sheet having a thickness of 0.9 mm and an apparent density of 0.37 g / cm 3 .

【0039】得られた繊維複合シートの不織布:ポリウ
レタンの比率は重量で100:45であった。なお、引
張り強力は縦方向12.0kg/cm、横方向8.5k
g/cmであり、破断伸度は縦方向105%、横方向1
50%であった。走査型電子顕微鏡の画像解析の結果、
断面における空隙の平均面積は65μm2でありその画
像は極めて緻密で均一なものであった。皮革ライク指数
も75という高いものであり、人工皮革用の繊維複合シ
ートとして非常に風合いの優れたものであった。
The ratio of nonwoven fabric to polyurethane in the obtained fiber composite sheet was 100: 45 by weight. The tensile strength was 12.0 kg / cm in the vertical direction and 8.5 k in the horizontal direction.
g / cm, and the elongation at break is 105% in the longitudinal direction and 1 in the lateral direction.
It was 50%. As a result of scanning electron microscope image analysis,
The average area of the voids in the cross section was 65 μm 2 , and the image was extremely dense and uniform. The leather-like index was as high as 75, and was very excellent in texture as a fiber composite sheet for artificial leather.

【0040】この繊維複合シートの表面に、離型紙上で
作成したポリウレタンの50μmの皮膜を二液型ウレタ
ン系接着剤を用いて接着し、乾燥および架橋反応を充分
に行った後、離型紙を剥ぎ取り銀付き調の人工皮革を得
た。得られた人工皮革の目付は420g/m2、厚さは
0.95mmであり、また曲げ硬さは0.3g/cm、
圧縮応力は28g/cmであり、皮革ライク性は93と
大きく天然皮革である一般的なカーフの値90〜130
の範囲に入るものであり、柔軟で腰が強く、表面を内曲
げした時に大きな折れ皺が発生せず、表面に無数の小皺
として分散し、従来の人工皮革には見られない緻密な均
一感のあるものであった。
A 50 μm-thick polyurethane film formed on release paper was adhered to the surface of this fiber composite sheet using a two-part urethane adhesive, and after sufficient drying and crosslinking reactions were performed, the release paper was removed. Stripped silver-like artificial leather was obtained. The basis weight of the obtained artificial leather was 420 g / m 2 , the thickness was 0.95 mm, and the bending hardness was 0.3 g / cm.
The compressive stress is 28 g / cm, and the leather-like property is as large as 93.
It is soft and strong, does not have large wrinkles when the surface is bent inward, disperses as countless small wrinkles on the surface, and has a dense uniform feeling not found in conventional artificial leather It was something with

【0041】[実施例2]実施例1で用いたものと同様
の熱収縮性の剥離分割型複合短繊維を得て、ニードルパ
ンチと高圧水流交絡処理により繊維の絡合と分割処理を
行い、厚さ1.15mm、目付260g/m2の3次元
絡合した不織布を得た。
Example 2 A heat-shrinkable peelable splittable conjugate short fiber similar to that used in Example 1 was obtained, and the fiber was entangled and divided by needle punching and high-pressure water entanglement. A three-dimensionally entangled nonwoven fabric having a thickness of 1.15 mm and a basis weight of 260 g / m 2 was obtained.

【0042】次いで、該不織布に実施例1で用いたもの
と同様の水系ポリウレタンエマルジョン(濃度9%)を
含浸し、表面な余分な配合液を掻き落とした後、温度9
7℃の飽和水蒸気雰囲気下で1分間処理し、ポリウレタ
ンの凝固および不織布の収縮を行った。この時の不織布
の面積収縮率は32%であった。
Next, the nonwoven fabric was impregnated with the same aqueous polyurethane emulsion (concentration: 9%) as that used in Example 1, and the excess mixed liquid on the surface was scraped off.
The mixture was treated for 1 minute in a saturated steam atmosphere at 7 ° C. to coagulate the polyurethane and shrink the nonwoven fabric. At this time, the area shrinkage of the nonwoven fabric was 32%.

【0043】さらに97℃の熱水槽で1分間処理し、1
10℃の熱風乾燥機で乾燥し、厚さ1.2mm、見掛け
密度0.38g/cm3の繊維複合シートを得た。
Further, the mixture is treated in a hot water bath at 97 ° C. for 1 minute,
The fiber composite sheet having a thickness of 1.2 mm and an apparent density of 0.38 g / cm 3 was obtained by drying with a hot air dryer at 10 ° C.

【0044】得られた繊維複合シートの不織布:ポリウ
レタンの比率は重量で100:45であった。なお、引
張り強力は縦方向15.0kg/cm、横方向14.5
kg/cmであり、破断伸度は縦方向105%、横方向
155%であった。走査型電子顕微鏡の画像解析の結
果、断面における空隙の平均面積は71μm2でありそ
の画像は極めて緻密で均一なものであった。皮革ライク
指数も85という高いものであり、人工皮革用の繊維複
合シートとして非常に風合いの優れたものであった。
The ratio of nonwoven fabric to polyurethane in the obtained fiber composite sheet was 100: 45 by weight. The tensile strength was 15.0 kg / cm in the vertical direction and 14.5 kg in the horizontal direction.
kg / cm, and the elongation at break was 105% in the vertical direction and 155% in the horizontal direction. As a result of image analysis with a scanning electron microscope, the average area of the voids in the cross section was 71 μm 2 , and the image was extremely dense and uniform. The leather-like index was as high as 85, and the texture was excellent as a fiber composite sheet for artificial leather.

【0045】この繊維複合シートの表面に、実施例1で
行ったことと同様にポリウレタンの50μmの皮膜を接
着し、銀付き調の人工皮革を得た。得られた人工皮革の
目付は550g/m2、厚さは1.25mmであり、ま
た曲げ硬さは0.7g/cm、圧縮応力は75g/cm
であり、皮革ライク性は107と大きく天然皮革である
一般的なカーフの値90〜130の範囲に入るものであ
り、柔軟で腰が強く、表面を内曲げした時に大きな折れ
皺が発生せず、表面に無数の小皺として分散し、従来の
人工皮革には見られない緻密な均一感のあるものであっ
た。
A 50 μm-thick polyurethane film was adhered to the surface of the fiber composite sheet in the same manner as in Example 1 to obtain an artificial leather with a tone of silver. The resulting artificial leather has a basis weight of 550 g / m 2 , a thickness of 1.25 mm, a bending hardness of 0.7 g / cm, and a compressive stress of 75 g / cm.
The leather-like property is as large as 107 and falls within a range of 90 to 130 of a general calf of natural leather, and is flexible and strong, and does not generate large wrinkles when the surface is bent inward. It was dispersed as innumerable fine wrinkles on the surface and had a dense and uniform feeling not found in conventional artificial leather.

【0046】[比較例1]実施例1で用いたものと同様
の熱収縮性の剥離分割型複合短繊維を得て、ニードルパ
ンチと高圧水流交絡処理により繊維の絡合と分割処理を
行い、厚さ0.82mm、目付170g/m2の3次元
絡合した不織布を得た。
Comparative Example 1 The same heat-shrinkable exfoliated splittable conjugate short fibers as those used in Example 1 were obtained, and the fibers were entangled and split by a needle punch and a high-pressure water entanglement treatment. A three-dimensionally entangled nonwoven fabric having a thickness of 0.82 mm and a basis weight of 170 g / m 2 was obtained.

【0047】次いで、該不織布を75℃の温水槽中にて
20秒間処理し、繊維を収縮させることにより不織布面
積を21%収縮させ、乾燥させた。
Next, the nonwoven fabric was treated in a hot water bath at 75 ° C. for 20 seconds to shrink the fibers, thereby reducing the area of the nonwoven fabric by 21% and dried.

【0048】得られた不織布に実施例1で用いたものと
同様の水系ポリウレタンエマルジョン(濃度9%)を含
浸し、表面な余分な配合液を掻き落とした後、温度97
℃の飽和水蒸気雰囲気下で1分間処理し、ポリウレタン
の凝固および不織布の収縮を行った。この時の不織布の
面積収縮率は2.5%であった。
The obtained nonwoven fabric was impregnated with the same aqueous polyurethane emulsion (concentration: 9%) as that used in Example 1, and the excess liquid mixture on the surface was scraped off.
The mixture was treated in a saturated steam atmosphere at 1 ° C. for 1 minute to coagulate the polyurethane and shrink the nonwoven fabric. The area shrinkage of the nonwoven fabric at this time was 2.5%.

【0049】さらに97℃の熱水槽で1分間処理し、1
10℃の熱風乾燥機で乾燥し、厚さ0.85mm、見掛
け密度0.37g/cm3の繊維複合シートを得た。
Further, the mixture is treated in a hot water bath at 97 ° C. for 1 minute,
The fiber composite sheet was dried with a hot air dryer at 10 ° C. to obtain a fiber composite sheet having a thickness of 0.85 mm and an apparent density of 0.37 g / cm 3 .

【0050】得られた繊維複合シートの不織布:ポリウ
レタンの比率は重量で100:35であった。なお、引
張り強力は縦方向10.7kg/cm、横方向7.7k
g/cmであり、破断伸度は縦方向95%、横方向15
0%であった。走査型電子顕微鏡の画像解析の結果、断
面における空隙の平均面積は100μm2であった。皮
革ライク指数も50という低いものであった。
The ratio of nonwoven fabric to polyurethane of the obtained fiber composite sheet was 100: 35 by weight. The tensile strength was 10.7 kg / cm in the vertical direction and 7.7 k in the horizontal direction.
g / cm, and the elongation at break is 95% in the longitudinal direction and 15% in the lateral direction.
It was 0%. As a result of image analysis with a scanning electron microscope, the average area of the voids in the cross section was 100 μm 2 . The leather-like index was as low as 50.

【0051】この繊維複合シートの表面に、実施例1で
行ったことと同様にポリウレタンの50μmの皮膜を接
着し、銀付き調の人工皮革を得た。得られた人工皮革の
目付は400g/m2、厚さは0.95mmであり、ま
た曲げ硬さは0.4g/cm、圧縮応力は30g/cm
であり、皮革ライク性は75と繊維複合シートよりは高
いものであったが、柔軟ではあるが腰が弱く、表面を内
曲げした時には折れ皺が発生し、若干の挫掘感もあっ
た。
A 50 μm-thick polyurethane film was adhered to the surface of the fiber composite sheet in the same manner as in Example 1 to obtain an artificial leather with a tone of silver. The resulting artificial leather has a basis weight of 400 g / m 2 , a thickness of 0.95 mm, a bending hardness of 0.4 g / cm, and a compressive stress of 30 g / cm.
The leather-like property was 75, which was higher than that of the fiber composite sheet. However, although it was flexible, the waist was weak, and when the surface was bent inward, wrinkles were generated and there was a feeling of crushing.

【0052】[比較例2]実施例1で用いたものと同様
の熱収縮性の剥離分割型複合短繊維を得て、ニードルパ
ンチと高圧水流交絡処理により繊維の絡合と分割処理を
行い、実施例2と同様の厚さ1.15mm、目付265
g/m2の3次元絡合した不織布を得た。
[Comparative Example 2] The same heat-shrinkable exfoliated splittable conjugate short fibers as those used in Example 1 were obtained, and the fibers were entangled and split by a needle punch and a high-pressure water entanglement. 1.15 mm in thickness and 265 in basis weight similar to those in Example 2.
g / m 2 of a three-dimensionally entangled nonwoven fabric was obtained.

【0053】次いで、該不織布を75℃の温水槽中にて
20秒間処理し、繊維を収縮させることにより不織布面
積を21%収縮させ、乾燥させた。
Next, the nonwoven fabric was treated in a hot water bath at 75 ° C. for 20 seconds to shrink the fibers, thereby reducing the area of the nonwoven fabric by 21% and dried.

【0054】得られた不織布に実施例1で用いたものと
同様の水系ポリウレタンエマルジョン(濃度9%)を含
浸し、表面な余分な配合液を掻き落とした後、温度97
℃の飽和水蒸気雰囲気下で1分間処理し、ポリウレタン
の凝固および不織布の収縮を行った。この時の不織布の
面積収縮率は2.5%であった。
The obtained nonwoven fabric was impregnated with the same aqueous polyurethane emulsion (concentration: 9%) as that used in Example 1, and excess excess liquid on the surface was scraped off.
The mixture was treated in a saturated steam atmosphere at 1 ° C. for 1 minute to coagulate the polyurethane and shrink the nonwoven fabric. The area shrinkage of the nonwoven fabric at this time was 2.5%.

【0055】さらに97℃の熱水槽で1分間処理し、1
10℃の熱風乾燥機で乾燥し、厚さ1.2mm、見掛け
密度0.38g/cm3の繊維複合シートを得た。
Further, the mixture is treated in a hot water bath at 97 ° C. for 1 minute,
The fiber composite sheet having a thickness of 1.2 mm and an apparent density of 0.38 g / cm 3 was obtained by drying with a hot air dryer at 10 ° C.

【0056】得られた繊維複合シートの不織布:ポリウ
レタンの比率は重量で100:35であった。なお、引
張り強力は縦方向14.0kg/cm、横方向10.7
kg/cmであり、破断伸度は縦方向98%、横方向1
54%であった。走査型電子顕微鏡の画像解析の結果、
断面における空隙の平均面積は105μm2であった。
皮革ライク指数も60という低いものであった。
The ratio of nonwoven fabric to polyurethane of the obtained fiber composite sheet was 100: 35 by weight. The tensile strength was 14.0 kg / cm in the vertical direction and 10.7 kg in the horizontal direction.
kg / cm, elongation at break 98% in longitudinal direction, 1 in transverse direction
It was 54%. As a result of scanning electron microscope image analysis,
The average area of the voids in the cross section was 105 μm 2 .
The leather-like index was also as low as 60.

【0057】この繊維複合シートの表面に、実施例1で
行ったことと同様にポリウレタンの50μmの皮膜を接
着し、銀付き調の人工皮革を得た。得られた人工皮革の
目付は530g/m2、厚さは1.20mmであり、ま
た曲げ硬さは0.8g/cm、圧縮応力は62g/cm
であり、皮革ライク性は78と繊維複合シートよりは高
いものであったが、柔軟ではあるが腰が弱く、表面を内
曲げした時には折れ皺が発生し、若干の挫掘感もあっ
た。
A 50 μm-thick polyurethane film was adhered to the surface of the fiber composite sheet in the same manner as in Example 1 to obtain artificial leather with a tone of silver. The obtained artificial leather has a basis weight of 530 g / m 2 , a thickness of 1.20 mm, a bending hardness of 0.8 g / cm, and a compressive stress of 62 g / cm.
The leather-like property was 78, which was higher than that of the fiber composite sheet. However, although it was soft, the waist was weak, and when the surface was bent inward, wrinkles were generated and there was a feeling of crushing.

【0058】[比較例3]高収縮特性を有するポリエチ
レンテレフタレート繊維、繊度2.2dtex75%、
自己伸長特性を有するポリエステル繊維、繊度2.2d
tex25%を混在させ、ニードルパンチによって3次
元絡合された目付け175g/m2、厚さ1.00mm
の不織布を得た。さらに75℃の温水槽中に20秒間浸
漬させて高収縮性ポリエチレンテレフタレート繊維を収
縮させて面積を37%収縮させた。
Comparative Example 3 Polyethylene terephthalate fiber having high shrinkage characteristics, fineness of 2.2 dtex 75%,
Polyester fiber with self-elongation characteristics, fineness 2.2d
tex 25%, 175 g / m 2 , thickness 1.00 mm
Was obtained. Further, the high shrinkage polyethylene terephthalate fiber was shrunk by immersion in a hot water bath at 75 ° C. for 20 seconds to shrink the area by 37%.

【0059】得られた不織布に実施例1で用いたものと
同様の水系ポリウレタンエマルジョン(濃度9%)を含
浸し、表面な余分な配合液を掻き落とした後、温度97
℃の飽和水蒸気雰囲気下で1分間処理し、ポリウレタン
の凝固および不織布の収縮を行った。この時の不織布の
面積収縮率は1.0%であった。
The obtained nonwoven fabric was impregnated with the same aqueous polyurethane emulsion (concentration: 9%) as that used in Example 1, and the excess liquid mixture on the surface was scraped off.
The mixture was treated in a saturated steam atmosphere at 1 ° C. for 1 minute to coagulate the polyurethane and shrink the nonwoven fabric. At this time, the area shrinkage of the nonwoven fabric was 1.0%.

【0060】さらに97℃の熱水槽で1分間処理し、1
10℃の熱風乾燥機で乾燥し、厚さ1.05mm、見掛
け密度0.39g/cm3の繊維複合シートを得た。
Further, the mixture is treated in a hot water bath at 97 ° C. for 1 minute,
The fiber composite sheet was dried with a hot air dryer at 10 ° C. to obtain a fiber composite sheet having a thickness of 1.05 mm and an apparent density of 0.39 g / cm 3 .

【0061】得られた繊維複合シートの不織布:ポリウ
レタンの比率は重量で100:45であった。なお、引
張り強力は縦方向12.0kg/cm、横方向10.0
kg/cmであり、破断伸度は縦方向130%、横方向
120%であった。走査型電子顕微鏡の画像解析の結
果、断面における空隙の平均面積は277μm2と非常
に大きいものであった。得られた繊維複合シートは、皮
革ライク指数も35と低く、硬いものであり、かつ座屈
性の大きいものであった。
The ratio of nonwoven fabric to polyurethane of the obtained fiber composite sheet was 100: 45 by weight. The tensile strength was 12.0 kg / cm in the vertical direction and 10.0 in the horizontal direction.
kg / cm, and the breaking elongation was 130% in the longitudinal direction and 120% in the lateral direction. As a result of image analysis with a scanning electron microscope, the average area of voids in the cross section was as large as 277 μm 2 . The resulting fiber composite sheet had a low leather-like index of 35, was hard, and had high buckling properties.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】本発明により得られる繊維複合シートは
柔軟性と腰の強さを同時に有し、人工皮革用基材として
好適に使用することができる。該繊維複合シートから得
られた人工皮革は靴、ボール、衣料、家具などのさまざ
まな用途に用いることができる。また、本発明の製造方
法では、有機溶剤の大気中への放出が無く、かつ処理工
程を簡略化できるためエネルギー消費の少ない、地球環
境にやさしい方法で繊維複合シートを製造することがで
きる。
The fiber composite sheet obtained according to the present invention has both flexibility and stiffness, and can be suitably used as a base material for artificial leather. The artificial leather obtained from the fiber composite sheet can be used for various uses such as shoes, balls, clothing, furniture and the like. Further, in the production method of the present invention, since the organic solvent is not released into the air and the treatment process can be simplified, the fiber composite sheet can be produced by a method that consumes less energy and is friendly to the global environment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大川 信夫 広島県三原市円一町1丁目1番1号 帝人 株式会社三原事業所内 Fターム(参考) 3B154 AA07 AA08 AA17 AA20 AB22 BA39 BB12 BB32 BD18 BE02 BE07 BF01 BF07 BF11 BF13 BF20 DA09 DA28 DA30 4F055 AA02 BA02 CA18 EA03 EA04 EA05 EA12 EA13 EA14 EA24 EA30 FA15 GA03 HA14 4L033 AA04 AA07 AA08 AB07 AC02 CA50 CA70 4L047 AA21 AA23 AA27 AB02 AB08 AB10 BA03 BA04 DA00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Nobuo Okawa 1-1-1, Enichi-cho, Mihara-shi, Hiroshima Prefecture Teijin Mihara Works F-term (reference) 3B154 AA07 AA08 AA17 AA20 AB22 BA39 BB12 BB32 BD18 BE02 BE07 BF01 BF07 BF11 BF13 BF20 DA09 DA28 DA30 4F055 AA02 BA02 CA18 EA03 EA04 EA05 EA12 EA13 EA14 EA24 EA30 FA15 GA03 HA14 4L033 AA04 AA07 AA08 AB07 AC02 CA50 CA70 4L047 AA21 AB02 AB10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱収縮性繊維を少なくとも1成分とする
不織布に、感熱凝固性を有する水系の高分子弾性体エマ
ルジョンを含浸し、次に該熱収縮性繊維の収縮開始温度
および該高分子弾性体エマルジョンの感熱凝固温度以
上、かつ相対湿度80%以上の高温多湿雰囲気中にて処
理することにより、不織布の収縮および高分子弾性体エ
マルジョンの感熱凝固を同時に行わせることを特徴とす
る繊維複合シートの製造方法。
1. A nonwoven fabric comprising heat-shrinkable fibers as at least one component is impregnated with an aqueous polymer elastic emulsion having heat-sensitive coagulability, and then the shrinkage initiation temperature of the heat-shrinkable fibers and the polymer elasticity are increased. A fiber composite sheet characterized in that shrinkage of the nonwoven fabric and thermosensitive coagulation of the elastic polymer emulsion are simultaneously performed by treating in a high-temperature and high-humidity atmosphere at a temperature equal to or higher than the heat-sensitive coagulation temperature of the body emulsion and a relative humidity of 80% or more. Manufacturing method.
【請求項2】 該熱収縮性繊維が、2種以上の単繊維に
分割可能な複合繊維であり、該複合繊維を分割して発生
するそれぞれの単繊維の熱収縮性が互いに異なると共
に、それぞれの単繊維の繊度が0.01dtex以上
1.0dtex以下である請求項1記載の繊維複合シー
トの製造方法。
2. The heat-shrinkable fiber is a conjugate fiber that can be split into two or more types of single fibers, and the heat-shrinkability of each single fiber generated by splitting the conjugate fiber is different from each other. The method for producing a fiber composite sheet according to claim 1, wherein the fineness of the single fiber is from 0.01 dtex to 1.0 dtex.
【請求項3】 高温多湿雰囲気の温度が50℃以上18
0℃以下である請求項1または請求項2記載の繊維複合
シートの製造方法。
3. The temperature of a high-temperature and high-humidity atmosphere is 50 ° C. or more and 18.
The method for producing a fiber composite sheet according to claim 1, wherein the temperature is 0 ° C. or lower.
【請求項4】 高温多湿雰囲気中での処理時において、
繊維複合シートの面積収縮率が10%以上60%以下で
あり、収縮後の見掛け密度が0.20g/cm3以上
0.50g/cm3以下である請求項1〜3のいづれか
1項に記載の繊維複合シートの製造方法。
4. A treatment in a high-temperature and high-humidity atmosphere,
The area shrinkage of the fiber composite sheet is 10% or more and 60% or less, and the apparent density after shrinkage is 0.20 g / cm 3 or more and 0.50 g / cm 3 or less. A method for producing a fiber composite sheet.
【請求項5】 該繊維複合シートの任意の断面における
繊維間空隙の平均面積が走査型顕微鏡の画像解析による
測定方法の値で30μm2以上250μm2以下である請
求項1〜4のいづれか1項に記載の繊維複合シートの製
造方法。
5. The fiber composite sheet according to any one of claims 1 to 4, wherein an average area of interfiber voids in an arbitrary cross section of the fiber composite sheet is 30 μm 2 or more and 250 μm 2 or less as measured by image analysis using a scanning microscope. 3. The method for producing a fiber composite sheet according to item 1.
JP2000093995A 2000-03-30 2000-03-30 Method for producing fibrous composite sheet Pending JP2001279579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093995A JP2001279579A (en) 2000-03-30 2000-03-30 Method for producing fibrous composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093995A JP2001279579A (en) 2000-03-30 2000-03-30 Method for producing fibrous composite sheet

Publications (1)

Publication Number Publication Date
JP2001279579A true JP2001279579A (en) 2001-10-10

Family

ID=18609103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093995A Pending JP2001279579A (en) 2000-03-30 2000-03-30 Method for producing fibrous composite sheet

Country Status (1)

Country Link
JP (1) JP2001279579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293261A (en) * 2002-03-29 2003-10-15 Mitsubishi Paper Mills Ltd Non-woven fabric for artificial leather and artificial leather
WO2007099951A1 (en) * 2006-02-28 2007-09-07 Kuraray Co., Ltd. Artificial leather and method for producing the same
JP2015229219A (en) * 2014-06-05 2015-12-21 株式会社クラレ Method for producing fiber composite sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270881A (en) * 1987-04-28 1988-11-08 Kanebo Ltd Production of suede artificial leather
JPH01104634A (en) * 1987-10-16 1989-04-21 Dai Ichi Kogyo Seiyaku Co Ltd Production of polyurethane foam
WO1999018281A1 (en) * 1997-10-06 1999-04-15 Ichikintechnical Co., Ltd. Process for the production of artificial leather
WO1999023289A1 (en) * 1997-10-31 1999-05-14 Teijin Limited Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
JPH11335975A (en) * 1998-05-29 1999-12-07 Dainippon Ink & Chem Inc Production of fiber composite and synthetic leather

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270881A (en) * 1987-04-28 1988-11-08 Kanebo Ltd Production of suede artificial leather
JPH01104634A (en) * 1987-10-16 1989-04-21 Dai Ichi Kogyo Seiyaku Co Ltd Production of polyurethane foam
WO1999018281A1 (en) * 1997-10-06 1999-04-15 Ichikintechnical Co., Ltd. Process for the production of artificial leather
WO1999023289A1 (en) * 1997-10-31 1999-05-14 Teijin Limited Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
JPH11335975A (en) * 1998-05-29 1999-12-07 Dainippon Ink & Chem Inc Production of fiber composite and synthetic leather

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293261A (en) * 2002-03-29 2003-10-15 Mitsubishi Paper Mills Ltd Non-woven fabric for artificial leather and artificial leather
WO2007099951A1 (en) * 2006-02-28 2007-09-07 Kuraray Co., Ltd. Artificial leather and method for producing the same
JP2015229219A (en) * 2014-06-05 2015-12-21 株式会社クラレ Method for producing fiber composite sheet

Similar Documents

Publication Publication Date Title
JP3927769B2 (en) Nonwoven fabric and method for producing sheet-like material using the same
JP3176592B2 (en) Long-fiber nonwoven fabric and artificial leather containing it
JP7226435B2 (en) Sheet-shaped article and method for producing the same
WO2005124002A1 (en) Process for producing intertwined ultrafine filament sheet
JP3727181B2 (en) Method for producing nonwoven fabric for artificial leather
JP2001279579A (en) Method for producing fibrous composite sheet
JPS6043475B2 (en) Napped sheet with characteristics of suede leather and its manufacturing method
JP2014029043A (en) Leather-like sheet and method for producing leather-like sheet
JP5507250B2 (en) Leather-like sheet and method for producing the same
JP2016044362A (en) Artificial leather with soft feeling and method for producing the same
JP4902300B2 (en) Manufacturing method of base material for artificial leather
JP2004339614A (en) Method for producing grained artificial leather
JP3961296B2 (en) Leather-like sheet and method for producing the same
JP4242693B2 (en) Method for producing leather-like sheet
JP4065649B2 (en) Leather-like sheet and method for producing the same
JP4132094B2 (en) Fibrous sheet with excellent flexibility and tear strength
JP2004100137A (en) Leather like sheet material and method for production the same
JP2902307B2 (en) Artificial leather and manufacturing method thereof
JPH1193083A (en) Production of sueded artificial leather
JPH01139878A (en) Oil-tone leather-like sheet
JP4549915B2 (en) Suede artificial leather and method for producing the same
JPH07145569A (en) Production of smooth leathery sheetlike product
JPH0545714B2 (en)
JPH03193980A (en) Sheetlike material excellent in hand and production thereof
JP2011214196A (en) Grained artificial leather with needle hole and production method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706