JP2001279355A - Hydrogen storage alloy for secondary battery - Google Patents

Hydrogen storage alloy for secondary battery

Info

Publication number
JP2001279355A
JP2001279355A JP2000091278A JP2000091278A JP2001279355A JP 2001279355 A JP2001279355 A JP 2001279355A JP 2000091278 A JP2000091278 A JP 2000091278A JP 2000091278 A JP2000091278 A JP 2000091278A JP 2001279355 A JP2001279355 A JP 2001279355A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
amount
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000091278A
Other languages
Japanese (ja)
Other versions
JP4486210B2 (en
Inventor
Nobuyuki Saito
伸之 斉藤
Takuro Sugimoto
卓郎 杉本
Toshiaki Haneda
俊明 羽田
Masahito Osawa
雅人 大沢
Tomohiro Yoshikawa
知宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2000091278A priority Critical patent/JP4486210B2/en
Publication of JP2001279355A publication Critical patent/JP2001279355A/en
Application granted granted Critical
Publication of JP4486210B2 publication Critical patent/JP4486210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy for a secondary battery in which the pulverization of the alloy at occluding and discharging can be suppressed without causing the reduction of the amount of hydrogen to be occluded, and also, the reduction of the alloy cost by the reduction of the content of Co can simultaneously be realized. SOLUTION: This hydrogen storage alloy for a secondary battery has a CaCu5 type crystal structure expressed by the compositional formula, RNIaCobMncAldSnx (wherein, 0<x<0.15, 4.0<=a<=4.4, 0<b<=0.6, 0.2<=c<=0.4, 0.2<=d<=0.4, 5.00<=a+b+c+d+x<=5.30, and R is a mixture of rare earth elements) and in which the ratio of lattice constants (c/a) is 0.8055 to 0.8070.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池用水素吸
蔵合金に関し、特に、充放電による水素吸蔵合金の微粉
化防止特性に優れると共に、水素吸蔵量の減少を招くこ
となくCo含有量の抑制 (コスト減) ができる水素吸蔵合
金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy for a secondary battery, and more particularly to a hydrogen storage alloy which is excellent in the pulverization prevention characteristics of a hydrogen storage alloy due to charge and discharge and has a reduced Co content without causing a decrease in the hydrogen storage amount. The present invention relates to a hydrogen storage alloy capable of suppressing (reducing costs).

【0002】[0002]

【従来の技術】現在市販されている二次電池用水素吸蔵
合金は、AB型のMnNi系合金、とくにMmNiCoMnAl
の5元系組成からなるものが多い。こうした二次電池用
水素吸蔵合金には、一般に、微粉化特性の向上および電
池特性、特にサイクル特性向上のために10wt%程度の
Coを含有させているのが普通である。一方で、水素吸蔵
合金が水素を吸蔵・放出する際に微粉化する現象を抑制
するためには、Coはむしろ少なくして、AB型合金の
Bサイトの比率を増加させても同様な効果があることが
知られているが、AB型合金のBサイトの比率を増加
させると、耐微粉化特性は改善されるものの、水素吸蔵
量が減少するという課題があった。
2. Description of the Related Art Currently available hydrogen storage alloys for secondary batteries are AB 5- type MnNi 5- based alloys, especially MmNiCoMnAl.
In many cases, the five-component composition of the present invention is used. Such a hydrogen storage alloy for a secondary battery generally has a content of about 10% by weight to improve the pulverization characteristics and the battery characteristics, especially the cycle characteristics.
It is common to contain Co. On the other hand, in order to suppress the phenomenon that the hydrogen storage alloy is pulverized when storing and releasing hydrogen, the same effect can be obtained by reducing the amount of Co and increasing the ratio of the B site in the AB 5- type alloy. However, when the ratio of the B site of the AB 5- type alloy is increased, the pulverization resistance is improved, but the hydrogen storage amount is reduced.

【0003】ところで近年、電気自動車(EV)やハイ
ブリットEV、あるいは電動工具等の分野では、大型の
二次電池が使われる傾向にある。このような大型の二次
電池、とくにその負極として搭載される水素吸蔵合金に
対し、上述した微粉化特性の改善による電池性能の向上
が求められ、さらには、過酷な使用条件下での水素吸蔵
特性の向上、ならびに水素吸蔵合金自体の低価格化とい
う要求がある。このような要求に対応するためには、水
素吸蔵合金を構成する元素中では最もコストが高いCo含
有量の低減が求められている。
In recent years, in the fields of electric vehicles (EV), hybrid EVs, and electric tools, large secondary batteries have been used. Such large secondary batteries, especially hydrogen storage alloys mounted as their negative electrodes, are required to improve battery performance by improving the above-mentioned pulverization characteristics, and furthermore, to store hydrogen under severe use conditions. There is a demand for improved characteristics and lower cost of the hydrogen storage alloy itself. In order to meet such demands, reduction of the Co content, which is the most expensive element among the elements constituting the hydrogen storage alloy, is required.

【0004】従来、耐微粉化特性を向上させて水素吸蔵
合金の特性および電池特性を改善しようとする提案があ
る。例えば、特開平6−325790号公報には、密閉
型アルカリ蓄電池に関し、組成式がMmNi中のM
mのLaとNdとの比率を調整することにより、水素の吸蔵
放出の繰り返しによる微粉化を防止しようとする技術が
開示されている。また、特開平4−202641号公報
に記載された発明は、組成式LnNiMn合金の粉砕
後に高濃度のMnまたはLaを表面に偏析させて、割れの進
行を制御しようとするものである。また、特開平4−1
68239号公報に記載された発明は、水素吸蔵合金中
にマトリックスよりも靱性の大きな網目状の金属あるい
は合金の相を存在させたニッケル水素電池用水素吸蔵合
金が開示されており、靱性の大きい相の存在によりクラ
ックの進行を阻止しようとするものである。さらにま
た、コバルトを全く配合しないで、サイクル特性を劣化
させることなく充放電特性を向上させる提案もある(特
開平11−323468号公報参照)。
Conventionally, there have been proposals to improve the resistance to pulverization to improve the characteristics of hydrogen storage alloys and battery characteristics. For example, Japanese Unexamined Patent Publication No. 6-325790 discloses a sealed alkaline storage battery in which the composition formula is MmNi x Ay.
A technique is disclosed in which the ratio of La to Nd in m is adjusted to prevent pulverization due to repetition of storage and release of hydrogen. Further, the invention described in JP-A-4-202641 has a high concentration of Mn or La and is segregated to the surface after the grinding of the composition formula LnNi x Mn y A z alloy, intended to control the progress of the crack It is. Also, Japanese Patent Application Laid-Open No. 4-1
The invention described in Japanese Patent No. 68239 discloses a hydrogen storage alloy for a nickel-metal hydride battery in which a network-like metal or alloy phase having higher toughness than a matrix is present in the hydrogen storage alloy. Is intended to prevent the progress of cracks. Furthermore, there is a proposal to improve the charge / discharge characteristics without deteriorating the cycle characteristics without adding any cobalt (see JP-A-11-323468).

【0005】これらの従来技術は、合金組成の組み合わ
せや、表面処理技術、熱処理技術など種々の面からアプ
ローチした技術であり、それなりの効果はあったと考え
られる。しかし、水素吸蔵合金の耐微粉化特性と水素吸
蔵特性およびコストのいずれの点についても満足できる
ものは未だ実現を見ていないのが実情である。
[0005] These prior arts are techniques approached from various aspects such as combinations of alloy compositions, surface treatment techniques, and heat treatment techniques, and are considered to have had some effects. However, it has not yet been seen that a hydrogen storage alloy that can satisfy all of the pulverization resistance, the hydrogen storage properties, and the cost has not yet been realized.

【0006】本発明の目的は、水素吸蔵量の低減を招く
ことなく、吸蔵・放出時の合金の微粉化が抑制でき、か
つ、Co含有量の低減による合金コストの低下を同時に実
現できる二次電池用水素吸蔵合金を提案するところにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery capable of suppressing alloy pulverization at the time of occlusion / release without reducing the amount of hydrogen occlusion and simultaneously realizing a reduction in alloy cost due to a reduction in Co content. The present invention is to propose a hydrogen storage alloy for a battery.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
鋭意研究を進めた結果、発明者らは、Bサイトの遷移金
属中に、第6元素としてSnが添加配合された、CaCu
結晶構造をもつ水素吸蔵合金、即ち、MmNiMnAlCoSn6
元系水素吸蔵合金によれば、水素吸蔵量の低下を招くこ
となく耐微粉化特性を改善でき、しかも低コストを実現
できることを見いだし、本発明を開発した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that a CaCu 5- type crystal in which Sn is added and mixed as a sixth element in a B-site transition metal. Hydrogen storage alloy having a structure, ie, MmNiMnAlCoSn6
The present inventors have found that, according to the original hydrogen storage alloy, the pulverization resistance can be improved without lowering the hydrogen storage amount and the cost can be reduced, and the present invention has been developed.

【0008】すなわち、本発明は、下記組成式で表され
るCaCu型結晶構造をもつものであって、格子定数の比
(c/a) が 0.8055 〜 0.8070 であることを特徴とする二
次電池用水素吸蔵合金である。 RNiCoMnAlSn 0 <x<0.15, 4.0≦a≦4.4 , 0 <b≦0.6 , 0.2
≦c≦0.4 ,0.2 ≦d≦0.4 ,5.00≦a+b+c+d+x ≦5.3
0,Rは希土類元素の混合物
That is, the present invention is represented by the following composition formula:
CaCu5Type crystal structure, and the lattice constant ratio
(c / a) is 0.8055 to 0.8070.
It is a hydrogen storage alloy for secondary batteries. RNiaCobMncAldSnx  0 <x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2
≦ c ≦ 0.4, 0.2 ≦ d ≦ 0.4, 5.00 ≦ a + b + c + d + x ≦ 5.3
0, R is a mixture of rare earth elements

【0009】本発明においては、Rは、Laの含有量が
0.7以上の希土類元素の混合物であること、上記組成式
中、Mn,AlおよびSnの合計量は、c+d+x <0.7 であるこ
とが好ましい。
In the present invention, R represents the content of La
A mixture of rare earth elements of 0.7 or more, and in the above composition formula, the total amount of Mn, Al and Sn is preferably c + d + x <0.7.

【0010】[0010]

【発明の実施の形態】本発明の水素吸蔵合金は、RNiCo
MnAl5元系合金の耐微粉化特性を改善するために、第6
元素としてSnを添加合金化したところに基本的な特徴が
ある。即ち、本発明は、単にSnを添加するというだけで
はなく、Snを添加して6元合金のa軸の結晶格子長とc
軸の結晶格子長の結晶格子長比、即ち格子定数の比 (c/
a )を0.8055 〜 0.8070 の範囲になるように、希土類
元素の混合物R中のLa量、B/A比、Sn配合量およびCo
の配合量を細かく調整することにより、水素吸蔵量の低
減を招くことなくCo含有量の低減による低コストを実現
し、かつ、耐微粉化特性を向上させるようにしたのであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy of the present invention is RNiCo
In order to improve the pulverization resistance of MnAl ternary alloy,
There is a basic feature in that Sn is added and alloyed as an element. In other words, the present invention is not limited to the addition of Sn, but also includes the addition of Sn to the crystal lattice length of the a-axis
The ratio of the crystal lattice length of the axis to the crystal lattice length, that is, the ratio of the lattice constants (c /
a), the amount of La in the mixture R of rare earth elements, the B / A ratio, the amount of Sn, and the amount of Co so that the content of a) falls within the range of 0.8055 to 0.8070.
By finely adjusting the compounding amount of, it is possible to realize low cost by reducing the Co content and to improve the pulverization resistance without reducing the hydrogen storage amount.

【0011】図1は、従来のCo≦0.6 合金の結晶格子長
比の変動と水素吸蔵量を確認した実験データ(同一非化
学量論比、Co置換量でのLa添加量変動)である。同図か
ら、上述した5元系合金中のLa量を高めると、結晶格子
長比(c/a )が減少し、逆にLa量を低減するとc/aが
大きくなり、結晶格子長比,即ち前記格子定数の比(c/
a )は、La量によって大きく変動することがわかる。ま
た、表1より、Laが0.7 を超える合金にSnを添加した場
合にはc/aが大きくなり、H/Mが減少しないことが
わかる。
FIG. 1 shows experimental data (the same non-stoichiometric ratio, and the variation of La addition at the same Co stoichiometric ratio) as to the fluctuation of the crystal lattice length ratio and the hydrogen storage amount of the conventional Co ≦ 0.6 alloy. As can be seen from the figure, when the amount of La in the above-described ternary alloy is increased, the crystal lattice length ratio (c / a) decreases, and conversely, when the amount of La is reduced, c / a increases, and the crystal lattice length ratio, That is, the ratio of the lattice constants (c /
It can be seen that a) greatly varies depending on the amount of La. Also, from Table 1, it can be seen that when Sn is added to an alloy in which La exceeds 0.7, c / a increases and H / M does not decrease.

【0012】なお、図1に見られるように、Laが0.7 未
満の場合、Sn未添加合金での水素吸蔵量が低下している
ため、Snを添加することによる耐微粉化特性改善効果は
高水素吸蔵量合金の目的に反する。また、Co置換量が0.
6 以下の合金組成では、B/A,La置換量の変化によ
り、格子定数比(c/a )と水素吸蔵量との相関が高いた
め、制御が可能である。即ち、水素吸蔵量を低下させな
いようにc/aを制御するには、上記5元系水素吸蔵合
金での高水素吸蔵量とc/a 値で合金設計し、さらに原子
半径の大きいSnを添加して、特定の比の格子定数比にす
ることが好ましく、La量は、好ましくは0.7 以上がよい
ということを図1および表1の結果から知見したのであ
る。
As can be seen from FIG. 1, when La is less than 0.7, the amount of hydrogen occlusion in the alloy not containing Sn is low, so that the effect of improving the pulverization resistance by adding Sn is high. Contrary to the purpose of hydrogen storage alloy. In addition, the amount of Co substitution is 0.
With an alloy composition of 6 or less, since the correlation between the lattice constant ratio (c / a) and the hydrogen storage amount is high due to changes in the B / A and La substitution amounts, control is possible. That is, in order to control c / a so as not to decrease the hydrogen storage amount, an alloy is designed based on the high hydrogen storage amount and the c / a value of the quinary hydrogen storage alloy, and Sn having a larger atomic radius is added. It was found from the results of FIG. 1 and Table 1 that it is preferable to set the lattice constant ratio to a specific ratio, and the La content is preferably 0.7 or more.

【0013】以下、本発明の好ましい態様を下記組成式
により説明する。本発明の合金は、上述した特定の格子
定数比(c/a) をもつ下記組成式からなる合金が好まし
い。 組成式:RNiCoMnAlSn 0 <x<0.15, 4.0≦a≦4.4 , 0 <b≦0.6 , 0.2
≦c≦0.4 ,0.2 ≦d≦0.4 ,5.00≦a+b+c+d+x ≦5.3
0,Rは希土類元素の混合物
Hereinafter, a preferred embodiment of the present invention is represented by the following composition formula:
This will be described below. The alloy according to the present invention may have a specific lattice as described above.
An alloy having a constant ratio (c / a) consisting of the following composition formula is preferred.
No. Composition formula: RNiaCobMncAldSnx  0 <x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2
≦ c ≦ 0.4, 0.2 ≦ d ≦ 0.4, 5.00 ≦ a + b + c + d + x ≦ 5.3
0, R is a mixture of rare earth elements

【0014】この組成において、特に、ABのBサイ
ト部分の化学量論比を増加させること、即ち、5.00≦a+
b+c+d+x ≦5.30として耐微粉化特性を改善することが好
ましく、5.15≦a+b+c+d+x ≦5.20がより好ましい範囲で
ある。その理由は、Bサイトを5.30超に増加させると水
素平衡圧力が上昇し、水素吸蔵量が低下すること、ま
た、偏析相の生成を招くこと等の理由から、上限を5.30
とする。一方、下限が5.00よりも少ないと、耐微粉化特
性が低下するからである。
[0014] In this composition, in particular, to increase the stoichiometric ratio of B site portion of AB 5, i.e., 5.00 ≦ a +
It is preferable to improve the pulverization resistance by setting b + c + d + x ≦ 5.30, and 5.15 ≦ a + b + c + d + x ≦ 5.20 is a more preferable range. The reason is that when the B site is increased to more than 5.30, the hydrogen equilibrium pressure increases, the hydrogen storage amount decreases, and the upper limit is set to 5.30 because of the occurrence of a segregated phase.
And On the other hand, if the lower limit is less than 5.00, the pulverization resistance decreases.

【0015】MnおよびAlの含有量をそれぞれ、0.2 ≦c
≦0.4 ,0.2 ≦d≦0.4 にしたのは、Mnは0.2 未満では
水素平衡圧調整が困難になり、良好なプラトー性も得ら
れなくなる一方で、0.4 を超えるとアルカリ電解液中で
の腐食が生じるからである。また、Alは0.2 未満では水
素平衡圧調整が困難であり、一方、0.4 を超えると水素
吸蔵量の減少を引き起こすので、0.2 〜0.4 の範囲とす
ることが好ましい。
Each of the contents of Mn and Al is 0.2 ≦ c
≦ 0.4, 0.2 ≦ d ≦ 0.4 The reason is that if Mn is less than 0.2, it is difficult to adjust the hydrogen equilibrium pressure and good plateau property cannot be obtained, while if it exceeds 0.4, corrosion in the alkaline electrolyte will not occur. This is because it occurs. If the Al content is less than 0.2, it is difficult to adjust the hydrogen equilibrium pressure. On the other hand, if the Al content exceeds 0.4, the hydrogen storage capacity is reduced. Therefore, the Al content is preferably in the range of 0.2 to 0.4.

【0016】Co置換量は少なければ少ないほどコストダ
ウンが可能なので好ましいが、Coを含有しないと耐微粉
化特性が向上せず、一方、0.6 を超えると合金コスト低
減にならない。
The smaller the amount of Co substitution, the lower the cost can be. This is preferable, but if Co is not contained, the pulverization resistance is not improved. On the other hand, if it exceeds 0.6, the alloy cost is not reduced.

【0017】Snは、格子定数比c/aの改善による耐微
粉化特性改善のための添加元素であるが、置換量は 0.1
5 以上ではLa−Ni−Snの偏析相が生じて水素吸蔵量が逆
に減少するので0.15未満が好ましい。
Sn is an additive element for improving the pulverization resistance by improving the lattice constant ratio c / a.
Above 5, a segregation phase of La-Ni-Sn is generated, and the hydrogen storage amount is conversely reduced.

【0018】なお、本発明の合金は、水素吸蔵量を高
め、かつ、耐微粉化特性を改善するところにあり、希土
類元素混合物R中のLa量は La ≧0.7 とすることが好ま
しい。もっとも、La<0.7 でもMn量を増加することで高
吸蔵量化は可能であるが、多量のMn置換はアルカリ電
解液中での腐食が大きくなるので、La量は 0.7以上が好
ましい。
The alloy of the present invention is intended to increase the hydrogen storage capacity and improve the pulverization resistance, and it is preferable that the La content in the rare-earth element mixture R is La ≧ 0.7. Although the occlusion amount can be increased by increasing the amount of Mn even when La <0.7, the amount of La is preferably 0.7 or more because a large amount of Mn substitution increases corrosion in an alkaline electrolyte.

【0019】なお、本発明の合金において、上記組成式
中、MnとAlとSnの合計量を(c+d+x)<0.7 にすることが
好ましい。その理由は、高吸蔵量化のためのLa添加量増
による水素平衡圧低下に対して適正な水素平衡圧を調整
する置換量範囲だからである。また、La≧0.7 とするこ
とによる Mn,Al,Sn 添加量の低減はこれら元素が電解液
に使用するアルカリ液中に溶出するすることより腐食量
低減効果もある。
In the alloy of the present invention, in the above composition formula, the total amount of Mn, Al and Sn is preferably set to (c + d + x) <0.7. The reason is that the replacement amount range adjusts an appropriate hydrogen equilibrium pressure against a decrease in the hydrogen equilibrium pressure due to an increase in the amount of La added to increase the occlusion amount. Further, the reduction of the added amount of Mn, Al, and Sn by setting La ≧ 0.7 also has an effect of reducing the amount of corrosion because these elements are eluted in the alkaline solution used for the electrolytic solution.

【0020】[0020]

【実施例】この実施例で用いた合金の組成は、R Ni
4.24Co0.3Mn0.36−xAl 0.30SnAB
5.20のCaCu型結晶構造をもち、X =0, 0.05, 0.1
0, 0.15のもの及びR Ni4.23Co0.31n
0.32−xAl0.3SnAB5.15のCaCu 型結晶構
造をもつ X=0, 0.1, 0.15の合金を用いた。また、比較
合金の組成は、R Ni4.15Co0.3Mn0.3−xAl
0.3SnAB5.05のCaCuで、X=0, 0.1, 0.15の
合金を用いた。各組成の合金はともにR中のLaを 0.8と
した。なお、これらの合金は、高周波溶解炉を用いて溶
解し、溶解後均質化を目的に 1000 ℃、7hr Arガス雰囲
気で熱処理を実施して得たものである。特性の評価とし
て、水素吸蔵量はPCT測定装置を使用し、80℃ 10atm
で求めたH/Mを用いた。また、耐微粉化特性は、一定
水素圧化で一度水素を吸蔵したのち排気した後の合金粒
度分布 (D50) の値を指標とした。格子定数比(c/a)
は-200メッシュに調整した合金粉による粉末XRD測定
から求めたa軸c軸長から算出した。
EXAMPLES The composition of the alloy used in this example was R Ni
4.24Co0.3Mn0.36-xAl 0.30SnxAB
5.20CaCu5X-type crystal structure, X = 0, 0.05, 0.1
0, 0.15 and R Ni4.23Co0.31n
0.32-xAl0.3SnxAB5.15CaCu 5Type crystal structure
X = 0, 0.1 and 0.15 alloys with different structures were used. Also compare
The composition of the alloy is R Ni4.15Co0.3Mn0.3-xAl
0.3SnxAB5.05CaCu5Where X = 0, 0.1, 0.15
An alloy was used. The alloy of each composition has La in R of 0.8
did. These alloys are melted using a high-frequency melting furnace.
Dissolve, dissolve, and homogenize at 1000 ° C for 7 hours in Ar gas atmosphere.
It is obtained by performing heat treatment with air. Evaluation of characteristics
Use a PCT measurement device at 80 ° C 10atm
The H / M determined in the above was used. The pulverization resistance is constant
Alloy particles after hydrogen has been absorbed and then evacuated by hydrogenation
Degree distribution (D50) Was used as an index. Lattice constant ratio (c / a)
Is powder XRD measurement with alloy powder adjusted to -200 mesh
Calculated from the a-axis and c-axis lengths obtained from

【0021】各特性評価結果を表1に示す。表1から、
Sn添加により格子定数比c/a 及び、水素化後の粒度D
50値が増加する傾向にある。本発明例a,eに対応す
る比較例jでは、無添加の合金組成自体のD50値が小
さいことより添加量を増加させる必要がある。しかし、
Sn添加量の増加は水素吸蔵量の減少とLa−Ni−Sn偏析相
の生成を生じる。
Table 1 shows the results of the evaluation of each characteristic. From Table 1,
Lattice constant ratio c / a and particle size D after hydrogenation by adding Sn
50 values tend to increase. In Comparative Example j corresponding to Invention Examples a and e, the addition amount needs to be increased because the D50 value of the alloy composition itself without additives is small. But,
Increasing the amount of added Sn causes a decrease in the amount of hydrogen storage and the formation of a La-Ni-Sn segregated phase.

【0022】本発明例a,b,cでは、Sn無添加での組
成 (比較例i) でも非化学量論値を適正化することで、
高吸蔵量と耐微粉化特性を示している。それに対しさら
にSn添加をした実施例a,bは耐微粉化特性を改善でき
る。しかし、Sn添加量の増加は本発明例cに示されるよ
うに水素吸蔵量の減少を招くこと及びLa−Ni−Snの偏析
を生じることより、Sn添加量は0.15未満が好ましい。ま
た、比較例g,hに示されているように、B/A5.05で
は、Sn添加によりc/a 増、D50値増であるが、比較例
fのSn無添加でD50値が低下していることよりSn添加
での高吸蔵量維持と耐微粉化特性改善の両立は困難であ
る。以上の結果から本発明合金は、0.2 ≦Co≦0.6 La>
0.7 5.15 ≦B/A≦5.20でSn<0.15とすることで、高
水素吸蔵量の大幅な減少を伴わずに耐微粉化特性を改善
できる。
In Examples a, b, and c of the present invention, the composition without Sn was added (Comparative Example i) to optimize the non-stoichiometric value.
It shows high occlusion and pulverization resistance. On the other hand, Examples a and b in which Sn is further added can improve the pulverization resistance. However, as shown in Example c of the present invention, an increase in the amount of added Sn causes a decrease in the amount of hydrogen occlusion and causes the segregation of La-Ni-Sn. Therefore, the amount of added Sn is preferably less than 0.15. In Comparative Example g, as shown in h, the B / A5.05, c / a increase by addition of Sn, but a D 50 value rose, D 50 value of Sn not added in Comparative Example f Because of the decrease, it is difficult to maintain both the high occlusion amount and the improvement of pulverization resistance by adding Sn. From the above results, the alloy of the present invention is 0.2 ≦ Co ≦ 0.6 La>
By setting Sn <0.15 when 0.7 5.15 ≦ B / A ≦ 5.20, the pulverization resistance can be improved without a significant decrease in the high hydrogen storage amount.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上説明したように、本発明の水素吸蔵
合金は、水素吸蔵量を低減させることなく、微粉化を抑
制することができる。また、Co元素の組成を低減させて
も耐微粉化特性を全く阻害することがないので、合金コ
ストの低減にも効果がある。
As described above, the hydrogen storage alloy of the present invention can suppress pulverization without reducing the hydrogen storage amount. In addition, even if the composition of the Co element is reduced, the pulverization resistance is not impaired at all, which is effective in reducing the alloy cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合金の水素吸蔵特性を示す図である。FIG. 1 is a view showing hydrogen storage characteristics of an alloy of the present invention.

フロントページの続き (72)発明者 羽田 俊明 山形県西置賜郡小国町大字小国町字滝ノ二 重2ノ232番地 日本重化学工業株式会社 小国工場内 (72)発明者 大沢 雅人 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 (72)発明者 吉川 知宏 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 Fターム(参考) 5H050 AA07 BA14 CB17 HA02 HA04Continued on the front page. (72) Inventor Toshiaki Haneda Oguni-machi, Nishiokitama-gun, Oguni-machi, Ogata-machi 2232-2 Takinoji, Nippon Heavy Industries, Ltd. Inside the Oguni Plant (72) Inventor Masato Osawa Tokodai, Tsukuba, Ibaraki 5-9-6 Nihon Heavy Chemical Industry Co., Ltd. Tsukuba Research Laboratory (72) Inventor Tomohiro Yoshikawa 5-9-6 Tokodai, Tsukuba City, Ibaraki Prefecture Nihon Heavy Chemical Industry Co., Ltd. Tsukuba Research Laboratory F-term (reference) 5H050 AA07 BA14 CB17 HA02 HA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記組成式で表されるCaCu型結晶構造
をもつものであって、格子定数の比(c/a) が 0.8055 〜
0.8070 であることを特徴とする二次電池用水素吸蔵合
金。 RNiCoMnAlSn 0 <x<0.15, 4.0≦a≦4.4 , 0 <b≦0.6 , 0.2
≦c≦0.4 ,0.2 ≦d≦0.4, 5.00≦a+b+c+d+x ≦5.3
0,Rは希土類元素の混合物
1. A CuCu compound represented by the following composition formula:5Type crystal structure
And the ratio of lattice constants (c / a) is 0.8055 to
 0.8070 for hydrogen storage for secondary batteries
Money. RNiaCobMncAldSnx  0 <x <0.15, 4.0 ≦ a ≦ 4.4, 0 <b ≦ 0.6, 0.2
≤c≤0.4, 0.2 ≤d≤0.4, 5.00≤a + b + c + d + x ≤5.3
0, R is a mixture of rare earth elements
【請求項2】 Rは、Laの含有量が 0.7以上の希土類元
素の混合物であることを特徴とする請求項1に記載の水
素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, wherein R is a mixture of rare earth elements having a La content of 0.7 or more.
【請求項3】 上記組成式中、Mn,AlおよびSnの合計量
は、c+d+x <0.7 であることを特徴とする請求項1に記
載の水素吸蔵合金。
3. The hydrogen storage alloy according to claim 1, wherein in the composition formula, the total amount of Mn, Al, and Sn is c + d + x <0.7.
JP2000091278A 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery Expired - Lifetime JP4486210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091278A JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091278A JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Publications (2)

Publication Number Publication Date
JP2001279355A true JP2001279355A (en) 2001-10-10
JP4486210B2 JP4486210B2 (en) 2010-06-23

Family

ID=18606757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091278A Expired - Lifetime JP4486210B2 (en) 2000-03-29 2000-03-29 Hydrogen storage alloy for secondary battery

Country Status (1)

Country Link
JP (1) JP4486210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120364A (en) * 1994-10-18 1996-05-14 Toshiba Corp Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP2000234134A (en) * 1999-02-10 2000-08-29 Shin Etsu Chem Co Ltd Hydrogen storage alloy, and electrode using the same
JP2001216960A (en) * 2000-02-02 2001-08-10 Shin Etsu Chem Co Ltd Hydrogen absorbing alloys and secondary cell of nickel hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120364A (en) * 1994-10-18 1996-05-14 Toshiba Corp Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP2000234134A (en) * 1999-02-10 2000-08-29 Shin Etsu Chem Co Ltd Hydrogen storage alloy, and electrode using the same
JP2001216960A (en) * 2000-02-02 2001-08-10 Shin Etsu Chem Co Ltd Hydrogen absorbing alloys and secondary cell of nickel hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
CN103154286A (en) * 2010-08-19 2013-06-12 株式会社三德 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
US9225016B2 (en) 2010-08-19 2015-12-29 Santoku Corporation Hydrogen absorbing alloy, negative pole, and nickel—hydrogen secondary battery
JP5851991B2 (en) * 2010-08-19 2016-02-03 株式会社三徳 Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery

Also Published As

Publication number Publication date
JP4486210B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
TWI639268B (en) Si-based alloy for negative electrode material of power storage device, negative electrode of power storage device, power storage device, and method for manufacturing negative electrode material of power storage device
JP2014500579A (en) Si negative electrode material
JP2000073132A (en) Hydrogen storage alloy and secondary battery
EP0755898B1 (en) Hydrogen storage alloy and electrode therefrom
US5389333A (en) Hydrogen storage alloys
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP2001040442A (en) Hydrogen storage alloy
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP2008218070A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2001279355A (en) Hydrogen storage alloy for secondary battery
US6063524A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
WO2021205749A1 (en) Hydrogen storage alloy for alkaline storage battery
US6074783A (en) Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them
JP2004218017A (en) Hydrogen storage alloy
JPH0642367B2 (en) Alkaline storage battery
JP2001181763A (en) Hydrogen storage alloy
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP3673693B2 (en) Hydrogen storage alloy
JP4462909B2 (en) Hydrogen storage alloy
CN117940595A (en) Hydrogen storage alloy for alkaline storage battery
JPH10152741A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Ref document number: 4486210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term