JP2001272114A - Control for refrigerant of multi-chamber type air conditioner - Google Patents

Control for refrigerant of multi-chamber type air conditioner

Info

Publication number
JP2001272114A
JP2001272114A JP2000090494A JP2000090494A JP2001272114A JP 2001272114 A JP2001272114 A JP 2001272114A JP 2000090494 A JP2000090494 A JP 2000090494A JP 2000090494 A JP2000090494 A JP 2000090494A JP 2001272114 A JP2001272114 A JP 2001272114A
Authority
JP
Japan
Prior art keywords
expansion valve
unit
operating frequency
degree
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000090494A
Other languages
Japanese (ja)
Other versions
JP3686815B2 (en
Inventor
Etsuo Shibata
悦雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000090494A priority Critical patent/JP3686815B2/en
Publication of JP2001272114A publication Critical patent/JP2001272114A/en
Application granted granted Critical
Publication of JP3686815B2 publication Critical patent/JP3686815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of efficiently and simply controlling an expansion valve of a multi-chamber type air conditioner. SOLUTION: In the multi-chamber type air conditioner which controls the flow rate of refrigerant by an inverter type compressor and a motor operated expansion valve, operating frequency per unit is calculated from the operating frequency of the inverter type compressor, the capacity of an operated indoor unit and the number of the indoor units. Then, the reference opening degree of the expansion valve preset as a numerical table or a function relative to the operating frequency per unit is derived. The operation of a uit requested to be operated is started by setting the initial opening degree of the expansion valve to the reference opening degree of the expansion valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、多室形空気調和
機の冷媒制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refrigerant control for a multi-room air conditioner.

【0002】[0002]

【従来の技術】一室のみのインバータ式空気調和機は、
図1に示すように、室外側は、圧縮機1、室外熱交換器
2、室外ファン3、電動膨張弁4及び四方弁5で構成さ
れ、室内側は、室内熱交換器6、室内ファン7から構成
されており、これらを制御するために、室外側には、圧
縮機1の上部或いは出口パイプに配された圧縮機吐出温
度センサ8、圧縮機1の吸入側パイプに配された吸入ガ
ス温度センサ9、室外熱交換器3の冷房時出口パイプに
配された室外熱交換器温度センサ10、電動膨張弁4の
冷房時出口パイプに配された膨張弁出口温度センサ11
を具備し、室内側には、室内空気吸い込み部に配された
室内熱交換器温度センサ13を具備するとともに、室外
側、室内側にそれぞれ室外制御装置14、室内制御装置
15を具備している。
2. Description of the Related Art Inverter type air conditioners having only one room are:
As shown in FIG. 1, the outdoor side is composed of a compressor 1, an outdoor heat exchanger 2, an outdoor fan 3, an electric expansion valve 4 and a four-way valve 5, and the indoor side is an indoor heat exchanger 6, an indoor fan 7 In order to control these, on the outdoor side, a compressor discharge temperature sensor 8 arranged on the upper part or an outlet pipe of the compressor 1 and a suction gas arranged on a suction side pipe of the compressor 1 are provided. A temperature sensor 9; an outdoor heat exchanger temperature sensor 10 disposed on a cooling outlet pipe of the outdoor heat exchanger 3; and an expansion valve outlet temperature sensor 11 disposed on a cooling outlet pipe of the electric expansion valve 4.
The indoor side is provided with an indoor heat exchanger temperature sensor 13 disposed in the indoor air suction section, and the outdoor side and the indoor side are provided with an outdoor control device 14 and an indoor control device 15, respectively. .

【0003】電動膨張弁4は圧縮機1の運転周波数に対
してあらかじめ設定された基準開度にて運転が開始さ
れ、冷房運転時は、吸入ガス温度センサ9で検知した吸
入ガス温度と膨張弁出口温度センサ11で検知した膨張
弁出口温度の差を過熱度として求め、該過熱度が基準過
熱度より大きい場合、膨張弁開度を大きくし、該過熱度
が基準過熱度より大きい場合、膨張弁開度を大きくし、
該過熱度が基準過熱度より小さい場合、膨張弁開度を小
さくし、過熱度が最適になるように制御する。又、圧縮
機運転周波数が変化したときは、変化した分に対応する
膨張弁基準開度の差の分だけ膨張弁開度を変化させる。
上記において、膨張弁基準開度は各種運転条件で支障な
く運転できるように、あらかじめ設定され、室外制御装
置14のマイコンに記憶されている。尚、暖房運転時
は、吸入ガス温度センサ9で検知した吸入ガス温度と室
外熱交換器温度センサ10で検知した室外熱交換器温度
の差を過熱度として求め、冷房運転時と同様に膨張弁制
御が行われる。
The electric expansion valve 4 is started to operate at a reference opening preset with respect to the operating frequency of the compressor 1, and during a cooling operation, the expansion gas and the suction gas temperature detected by the suction gas temperature sensor 9 are used. The difference between the expansion valve outlet temperatures detected by the outlet temperature sensor 11 is determined as the degree of superheat. If the degree of superheat is greater than the reference degree of superheat, the expansion valve opening is increased. Increase the valve opening,
When the degree of superheat is smaller than the reference degree of superheat, the degree of opening of the expansion valve is reduced, and control is performed to optimize the degree of superheat. Further, when the compressor operating frequency changes, the expansion valve opening is changed by the difference between the expansion valve reference opening corresponding to the change.
In the above description, the reference opening degree of the expansion valve is preset and stored in the microcomputer of the outdoor control device 14 so that the operation can be performed without any trouble under various operating conditions. During the heating operation, the difference between the intake gas temperature detected by the intake gas temperature sensor 9 and the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor 10 is determined as the degree of superheat. Control is performed.

【0004】以上に示すように、1室の空気調和機では
圧縮機運転周波数が変化する状況でスムーズな制御が可
能である。多室形空気調和機においては、室内ユニット
の能力や運転台数の違いによって各ユニットに流れる冷
媒量が異なるので、室内ユニットの能力と運転台数の組
み合わせ全てに対して、膨張弁基準開度を設定し、膨張
弁制御を行う必要がある。例えば、3.5kWが1台と
2.5kWが2台の組み合わせにおいては、3台全てを
運転する場合と、どちらか1台だけを運転する場合と、
2.5kWを2台だけ運転する場合と、それぞれを1台
ずつ運転させる場合の5通りの組み合わせがあることと
なる為5通りの膨張弁基準開度を設定する必要がある。
[0004] As described above, in a single-room air conditioner, smooth control is possible in a situation where the compressor operating frequency changes. In multi-room air conditioners, the amount of refrigerant flowing into each unit varies depending on the capacity of the indoor units and the number of operating units, so the expansion valve reference opening is set for all combinations of the indoor unit capacity and the number of operating units. It is necessary to control the expansion valve. For example, in a combination of one unit of 3.5 kW and two units of 2.5 kW, a case where all three units are operated, a case where only one of them is operated,
Since there are five combinations of a case where only two units of 2.5 kW are operated and a case where each of them is operated one by one, it is necessary to set five types of expansion valve reference opening.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記に
示すように、インバータ式の多室形空気調和機で圧縮機
運転周波数や運転台数が変化する状況で、効率的に冷凍
サイクルを制御するには、室内ユニットの能力と運転台
数の組み合わせ全てに対して、膨張弁基準開度を設定
し、膨張弁制御を行うために、多くのメモリ容量を必要
とし、制御方法も複雑になるという問題があった。
However, as described above, in order to efficiently control the refrigeration cycle in a situation where the operating frequency and the number of operating compressors change in an inverter type multi-room air conditioner, as described above. However, setting the expansion valve reference opening and controlling the expansion valve for all combinations of the capacity of the indoor unit and the number of operating units require a large amount of memory and complicate the control method. Was.

【0006】そこで、本願発明は、マイコンのメモリ容
量を減少できるとともに制御の簡素となる多室形空気調
和機を提供することを目的とする。
Accordingly, an object of the present invention is to provide a multi-room air conditioner that can reduce the memory capacity of a microcomputer and simplify the control.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本願発明は、インバータ式圧縮機および電動膨張弁
により、冷媒流量制御を行う多室形空気調和機におい
て、インバータ式圧縮機の運転周波数および運転してい
る室内ユニットの能力、台数から1ユニット当たり運転
周波数を算出し、該1ユニット当たり運転周波数に対し
て数値表或いは関数としてあらかじめ設定されている膨
張弁基準開度を導出し、運転要求のあるユニットの膨張
弁初期開度を該膨張弁基準開度にて運転を開始すること
を特徴とする空気調和機である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a multi-chamber air conditioner in which the flow rate of refrigerant is controlled by an inverter type compressor and an electric expansion valve. Calculate the operating frequency per unit from the frequency and the capacity of the operating indoor unit, the number of units, and derive an expansion valve reference opening preset as a numerical table or a function for the operating frequency per unit, An air conditioner characterized in that operation is started with an expansion valve initial opening of a unit requiring an operation at the expansion valve reference opening.

【0008】又、冷房運転時、各ユニットの吸入ガス管
に配された個別吸入ガス温度センサと、各ユニットの室
内熱交換器に配された室内熱交換器センサの温度を計測
し、該個別吸入ガス温度と該室内熱交換器温度の温度差
を各ユニットの過熱度として求め、該過熱度が所定の値
より大きい場合は、当該ユニットの膨張弁開度を大きく
し、該過熱度が所定の値より小さい場合は、当該ユニッ
トの膨張弁開度を小さくなるよう制御するとともに、圧
縮機運転周波数若しくは運転台数又はこれら両方が変化
した場合、変化する直前の1ユニット当たり運転周波数
に対する膨張弁基準開度と、変化した直後の1ユニット
当たり運転周波数に対する膨張弁基準開度を求め、これ
ら膨張弁基準開度の差の分だけ膨張弁開度を変化させる
ことを特徴とする空気調和機である。
During cooling operation, the temperature of an individual intake gas temperature sensor disposed in the intake gas pipe of each unit and the temperature of the indoor heat exchanger sensor disposed in the indoor heat exchanger of each unit are measured. The temperature difference between the intake gas temperature and the indoor heat exchanger temperature is determined as the degree of superheat of each unit. If the degree of superheat is greater than a predetermined value, the degree of opening of the expansion valve of the unit is increased, and the degree of superheat is reduced to a predetermined value. Is smaller than the value, the expansion valve opening of the unit is controlled to be small, and when the compressor operating frequency or the number of operating units or both are changed, the expansion valve reference to the operating frequency per unit immediately before the change is made. An opening and an expansion valve reference opening corresponding to the operating frequency per unit immediately after the change are obtained, and the expansion valve opening is changed by the difference between these expansion valve reference opening. It is a gas conditioner.

【0009】又、暖房運転時、圧縮機の吸入ガス管に配
された吸入ガス温度センサと、室外熱交換器に配された
室外熱交換器温度センサの温度を計測し、吸入ガス温度
と該室外熱交換器温度の温度差を過熱度として求め、該
過熱度が所定の値より大きい場合は、当該ユニットの膨
張弁開度を大きくし、該過熱度が所定の値より小さい場
合は、当該ユニットの膨張弁開度を小さくなるよう制御
するとともに、圧縮機運転周波数若しくは運転台数又は
これら両方が変化した場合、運転中のユニットは、変化
する直前の1ユニット当たり運転周波数に対する膨張弁
基準開度を求め、これら膨張弁基準開度の差の分だけ膨
張弁開度を変化させ、運転を開始するユニットに対して
は前記運転中ユニットの変化後の膨張弁開度より容量補
正した膨張弁開度を導出し、該膨張弁開度で運転を開始
することを特徴とする空気調和機である。
During the heating operation, the temperature of an intake gas temperature sensor disposed in the intake gas pipe of the compressor and the temperature of the outdoor heat exchanger temperature sensor disposed in the outdoor heat exchanger are measured, and the temperature of the intake gas is measured. Obtain the temperature difference of the outdoor heat exchanger temperature as the degree of superheat, if the degree of superheat is greater than a predetermined value, increase the expansion valve opening of the unit, if the degree of superheat is less than the predetermined value, When the expansion valve opening of the unit is controlled to be small and the compressor operating frequency and / or the number of operating units change, the operating unit determines the expansion valve reference opening relative to the operating frequency per unit immediately before the change. The expansion valve opening is changed by an amount corresponding to the difference between these expansion valve reference opening degrees, and for the unit to start operation, the expansion valve opening whose capacity has been corrected based on the expansion valve opening after the change of the operating unit is changed. Every time It derived, an air conditioner, characterized in that to start the operation at the expansion valve opening.

【0010】又、インバータ式圧縮機の運転周波数及び
運転している室内ユニットの能力、台数から1ユニット
当たり運転周波数を算出し、該1ユニット当たり運転周
波数に対して1次関数としてあらかじめ設定されている
膨張弁基準開度を導出し、圧縮機運転周波数若しくは運
転台数又はこれら両方が変化した場合、変化する直前の
1ユニット当たり運転周波数と、変化した直後の1ユニ
ット当たり運転周波数の差を算出し、該運転周波数差に
所定の係数を乗じた値の分だけ膨張弁開度を変化させる
ことを特徴とする空気調和機である。
Further, the operating frequency per unit is calculated from the operating frequency of the inverter type compressor, the capacity and the number of operating indoor units, and the operating frequency per unit is preset as a linear function. Calculate the difference between the operating frequency per unit immediately before the change and the operating frequency per unit immediately after the change when the compressor operating frequency and / or the number of operating units change. An air conditioner characterized in that the opening degree of the expansion valve is changed by a value obtained by multiplying the operating frequency difference by a predetermined coefficient.

【0011】又、インバータ式圧縮機および電動膨張弁
により、冷媒流量制御を行う多室形空気調和機におい
て、冷房運転時、各ユニットの吸入ガス管に配された個
別吸入ガス温度センサと、各ユニットの室内熱交換器に
配された室内熱交換器温度センサの温度を計測し、該個
別吸入ガス温度と該室内熱温度の温度差を各ユニットの
過熱度として求めるとともに、インバータ式圧縮機の運
転周波数および運転している室内ユニットの能力、台数
から1ユニット当たり運転周波数に対して数値表又は関
数としてあらかじめ設定されている基準過熱度を求め、
上記計測した過熱度が該基準過熱度より大きい場合は、
当該ユニットの膨張弁開度を大きくし、上記計測した過
熱度が該基準過熱度より小さい場合は、当該ユニットの
膨張弁開度を小さくなるよう制御することを特徴とする
空気調和機である。
Also, in a multi-chamber air conditioner for controlling the flow rate of refrigerant by means of an inverter type compressor and an electric expansion valve, during cooling operation, an individual suction gas temperature sensor disposed in a suction gas pipe of each unit, Measure the temperature of the indoor heat exchanger temperature sensor disposed in the indoor heat exchanger of the unit, determine the temperature difference between the individual intake gas temperature and the indoor heat temperature as the degree of superheat of each unit, and From the operating frequency and the capacity of the indoor unit that is operating, the number of units, determine the reference superheat degree preset as a numerical table or a function for the operating frequency per unit,
If the measured superheat is greater than the reference superheat,
The air conditioner is characterized in that the expansion valve opening of the unit is increased, and when the measured superheat degree is smaller than the reference superheat degree, the expansion valve opening degree of the unit is controlled to be small.

【0012】又、あらかじめ室内ユニットの容量ごとに
能力係数を設定し、1ユニット当たり運転周波数が、
In addition, a capacity coefficient is set in advance for each capacity of the indoor unit, and the operating frequency per unit is

【0013】[0013]

【式1】 (Equation 1)

【0014】のごとく、運転している室内ユニットの能
力係数と台数から算出されることを特徴とする空気調和
機である。
As described above, the air conditioner is calculated from the capacity coefficient and the number of operating indoor units.

【0015】[0015]

【発明の実施の形態】図1に、本願発明を実施する多室
形空気調和機の構成を示す。室外側には、圧縮機21、
室外熱交換器22、室外ファン23、Aユニット用電動
膨張弁24、Bユニット用電動膨張弁25、Cユニット
用電動膨張弁26、四方弁27、油分離器28および油
分離器用キャピラリーチューブ29で構成され、室内側
は、Aユニット用室内熱交換器30、Aユニット用室内
ファン31、Bユニット用室内ファン33、Cユニット
用室内熱交換器34、Cユニット用室内ファン35で構
成されている。又、室外側には、圧縮機21の上部或い
は出口パイプに配された圧縮機吐出温度センサ36、圧
縮機21の吸入側パイプに配された吸入ガス温度センサ
37、室外熱交換器22の冷房時出口パイプに配された
室外熱交換器温度センサ38、冷房時の各ユニットの吸
入パイプに配されたAユニット用吸入ガス温度センサ3
9、Bユニット用吸入ガス温度センサ40、Aユニット
用吸入ガス温度センサ41及び室外制御装置42を具備
しており、室内側には、室内空気吸い込み側に室内温度
センサ43、44、45と、前記室内熱交換器30、3
1、32のパイプに配された室内熱交換器温度センサ4
6、47、48及び室内制御装置49、50、51とを
具備している。
FIG. 1 shows a configuration of a multi-room air conditioner embodying the present invention. On the outdoor side, a compressor 21,
The outdoor heat exchanger 22, the outdoor fan 23, the electric expansion valve 24 for the A unit, the electric expansion valve 25 for the B unit, the electric expansion valve 26 for the C unit, the four-way valve 27, the oil separator 28, and the capillary tube 29 for the oil separator. The indoor side is composed of an indoor heat exchanger 30 for the A unit, an indoor fan 31 for the A unit, an indoor fan 33 for the B unit, an indoor heat exchanger 34 for the C unit, and an indoor fan 35 for the C unit. . Further, on the outdoor side, a compressor discharge temperature sensor 36 disposed on an upper portion or an outlet pipe of the compressor 21, a suction gas temperature sensor 37 disposed on a suction side pipe of the compressor 21, and cooling of the outdoor heat exchanger 22. Outdoor heat exchanger temperature sensor 38 disposed in the outlet pipe, and the A unit intake gas temperature sensor 3 disposed in the intake pipe of each unit during cooling.
9, an intake gas temperature sensor 40 for the B unit, an intake gas temperature sensor 41 for the A unit, and an outdoor control device 42. On the indoor side, indoor temperature sensors 43, 44, 45 on the indoor air suction side; The indoor heat exchangers 30, 3
Indoor heat exchanger temperature sensor 4 disposed on pipes 1 and 32
6, 47, 48 and indoor control devices 49, 50, 51.

【0016】ここで、請求項1記載の空気調和機の制御
について、図2の制御フローをもとに示す。冷房或いは
暖房を行うとき、室内ユニットにリモコンなどによって
設定温度、運転要求が入ると、室温センサにより検出さ
れた室温と設定温度との差に応じて、要求能力コードが
室内制御装置48、49、50から室外制御装置42へ
伝送され、室外制御装置42で各室内ユニットの要求能
力コードを総合して、圧縮機の運転周波数Ftが決めら
れ圧縮機の運転が行われる。ここで、室内ユニットの能
力、運転台数をもとに1ユニット当たり圧縮機の運転周
波数F1、F2、F3を求める。例えば、運転ユニット
の能力、台数に応じて表1のように分配修正係数をあら
かじめ与えておき、該分配修正係数を圧縮機運転周波数
Ftに乗じて1ユニット当たり運転周波数F1、F2、
F3を得ることができる。
Here, the control of the air conditioner according to claim 1 will be described based on the control flow of FIG. When performing a cooling or heating operation, when a set temperature and an operation request are input to the indoor unit by a remote controller or the like, the required capacity code is set to the indoor control devices 48 and 49 according to the difference between the room temperature detected by the room temperature sensor and the set temperature. The operation frequency Ft is transmitted from the control unit 50 to the outdoor control unit 42, and the outdoor control unit 42 integrates the required capacity codes of the indoor units to determine the operating frequency Ft of the compressor and operates the compressor. Here, the operating frequencies F1, F2, and F3 of the compressor per unit are obtained based on the capacity of the indoor units and the number of operating units. For example, a distribution correction coefficient is given in advance as shown in Table 1 in accordance with the capacity and the number of operating units, and the distribution correction coefficient is multiplied by the compressor operating frequency Ft to obtain operating frequencies F1, F2,
F3 can be obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】或いは、1ユニット当たり運転周波数を、
式1から算出するようにしても良い。1ユニット当たり
の運転周波数に対して、室内ユニットの能力ごとに、あ
らかじめ数値表あるいは関数として膨張弁基準開度が設
定されている。表2に数値表の例を示す。
Alternatively, the operating frequency per unit is
You may make it calculate from Formula 1. For the operating frequency per unit, the expansion valve reference opening is set in advance as a numerical table or a function for each capability of the indoor unit. Table 2 shows an example of a numerical table.

【0019】[0019]

【表2】 [Table 2]

【0020】膨張弁基準開度を1ユニット当たりの運転
周波数の関数として近似式を作ることによりメモリ容量
の減少、プログラムの簡素化が可能となる。特に、次式
のように1次式の関数で近似するとプログラムは更に簡
素化になる。
By creating an approximate expression using the expansion valve reference opening as a function of the operating frequency per unit, the memory capacity can be reduced and the program can be simplified. In particular, the program can be further simplified if it is approximated by a linear function as in the following equation.

【0021】X1=A1XF1+B1 X2=A2XF2+B2 ここで、X1:第1能力(3.5kW)ユニットの膨張
弁基準開度(ステップ) X2:第2能力(2.5kW)ユニットの膨張弁基準開
度(ステップ) F1:第1能力(3.5kW)ユニットの1ユニット当
たりの運転周波数(Hz) F2:第2能力(2.5kW)ユニットの1ユニット当
たりの運転周波数(Hz) A1、A2:定数(一次式の傾き) B1、B2:定数(一次式の切片) 上記にて膨張弁基準開度X1、X2、X3を導出した
後、電動膨張弁を基準開度に駆動し、圧縮機を所定の運
転周波数で運転する。
X1 = A1XF1 + B1 X2 = A2XF2 + B2 where X1: expansion valve reference opening of the first capacity (3.5 kW) unit (step) X2: expansion valve reference opening of the second capacity (2.5 kW) unit (step) Step) F1: Operating frequency (Hz) per unit of first capacity (3.5 kW) unit F2: Operating frequency (Hz) per unit of second capacity (2.5 kW) unit A1, A2: Constant ( B1 and B2: constants (intercepts of the primary expression) After deriving the expansion valve reference openings X1, X2 and X3 as described above, the electric expansion valve is driven to the reference opening and the compressor is driven to the predetermined opening. Operate at the operating frequency.

【0022】次に、請求項2記載の空気調和機の制御に
ついて、図3に制御フローを示す。通常、電動膨張弁を
用いてシステムでは、冷凍サイクルの効率化のために最
適過熱度になるように膨張弁制御を行う。冷房運転時、
運転中の各ユニットの吸入ガス管に配された個別吸入ガ
ス温度センサ39、40、41と、各ユニットの室内熱
交換器に配された室内熱交換器温度センサ45、46、
47の温度を計測し、該個別吸入ガス温度Ts,1、T
s,2、Ts,3と該室内熱交換器温度Te,1、T
e,2、Te,3の温度差を各ユニットの過熱度SH
1、SH2、SH3として求め、該過熱度SH1、SH
2、SH3が所定の値よりも大きい場合は、当該ユニッ
トの膨張弁開度を大きくし、該過熱度が所定の値より小
さい場合は、当該ユニットの膨張弁開度を小さくなるよ
うに制御する。ここでは、過熱度SH1、SH2、SH
3と基準過熱度SH0の差Dsh,1、Dsh,2、D
sh,3を計算し、この差の積算値ΣDsh,1、ΣD
sh,2、ΣDsh,3が設定値以上のときは膨張弁開
度を大きくし、設定値以下のときは膨張弁開度を小さく
するという積分制御を用いている。又、圧縮機運転周波
数若しくは運転台数又はこれら両方が変化した場合、変
化する直前の1ユニット当たり運転周波数F1(t
0)、F2(t0)、F3(t0)に対する膨張弁基準
開度X1(t0)、X2(t0)、X3(t0)と、変
化した直後の1ユニット当たりの運転周波数F1(t
1)、F2(t1)、F3(t1)に対する膨張弁基準
開度X1(t1)、X2(t1)、X3(t1)を求
め、これら膨張弁基準開度の差DX1、DX2、DX3
だけ膨張弁開度を変化させる。
Next, FIG. 3 shows a control flow of the control of the air conditioner according to the second aspect. Usually, in a system using an electric expansion valve, the expansion valve is controlled so as to have an optimum degree of superheating for improving the efficiency of the refrigeration cycle. During cooling operation,
Individual intake gas temperature sensors 39, 40, 41 disposed in the intake gas pipes of each unit during operation, and indoor heat exchanger temperature sensors 45, 46, disposed in the indoor heat exchanger of each unit.
47 is measured, and the individual intake gas temperatures Ts, 1, T
s, 2, Ts, 3 and the indoor heat exchanger temperatures Te, 1, T
e, 2, Te, 3 temperature difference, the degree of superheat SH of each unit
1, SH2 and SH3, and the degree of superheat SH1, SH
2. If SH3 is larger than a predetermined value, the expansion valve opening of the unit is increased, and if the degree of superheat is smaller than the predetermined value, control is performed to reduce the expansion valve opening of the unit. . Here, the degree of superheat SH1, SH2, SH
3 and the difference Dsh, 1, Dsh, 2, D between the superheat degree SH0
sh, 3, and the integrated value of the difference ΣDsh, 1, , Dsh
When sh, 2 and と い う Dsh, 3 are equal to or greater than a set value, the expansion valve opening is increased. When the compressor operating frequency or the number of operating units or both of them change, the operating frequency F1 (t
0), F2 (t0), and F3 (t0), the expansion valve reference opening X1 (t0), X2 (t0), X3 (t0), and the operating frequency F1 (t) per unit immediately after the change.
1), expansion valve reference openings X1 (t1), X2 (t1) and X3 (t1) with respect to F2 (t1) and F3 (t1) are obtained, and differences DX1, DX2 and DX3 between these expansion valve reference openings are obtained.
Only the expansion valve opening is changed.

【0023】上記において、請求項4に示すように、1
ユニット当たりの運転周波数に対して1次関数としてあ
らかじめ膨張弁基準開度を設定することにより、圧縮機
運転周波数若しくは運転台数又はこれら両方が変化した
場合、変化する直前の1ユニット当たりの運転周波数
と、変化した直後の1ユニット当たりの運転周波数の差
を算出し、該運転周波数差に所定の係数、即ち1次関数
の傾きを乗じることにより、式2のごとく、膨張弁変更
開度を算出でき、メモリの減少、プログラムの簡素化が
図れる。
In the above, as set forth in claim 4, 1
By setting the expansion valve reference opening in advance as a linear function for the operating frequency per unit, if the compressor operating frequency or the number of operating units or both change, the operating frequency per unit immediately before the change and By calculating the difference in the operating frequency per unit immediately after the change, and multiplying the operating frequency difference by a predetermined coefficient, that is, the slope of the linear function, the expansion valve change opening can be calculated as in Expression 2. , The memory can be reduced, and the program can be simplified.

【0024】[0024]

【式2】 (Equation 2)

【0025】次に、請求項3の空気調和機の制御につい
て、図4に制御フローを示す。暖房運転時、圧縮機21
の吸入ガス管に配された吸入ガス温度センサ37と、室
外熱交換器22の暖房時入口に配された室外熱交換器温
度センサ33の温度を計測し、吸入ガス温度Tsと室外
熱交換器温度Thの温度差を過熱度SHとして求め、該
過熱度が所定の値より小さい場合は、当該ユニットの膨
張弁開度を大きくし、該過熱度SHが所定の値より小さ
い場合は、当該ユニットの膨張弁基準開度を小さくなる
よう制御する。冷房と同様に、過熱度SHと基準過熱度
SH0の差Dshを計算し、この差の積算値ΣDshが
設定値以上のときは膨張弁開度を大きくし、設定値以下
のときは膨張弁開度を小さくするという積分制御を用い
ている。圧縮機運転周波数Ft若しくは運転台数又はこ
れらの両方が変化した場合、運転中のユニットは、変化
する直前の1ユニット当たりの運転周波数F1(t
0)、F2(t0)、F3(t0)に対する膨張弁基準
開度X1(t0)、X2(t0)、X3(t0)と、変
化した直後の1ユニット当たりの運転周波数F1(t
1)、F2(t1)、F3(t1)に対する膨張弁基準
開度X1(t1)、X2(t1)、X3(t1)を求
め、これら膨張弁基準開度の差DX1、DX2、DX3
だけ膨張弁開度を変化させる。又、停止状態から運転を
開始するユニットに対しては、前記運転中ユニットの変
化後の膨張弁開度から室内ユニット容量で補正した膨張
弁開度を導出して、該膨張弁開度で運転を開始する(同
じ容量の室内ユニットの場合、同じ膨張弁開度で運転を
開始する)。これにより、運転継続のユニットと、停止
状態から運転を開始するユニットとの冷媒の分配が適正
に行われる。
Next, FIG. 4 shows a control flow of the control of the air conditioner of the third aspect. During the heating operation, the compressor 21
The temperature of the suction gas temperature Ts and the temperature of the outdoor heat exchanger are measured by measuring the temperature of the suction gas temperature Ts and the temperature of the outdoor heat exchanger 33 disposed at the inlet of the outdoor heat exchanger 22 during heating. The temperature difference of the temperature Th is obtained as the degree of superheat SH. If the degree of superheat is smaller than a predetermined value, the expansion valve opening of the unit is increased. If the degree of superheat SH is smaller than the predetermined value, the unit Is controlled so as to reduce the reference opening degree of the expansion valve. Similarly to the cooling, the difference Dsh between the superheat degree SH and the reference superheat degree SH0 is calculated. When the integrated value ΣDsh of the difference is equal to or larger than the set value, the expansion valve opening is increased. Integral control to reduce the degree is used. When the compressor operating frequency Ft and / or the number of operating units change, the operating unit determines the operating frequency F1 (t) per unit immediately before the change.
0), F2 (t0), and F3 (t0), the expansion valve reference opening X1 (t0), X2 (t0), X3 (t0), and the operating frequency F1 (t) per unit immediately after the change.
1), expansion valve reference openings X1 (t1), X2 (t1) and X3 (t1) with respect to F2 (t1) and F3 (t1) are obtained, and differences DX1, DX2 and DX3 between these expansion valve reference openings are obtained.
Only the expansion valve opening is changed. For the unit that starts operation from the stop state, the expansion valve opening corrected by the indoor unit capacity is derived from the expansion valve opening after the change of the operating unit, and the operation is performed with the expansion valve opening. (In the case of an indoor unit having the same capacity, the operation is started with the same expansion valve opening degree). Thereby, the distribution of the refrigerant between the unit that continues the operation and the unit that starts the operation from the stop state is appropriately performed.

【0026】次に、請求項5の空気調和機の説明を示
す。前記に示すように、冷房運転時、各ユニットの吸入
ガス管に配された個別吸入ガス温度センサと、各ユニッ
トの室内熱交換器に配された室内熱交換器温度センサの
温度を計測し、該個別吸入ガス温度と該室内熱交換器温
度の温度差を各ユニットの過熱度として求めている。こ
こで、圧縮機運転周波数及び運転している室内ユニット
の能力、台数から1ユニット当たりの運転周波数を算出
するが、基準過熱度が1ユニット当たりの運転周波数に
対して数値表又は関数としてあらかじめ設定されてい
る。表3に1例を示す。
Next, a description will be given of an air conditioner according to a fifth aspect. As described above, during the cooling operation, the individual intake gas temperature sensors arranged in the intake gas pipe of each unit and the temperature of the indoor heat exchanger temperature sensor arranged in the indoor heat exchanger of each unit are measured, The temperature difference between the individual intake gas temperature and the indoor heat exchanger temperature is determined as the degree of superheating of each unit. Here, the operating frequency per unit is calculated from the compressor operating frequency, the capacity and the number of operating indoor units, and the reference superheat degree is set in advance as a numerical table or a function for the operating frequency per unit. Have been. Table 3 shows an example.

【0027】[0027]

【表3】 [Table 3]

【0028】これにより、基準過熱度を求め、上記計測
した過熱度が該基準過熱度より大きい場合は、当該ユニ
ットの膨張弁開度を大きくし、上記計測した過熱度が該
基準過熱度より小さい場合は、当該ユニットの膨張弁開
度を小さくなるよう制御する。
Thus, the reference superheat degree is obtained, and if the measured superheat degree is larger than the reference superheat degree, the expansion valve opening of the unit is increased, and the measured superheat degree is smaller than the reference superheat degree. In such a case, the expansion valve opening of the unit is controlled to be small.

【0029】[0029]

【発明の効果】本願発明の多室形空気調和機は、インバ
ータ式圧縮機の運転周波数及び運転している室内ユニッ
トの能力、台数から1ユニット当たり運転周波数を算出
し、該1ユニット当たり運転周波数に対して数値表又は
関数としてあらかじめ設定されている膨張弁基準開度に
て運転を行う。運転周波数、運転台数が変化した場合、
1ユニット当たり運転周波数の変化量に対応する膨張弁
基準開度の差を求め、膨張弁開度を変更する。基準過熱
度を1ユニット当たりの運転周波数に対して設定してい
る。
According to the multi-room air conditioner of the present invention, the operating frequency per unit is calculated from the operating frequency of the inverter type compressor and the capacity and number of operating indoor units, and the operating frequency per unit is calculated. Is operated at the expansion valve reference opening preset as a numerical table or a function. When the operating frequency and the number of operating units change,
The difference of the expansion valve reference opening corresponding to the change amount of the operating frequency per unit is obtained, and the expansion valve opening is changed. The reference superheat degree is set for the operating frequency per unit.

【0030】以上により、少ないメモリ容量で、簡単な
制御方法で効率的な運転制御が可能となる。
As described above, efficient operation control is possible with a small memory capacity and a simple control method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明を実施した空気調和機の構成図であ
る。
FIG. 1 is a configuration diagram of an air conditioner embodying the present invention.

【図2】本願発明を実施した空気調和機の制御方法を示
すフローチャートである。
FIG. 2 is a flowchart showing a method for controlling an air conditioner embodying the present invention.

【図3】本願発明の他の実施例の空気調和機の制御方法
を示すフローチャートである。
FIG. 3 is a flowchart illustrating a control method of an air conditioner according to another embodiment of the present invention.

【図4】本願発明の他の実施例の空気調和機の制御方法
を示すフローチャートである
FIG. 4 is a flowchart illustrating a control method of an air conditioner according to another embodiment of the present invention.

【図5】従来の空気調和機の構成図である。FIG. 5 is a configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

21 圧縮機 22 室外熱交換器 24,25,26 電動膨張弁 27 四方弁 28 油分離器 30,32,34 室内熱交換器 37 吸入ガス温度センサ 38 室外熱交換器温度センサ 39,40,41 個別吸入ガス温度センサ 42 室外制御装置 43,44,45 室温センサ 46,47,48 室内熱交換器温度センサ 49,50,51 室内制御装置 DESCRIPTION OF SYMBOLS 21 Compressor 22 Outdoor heat exchanger 24,25,26 Electric expansion valve 27 Four-way valve 28 Oil separator 30,32,34 Indoor heat exchanger 37 Intake gas temperature sensor 38 Outdoor heat exchanger temperature sensor 39,40,41 Individual Intake gas temperature sensor 42 Outdoor control device 43, 44, 45 Room temperature sensor 46, 47, 48 Indoor heat exchanger temperature sensor 49, 50, 51 Indoor control device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 インバータ式圧縮機および電動膨張弁に
より、冷媒流量制御を行う多室形空気調和機において、
インバータ式圧縮機の運転周波数および運転している室
内ユニットの能力、台数から1ユニット当たり運転周波
数を算出し、該1ユニット当たり運転周波数に対して数
値表或いは関数としてあらかじめ設定されている膨張弁
基準開度を導出し、運転要求のあるユニットの膨張弁初
期開度を該膨張弁基準開度にて運転を開始することを特
徴とする空気調和機。
1. A multi-chamber air conditioner in which a refrigerant flow rate is controlled by an inverter type compressor and an electric expansion valve,
The operating frequency per unit is calculated from the operating frequency of the inverter type compressor and the capacity and the number of operating indoor units, and an expansion valve standard preset as a numerical table or a function for the operating frequency per unit is calculated. An air conditioner which derives an opening degree and starts operation at an expansion valve initial opening degree of an expansion valve of a unit requiring an operation, with the expansion valve reference opening degree.
【請求項2】 冷房運転時、各ユニットの吸入ガス管に
配された個別吸入ガス温度センサと、各ユニットの室内
熱交換器に配された室内熱交換器センサの温度を計測
し、該個別吸入ガス温度と該室内熱交換器温度の温度差
を各ユニットの過熱度として求め、該過熱度が所定の値
より大きい場合は、当該ユニットの膨張弁開度を大きく
し、該過熱度が所定の値より小さい場合は、当該ユニッ
トの膨張弁開度を小さくなるよう制御するとともに、圧
縮機運転周波数若しくは運転台数又はこれら両方が変化
した場合、変化する直前の1ユニット当たり運転周波数
に対する膨張弁基準開度と、変化した直後の1ユニット
当たり運転周波数に対する膨張弁基準開度を求め、これ
ら膨張弁基準開度の差の分だけ膨張弁開度を変化させる
ことを特徴とする請求項1記載の空気調和機。
2. During cooling operation, the temperature of an individual intake gas temperature sensor disposed in an intake gas pipe of each unit and the temperature of an indoor heat exchanger sensor disposed in an indoor heat exchanger of each unit are measured. The temperature difference between the intake gas temperature and the indoor heat exchanger temperature is determined as the degree of superheat of each unit. If the degree of superheat is greater than a predetermined value, the degree of opening of the expansion valve of the unit is increased, and the degree of superheat is reduced to a predetermined value. Is smaller than the value, the expansion valve opening of the unit is controlled to be small, and when the compressor operating frequency or the number of operating units or both are changed, the expansion valve reference to the operating frequency per unit immediately before the change is made. An opening and an expansion valve reference opening corresponding to an operating frequency per unit immediately after the change are obtained, and the expansion valve opening is changed by an amount corresponding to a difference between these expansion valve reference openings. Item 7. The air conditioner according to Item 1.
【請求項3】 暖房運転時、圧縮機の吸入ガス管に配さ
れた吸入ガス温度センサと、室外熱交換器に配された室
外熱交換器温度センサの温度を計測し、吸入ガス温度と
該室外熱交換器温度の温度差を過熱度として求め、該過
熱度が所定の値より大きい場合は、当該ユニットの膨張
弁開度を大きくし、該過熱度が所定の値より小さい場合
は、当該ユニットの膨張弁開度を小さくなるよう制御す
るとともに、圧縮機運転周波数若しくは運転台数又はこ
れら両方が変化した場合、運転中のユニットは、変化す
る直前の1ユニット当たり運転周波数に対する膨張弁基
準開度を求め、これら膨張弁基準開度の差の分だけ膨張
弁開度を変化させ、運転を開始するユニットに対しては
前記運転中ユニットの変化後の膨張弁開度より容量補正
した膨張弁開度を導出し、該膨張弁開度で運転を開始す
ることを特徴とする請求項1記載の空気調和機。
3. During a heating operation, a temperature of an intake gas temperature sensor arranged in an intake gas pipe of the compressor and a temperature of an outdoor heat exchanger temperature sensor arranged in an outdoor heat exchanger are measured, and the temperature of the intake gas is measured. Obtain the temperature difference of the outdoor heat exchanger temperature as the degree of superheat, if the degree of superheat is greater than a predetermined value, increase the expansion valve opening of the unit, if the degree of superheat is less than the predetermined value, When the expansion valve opening of the unit is controlled to be small and the compressor operating frequency and / or the number of operating units change, the operating unit determines the expansion valve reference opening relative to the operating frequency per unit immediately before the change. The expansion valve opening is changed by an amount corresponding to the difference between these expansion valve reference opening degrees, and for the unit to start operation, the expansion valve opening whose capacity has been corrected based on the expansion valve opening after the change of the operating unit is changed. Guide the degree The air conditioner according to claim 1, wherein the operation is started at the expansion valve opening degree.
【請求項4】 インバータ式圧縮機の運転周波数及び運
転している室内ユニットの能力、台数から1ユニット当
たり運転周波数を算出し、該1ユニット当たり運転周波
数に対して1次関数としてあらかじめ設定されている膨
張弁基準開度を導出し、圧縮機運転周波数若しくは運転
台数又はこれら両方が変化した場合、変化する直前の1
ユニット当たり運転周波数と、変化した直後の1ユニッ
ト当たり運転周波数の差を算出し、該運転周波数差に所
定の係数を乗じた値の分だけ膨張弁開度を変化させるこ
とを特徴とする請求項2又は請求項3記載の空気調和
機。
4. An operating frequency per unit is calculated from the operating frequency of the inverter type compressor, the capacity and the number of operating indoor units, and the operating frequency per unit is preset as a linear function with respect to the operating frequency per unit. When the compressor operating frequency, the number of operating units, or both of them are changed, one of the values immediately before the change is derived.
The difference between the operating frequency per unit and the operating frequency per unit immediately after the change is calculated, and the opening degree of the expansion valve is changed by a value obtained by multiplying the operating frequency difference by a predetermined coefficient. The air conditioner according to claim 2 or 3.
【請求項5】 インバータ式圧縮機および電動膨張弁に
より、冷媒流量制御を行う多室形空気調和機において、
冷房運転時、各ユニットの吸入ガス管に配された個別吸
入ガス温度センサと、各ユニットの室内熱交換器に配さ
れた室内熱交換器温度センサの温度を計測し、該個別吸
入ガス温度と該室内熱温度の温度差を各ユニットの過熱
度として求めるとともに、インバータ式圧縮機の運転周
波数および運転している室内ユニットの能力、台数から
1ユニット当たり運転周波数に対して数値表又は関数と
してあらかじめ設定されている基準過熱度を求め、上記
計測した過熱度が該基準過熱度より大きい場合は、当該
ユニットの膨張弁開度を大きくし、上記計測した過熱度
が該基準過熱度より小さい場合は、当該ユニットの膨張
弁開度を小さくなるように制御することを特徴とする空
気調和機。
5. A multi-chamber air conditioner in which a refrigerant flow rate is controlled by an inverter type compressor and an electric expansion valve,
During the cooling operation, the temperature of the individual intake gas temperature sensor disposed on the intake gas pipe of each unit and the temperature of the indoor heat exchanger temperature sensor disposed on the indoor heat exchanger of each unit are measured. The temperature difference of the indoor heat temperature is obtained as the degree of superheating of each unit, and the operating frequency of the inverter type compressor and the capacity of the operating indoor units and the number of the indoor units are calculated as a numerical table or a function with respect to the operating frequency per unit. Obtain the set reference superheat degree, if the measured superheat degree is larger than the reference superheat degree, increase the expansion valve opening of the unit, and if the measured superheat degree is smaller than the reference superheat degree, An air conditioner characterized by controlling an opening degree of an expansion valve of the unit to be small.
【請求項6】 あらかじめ室内ユニットの容量ごとに能
力係数を設定し、1ユニット当たり運転周波数が、 【式1】 のごとく、運転している室内ユニットの能力係数と台数
から算出されることを特徴とする請求項1乃至請求項5
記載の空気調和機。
6. A capacity coefficient is set in advance for each capacity of an indoor unit, and an operation frequency per unit is expressed by the following equation. The calculation is made from the capacity coefficient and the number of operating indoor units as in (1) to (5).
The air conditioner as described.
JP2000090494A 2000-03-29 2000-03-29 Refrigerant control of multi-room air conditioner Expired - Fee Related JP3686815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090494A JP3686815B2 (en) 2000-03-29 2000-03-29 Refrigerant control of multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090494A JP3686815B2 (en) 2000-03-29 2000-03-29 Refrigerant control of multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2001272114A true JP2001272114A (en) 2001-10-05
JP3686815B2 JP3686815B2 (en) 2005-08-24

Family

ID=18606097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090494A Expired - Fee Related JP3686815B2 (en) 2000-03-29 2000-03-29 Refrigerant control of multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP3686815B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor
JP2007107815A (en) * 2005-10-13 2007-04-26 Hoshizaki Electric Co Ltd Cooling storage and operation method thereof
JP2010529409A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling refrigerant distribution
WO2011134467A3 (en) * 2010-04-27 2012-01-12 Danfoss A/S A method for operating a vapour compression system
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
JP2014153007A (en) * 2013-02-12 2014-08-25 Sanden Corp Showcase cooling device
US9644872B2 (en) 2011-10-24 2017-05-09 Mitsubishi Electric Corporation Heat pump system, control device, temperature adjustment method, and program
CN114963547A (en) * 2021-05-25 2022-08-30 青岛海尔新能源电器有限公司 Water heater control method, device, equipment and storage medium
JP2023506167A (en) * 2019-12-10 2023-02-15 北京京儀自動化装備技術股▲ふん▼有限公司 ELECTRONIC EXPANSION VALVE CONTROL METHOD, DEVICE, ELECTRONIC DEVICE AND STORAGE MEDIUM
JP7487698B2 (en) 2021-03-31 2024-05-21 株式会社デンソー Refrigeration Cycle Equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180052A (en) * 1987-01-20 1988-07-25 松下冷機株式会社 Multi-chamber type air conditioner
JPH0526530A (en) * 1991-07-15 1993-02-02 Toshiba Corp Air-conditioner
JPH1151500A (en) * 1997-08-01 1999-02-26 Hitachi Ltd Heat pump type air-conditioner
JPH11201564A (en) * 1998-01-13 1999-07-30 Matsushita Refrig Co Ltd Multiroom type air conditioner
JPH11248282A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Multi-room air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180052A (en) * 1987-01-20 1988-07-25 松下冷機株式会社 Multi-chamber type air conditioner
JPH0526530A (en) * 1991-07-15 1993-02-02 Toshiba Corp Air-conditioner
JPH1151500A (en) * 1997-08-01 1999-02-26 Hitachi Ltd Heat pump type air-conditioner
JPH11201564A (en) * 1998-01-13 1999-07-30 Matsushita Refrig Co Ltd Multiroom type air conditioner
JPH11248282A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Multi-room air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor
JP2007107815A (en) * 2005-10-13 2007-04-26 Hoshizaki Electric Co Ltd Cooling storage and operation method thereof
JP4584107B2 (en) * 2005-10-13 2010-11-17 ホシザキ電機株式会社 Cooling storage
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
US8769976B2 (en) 2007-06-12 2014-07-08 Danfoss A/S Method for controlling a refrigerant distribution
JP2010529409A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling refrigerant distribution
WO2011134467A3 (en) * 2010-04-27 2012-01-12 Danfoss A/S A method for operating a vapour compression system
US9243819B2 (en) 2010-04-27 2016-01-26 Danfoss A/S Method for operating a vapour compression system
US9644872B2 (en) 2011-10-24 2017-05-09 Mitsubishi Electric Corporation Heat pump system, control device, temperature adjustment method, and program
JP2014153007A (en) * 2013-02-12 2014-08-25 Sanden Corp Showcase cooling device
JP2023506167A (en) * 2019-12-10 2023-02-15 北京京儀自動化装備技術股▲ふん▼有限公司 ELECTRONIC EXPANSION VALVE CONTROL METHOD, DEVICE, ELECTRONIC DEVICE AND STORAGE MEDIUM
JP7389906B2 (en) 2019-12-10 2023-11-30 北京京儀自動化装備技術股▲ふん▼有限公司 Electronic expansion valve control method, device, electronic device, and storage medium
JP7487698B2 (en) 2021-03-31 2024-05-21 株式会社デンソー Refrigeration Cycle Equipment
CN114963547A (en) * 2021-05-25 2022-08-30 青岛海尔新能源电器有限公司 Water heater control method, device, equipment and storage medium
CN114963547B (en) * 2021-05-25 2023-12-12 青岛海尔新能源电器有限公司 Water heater control method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP3686815B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
EP1632737A2 (en) Air-conditioner and method for controlling driving thereof
WO2008016227A1 (en) Method for controlling start-up operation of air conditioner
KR20050099799A (en) Lev control method of cooling cycle apparatus
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JP3686815B2 (en) Refrigerant control of multi-room air conditioner
JP2006145204A (en) Air conditioner
JP3816782B2 (en) Air conditioner
JP2005024153A (en) Method of controlling operating frequency of compressor of multi-chamber air conditioner
KR100619733B1 (en) Driving control method for unitary air conditioner
JP2005016782A (en) Method for controlling expansion valve for multi-room type air conditioner
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP2006194526A (en) Air conditioner
JPH11248282A (en) Multi-room air conditioner
US20200284463A1 (en) Damper control systems and methods for a zoning system
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JP2960237B2 (en) Air conditioner
JP2002061979A (en) Cooling and heating system
US11635223B2 (en) Recovery mode algorithm for two stage HVAC equipment
JPH1038350A (en) Air conditioner and controlling method thereof
US11656590B2 (en) Staging algorithm for two stage heating/cooling equipment
KR100988617B1 (en) Air-Condition and the control method for the same
JPS63220032A (en) Air conditioner
JP6245207B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees