JP2001267623A - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JP2001267623A
JP2001267623A JP2000081141A JP2000081141A JP2001267623A JP 2001267623 A JP2001267623 A JP 2001267623A JP 2000081141 A JP2000081141 A JP 2000081141A JP 2000081141 A JP2000081141 A JP 2000081141A JP 2001267623 A JP2001267623 A JP 2001267623A
Authority
JP
Japan
Prior art keywords
light receiving
substrate
layer
semiconductor
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000081141A
Other languages
Japanese (ja)
Inventor
Hiroaki Okagawa
広明 岡川
Kazuyuki Tadatomo
一行 只友
Yoichiro Ouchi
洋一郎 大内
Masahiro Koto
雅弘 湖東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000081141A priority Critical patent/JP2001267623A/en
Publication of JP2001267623A publication Critical patent/JP2001267623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid various kinds of problems caused by the use of a mask layer, to simplify a manufacturing process, and to eliminate a problem of warping which becomes a problem when a fine electrode pattern is formed in a light receiving device. SOLUTION: The crystal growth surface of a substrate 1 is made uneven and a crystal is grown exclusively from the top portions of projections of the uneven surface to form a semiconductor layer 2, when cavities 13 are formed by lateral growth to prevent the dislocation lines from extending. Further, a light receiving layer 3 is grown over the semiconductor layer 2, and a comb- shaped Schottky electrode 41 is formed to constitute a semiconductor light receiving device. Here, since the semiconductor layer 2 is grown with the crystal growth surface of the substrate 1 made uneven, the layer 2 can be reduced in thickness to eliminate the problem of warpage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、半導体受光素子に
関し、特に転位欠陥が生じ易い半導体材料を用いる場合
に有用な構造及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving device, and more particularly to a structure and a method useful for using a semiconductor material in which dislocation defects easily occur.

【0002】[0002]

【従来の技術】GaN系材料を結晶成長する場合、Ga
N系材料は格子整合する基板がないためにサファイア、
SiC、スピネル、最近ではSiなどの格子整合しない
基板を用いている。しかしながら、格子整合しないこと
に起因し作製したGaNの膜中には1010個/cm2
の転位が存在している。また、近年GaN系材料を用い
た受光素子の開発も始まっており、受光素子で問題とな
る暗電流も上記した転位が原因であるという報告があ
る。
2. Description of the Related Art When a GaN-based material is crystal-grown, Ga
N-type materials have no lattice-matched substrate, so sapphire,
A substrate that does not lattice match, such as SiC, spinel, or recently Si, is used. However, as many as 10 10 dislocations / cm 2 exist in the GaN film produced due to lack of lattice matching. In recent years, the development of a light-receiving element using a GaN-based material has begun, and there is a report that dark current, which is a problem in the light-receiving element, is caused by the above-described dislocation.

【0003】[0003]

【発明が解決しようとする課題】この転位密度低減を図
る方法としては、例えばGaN系半導体結晶等を、バッ
ファ層及びGaN基板上に気相成長するにあたり、前記
基板上に部分的なマスクを設けて選択成長する事でラテ
ラル方向の結晶成長を行わせ、転位密度を低減した高品
質な結晶を得る方法が提案されている(例えば特開平1
0−312971号公報)。実際にこの方法を受光素子
の結晶成長に応用し、転位に対応すると考えられる暗電
流の低減を図った報告がある(Electronics Letters 19
th August 1999 Vol.35 No.17 p1488)。
As a method of reducing the dislocation density, for example, when a GaN-based semiconductor crystal or the like is vapor-phase grown on a buffer layer and a GaN substrate, a partial mask is provided on the substrate. There has been proposed a method in which lateral growth is performed by selective growth to obtain a high-quality crystal with reduced dislocation density (see, for example,
0-312971). There is a report in which this method was actually applied to the crystal growth of a light-receiving element to reduce dark current which is considered to correspond to dislocation (Electronics Letters 19
th August 1999 Vol.35 No.17 p1488).

【0004】しかし、マスク層材料として汎用されてい
るものはSiO2なのであるが、その上に結晶成長層が
積重されるとSi成分がこの結晶成長層中に移行すると
いう、いわゆるオートドーピング汚染の問題があること
が判明した。さらに、Alを含む半導体材料、例えばA
lGaNをSiO2マスク層付き基板上に成長させた場
合、マスク層上にも結晶成長し、選択成長自体が効果的
に行えないという問題もあった。
However, SiO 2 is commonly used as a mask layer material, but when a crystal growth layer is stacked thereon, the Si component migrates into the crystal growth layer, so-called auto-doping contamination. Turned out to be a problem. Further, a semiconductor material containing Al, for example, A
When lGaN is grown on a substrate with a SiO 2 mask layer, there is also a problem that crystals grow on the mask layer and selective growth itself cannot be performed effectively.

【0005】このような問題を解消する試みとして、S
iCのベース基板上にバッファ層及びGaN層を設けた
基板に対して、SiC層にまで至るストライプ溝加工を
施して凸部を形成し、この凸部の上方部に位置すること
になるGaN層から結晶成長させる方法が提案されてい
る(MRS 1998 Fall Meeting予稿集G3.38)。この方
法によればSiO2マスク層無しで選択成長させる事も
出来、上述のSiO2マスクを用いることに起因する各
種の問題を解消することが可能となる。
As an attempt to solve such a problem, S
A substrate provided with a buffer layer and a GaN layer on an iC base substrate is subjected to stripe groove processing up to the SiC layer to form a convex portion, and the GaN layer located above the convex portion (MRS 1998 Fall Meeting Proceedings G3.38) has been proposed. According to this method, selective growth can be performed without the SiO 2 mask layer, and various problems caused by using the above-described SiO 2 mask can be solved.

【0006】上記方法は、ベース基板としてサファイア
基板を使用する事ができその方法も開示されている(例
えば、特開平11−191659号公報)。しかしなが
ら上記方法では、サファイアベース基板上にバッファ層
材料ならびにGaN系材料を結晶成長させ、一旦成長炉
から取り出し溝加工を施し、その後再び結晶成長を行う
というステップが必要となることから、製造プロセスが
複雑化するという新たな不都合が発生し、作業工程が多
くなりコストがかかるなどの問題を有していた。
In the above method, a sapphire substrate can be used as a base substrate, and a method thereof is also disclosed (for example, JP-A-11-191659). However, the above-described method requires a step of growing a buffer layer material and a GaN-based material on a sapphire base substrate, crystallizing the buffer layer once, removing the groove from the growth furnace, and then performing crystal growth again. There has been a problem that new inconvenience such as complication occurs, the number of work steps increases, and the cost increases.

【0007】更に、結晶成長を2回行なうことによっ
て、成長膜厚が自ずと厚くなってしまうことから、熱膨
張係数差に起因した反りの問題が顕在化し、フォトリソ
グラフ工程においてパターン合わせが精度良く行なえな
いという問題があった。特に櫛型電極を持つ受光素子に
おいては、その電極幅を細く長く作製する場合があり、
この場合に反りがあると所期の電極パターン形成に不具
合が生ずるという問題があった。
[0007] Furthermore, since the crystal growth is performed twice, the thickness of the grown film naturally increases, so that the problem of warpage due to the difference in thermal expansion coefficient becomes apparent, and pattern matching can be performed accurately in the photolithographic process. There was no problem. Particularly, in the case of a light receiving element having a comb-shaped electrode, the electrode width may be made thin and long,
In this case, if there is a warp, there is a problem that a problem arises in formation of an intended electrode pattern.

【0008】従って本発明は上記問題に鑑み、低転位密
度化した半導体を用い受光素子を作製する場合、マスク
層を用いる事に起因する種々の問題を回避し、かつ製造
工程の簡略化を図ることを目的としている。また、可視
光をカットする紫外線受光素子としてはAlGaNが好
適であるが、ELOなどの選択成長ではAlGaN成長
が困難であった問題を解決する事を目的としている。さ
らに熱膨張係数差に基づく反りやクラックの発生を押さ
えることを目的としている。
In view of the above problems, the present invention avoids various problems caused by using a mask layer and simplifies the manufacturing process when a light receiving element is manufactured using a semiconductor having a low dislocation density. It is intended to be. Also, AlGaN is suitable as an ultraviolet light receiving element for cutting visible light, but it is intended to solve the problem that AlGaN growth was difficult in selective growth such as ELO. It is another object of the present invention to suppress the occurrence of warpage and cracks based on the difference in thermal expansion coefficient.

【0009】[0009]

【課題を解決するための手段】本発明の半導体受光素子
は、基板と、該基板上に直接的又は間接的に気相成長さ
れた半導体結晶からなる半導体受光層とを備える半導体
受光素子であって、前記基板の結晶成長面が凹凸面とさ
れ、前記半導体受光層若しくは該受光層と基板の間に介
在される半導体層は、前記凹凸面における凸部の上方部
から専ら結晶成長されたものであることを特徴とするも
のである。
The semiconductor light receiving device of the present invention is a semiconductor light receiving device having a substrate and a semiconductor light receiving layer made of a semiconductor crystal directly or indirectly vapor-phase grown on the substrate. The crystal growth surface of the substrate is an uneven surface, and the semiconductor light-receiving layer or the semiconductor layer interposed between the light-receiving layer and the substrate is formed by crystal growth exclusively from a portion above a convex portion on the uneven surface. It is characterized by being.

【0010】上記受光素子がショットキー障壁型の受光
素子であって、上記受光層の受光面にショットキー電極
が形成されたものであることが好ましい。更に、上記シ
ョットキー電極が、櫛形の電極パターンを備えているこ
とが望ましい。
It is preferable that the light receiving element is a Schottky barrier type light receiving element, wherein a Schottky electrode is formed on a light receiving surface of the light receiving layer. Further, it is preferable that the Schottky electrode has a comb-shaped electrode pattern.

【0011】[0011]

【作用】本発明は、バッファ層等すら形成していない状
態の基板に対して凹凸面を設けることで、結晶成長当初
から実質的に低転位密度領域を形成可能なラテラル成長
を起こす素地面を予め提供しておく点に特徴を有する。
即ち、気相成長させた場合、成長初期には基板表面全体
で結晶成長が起こり得るが、やがて凸部の上方部での成
長が優位となり、この結果凹部に原材料が拡散しにくく
なり、ひいては凸部の上方部から専ら成長された層にて
上記の凹凸面が覆われるというものである。この凸部の
成長ではC軸と垂直方向のいわゆるラテラル成長が起
き、実質的に低転位密度領域の形成がマスク層レス(従
来のようにマスク層を用いることなしに)で達成される
ことになる。そして成長が、基板直上に位置する層(例
えばバッファ層)の結晶成長から行い得ることになるの
で、その後の成長工程を連続して行うことができるもの
である。この様にしたことで上記の凹凸面を覆うのに要
する膜の厚みが薄くて済む結果、熱膨張係数などに起因
する反りの発生を抑制することができるものである。こ
のためフォトリソグラフ工程で微細なパターン作製を必
要とする受光素子などを精度良く作製することが可能と
なるものである。
According to the present invention, by providing an uneven surface on a substrate in which even a buffer layer or the like is not formed, a substrate which causes lateral growth capable of forming a substantially low dislocation density region from the beginning of crystal growth can be obtained. The feature is that it is provided in advance.
That is, in the case of vapor phase growth, crystal growth can occur on the entire substrate surface in the initial stage of growth, but growth in the upper part of the convex part becomes dominant, and as a result, the raw material is hardly diffused into the concave part, and thus the convex part is formed. The uneven surface is covered with a layer exclusively grown from the upper part of the part. In the growth of the projections, so-called lateral growth in the direction perpendicular to the C-axis occurs, and the formation of a low dislocation density region can be substantially achieved without a mask layer (without using a mask layer as in the related art). Become. Since the growth can be performed from the crystal growth of a layer (for example, a buffer layer) located immediately above the substrate, the subsequent growth process can be performed continuously. By doing so, the thickness of the film required to cover the above-mentioned uneven surface can be made thin, so that the occurrence of warpage due to the coefficient of thermal expansion or the like can be suppressed. For this reason, it is possible to accurately manufacture a light receiving element or the like that requires a fine pattern in a photolithographic process.

【0012】[0012]

【発明の実施の態様】以下図面に基いて、本発明の実施
態様につき詳細に説明する。図1(a)乃至(c)は本
発明に用いる半導体層の結晶成長状態を説明するための
断面図である。図において、1は基板であり、2は該基
板1上に気相成長された半導体層をそれぞれ示してい
る。基板1の結晶成長面には凸部11及び凹部12が形
成されており、前記凸部11の上方部から専ら結晶成長
が行われるよう構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. 1A to 1C are cross-sectional views illustrating a crystal growth state of a semiconductor layer used in the present invention. In the figure, reference numeral 1 denotes a substrate, and 2 denotes a semiconductor layer grown on the substrate 1 by vapor phase. A convex portion 11 and a concave portion 12 are formed on the crystal growth surface of the substrate 1, and the crystal growth is performed exclusively from above the convex portion 11.

【0013】本発明でいう基板とは、各種の半導体結晶
層を成長させるためのベースとなる基板であって、格子
整合のためのバッファ層等も未だ形成されていない状態
のものを言う。このような基板としては、サファイア
(C面、A面、R面)、SiC(6H、4H、3C)、
GaN、Si、スピネル、ZnO,GaAs,NGOな
どを用いることができるが、発明の目的に対応するなら
ばこのほかの材料を用いてもよい。またこれら基板から
offしたものを用いてもよい。
The term "substrate" used in the present invention refers to a substrate serving as a base for growing various semiconductor crystal layers, in which a buffer layer or the like for lattice matching has not been formed yet. Such substrates include sapphire (C plane, A plane, R plane), SiC (6H, 4H, 3C),
GaN, Si, spinel, ZnO, GaAs, NGO, and the like can be used, but other materials may be used as long as they correspond to the object of the invention. In addition, those off from these substrates may be used.

【0014】基板1上に成長される半導体結晶としては
種々の半導体材料を用いることができ、AlxXGa
1-x-yInyN(0≦x≦1,0≦y≦1)ではx、yの
組成比を変化させたGaN、Al0.5Ga0.5N、In
0.5Ga0.5Nなどが例示できる。
Various semiconductor materials can be used as the semiconductor crystal grown on the substrate 1, and Al x XGa
In 1-xy In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), GaN, Al 0.5 Ga 0.5 N, In in which the composition ratio of x and y is changed
0.5 Ga 0.5 N can be exemplified.

【0015】中でも、AlGaN等のAlを含有する半
導体材料の場合、従来のマスク方式ではSiO2マスク
層上に成長するという問題があったが、本発明によると
マスクレス化によりかかる問題が解消されるため、従来
できなかったAlGaNのラテラル成長が可能となり低
転位で高品質な膜の成長が基板直上から可能となる。こ
のようなAlGaNで受光素子を作製した場合、可視光
に対する感度を持たないため紫外線のみに反応する受光
素子等を作製する場合特に好適である。
Above all, in the case of a semiconductor material containing Al, such as AlGaN, the conventional mask method has a problem of growing on a SiO 2 mask layer. However, according to the present invention, such a problem is solved by maskless operation. Therefore, lateral growth of AlGaN, which could not be performed conventionally, becomes possible, and a high-quality film with low dislocations can be grown directly above the substrate. When the light-receiving element is made of AlGaN, the light-receiving element has no sensitivity to visible light, and is particularly suitable for manufacturing a light-receiving element that responds only to ultraviolet light.

【0016】基板1の結晶成長面に形成される凸部11
は、その上方部から専ら結晶成長が行われるような形状
とすると有効である。「上方部から専ら結晶成長が行わ
れる」とは、凸部11の頂点ないし頂面及びその近傍で
の結晶成長が優勢に行い得る状態をいい、成長初期には
凹部での成長が生じてもよいが最終的には凸部11の結
晶成長が優勢となることを指す。つまり上方部を起点と
したラテラル成長により低転位密度領域が形成されれ
ば、従来のマスクを要するELOと同様の効果がある。
これが本発明ではマスクレスで成長可能である事が特徴
である。以下、この点についての説明を、図1に基づい
て行う。
Convex part 11 formed on the crystal growth surface of substrate 1
It is effective to make the shape such that crystal growth is performed exclusively from above. The phrase “crystal growth is performed exclusively from the upper part” refers to a state in which crystal growth can be predominantly performed at the apex or top surface of the convex part 11 and in the vicinity thereof. Good, but ultimately indicates that the crystal growth of the convex portion 11 becomes dominant. That is, if a low dislocation density region is formed by lateral growth starting from the upper part, the same effect as that of the conventional ELO requiring a mask can be obtained.
This is a feature of the present invention in that it can be grown without a mask. Hereinafter, this point will be described with reference to FIG.

【0017】以下、ストライプ状の凸部の場合につい
て、実施例を説明する。図1(a)に示したものは、凸部
の幅が0.5μm、基板表面に占める面積割合が50%
程度で、凸部高さhも同程度とした場合を表している。
この場合原料ガスは凹部12及びその近傍にまで到達し
得るため凹部12での成長も生じる。また、凸部11の
上方部からも結晶成長が生じ、図1(b)に示すように、
凸部11の上方部と凹部12表面に、それぞれ結晶単位
20、21が生成される状態となる。このような状況
下、結晶成長が続くと凸部11の上方部を起点とし横方
向に成長した膜がつながって、やがて図1(c)のように
基板1の凹凸面を覆うことになる。この場合、凹部12
上部には低転位密度領域が形成され、作製した膜の高品
質化が図れている。なおこの時の凹部が覆われ平坦にな
るまでに要する厚みは0.5μmであった。
An embodiment will be described below in the case of a stripe-shaped convex portion. In FIG. 1A, the width of the projection is 0.5 μm, and the area ratio occupying the substrate surface is 50%.
In this case, the height h of the convex portion is substantially the same.
In this case, since the source gas can reach the concave portion 12 and its vicinity, the growth in the concave portion 12 also occurs. In addition, crystal growth also occurs from above the convex portion 11, and as shown in FIG.
Crystal units 20 and 21 are generated on the upper part of the convex part 11 and on the surface of the concave part 12, respectively. Under such circumstances, if the crystal growth continues, the films grown in the lateral direction starting from the upper part of the convex portion 11 will be connected, and will eventually cover the uneven surface of the substrate 1 as shown in FIG. In this case, the recess 12
A low dislocation density region is formed in the upper part, and the quality of the formed film is improved. At this time, the thickness required until the concave portion was covered and became flat was 0.5 μm.

【0018】本発明にあっては、このような凸部11で
あれば特に制限はなく各種の形状を採用することができ
る。具体的には、上述したような溝幅Bに対し溝深さ
(凸部高さ)hが深い場合、溝幅Bに対し溝深さ(凸部
高さ)hが浅い場合、さらに溝幅Bに対し溝深さ(凸部
高さ)hが非常に浅い場合、もしくは凸部11の幅Aに
対し溝幅Bが非常に広い場合など種々の組み合わせを行
う事ができる。特に溝幅Bに対し溝深さ(凸部高さ)h
が深い場合、気相成長時に原料ガスが実質的に底部まで
拡散できないため原料が効率良く凸部11上部の成長に
寄与する点で好ましい。また凸部11の幅Aに対し溝幅
Bが広い場合、横方向成長の領域が多くなり低転位密度
領域が広く形成される点で好ましい。
In the present invention, there is no particular limitation as long as such a convex portion 11 is used, and various shapes can be adopted. Specifically, when the groove depth (projection height) h is larger than the groove width B as described above, when the groove depth (projection height) h is smaller than the groove width B, the groove width is further increased. Various combinations can be performed, such as when the groove depth (height of the convex portion) h is very shallow with respect to B, or when the groove width B is very large with respect to the width A of the convex portion 11. In particular, the groove depth (height of the convex portion) h relative to the groove width B
When the depth is deep, the source gas cannot substantially diffuse to the bottom during the vapor phase growth, so that the source efficiently contributes to the growth of the upper portion of the convex portion 11, which is preferable. Further, it is preferable that the groove width B is larger than the width A of the convex portion 11 in that the lateral growth region is increased and the low dislocation density region is formed wider.

【0019】このような凹凸面の形成の態様としては、
島状の点在型の凸部、ストライプ型の凸条からなる凸
部、格子状の凸部、これらを形成する線が曲線である凸
部などが例示できる。これら凸部の態様の中でも、スト
ライプ型の凸条を設ける態様のものは、その作製工程を
簡略化できると共に、規則的なパターンが作製容易であ
る点で好ましい。ストライプの長手方向は任意であって
よいが、基板上に成長させる材料をGaNとし、GaN
系材料の<1−100>方向にした場合{1−101}
面などの斜めファセットが形成され難いため横方向成長
(ラテラル成長)が早くなる。この結果凹凸面を覆うの
が速くなる点で特に好ましい。
As a mode of forming such an uneven surface,
Examples include island-shaped dotted projections, stripe-shaped projections, lattice-shaped projections, and projections in which the lines forming these are curved. Among these projections, the one in which the stripe-shaped projections are provided is preferable because the manufacturing process can be simplified and a regular pattern can be easily manufactured. Although the longitudinal direction of the stripe may be arbitrary, the material to be grown on the substrate is GaN,
In the case of <1-100> direction of system material {1-101}
Since it is difficult to form oblique facets such as surfaces, lateral growth (lateral growth) is accelerated. As a result, it is particularly preferable that the uneven surface is quickly covered.

【0020】図2に本発明の受光素子の構造を示す。図
2では図1に示す実施例のように、空洞部13を残した
まま基板1の凹凸面を埋め込むよう半導体層2を成長さ
せ、続いてその上に受光層3を成長して受光素子を作製
している。空洞部13を残したまま埋め込む事は、基板
1とその上に成長する半導体層との接触面積を小さくで
きるという事であるため、半導体中に格子定数差や熱膨
張係数差に起因する歪を低減できる面で好ましい。この
歪の低減は、サファイア上にGaN系材料を厚く成長し
た時に発生する反りを低減させる効果がある。
FIG. 2 shows the structure of the light receiving element of the present invention. In FIG. 2, as in the embodiment shown in FIG. 1, the semiconductor layer 2 is grown so as to bury the uneven surface of the substrate 1 while leaving the cavity 13, and then the light receiving layer 3 is grown thereon to form a light receiving element. We are making. Embedding the cavity 13 while leaving it intact means that the contact area between the substrate 1 and the semiconductor layer grown thereon can be reduced, so that distortion due to a lattice constant difference or a thermal expansion coefficient difference in the semiconductor is reduced. It is preferable in terms of reduction. This reduction in strain has the effect of reducing the warpage that occurs when a GaN-based material is grown thick on sapphire.

【0021】図2の受光素子はショットキー障壁型の受
光素子を示している。受光層3は例えば第一導電型のG
aNからなり、その受光面にはショットキー電極41が
少なくとも設けられている。この電極は受光感度を増大
させる為に櫛型とする事が好ましい。なお42はオーミ
ック電極である。この場合において櫛型電極部は低転位
密度領域に形成されている事が望ましいのであるが、本
発明では上述の通り基板面に凹凸部を形成し低転位密度
化処理を行っているので、凹凸部パターンと櫛型電極部
を合わせる事で容易に低転位密度領域に電極を形成する
事が可能となる。なお電極部以外の受光層をエッチング
により除去し、電極下部の受光層に光が多くあたる形態
にしてもよい。
FIG. 2 shows a light receiving element of a Schottky barrier type. The light receiving layer 3 is made of, for example, G of the first conductivity type.
aN, and at least a Schottky electrode 41 is provided on the light receiving surface thereof. This electrode is preferably comb-shaped in order to increase the light receiving sensitivity. Reference numeral 42 denotes an ohmic electrode. In this case, it is desirable that the comb-shaped electrode portion is formed in the low dislocation density region. However, in the present invention, the unevenness portion is formed on the substrate surface and the low dislocation density treatment is performed as described above. The electrode can be easily formed in the low dislocation density region by combining the pattern and the comb-shaped electrode portion. Note that the light-receiving layer other than the electrode portion may be removed by etching so that the light-receiving layer below the electrode receives much light.

【0022】更に櫛型電極を作成する場合、受光素子ウ
エハーに反りがあると、この反りに起因し櫛型パターン
を転写する為のフォトマスクとウエハーの距離が面内で
変動し、焦点がずれることから電極幅の変動をもたらさ
れるが、本発明によれば反りが発生しない厚みで、かつ
低転位密度化した受光層を形成する事ができるのでその
ような問題は生じない。
Further, when a comb-shaped electrode is formed, if the light-receiving element wafer is warped, the warp causes the distance between the photomask for transferring the comb-shaped pattern and the wafer to fluctuate within the plane, resulting in defocus. Thus, the electrode width fluctuates, but according to the present invention, such a problem does not occur because a light-receiving layer having a thickness with no warpage and a low dislocation density can be formed.

【0023】上述の基板1における凸部11の形成は、
例えば通常のフォトリソグラフイ技術を使って凸部形状
に応じてパターン化し、RIE技術等を使ってエッチン
グ加工を行うことで作製できる。
The formation of the projections 11 on the substrate 1 is as follows.
For example, it can be manufactured by patterning according to the shape of the convex portion using normal photolithography technology and performing etching processing using RIE technology or the like.

【0024】基板上に半導体層の結晶成長を行う方法は
HVPE、MOCVD、MBE法などがよい。厚膜を作
製する場合はHVPE法が好ましいが、薄膜を形成する
場合はMOCVD法が好ましい。
As a method of growing a semiconductor layer on a substrate, HVPE, MOCVD, MBE or the like is preferable. When forming a thick film, the HVPE method is preferable, but when forming a thin film, the MOCVD method is preferable.

【0025】基板上に半導体層の結晶成長を行う時の成
長条件(ガス種、成長圧力、成長温度、など)は、本発
明の効果が出る範囲内であれば、目的に応じ使い分けれ
ばよい。また受光素子のタイプはショットキー型に限ら
ず、光導電型受光素子、pn接合型受光素子などにも応用
できる。更に凹凸部の形成を複数回行ないより低転位化
した受光層を形成しても良い。
The growth conditions (gas type, growth pressure, growth temperature, etc.) for growing a semiconductor layer on a substrate may be properly selected depending on the purpose as long as the effects of the present invention are obtained. . Further, the type of the light receiving element is not limited to the Schottky type, and can be applied to a photoconductive type light receiving element, a pn junction type light receiving element, and the like. Further, the light receiving layer with lower dislocations may be formed by forming the concave and convex portions a plurality of times.

【0026】[0026]

【実施例】[実施例]c面サファイア基板上にフォトレ
ジストのパターニング(幅:1μm、周期:4μm、ス
トライプ方位:ストライプ延伸方向がサファイア基板の
<11−20>方向)を行い、RIE(Reactive Ion E
tching)装置で2μmの深さまで断面方形型にエッチン
グした。フォトレジストを除去後、MOVPE装置に基
板を装着した。その後、水素雰囲気下で1100℃まで
昇温し、サーマルエッチングを行った。その後温度を5
00℃まで下げ、3族原料としてトリメチルガリウム
(以下TMG)を、N原料としてアンモニアを流し、G
aN低温バッファー層を成長した。つづいて温度を10
00℃に昇温し原料としてTMG・アンモニアを、ドー
パントとしてシランを流しn型GaN層を成長した。そ
の時の成長時間は、通常の凹凸の施していない場合のG
aN成長における3μmに相当する時間とした。その後
TMG・アンモニアを流しアンドープGaN層を1μm
成長し受光素子ウエハーを作製した。
EXAMPLES Example A photoresist was patterned on a c-plane sapphire substrate (width: 1 μm, period: 4 μm, stripe orientation: stripe extension direction was <11-20> direction of the sapphire substrate), and RIE (Reactive) was performed. Ion E
Etching was performed in a rectangular cross section to a depth of 2 μm using a tching apparatus. After removing the photoresist, the substrate was mounted on a MOVPE apparatus. Thereafter, the temperature was raised to 1100 ° C. in a hydrogen atmosphere, and thermal etching was performed. After that, set the temperature to 5
The temperature was lowered to 00 ° C., trimethylgallium (hereinafter referred to as TMG) was used as a Group 3 raw material, and ammonia was flowed as an N raw material.
An aN low temperature buffer layer was grown. Next, set the temperature to 10
The temperature was raised to 00 ° C., and TMG / ammonia was flowed as a raw material and silane was flowed as a dopant to grow an n-type GaN layer. The growth time at that time is G
The time was set to 3 μm in the aN growth. Thereafter, TMG / ammonia is flowed to remove the undoped GaN layer to 1 μm.
The wafer was grown to produce a light receiving element wafer.

【0027】成長後の断面を観察すると基板凹部に成長
は生じているが、図1(c)に示すように凹部に空洞部1
3を残したまま凹凸部を覆い、平坦になったGaN膜が
得られた。
Observation of the cross section after the growth reveals that growth has occurred in the concave portion of the substrate. However, as shown in FIG.
Thus, a flat GaN film was obtained, covering the uneven portions while leaving 3 in place.

【0028】このウエハーのアンドープ層をRIE装置
でドライエッチングした後、n型GaN層にオーミック
電極を形成し、アンドープ層にはショットキー電極を形
成してショットキー型受光素子とした。なお受光素子の
サイズは1mm角としショットキー電極は幅1μm周期4
μmの櫛型とした。本実施例では凹部の上方が低転位密
度化された領域となるような条件とした為、ショットキ
ー電極は基板凹部の上に形成した。なお成長条件により
低転位密度化領域は制御可能である為、必ずしも電極形
成領域と凹部を一致させる必要はない。作製した櫛型電
極のサイズを測定したところ、2インチウエハーの周辺
部で若干の幅の変動はあるものの、ほぼ全面にわたって
きれいな電極パターンが作製できていた。
After the undoped layer of the wafer was dry-etched by an RIE apparatus, an ohmic electrode was formed on the n-type GaN layer, and a Schottky electrode was formed on the undoped layer, thereby forming a Schottky light receiving element. The size of the light receiving element was 1 mm square, and the Schottky electrode was
It was a comb of μm. In the present embodiment, the conditions were such that the region above the concave portion was a region having a low dislocation density, so the Schottky electrode was formed above the substrate concave portion. Note that since the low dislocation density region can be controlled by the growth conditions, it is not always necessary to match the electrode formation region with the concave portion. When the size of the manufactured comb-shaped electrode was measured, a fine electrode pattern could be manufactured over almost the entire surface, although the width was slightly varied around the 2-inch wafer.

【0029】作製した受光素子に逆バイアスを印加し、
10Vでの漏れ電流を測定すると10nAであった。
A reverse bias is applied to the manufactured light receiving element,
The leakage current measured at 10 V was 10 nA.

【0030】[比較例1]通常のc面サファイア基板上
に実施例と同じ成長条件で受光素子ウエハーを成長し、
その後受光素子の作製評価を行った。櫛型電極のパター
ン精度はウエハー周辺部で幅の変動が見られ、実施例に
比べるときれいに電極パターンが作製できた面積は少な
くなっていた。この受光素子の漏れ電流を測定すると3
50nAであった。この漏れ電流の差は転位密度の差に
起因していると考えられる。
[Comparative Example 1] A light-receiving element wafer was grown on a normal c-plane sapphire substrate under the same growth conditions as in the embodiment.
Thereafter, the production evaluation of the light receiving element was performed. The pattern accuracy of the comb-shaped electrode fluctuated in width at the periphery of the wafer, and the area where the electrode pattern could be produced more clearly was smaller than in the example. When the leakage current of this light receiving element is measured, it is 3
It was 50 nA. This difference in leakage current is considered to be due to the difference in dislocation density.

【0031】[比較例2]通常のELO法により実施例
1との比較を行なう事を試みた。まずサファイア基板上
にバッファー層を介しGaN層を1.5μm形成した。
その後SiO2膜をリフトオフにより(幅:1μm、周
期:4μm、ストライプ方位:ストライプ延伸方向がサ
ファイア基板の<11−20>方向)の条件で作製し
た。このウエハーを用い実施例1と同様の方法で受光素
子ウエハーを成長し、その後受光素子の作製評価を行っ
た。櫛型電極のパターン精度はウエハー中心部では設計
幅の櫛型電極が形成されるものの、ウエハー周辺に行く
につれ幅の変動が見られ、周辺部ではきれいな電極形成
ができなかった。このウエハーでは成長させたGaN層
の厚みが5.5μmとなるため、実施例1とは異なり電
極形成時の精度を低下させる反りが発生した事が原因で
あった。
[Comparative Example 2] An attempt was made to compare with Example 1 by a normal ELO method. First, a GaN layer having a thickness of 1.5 μm was formed on a sapphire substrate via a buffer layer.
Thereafter, an SiO 2 film was produced by lift-off (width: 1 μm, period: 4 μm, stripe orientation: stripe extension direction is <11-20> direction of the sapphire substrate). Using this wafer, a light receiving element wafer was grown in the same manner as in Example 1, and then the production evaluation of the light receiving element was performed. The pattern accuracy of the comb-shaped electrode was such that, although a comb-shaped electrode having a designed width was formed at the center of the wafer, the width was varied toward the periphery of the wafer, and a clean electrode could not be formed at the periphery. In this wafer, the thickness of the grown GaN layer was 5.5 μm, which was different from that of Example 1 because of the occurrence of warpage that reduced the precision in electrode formation.

【0032】[0032]

【発明の効果】以上説明した通りの本発明の半導体受光
素子及びその作製方法によれば、基板に対して凸部を設
けておくことで、マスク層を使用することなく低転位密
度領域を形成可能なラテラル成長を行わせることができ
る。従ってマスク層を形成することに起因する問題点で
ある軸の微小チルティングによるラテラル成長部の合体
部分の新たな欠陥の発生の問題やオートドーピングの問
題、Al含有半導体材料が選択成長不可という問題を解消
できる。 また、基板に凹凸面を設けた後に、一回の成
長でバッファ層成長から受光部等の半導体結晶層の成長
を連続して行えるので、製造プロセスの簡略化が図れる
という利点がある。
According to the semiconductor light receiving device and the method of manufacturing the same of the present invention as described above, a low dislocation density region can be formed without using a mask layer by providing a projection on a substrate. Possible lateral growth can be performed. Therefore, the problems caused by the formation of the mask layer, such as the problem of the generation of new defects in the united portion of the lateral growth portion due to the micro tilting of the axis, the problem of autodoping, and the problem that the Al-containing semiconductor material cannot be selectively grown Can be eliminated. In addition, the semiconductor crystal layer such as the light receiving portion can be continuously grown from the growth of the buffer layer in one growth after providing the uneven surface on the substrate, so that there is an advantage that the manufacturing process can be simplified.

【0033】さらに低転位密度化するのに必要な膜の厚
みが薄くて済むため、熱膨張係数などに起因する反りの
発生を抑制する事ができるようになり、フォトリソグラ
フ工程で微細なパターン作製を必要とする受光素子など
を精度良く作製する事が可能となるものである。この様
に特性向上、低コスト化の面から非常に価値のある発明
である。
Further, since the thickness of the film required for lowering the dislocation density can be reduced, it is possible to suppress the occurrence of warpage due to the coefficient of thermal expansion and the like, and to produce a fine pattern in a photolithographic process. This makes it possible to accurately manufacture a light receiving element or the like that requires the above. As described above, the invention is very valuable in terms of improving characteristics and reducing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる半導体層の結晶成長状態を説明
するための断面図である。
FIG. 1 is a cross-sectional view for explaining a crystal growth state of a semiconductor layer according to the present invention.

【図2】本発明に係わる半導体受光素子を示す断面図及
び平面図である。
FIG. 2 is a cross-sectional view and a plan view showing a semiconductor light receiving element according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 11 凸部 12 凹部 13 空洞部 2 半導体層 3 受光層 DESCRIPTION OF SYMBOLS 1 Substrate 11 Convex part 12 Concavity 13 Cavity part 2 Semiconductor layer 3 Light receiving layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湖東 雅弘 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5F045 AA04 AB14 AB17 AB18 AC08 AC12 AD09 AD14 AF02 AF09 AF12 AF13 BB12 BB16 CA13 DA53 DA65 DA67 5F049 MA05 MB07 NA05 NA13 NA18 PA03 PA14 SS01 SS03 SS04 SS08 WA03 WA05  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masahiro Koto 4-3 Ikejiri, Itami-shi, Hyogo F-term (reference) 5F045 AA04 AB14 AB17 AB18 AC08 AC12 AD09 AD14 AF02 AF09 AF12 AF13 BB12 BB16 CA13 DA53 DA65 DA67 5F049 MA05 MB07 NA05 NA13 NA18 PA03 PA14 SS01 SS03 SS04 SS08 WA03 WA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に直接的又は間接的に
気相成長された半導体結晶からなる半導体受光層とを備
える半導体受光素子であって、前記基板の結晶成長面が
凹凸面とされ、前記半導体受光層若しくは該受光層と基
板の間に介在される半導体層は、前記凹凸面における凸
部の上方部から専ら結晶成長されたものであることを特
徴とする半導体受光素子。
A semiconductor light-receiving element comprising a substrate and a semiconductor light-receiving layer made of a semiconductor crystal directly or indirectly vapor-phase grown on the substrate, wherein the crystal growth surface of the substrate has an uneven surface. The semiconductor light-receiving element is characterized in that the semiconductor light-receiving layer or the semiconductor layer interposed between the light-receiving layer and the substrate is exclusively formed by crystal growth from above the convex portion on the uneven surface.
【請求項2】 上記受光素子がショットキー障壁型の受
光素子であって、上記受光層の受光面にショットキー電
極が形成されたものであることを特徴とする請求項1記
載の半導体受光素子。
2. The semiconductor light receiving device according to claim 1, wherein said light receiving device is a Schottky barrier type light receiving device, wherein a Schottky electrode is formed on a light receiving surface of said light receiving layer. .
【請求項3】 上記ショットキー電極が、櫛形の電極パ
ターンを備えていることを特徴とする請求項2記載の半
導体受光素子。
3. The semiconductor light receiving device according to claim 2, wherein said Schottky electrode has a comb-shaped electrode pattern.
JP2000081141A 2000-03-23 2000-03-23 Semiconductor light receiving device Pending JP2001267623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000081141A JP2001267623A (en) 2000-03-23 2000-03-23 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000081141A JP2001267623A (en) 2000-03-23 2000-03-23 Semiconductor light receiving device

Publications (1)

Publication Number Publication Date
JP2001267623A true JP2001267623A (en) 2001-09-28

Family

ID=18598114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000081141A Pending JP2001267623A (en) 2000-03-23 2000-03-23 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP2001267623A (en)

Similar Documents

Publication Publication Date Title
JP4741572B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP4932121B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
US7115486B2 (en) Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
JP3556916B2 (en) Manufacturing method of semiconductor substrate
JP3471685B2 (en) Semiconductor substrate and manufacturing method thereof
JP3471700B2 (en) Semiconductor substrate
US7399684B2 (en) Defect reduction in semiconductor materials
KR20030032965A (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP2009132613A (en) Group iii-v nitride semiconductor substrate and its manufacturing method, group iii-v nitride semiconductor device, and lot of group iii-v nitride semiconductor substrate
JP4766071B2 (en) Semiconductor substrate and manufacturing method thereof
JP4333466B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate
JP3441415B2 (en) Manufacturing method of semiconductor crystal
JP2005340747A (en) Iii-v group nitride series semiconductor substrate and manufacturing method of the same, iii-v group nitride series semiconductor device, iii-v group nitride series semiconductor substrate lot
KR100357116B1 (en) Growing Method for Nitride Semiconductor Film
JP2001274093A (en) Semiconductor base and its manufacturing method
KR100323710B1 (en) method for fabricating GaN semiconductor laser substate
JP2001267623A (en) Semiconductor light receiving device
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JP2001156002A (en) Semiconductor base material and method of manufacturing the same
JP2004006931A (en) Semiconductor substrate and its manufacturing method
JP2004006937A (en) Semiconductor substrate and its manufacturing method
KR20030006419A (en) Method for forming thin film of nitride semiconductor
JPH06232045A (en) Manufacture of crystalline substrate
KR20010089009A (en) method for fabricating GaN semiconductor substrate
JPH05315208A (en) Compound semiconductor substrate