JP2001261346A - Method of producing oxide precursor and oxide - Google Patents

Method of producing oxide precursor and oxide

Info

Publication number
JP2001261346A
JP2001261346A JP2000077331A JP2000077331A JP2001261346A JP 2001261346 A JP2001261346 A JP 2001261346A JP 2000077331 A JP2000077331 A JP 2000077331A JP 2000077331 A JP2000077331 A JP 2000077331A JP 2001261346 A JP2001261346 A JP 2001261346A
Authority
JP
Japan
Prior art keywords
oxide
organic
oxygen
producing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000077331A
Other languages
Japanese (ja)
Inventor
Zenhachi Okumi
善八 小久見
Takeshi Abe
武志 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000077331A priority Critical patent/JP2001261346A/en
Publication of JP2001261346A publication Critical patent/JP2001261346A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To synthesize fine oxide crystal in few steps at a low temperature without generating harmful gas, and provide a repair material suitable for damaged part of oxide ceramic and an active substance of electric battery at stoichiometric ratio. SOLUTION: This method of producing oxide precursor is characterized by bringing an organic complex of a metal constituting an oxide or an organic compound of the above metal into contact with an active oxygen such as oxygen radical, an oxygen-containing cation or a peroxide ion and carrying out oxidative decomposition of an organic substance contained in the organic complex and the organic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物前駆体及び
酸化物の製造方法に属する。特に低温で酸化物を得る方
法に属する。
[0001] The present invention relates to an oxide precursor and a method for producing an oxide. In particular, it belongs to a method of obtaining an oxide at a low temperature.

【0002】[0002]

【従来の技術】酸化物を製造する方法としては、固体の
高温反応によるセラミック法、水熱法などの低温合成
法、硝酸塩の熱分解法、金属アルコキシドなどを加水分
解することによるゾルゲル法やペッチーニ法などの有機
物法が知られている。
2. Description of the Related Art As a method for producing an oxide, a ceramic method by a high-temperature reaction of a solid, a low-temperature synthesis method such as a hydrothermal method, a thermal decomposition method of a nitrate, a sol-gel method by hydrolyzing a metal alkoxide or the like, a Petchini method Organic methods such as the organic method are known.

【0003】[0003]

【発明が解決しようとする課題】しかし、これら従来の
方法には、それぞれ次のような問題がある。先ず、セラ
ミック法の場合、高温が必要であり、粒子が成長する。
従って、微粒子が得られない。低温合成法の場合、水な
どの溶液から酸化物を分離することは、極めて困難であ
る。何故なら、微粒子が凝集して大きな二次粒子になる
うえ、フィルターから微粒子を離れさせにくいからであ
る。熱分解法の場合、高温にさらされ、セラミック法と
同様に粒子が成長するうえ、製造中にNOxなどの有害
ガスが出るので、好ましくない。有機物法の場合、有機
物を燃焼によって分解して酸化物を得るため、燃焼によ
る高温にさらされ、粒子が成長する。また、有機物の燃
焼の際に有機物中の炭素や水素の存在によって還元雰囲
気にさらされ、それら炭素や水素を除去するために高温
酸化雰囲気で後処理をすることが必要になり、結局粒子
が大きく成長する。
However, these conventional methods have the following problems. First, in the case of the ceramic method, a high temperature is required, and particles grow.
Therefore, fine particles cannot be obtained. In the case of the low-temperature synthesis method, it is extremely difficult to separate an oxide from a solution such as water. This is because the fine particles aggregate to form large secondary particles, and it is difficult to separate the fine particles from the filter. In the case of the thermal decomposition method, it is not preferable because it is exposed to a high temperature, particles grow like the ceramic method, and harmful gases such as NOx are emitted during the production. In the case of the organic matter method, since the organic matter is decomposed by combustion to obtain an oxide, the organic matter is exposed to a high temperature due to combustion, and particles grow. In addition, the organic matter is exposed to a reducing atmosphere due to the presence of carbon and hydrogen in the organic matter during combustion, and it is necessary to perform a post-treatment in a high-temperature oxidizing atmosphere to remove the carbon and hydrogen. grow up.

【0004】一方、極めて微小な酸化物を得るために、
上記従来の方法で得られた大きな酸化物粒子を粉砕する
ことが考えられるが、粉砕媒体からの不純物混入を防止
することは困難である。更に上記従来の方法では、同質
のセラミック材料の接着剤として用いることができな
い。即ち、セラミックは脆性を有する故に破損しやすい
が、例えば安定化ジルコニア焼結体が破損しても同質の
安定化ジルコニアで接着させることは実際上不可能であ
る。従って、一旦破損してしまえば廃棄するしかなく、
資源の浪費となる。
On the other hand, in order to obtain an extremely fine oxide,
Although it is conceivable to pulverize the large oxide particles obtained by the above-mentioned conventional method, it is difficult to prevent the contamination of impurities from the pulverization medium. Furthermore, the above-mentioned conventional method cannot be used as an adhesive for a homogeneous ceramic material. That is, although ceramics are brittle, they are easily broken, but even if the stabilized zirconia sintered body is broken, it is practically impossible to bond the same with stabilized zirconia of the same quality. Therefore, once it is damaged, it must be discarded,
Waste of resources.

【0005】それ故、本発明の第一の課題は、有害ガス
を発生することなく且つ少ない工数で低温で微小な酸化
物結晶を合成することにある。第二の課題は、酸化物セ
ラミックの破損部分に好適な補修材料を提供することに
ある。第三の課題は、化学量論比の電池活物質を提供す
ることにある。
Therefore, a first object of the present invention is to synthesize a fine oxide crystal at a low temperature without generating harmful gas and with a small number of steps. A second object is to provide a repair material suitable for a damaged portion of an oxide ceramic. A third object is to provide a stoichiometric battery active material.

【0006】[0006]

【課題を解決するための手段】上記第一の課題を達成す
るために、本発明は、酸化物を構成する金属の有機錯体
又は当該金属の有機化合物(以下、有機錯体と合わせて
「有機金属化合物」と総称する。)を酸素ラジカル、含
酸素カチオン、過酸化物イオンなどの活性酸素と接触さ
せ、それら有機錯体及び有機化合物に含まれる有機物を
酸化分解することを特徴とする酸化物前駆体の製造方法
である。
In order to achieve the first object, the present invention provides an organic complex of an oxide constituting a metal or an organic compound of the metal (hereinafter referred to as "organic metal" An oxide precursor, which is obtained by contacting active compounds such as oxygen radicals, oxygen-containing cations, and peroxide ions with active oxygen such as oxygen radicals, oxygen-containing cations, and peroxide ions. It is a manufacturing method of.

【0007】この方法によれば有機物を燃焼で分解する
のではなく、活性酸素で分解するので、生成物が高温に
さらされることがない。このため、結晶成長が抑制され
て極めて微小な生成物が得られる。また、溶液を用いな
いため、溶液の分離操作も不要であるし、有機物の酸化
分解の際に炭酸塩が混入しないので、生成物の純度が高
い。また、有機物が酸化分解されるので、化学量論比の
生成物が得られる。そして、この生成物自体も活性であ
って低温、例えば酸化物の融点の1/2以下の温度でも
結晶化しうる。このように、低温で結晶化しうる酸化物
前駆体を得ることができるので酸化物を目的の位置で低
温で成長させることができる。真空で酸化分解反応させ
て水分含有量の少ない材料が得られる。
According to this method, the organic matter is not decomposed by combustion but decomposed by active oxygen, so that the product is not exposed to a high temperature. For this reason, crystal growth is suppressed and an extremely fine product is obtained. In addition, since no solution is used, no solution separation operation is required, and no carbonate is mixed during the oxidative decomposition of organic substances, so that the purity of the product is high. Further, since the organic matter is oxidatively decomposed, a product having a stoichiometric ratio is obtained. The product itself is active and can be crystallized at a low temperature, for example, at a temperature equal to or lower than half the melting point of the oxide. As described above, an oxide precursor that can be crystallized at a low temperature can be obtained, so that an oxide can be grown at a desired position at a low temperature. A material having a low moisture content is obtained by an oxidative decomposition reaction in a vacuum.

【0008】本発明の製造方法では、上記有機金属化合
物を加熱しながら活性酸素と接触させ、活性酸素による
有機物の酸化分解と結晶化とを同時に進行させても良
い。この場合の加熱温度も低温でよい。
In the production method of the present invention, the organic metal compound may be brought into contact with active oxygen while being heated, so that the oxidative decomposition and crystallization of the organic substance by the active oxygen may proceed simultaneously. In this case, the heating temperature may be low.

【0009】[0009]

【発明の実施の形態】本発明は、低温で結晶化しうると
いう基本的な作用から、以下の多数の二次的な作用を派
生する。先ず、酸化物セラミックの破損部分に上記の微
小な酸化物前駆体を置き、加熱する。この時、破損部分
のセラミックが結晶核となり、周囲の微小な酸化物前駆
体を取り込みながら融合し結晶成長する。この過程で融
着と同様の効果が生じて破損部分が接合される。微小粒
子からの結晶成長なので融点の1/2程度の低温で反応
が進行する。この点、従来のセラミックの接合の場合に
融点の1/2を超える温度が必要であったのと相違す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention derives a number of secondary actions from the basic action of being able to crystallize at low temperatures. First, the above-mentioned minute oxide precursor is placed on the damaged portion of the oxide ceramic and heated. At this time, the ceramic in the damaged portion becomes a crystal nucleus, and fuses and crystal grows while taking in the surrounding minute oxide precursor. In this process, the same effect as in the fusion occurs, and the damaged portion is joined. Since the crystal grows from fine particles, the reaction proceeds at a low temperature of about 1/2 of the melting point. This is different from the case where a temperature exceeding 1/2 of the melting point was required in the case of the conventional ceramic bonding.

【0010】破損部分の補修に本発明の酸化物前駆体製
造方法を適用しても良い。即ち、当該酸化物を構成する
金属の有機錯体又は有機化合物を配置した状態で活性酸
素と接触させ、有機物を酸化分解することにより、破損
部分に酸化物セラミックと同質の酸化物前駆体を形成す
ることができる。次いで、これを低温で加熱することで
酸化物前駆体が結晶化すると同時に、破損した酸化物セ
ラミックと一体化する。
The method for producing an oxide precursor of the present invention may be applied to repair a damaged portion. That is, an organic complex or an organic compound of the metal constituting the oxide is placed in contact with active oxygen, and an organic substance is oxidatively decomposed to form an oxide precursor of the same quality as the oxide ceramic in the damaged portion. be able to. Then, this is heated at a low temperature to crystallize the oxide precursor and at the same time to integrate with the damaged oxide ceramic.

【0011】いずれの場合も補修材料は破損した酸化物
セラミックと同質であるから、破損前の状態と区別無く
ほぼ完全に修復される。酸化物セラミックとしては、例
えば燃料電池の電解質である安定化ジルコニアが挙げら
れる。これにより固体酸化物型燃料電池の寿命を大きく
延ばすことができる。
In any case, since the repair material is of the same quality as the damaged oxide ceramic, it is almost completely repaired without distinction from the state before the damage. Examples of the oxide ceramic include stabilized zirconia, which is an electrolyte for a fuel cell. This can greatly extend the life of the solid oxide fuel cell.

【0012】更にまた、ニッケル酸リチウムやコバルト
酸リチウム、特にニッケル酸リチウムは、これらをセラ
ミック法で製造する場合の高温反応時、あるいは、有機
物法で製造する場合の還元雰囲気にさらされる際に、ニ
ッケルやコバルトの価数が低下して酸素欠損が生じ、化
学量論比の高結晶性酸化物を合成することが難しい。従
って、電池活物質として用いると充放電サイクル特性が
劣化する。
Furthermore, lithium nickelate and lithium cobaltate, particularly lithium nickelate, are subjected to a high-temperature reaction when they are produced by a ceramic method or to a reducing atmosphere when they are produced by an organic substance method, The valence of nickel or cobalt decreases to cause oxygen deficiency, and it is difficult to synthesize a highly crystalline oxide having a stoichiometric ratio. Therefore, when used as a battery active material, the charge / discharge cycle characteristics deteriorate.

【0013】これに対して本発明の方法によれば、この
ような、還元されやすい酸化物でも酸化物前駆体微小結
晶を合成し、それを低温熱処理することによって化学量
論比の高結晶性酸化物を得ることが出きる。これは、焼
成時の銅の還元が問題である酸化物超伝導体薄膜の合成
にも応用が期待される。
On the other hand, according to the method of the present invention, the oxide precursor microcrystals are synthesized even from such oxides which can be easily reduced, and the oxide precursor microcrystals are subjected to a low-temperature heat treatment to obtain a high stoichiometric high crystallinity. Oxide can be obtained. This is expected to be applied to the synthesis of an oxide superconductor thin film in which reduction of copper during firing is a problem.

【0014】[0014]

【実施例】−実施例1− 酢酸リチウムと酢酸コバルトとクエン酸をモル比で1:
1:3になるように混合してエチレングリコールに溶解
した。これを140℃で5時間加熱すると赤紫色にゲル
化した。このゲルを180〜200℃で真空乾燥しリチウムコ
バルト「有機金属化合物」をえた。
EXAMPLES-Example 1-Lithium acetate, cobalt acetate and citric acid in a molar ratio of 1:
The mixture was mixed at a ratio of 1: 3 and dissolved in ethylene glycol. When this was heated at 140 ° C. for 5 hours, it gelled to a purple-red color. This gel was vacuum-dried at 180 to 200 ° C. to obtain lithium cobalt “organometallic compound”.

【0015】この物質200 mgをパイレックス(登録商
標)ガラス上に展開し、容量結合方式によりRF電源か
ら50Wを印加して発生させた酸素/アルゴン=1/2の
プラズマに5時間さらすことによって微粒子を生成し
た。試料の設置位置として、このプラズマ中に試料を設
置しても良いが、プラズマのアフターグロー領域に設置
しても良い。
200 mg of this substance was spread on Pyrex (registered trademark) glass, and exposed to a plasma of oxygen / argon = 1/2 generated by applying 50 W from an RF power source by a capacitive coupling method for 5 hours to form fine particles. Generated. The sample may be set in the plasma as the sample setting position, or may be set in the afterglow region of the plasma.

【0016】この処理によって生成した微粒子はX線回
折から非晶質であった。赤外分光スペクトル分析から、
炭酸塩は検出されず、また、有機物も検出されなかっ
た。一方、OHに帰属される弱いピークが見られ、水酸化
物又は、少量の水を含む無機物であることが分かった。
また、これの熱重量分析を行うと、100℃付近から徐々
に重量減少を始め、200℃から大きな重量減少が起こり
始め、約450℃で重量変化はなくなった。走査熱分析か
ら約450℃で結晶化が進行することが分かった。
The fine particles produced by this treatment were amorphous by X-ray diffraction. From infrared spectroscopy analysis,
No carbonate was detected, and no organic matter was detected. On the other hand, a weak peak attributed to OH was observed, indicating that the substance was a hydroxide or an inorganic substance containing a small amount of water.
The thermogravimetric analysis showed that the weight gradually started to decrease at around 100 ° C., started to decrease at 200 ° C., and disappeared at about 450 ° C. Scanning calorimetry showed that crystallization proceeded at about 450 ° C.

【0017】−実施例2− 実施例1で生成した微粒子を450℃で2時間熱処理し
た。これによって、粒径10 nm以下のLiCoO2を約15 mg得
た。この酸化物は、X線回折分析、レーザーラマンスペ
クトル分析から、結晶性の酸化物であった。
Example 2 The fine particles produced in Example 1 were heat-treated at 450 ° C. for 2 hours. As a result, about 15 mg of LiCoO 2 having a particle size of 10 nm or less was obtained. This oxide was a crystalline oxide from X-ray diffraction analysis and laser Raman spectrum analysis.

【0018】−実施例3− 実施例1の微粒子製造過程における中間体物質である
「有機金属化合物」を200 mgパイレックスガラス上に展
開し、真空容器中で酸素ラジカルガンから発生する活性
酸素に10時間さらすことによって微粒子を生成した。
Example 3 200 mg of an organometallic compound as an intermediate in the fine particle production process of Example 1 was spread on Pyrex glass, and 10 mg of active oxygen generated from an oxygen radical gun in a vacuum vessel. Exposure to time produced fine particles.

【0019】この微粒子はX線回折から非晶質であっ
た。赤外分光スペクトル分析から、炭酸塩は検出され
ず、また、有機物も検出されなかった。一方、OHに帰属
されるピークが見られ、水酸化物又は、少量の水を含む
無機物であることが分かった。また、これの熱重量分析
を行うと、100℃付近から徐々に重量減少を初め、200℃
から大きな重量減少が起こり始め、約450℃で重量変化
はなくなった。約450℃で走査熱分析からこの温度で結
晶化が進行することが分かった。
The fine particles were amorphous by X-ray diffraction. From the infrared spectrum analysis, no carbonate was detected, and no organic matter was detected. On the other hand, a peak attributed to OH was observed, indicating that the substance was a hydroxide or an inorganic substance containing a small amount of water. When thermogravimetric analysis was performed, the weight gradually started to decrease from around 100 ° C,
After that, a large weight loss began to occur, and at about 450 ° C., the weight change disappeared. Scanning calorimetry at about 450 ° C. showed that crystallization proceeded at this temperature.

【0020】−実施例4− 実施例1の微粒子製造過程における中間体物質である
「有機金属化合物」を200 mgパイレックスガラス上に展
開し、これをプラズマ処理装置の真空容器中の加熱基板
ホルダー上に置いた。熱基板装置を用いて450℃に加
熱し、温度が一定になった後、容量結合方式によりRF
電源から50Wを印加して発生させた酸素/アルゴン=1
/2のプラズマに上記「有機金属化合物」を5時間さら
した。
Example 4 200 mg of an organometallic compound as an intermediate in the process of producing fine particles of Example 1 was spread on 200 mg of Pyrex glass, and this was placed on a heated substrate holder in a vacuum vessel of a plasma processing apparatus. Placed. After heating to 450 ° C using a thermal substrate device and the temperature becoming constant, RF
Oxygen / Argon generated by applying 50 W from the power supply = 1
The above "organic metal compound" was exposed to the plasma of / 2 for 5 hours.

【0021】これによって、粒径10 nm以下のLiCoO2
末を約15 mg得た。この酸化物は、X線回折分析、レー
ザーラマンスペクトル分析から、結晶性の酸化物であっ
た。
As a result, about 15 mg of LiCoO 2 powder having a particle size of 10 nm or less was obtained. This oxide was a crystalline oxide from X-ray diffraction analysis and laser Raman spectrum analysis.

【0022】−実施例5− 酢酸リチウムと酢酸ニッケルとクエン酸をモル比で1:
1:3になるように混合してエチレングリコールに溶解
した。これを140℃で5時間加熱すると赤紫色にゲル
化した。このゲルを180〜200℃で真空乾燥しリチウムニ
ッケル「有機金属化合物」をえた。
Example 5 Lithium acetate, nickel acetate and citric acid in a molar ratio of 1:
The mixture was mixed at a ratio of 1: 3 and dissolved in ethylene glycol. When this was heated at 140 ° C. for 5 hours, it gelled to a purple-red color. This gel was vacuum-dried at 180 to 200 ° C. to obtain lithium nickel “organometallic compound”.

【0023】この物質を200 mgパイレックスガラス上に
展開し、これをプラズマ処理装置の真空容器中の加熱基
板ホルダー上に置いた。熱基板装置を用いて450℃に
加熱し温度が一定なった後、容量結合方式によりRF電
源から50Wを印加して発生させた酸素/アルゴン=3/
1のプラズマに上記「有機金属化合物」を4時間さらし
た。
This substance was spread on a 200 mg Pyrex glass, and placed on a heated substrate holder in a vacuum vessel of a plasma processing apparatus. Oxygen / Argon generated by applying 50 W from an RF power source by the capacitive coupling method after heating to 450 ° C. using a thermal substrate device to stabilize the temperature = 3 /
The above "organic metal compound" was exposed to the plasma of No. 1 for 4 hours.

【0024】これによって、粒径15 nm以下のLiNiO2
末を約15 mg得た。この酸化物は、X線回折分析、レー
ザーラマンスペクトル分析から、結晶性の定比に極めて
近い酸化物であった。
As a result, about 15 mg of LiNiO 2 powder having a particle size of 15 nm or less was obtained. This oxide was an oxide having a very close ratio of crystallinity as determined by X-ray diffraction analysis and laser Raman spectrum analysis.

【0025】−実施例6− ジルコニウムアルコキシドとイットリウムの有機錯体と
をZr/Y比=1となるように混合してエチレングリコ
ールに溶解した。これを140℃で5時間加熱すると赤
紫色にゲル化した。このゲルを180〜200℃で真空乾燥し
ジルコニウムイットリウム「有機金属化合物」をえた。
Example 6 A zirconium alkoxide and an organic complex of yttrium were mixed at a Zr / Y ratio of 1 and dissolved in ethylene glycol. When this was heated at 140 ° C. for 5 hours, it gelled to a purple-red color. The gel was dried under vacuum at 180 to 200 ° C. to obtain zirconium yttrium “organic metal compound”.

【0026】この物質の約1gをガラス製の容器に入
れ、回転しながら真空に減圧し、酸素とアルゴンの比を
1:1にしたガスで約100Paとした。誘導コイル方式に
よりRF電源から90Wを印加してガラス容器内に発生さ
せた酸素/アルゴン=1/1のプラズマに上記「有機金
属化合物」を5時間さらした。
About 1 g of this substance was placed in a glass container, and the pressure was reduced to a vacuum while rotating, and the gas was adjusted to about 100 Pa with a 1: 1 ratio of oxygen to argon. The aforementioned “organic metal compound” was exposed to plasma of oxygen / argon = 1/1 generated in the glass container by applying 90 W from an RF power supply by an induction coil method for 5 hours.

【0027】これによって生成した微粒子はX線回折か
ら非晶質であった。赤外分光スペクトル分析から、炭酸
塩は検出されず、また、有機物も検出されなかった。一
方、OHに帰属される弱いピークが見られ、水酸化物又
は、少量の水を含む無機物であることが分かった。ま
た、これを熱重量分析を行うと、100℃付近から徐々に
重量減少を初め、200℃から大きな重量減少が起こり始
め、約400℃で重量変化はなくなった。生成した微粒子
を600度で40分熱処理すると、イットリア安定化ジル
コニアが得られた。
The fine particles thus formed were amorphous by X-ray diffraction. From the infrared spectrum analysis, no carbonate was detected, and no organic matter was detected. On the other hand, a weak peak attributed to OH was observed, indicating that the substance was a hydroxide or an inorganic substance containing a small amount of water. The thermogravimetric analysis showed that the weight gradually started to decrease at around 100 ° C., started to decrease at 200 ° C., and disappeared at about 400 ° C. When the generated fine particles were heat-treated at 600 ° C. for 40 minutes, yttria-stabilized zirconia was obtained.

【0028】[0028]

【発明の効果】有害ガスを発生することなく且つ少ない
工数で低温で微小な酸化物結晶並びにその前駆体を合成
することができるので、酸化物セラミックの破損部分の
補修に有用である。また、還元雰囲気にさらされないの
で化学量論比に極めて近い酸化物結晶を得ることがで
き、充放電特性に優れた電池活物質の製造に有用であ
る。
According to the present invention, fine oxide crystals and their precursors can be synthesized at low temperature without generating harmful gases and with a small number of man-hours, which is useful for repairing damaged portions of oxide ceramics. Further, since the oxide crystal is not exposed to a reducing atmosphere, an oxide crystal having a very close stoichiometric ratio can be obtained, which is useful for producing a battery active material having excellent charge / discharge characteristics.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酸化物を構成する金属の有機錯体又は当該
金属の有機化合物を酸素ラジカル、含酸素カチオン、過
酸化物イオンなどの活性酸素と接触させ、それら有機錯
体及び有機化合物に含まれる有機物を酸化分解すること
を特徴とする酸化物前駆体の製造方法。
An organic complex of a metal or an organic compound of a metal constituting an oxide is brought into contact with active oxygen such as an oxygen radical, an oxygen-containing cation, or a peroxide ion, and an organic substance contained in the organic complex or the organic compound. A method for producing an oxide precursor, comprising oxidatively decomposing a compound.
【請求項2】請求項1に記載の方法によって得られた酸
化物前駆体を加熱することを特徴とする酸化物の製造方
法。
2. A method for producing an oxide, comprising heating an oxide precursor obtained by the method according to claim 1.
【請求項3】前記加熱の温度が当該酸化物の融点の1/
2以下である請求項2に記載の製造方法。
3. The method according to claim 1, wherein the temperature of the heating is 1/1 / the melting point of the oxide.
3. The method according to claim 2, wherein the number is 2 or less.
【請求項4】前記酸化物が燃料電池の固体電解質である
請求項2に記載の製造方法。
4. The method according to claim 2, wherein said oxide is a solid electrolyte of a fuel cell.
【請求項5】前記酸化物が電池の活物質である請求項2
に記載の製造方法。
5. The battery according to claim 2, wherein said oxide is an active material of a battery.
The production method described in 1.
【請求項6】酸化物を構成する金属の有機錯体又は当該
金属の有機化合物を加熱しながら酸素ラジカル、含酸素
カチオン、過酸化物イオンなどの活性酸素と接触させ、
それら有機錯体及び有機化合物に含まれる有機物を酸化
分解することを特徴とする酸化物の製造方法。
6. An organic complex of a metal constituting an oxide or an organic compound of the metal is brought into contact with active oxygen such as oxygen radicals, oxygen-containing cations and peroxide ions while heating,
A method for producing an oxide, comprising oxidatively decomposing an organic substance contained in the organic complex and the organic compound.
【請求項7】前記加熱の温度が当該酸化物の融点の1/
2以下である請求項6に記載の製造方法。
7. The method according to claim 1, wherein the temperature of the heating is 1/1 / the melting point of the oxide.
7. The method according to claim 6, wherein the number is 2 or less.
JP2000077331A 2000-03-21 2000-03-21 Method of producing oxide precursor and oxide Pending JP2001261346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077331A JP2001261346A (en) 2000-03-21 2000-03-21 Method of producing oxide precursor and oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077331A JP2001261346A (en) 2000-03-21 2000-03-21 Method of producing oxide precursor and oxide

Publications (1)

Publication Number Publication Date
JP2001261346A true JP2001261346A (en) 2001-09-26

Family

ID=18594915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077331A Pending JP2001261346A (en) 2000-03-21 2000-03-21 Method of producing oxide precursor and oxide

Country Status (1)

Country Link
JP (1) JP2001261346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016257A (en) * 2004-07-01 2006-01-19 Ministry Of National Defense Chung Shan Inst Of Science & Technology Method of producing lithium cobaltate powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913605A (en) * 1982-07-13 1984-01-24 Nissha Printing Co Ltd Manufacture of substrate having thin metallic oxide film
JPH01294506A (en) * 1988-05-19 1989-11-28 Nichicon Corp Production of metallic oxide and thin film thereof with excimer laser
JPH05186212A (en) * 1992-01-10 1993-07-27 Dainippon Printing Co Ltd Polycondensation of metal compound by sol-gel process
JPH06236826A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Thin insulating film, its forming method and forming device
JPH08290917A (en) * 1995-04-18 1996-11-05 Kansai Shin Gijutsu Kenkyusho:Kk Production of compound oxide
JPH0964307A (en) * 1995-08-29 1997-03-07 Hitachi Ltd Heat treatment method of oxide thin film
JPH10259095A (en) * 1997-03-18 1998-09-29 Kaneko Kenzai:Kk Zirconia membrane and its production
JP2000191324A (en) * 1998-12-25 2000-07-11 Rohm Co Ltd Formation of inorganic compound solid and production of semiconductor device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913605A (en) * 1982-07-13 1984-01-24 Nissha Printing Co Ltd Manufacture of substrate having thin metallic oxide film
JPH01294506A (en) * 1988-05-19 1989-11-28 Nichicon Corp Production of metallic oxide and thin film thereof with excimer laser
JPH05186212A (en) * 1992-01-10 1993-07-27 Dainippon Printing Co Ltd Polycondensation of metal compound by sol-gel process
JPH06236826A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Thin insulating film, its forming method and forming device
JPH08290917A (en) * 1995-04-18 1996-11-05 Kansai Shin Gijutsu Kenkyusho:Kk Production of compound oxide
JPH0964307A (en) * 1995-08-29 1997-03-07 Hitachi Ltd Heat treatment method of oxide thin film
JPH10259095A (en) * 1997-03-18 1998-09-29 Kaneko Kenzai:Kk Zirconia membrane and its production
JP2000191324A (en) * 1998-12-25 2000-07-11 Rohm Co Ltd Formation of inorganic compound solid and production of semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016257A (en) * 2004-07-01 2006-01-19 Ministry Of National Defense Chung Shan Inst Of Science & Technology Method of producing lithium cobaltate powder

Similar Documents

Publication Publication Date Title
JP5801317B2 (en) Method for improving electrochemical performance of alkali metal oxyanion electrode material, and alkali metal oxyanion electrode material obtained thereby
KR101410844B1 (en) Alkali metal titanates and methods for their synthesis
KR20210102427A (en) Plasma Treatment of Lithium Transition Metal Oxides for Lithium Ion Batteries
WO2014056143A1 (en) Lithium iron phosphate material and preparation thereof
EP4253326A1 (en) Ternary positive electrode material, preparation method therefor and use thereof
CA2801280C (en) Method for producing lithium-containing composite oxide
CN111793824B (en) Surface-modified high-nickel cathode material and preparation method and application thereof
Chang et al. One‐Step Fast Synthesis of Li 4 Ti 5 O 12 Particles Using an Atmospheric Pressure Plasma Jet
TW201420542A (en) Flame spray pyrolysis method for forming nanoscale lithium metal phosphate powders
JP2000072445A (en) Production of lithium-based metal multiple oxide
CN112601728A (en) Ceramic powder material, method for producing ceramic powder material, and battery
JP3532844B2 (en) Method for producing lithium manganese oxide powder for lithium secondary battery
JPH1171113A (en) Manganese oxide thin film and its production
CN113348148B (en) Method for producing lithium titanium phosphate
US20070231234A1 (en) Microwave assisted rapid gel combustion technique for producing ultrafine complex oxides and ceramic composites powders
JP2001261346A (en) Method of producing oxide precursor and oxide
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
CN116130646A (en) Ultrahigh nickel ternary composite material and preparation method and application thereof
JP2013047162A (en) Methods for production of silicic acid compound, positive electrode for secondary battery and secondary battery
KR20140146517A (en) Method for preparing lithium phosphate based solid electrolyte
JP2012004046A (en) Manufacturing method of active material, active material and lithium ion secondary battery
WO2020158666A1 (en) Method for producing lithium titanium phosphate
CN114538444B (en) Niobium carbide and preparation method thereof
CN102126716A (en) Cathode material of lithium iron phosphate lithium battery and preparation method thereof
CN111261935A (en) Sodium ion conductor solid electrolyte material, preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019