JP2001257351A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2001257351A
JP2001257351A JP2000065911A JP2000065911A JP2001257351A JP 2001257351 A JP2001257351 A JP 2001257351A JP 2000065911 A JP2000065911 A JP 2000065911A JP 2000065911 A JP2000065911 A JP 2000065911A JP 2001257351 A JP2001257351 A JP 2001257351A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
insulating layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000065911A
Other languages
Japanese (ja)
Other versions
JP3512701B2 (en
Inventor
Koji Usuda
宏治 臼田
Tsutomu Tezuka
勉 手塚
Tomohisa Mizuno
智久 水野
Tetsuo Hatakeyama
哲夫 畠山
Naoharu Sugiyama
直治 杉山
Shinichi Takagi
信一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000065911A priority Critical patent/JP3512701B2/en
Publication of JP2001257351A publication Critical patent/JP2001257351A/en
Application granted granted Critical
Publication of JP3512701B2 publication Critical patent/JP3512701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structure for forming a semiconductor element of high performance at a low cost and its manufacturing method by applying selectively sufficient strain to a channel layer in a desired semiconductor element alone, according to required element characteristic without losing effect by means of an SOI structure. SOLUTION: Two semiconductor layers of different compositions which are separated by an insulation layer are formed on an Si substrate, and a semiconductor device of desired characteristic is formed on each semiconductor layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は格子歪を有する半導
体層にチャネル領域を形成した半導体装置及びその製造
方法に関する。
The present invention relates to a semiconductor device in which a channel region is formed in a semiconductor layer having lattice distortion, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Siを材料とする半導体素子、とりわけ
MOSFETの性能は、大規模集積回路(LSI)の進
歩と共にこれまで年々向上してきたが、近年、リソグラ
フィ技術の微細化対応への限界、Siの理論的なキャリ
ア移動度の飽和などの問題が指摘され、更なる高性能化
は、困難になってきている。
2. Description of the Related Art The performance of semiconductor devices made of Si, particularly MOSFETs, has been improving year by year with the progress of large-scale integrated circuits (LSIs). Problems such as saturation of the theoretical carrier mobility have been pointed out, and further improvement in performance has become difficult.

【0003】現在、Siの電子移動度を向上させMOS
FETを高性能化する方法の一つとして、Si層に格子
歪を形成する技術が注目されている。一般に半導体層に
格子歪を形成すると、そのバンド構造が変化し、チャネ
ル中のキャリアの散乱が抑制されるため電子移動度の向
上が期待できる。
At present, the electron mobility of Si has been improved and MOS
As one of the methods for improving the performance of an FET, a technique of forming a lattice strain in a Si layer has attracted attention. In general, when lattice strain is formed in a semiconductor layer, the band structure is changed, and scattering of carriers in a channel is suppressed, so that an improvement in electron mobility can be expected.

【0004】具体的には、Si基板上にSiよりも格子
定数の大きな材料からなる混晶層、例えばGeを20%
含むSiGe混晶層(以下、単にSiGe層という)
を、格子歪が緩和されるように厚く(数μm)形成し、
このSiGe層上に薄いSi層(数nm)を形成する
と、SiGeとSiの格子定数差による格子歪の内在す
るSi層(以下、歪Si層と称する。)が形成される。
Specifically, a mixed crystal layer made of a material having a larger lattice constant than Si, for example, Ge
Containing SiGe mixed crystal layer (hereinafter simply referred to as SiGe layer)
Is formed thick (several μm) so that lattice distortion is reduced,
When a thin Si layer (several nm) is formed on this SiGe layer, an Si layer (hereinafter, referred to as a strained Si layer) having a lattice strain due to a difference in lattice constant between SiGe and Si is formed.

【0005】この歪Si層をMOSFETのチャネルに
用いると、格子歪のないSi層をチャネルに用いた場合
の約1.76倍と大幅な電子移動度の向上を達成できる
ことが報告されている(J.Welser, J.L.
Hoyl,S.Tagkagi, and J.F.G
ibbons,IEDM 94−373)。
It has been reported that when this strained Si layer is used for the channel of a MOSFET, a significant improvement in electron mobility can be achieved, about 1.76 times that when a Si layer without lattice distortion is used for the channel ( J. Welser, J.L.
Hoyl, S .; Tagkagi, and J.M. F. G
ibbons, IEDM 94-373).

【0006】一方、Siの電子移動度を向上させる別の
方法として、MOSFETのチャネル長をより短くする
方法があるが、チャネル長が短くなると浮遊容量の影響
が大きくなるため、期待通りに電子移動度を向上するこ
とが困難になる。この浮遊容量の問題を解決するため、
絶縁膜上のSi層にチャネル層等を設けるSOI(Si
licon On Insulator)構造が注目さ
れている。
On the other hand, as another method for improving the electron mobility of Si, there is a method of further shortening the channel length of the MOSFET. It becomes difficult to improve the degree. To solve this stray capacitance problem,
SOI (Si) in which a channel layer or the like is provided on the Si layer on the insulating film
(Licon on Insulator) structure.

【0007】この構造では素子の作られるSi層が絶縁
膜によりアイソレーションされるので、浮遊容量の低減
や素子分離が容易となり、さらなる低消費電力化、高集
積化が実現すると期待されている。
In this structure, since the Si layer on which the element is formed is isolated by the insulating film, it is expected that stray capacitance can be reduced and the element can be easily separated, and further lower power consumption and higher integration can be realized.

【0008】[0008]

【発明が解決しようとする課題】そこで、電子移動度の
向上を期待できる歪Si層を、浮遊容量の低減や素子分
離が容易となるSOI構造に適用するため次のような試
みが行われた。
Therefore, the following attempts have been made to apply a strained Si layer, which is expected to improve electron mobility, to an SOI structure in which stray capacitance is reduced and element isolation is facilitated. .

【0009】Si基板に酸素をイオン注入した後、高温
アニールを施して埋め込み酸化層を形成するSIMOX
(Silicon Implanted Oxyge
n)工程を用いてSOI基板を準備し、このSOI基板
表面にSiより格子定数の大きいSiGe層をSOI基
板表面のSi層よりも十分厚く形成する。
SIMOX for forming a buried oxide layer by performing high-temperature annealing after oxygen ions are implanted into a Si substrate
(Silicon Implanted Oxyge
An SOI substrate is prepared by using the step n), and a SiGe layer having a larger lattice constant than Si is formed on the surface of the SOI substrate sufficiently thicker than the Si layer on the surface of the SOI substrate.

【0010】この後、アニールを施して、Si層を塑性
変形させ転位を導入することにより、SiGe層からS
i層にかかる引っ張り応力を緩和し、同時にSiGe層
の格子歪を緩和する。そして、格子歪の緩和されたSi
Ge層上に薄膜のSi層を形成すると、引っ張り歪を有
する歪Si層が形成される。
After that, annealing is performed to plastically deform the Si layer to introduce dislocations, so that the SiGe layer
The tensile stress applied to the i-layer is reduced, and at the same time, the lattice strain of the SiGe layer is reduced. Then, Si with lattice strain relaxed
When a thin Si layer is formed on the Ge layer, a strained Si layer having tensile strain is formed.

【0011】上述の方法では、SOI基板表面のSi層
の塑性変形によって、そのSi層中に貫通転位やミスフ
ィット転位などの転位が発生するが、その転位がその後
の熱履歴によって1個/10μm2程度の密度でSiG
e層の表面にも伝播し、歪Si層の結晶性を劣化させる
ことが分かった。この歪Si層の結晶性劣化はその上に
作製される半導体素子の特性を大きく劣化させる可能性
があり、半導体素子が微細化されるほど顕著になると予
想される。
In the above-described method, dislocations such as threading dislocations and misfit dislocations are generated in the Si layer by the plastic deformation of the Si layer on the surface of the SOI substrate. SiG with moderate density
It has been found that it also propagates to the surface of the e layer and deteriorates the crystallinity of the strained Si layer. This deterioration in the crystallinity of the strained Si layer may significantly degrade the characteristics of the semiconductor element manufactured thereon, and is expected to become more significant as the semiconductor element is miniaturized.

【0012】従って、歪Si層の結晶性劣化させるよう
な転位のSiGe表面への伝播を抑えるためには、これ
までのところSiGe層を数μm以上の厚さで厚く形成
しなければならない。
Therefore, in order to suppress the dislocation from propagating to the SiGe surface which causes the crystallinity of the strained Si layer to deteriorate, the SiGe layer has to be formed to a thickness of several μm or more so far.

【0013】しかしながら、浮遊容量の影響を抑えるS
OI構造の効果を十分に発揮するためには、SiO2層
からチャネル層である歪Si層までの厚みを極力抑える
ことが必要であり、歪Si層の結晶性とSOI構造の効
果とを両立させることができない。
However, S which suppresses the influence of stray capacitance
In order to sufficiently exert the effect of the OI structure, it is necessary to minimize the thickness from the SiO 2 layer to the strained Si layer as the channel layer, and to achieve both the crystallinity of the strained Si layer and the effect of the SOI structure. Can not do.

【0014】また、最近の開発動向を見るに、メモリ、
CPUなどの単一または特定機能のみのデバイスでは商
品付加価値が低く、高速論理素子と記憶保持用メモリを
同一基板上に有するような混載デバイス、或いはシステ
ムLSI等と呼ばれものが注目されているが、この様な
混載型の半導体装置を製造する場合、高速演算を行う半
導体素子には、高速動作が可能な歪Si層利用の半導体
素子が有効である一方で、記憶保持用メモリに利用され
る半導体素子、例えばDRAMを構成するMOSFET
に要求される重要な素子特性は信頼性であって、歪Si
層中の欠陥は無視出来ない。
Looking at recent development trends, memory,
A device such as a CPU having only a single function or a specific function has a low value added to a product, and a device called a hybrid device or a system LSI having a high-speed logic element and a memory for storing data on the same substrate has attracted attention. However, when manufacturing such a hybrid type semiconductor device, a semiconductor element utilizing a strained Si layer capable of high-speed operation is effective as a semiconductor element performing high-speed operation, while a semiconductor element utilizing storage strain is used for a memory element. Semiconductor device, for example, a MOSFET constituting a DRAM
An important element characteristic required for the device is reliability,
Defects in the layer cannot be ignored.

【0015】本発明は、かかる事情に鑑みて成されたも
のであって、浮遊容量の小さな所望のSOI構造に、上
述の結晶性劣化の問題を抑えた歪み半導体層を組み込ん
だ半導体装置及びその製造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and provides a semiconductor device in which a desired SOI structure having a small stray capacitance is incorporated with a strained semiconductor layer that suppresses the above-described problem of crystallinity deterioration. It is intended to provide a manufacturing method.

【0016】[0016]

【課題を解決するための手段】Si基板表面から酸素を
イオン注入する際、イオン注入条件とその後のアニール
条件を制御すると、イオン注入の濃度ピークとダメージ
・ピークの各位置に、二層の埋め込み酸化層を形成可能
であることが判っている(A.Ogura,Appl.
Phys. Lett. vol.74, no.1
5, P2188, 1999)が、本発明では、半導
体層、例えばSi層表面に、組成の異なる半導体層、例
えばSiGe層を積層するように成長した半導体基板
に、酸素をイオン注入し、濃度ピークとダメージピーク
の各位置に、二層の埋め込み酸化層を形成した。
When oxygen is ion-implanted from the surface of the Si substrate, the ion implantation conditions and the subsequent annealing conditions are controlled, so that two layers are buried at each position of the ion implantation concentration peak and the damage peak. It has been found that an oxide layer can be formed (A. Ogura, Appl.
Phys. Lett. vol. 74, no. 1
According to the present invention, oxygen ions are implanted into a semiconductor substrate grown such that a semiconductor layer having a different composition, for example, a SiGe layer is stacked on the surface of a semiconductor layer, for example, a Si layer, and a concentration peak is obtained. At each position of the damage peak, two buried oxide layers were formed.

【0017】その結果、例えばSiGe層、酸化層、S
i層、酸化層、Si層の順に二層の異なる組成を持つS
OI構造が形成できることを見出した。しかも、この二
層の異なる組成を持つSOI構造では、従来の技術の欄
で説明したような、Si層の塑性変形による転位導入工
程がないため、SiGe層の格子歪を緩和させるための
高温アニールで、貫通転位等が歪半導体層に影響するこ
とがない。
As a result, for example, a SiGe layer, an oxide layer,
S having two different compositions in the order of i-layer, oxide layer and Si layer
It has been found that an OI structure can be formed. Moreover, in the SOI structure having the two layers having different compositions, there is no dislocation introduction step due to the plastic deformation of the Si layer as described in the section of the prior art, so that the high-temperature annealing for relaxing the lattice distortion of the SiGe layer is performed. Thus, threading dislocations and the like do not affect the strained semiconductor layer.

【0018】上記目的を達成するために、請求項1に係
る発明は、一主面を有する半導体基板と、この半導体基
板の内部に前記一主面とは略平行に離間して形成された
第1絶縁層と、この第1絶縁層上に位置させられた第1
半導体層と、この第1半導体層上に選択的に形成された
第2絶縁層と、前記第1半導体層とは異なる組成で前記
第2絶縁層上に位置させられた第2半導体層と、前記第
1半導体層とは異なる組成で前記第1半導体層上に積層
して形成された第3半導体層とを備え、前記第2半導体
層がチャネル領域として使用された電界効果トランジス
タ及び第3半導体層がチャネル領域として使用された電
界効果トランジスタとにより集積回路が構成されている
ことを特徴とする半導体装置を提供する。
In order to achieve the above object, the invention according to claim 1 is directed to a semiconductor substrate having one main surface and a semiconductor substrate formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface. 1 insulating layer and a first insulating layer located on the first insulating layer.
A semiconductor layer, a second insulating layer selectively formed on the first semiconductor layer, a second semiconductor layer positioned on the second insulating layer with a composition different from that of the first semiconductor layer, A third semiconductor layer having a composition different from that of the first semiconductor layer and stacked on the first semiconductor layer, wherein the second semiconductor layer is used as a channel region; There is provided a semiconductor device in which an integrated circuit is formed by a field effect transistor whose layer is used as a channel region.

【0019】また、請求項2に係る発明は、一主面を有
する半導体基板と、この半導体基板の内部に前記一主面
とは略平行に離間して形成された第1絶縁層と、この第
1絶縁層上に位置させられた第1半導体層と、この第1
半導体層上に選択的に形成された第2絶縁層と、前記第
1半導体層とは異なる組成で前記第2絶縁層上に位置さ
せられた第2半導体層と、この第2半導体層とは異なる
組成で前記第2半導体層上に積層形成された第4半導体
層とを備え、前記第1半導体層がチャネル領域として使
用された電界効果トランジスタ及び第4半導体層がチャ
ネル領域として使用された電界効果トランジスタとによ
り集積回路が構成されていることを特徴とする半導体装
置を提供する。
According to a second aspect of the present invention, there is provided a semiconductor substrate having one main surface, a first insulating layer formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface, A first semiconductor layer located on the first insulating layer;
A second insulating layer selectively formed on the semiconductor layer, a second semiconductor layer located on the second insulating layer with a composition different from that of the first semiconductor layer, and the second semiconductor layer A fourth semiconductor layer having a different composition and stacked on the second semiconductor layer, wherein the first semiconductor layer is used as a channel region and the fourth semiconductor layer is used as a channel region. There is provided a semiconductor device in which an integrated circuit is constituted by an effect transistor.

【0020】また、請求項3に係る発明は、一主面を有
する半導体基板と、この半導体基板の内部に前記一主面
とは略平行に離間して形成された第1絶縁層と、この第
1絶縁層上に位置させられた第1半導体層と、この第1
半導体層上に選択的に形成された第2絶縁層と、前記第
1半導体層とは異なる組成で前記第2絶縁層上に位置さ
せられた第2半導体層と、前記第1半導体層とは異なる
組成で前記第1半導体層上に積層して形成された第3半
導体層と、前記第2半導体層とは異なる組成で前記第2
半導体層上に積層形成された第4半導体層とを備え、前
記第3半導体層がチャネル領域として使用された電界効
果トランジスタ及び第4半導体層がチャネル領域として
使用された電界効果トランジスタとにより集積回路が構
成されていることを特徴とする半導体装置を提供する。
According to a third aspect of the present invention, there is provided a semiconductor substrate having one main surface, a first insulating layer formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface, A first semiconductor layer located on the first insulating layer;
A second insulating layer selectively formed on the semiconductor layer, a second semiconductor layer located on the second insulating layer with a composition different from that of the first semiconductor layer, and the first semiconductor layer The third semiconductor layer formed by being stacked on the first semiconductor layer with a different composition, and the second semiconductor layer having a different composition from the second semiconductor layer.
A fourth semiconductor layer laminated on a semiconductor layer, wherein the third semiconductor layer is used as a channel region and a field effect transistor and the fourth semiconductor layer is used as a channel region. Are provided, and a semiconductor device is provided.

【0021】また、請求項4に係る発明は、請求項1又
は請求項3に係る半導体装置の前記第3半導体層が、前
記第1半導体層とは異なる格子定数を有し、圧縮歪みを
有することを特徴とする半導体装置を提供する。
According to a fourth aspect of the present invention, in the semiconductor device according to the first or third aspect, the third semiconductor layer has a different lattice constant from the first semiconductor layer and has a compressive strain. A semiconductor device is provided.

【0022】また、請求項5に係る発明は、請求項2又
は請求項3に係る半導体装置の前記第4半導体層が、前
記第2半導体層とは異なる格子定数を有し、引っ張り歪
みを有することを特徴とする半導体装置を提供する。
According to a fifth aspect of the present invention, in the semiconductor device according to the second or third aspect, the fourth semiconductor layer has a lattice constant different from that of the second semiconductor layer and has a tensile strain. A semiconductor device is provided.

【0023】また、請求項6に係る発明は、請求項1乃
至請求項5に係る半導体装置の前記第1半導体層がSi
単結晶層であり、且つ前記第2半導体層がSiGe混晶
層であることを特徴とする半導体装置を提供する。
According to a sixth aspect of the present invention, in the semiconductor device according to the first to fifth aspects, the first semiconductor layer is made of Si.
A semiconductor device is provided, wherein the semiconductor device is a single crystal layer, and the second semiconductor layer is a SiGe mixed crystal layer.

【0024】また、請求項7に係る発明は、請求項1乃
至請求項5に係る半導体装置の前記第1半導体層がS
i、B、As、P、C、Ge、Ga、In、Al、Z
n、Seから選ばれた少なくとも一つの材料で構成され
る結晶または混晶層であることを特徴とする半導体装置
を提供する。
According to a seventh aspect of the present invention, in the semiconductor device according to any one of the first to fifth aspects, the first semiconductor layer is formed of S
i, B, As, P, C, Ge, Ga, In, Al, Z
A semiconductor device is provided which is a crystal or mixed crystal layer formed of at least one material selected from n and Se.

【0025】また、請求項8に係る発明は、請求項1乃
至請求項5に係る半導体装置の前記半導体基板が、Ga
As、ZnSe、SiC、Ge、SiGe、サファイ
ア、有機ガラス、無機ガラス、プラスティックから選ば
れた少なくとも一つの材料で構成される基板と積層され
ていることを特徴とする半導体装置を提供する。
According to an eighth aspect of the present invention, in the semiconductor device according to any one of the first to fifth aspects, the semiconductor substrate is formed of Ga.
A semiconductor device is provided, which is stacked with a substrate made of at least one material selected from the group consisting of As, ZnSe, SiC, Ge, SiGe, sapphire, organic glass, inorganic glass, and plastic.

【0026】また、請求項9に係る発明は、請求項1乃
至請求項5に係る半導体装置の前記第2絶縁層と前記第
2半導体層のとが、ウェハーの張り合わせ技術により一
体化されていることを特徴とする半導体装置を提供す
る。
According to a ninth aspect of the present invention, in the semiconductor device according to the first to fifth aspects, the second insulating layer and the second semiconductor layer are integrated by a wafer bonding technique. A semiconductor device is provided.

【0027】また、請求項10に係る発明は、請求項1
乃至請求項6に係る半導体装置の前記第1半導体層の厚
さが100nm以下であることを特徴とする半導体装置
を提供する。
The invention according to claim 10 is the first invention.
7. A semiconductor device according to claim 6, wherein the thickness of the first semiconductor layer is 100 nm or less.

【0028】また、請求項11に係る発明は、半導体基
板の一主面に、その半導体基板と異なる組成の第1半導
体層を形成する工程と、イオン注入による損傷ピークと
濃度ピークが前記半導体基板内部において異なる深さと
なる条件で、前記半導体基板内部に前記一主面側から酸
素をイオン注入する工程と、前記半導体基板を加熱し、
前記半導体基板内部に注入された酸素と半導体基板構成
材料との酸化物を形成することにより、前記半導体基板
内部のより深い位置に第1絶縁層を、その第1絶縁層よ
りも浅い位置に第2絶縁層を互いに離間させて形成する
工程とを具備することを特徴とする半導体装置の製造方
法を提供する。
The invention according to claim 11 is a step of forming a first semiconductor layer having a composition different from that of the semiconductor substrate on one main surface of the semiconductor substrate, and the step of reducing a damage peak and a concentration peak caused by ion implantation. Under a condition of different depths inside, a step of ion-implanting oxygen into the semiconductor substrate from the one main surface side, and heating the semiconductor substrate,
The first insulating layer is formed at a deeper position inside the semiconductor substrate, and the first insulating layer is formed at a position shallower than the first insulating layer by forming an oxide of the oxygen and the constituent material of the semiconductor substrate that are injected into the semiconductor substrate. Forming the two insulating layers separately from each other.

【0029】また、請求項12に係る発明は、請求項1
1に係る半導体装置の製造方法に更に、前記第1絶縁層
上の半導体基板の一部に、前記半導体基板とは異なる組
成の第2半導体層を、前記半導体基板の一部に積層して
形成する工程を備えることを特徴とする半導体装置の製
造方法を提供する。
The invention according to claim 12 is based on claim 1.
Further, in the method of manufacturing a semiconductor device according to the first aspect, a second semiconductor layer having a composition different from that of the semiconductor substrate is formed on a part of the semiconductor substrate on the first insulating layer by laminating the semiconductor substrate on a part of the semiconductor substrate. A method of manufacturing a semiconductor device, comprising the steps of:

【0030】また、請求項13に係る発明は、請求項1
1に係る半導体装置の製造方法に更に、前記第1半導体
層とは異なる組成の第3半導体層を前記第1半導体層上
に積層して形成する工程を備えることを特徴とする半導
体装置の製造方法を提供する。
[0030] The invention according to claim 13 is based on claim 1.
The method for manufacturing a semiconductor device according to claim 1, further comprising a step of forming a third semiconductor layer having a composition different from that of the first semiconductor layer by laminating the third semiconductor layer on the first semiconductor layer. Provide a way.

【0031】[0031]

【作用】本発明によれば、Si層の塑性変形による転位
導入工程がなく、SiGe層の格子歪を緩和させるため
の高温アニールで、貫通転位等が歪半導体層に影響する
ことがないため、格子歪が緩和された状態で、互いに絶
縁された、組成の異なる二層の半導体層、例えばSiG
e層とSi層を結晶性良く且つ薄く、また同時に得るこ
とが可能になり、素子特性の劣化等の問題も解消され
る。
According to the present invention, since there is no dislocation introduction step due to plastic deformation of the Si layer and high-temperature annealing for relaxing lattice strain of the SiGe layer, threading dislocations and the like do not affect the strained semiconductor layer. In a state where the lattice strain is relaxed, two semiconductor layers having different compositions and insulated from each other, for example, SiG
The e layer and the Si layer can be obtained simultaneously with good crystallinity and thinness, and problems such as deterioration of device characteristics can be solved.

【0032】[0032]

【発明の実施の形態】以下、図面を参照しながら、本発
明の実施例を説明する。 (実施例1)図1は、本発明の半導体装置の一部を示す
断面図である。図1の半導体装置は、Si基板1の一主
面側からその内部にイオン注入された酸素を、濃度ピー
クとダメージ・ピークの近傍において、夫々、基板構成
材料であるSiと反応させ、SiO2の絶縁層3及び絶
縁層4を形成し、SiGe層6及びSi層5を絶縁層4
により電気的に分離した二層のSOI構造を利用して構
成されている。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a part of a semiconductor device of the present invention. In the semiconductor device of FIG. 1, oxygen ion-implanted from one main surface side of the Si substrate 1 to the inside thereof reacts with Si, which is a substrate constituent material, in the vicinity of a concentration peak and a damage peak, respectively. An insulating layer 3 and an insulating layer 4 are formed, and the SiGe layer 6 and the Si layer 5 are
It is configured using a two-layer SOI structure which is electrically separated from the SOI structure.

【0033】イオン注入後の高温アニール処理により格
子歪の緩和されたSiGe層(以下、緩和SiGe層と
称する。)6及びSi層5は、SOI構造にける寄生容
量の低減効果を十分に発揮させるため、非常に薄く形成
されており、夫々の厚さはSi層5、緩和SiGe層6
共に、10nm〜200nmの範囲に制御されている。
The SiGe layer (hereinafter, referred to as a relaxed SiGe layer) 6 whose lattice distortion has been relaxed by the high-temperature annealing treatment after the ion implantation and the Si layer 5 sufficiently exhibit the effect of reducing the parasitic capacitance in the SOI structure. Therefore, they are formed to be very thin, and their thicknesses are the Si layer 5 and the relaxed SiGe layer 6 respectively.
Both are controlled in the range of 10 nm to 200 nm.

【0034】また、緩和SiGe層6上には比較的に高
速な動作を要求される半導体素子を作りこむため、引っ
張り歪を有するSi層(以下、歪Si層と称する。)7
がCVD(Chemical Vapor Depos
ition)や、MBE(Molecular Bea
m Epitaxy)等で形成されている。この歪Si
層7には、この層を利用して作り込まれるMOSFET
のチャンネル領域の導電型を決定するため、P型ウェル
領域8及びN型ウェル領域9がB,As,P等の不純物
を導入して形成されている。
On the relaxed SiGe layer 6, a Si layer having a tensile strain (hereinafter, referred to as a strained Si layer) 7 is formed in order to fabricate a semiconductor element required to operate at a relatively high speed.
Is CVD (Chemical Vapor Depos)
ition), MBE (Molecular BEA)
m Epitaxy). This strain Si
Layer 7 has a MOSFET built using this layer
In order to determine the conductivity type of the channel region, a P-type well region 8 and an N-type well region 9 are formed by introducing impurities such as B, As, and P.

【0035】更に、P型ウェル領域8には、選択的にP
等のN型不純物が導入され、MOSFETのソース領域
12及びドレイン領域13が形成されている。それ等、
ソース領域12及びドレイン領域13間のチャンネル領
域上にはゲート機能を付与するためゲート絶縁層16及
びゲート電極17が積層されている。
Further, the P-type well region 8 is selectively
The source region 12 and the drain region 13 of the MOSFET are formed by introducing N-type impurities such as. Etc.
A gate insulating layer 16 and a gate electrode 17 are stacked on the channel region between the source region 12 and the drain region 13 to provide a gate function.

【0036】同様に、N型ウェル領域9には、選択的に
B等のP型不純物が導入され、MOSFETのソース領
域14及びドレイン領域15が形成されている。それ
等、ソース領域14及びドレイン領域15間のチャネル
領域上にはゲート機能を付与するためゲート絶縁層18
及びゲート電極19が積層されている。
Similarly, a P-type impurity such as B is selectively introduced into the N-type well region 9 to form a source region 14 and a drain region 15 of the MOSFET. On the channel region between the source region 14 and the drain region 15, a gate insulating layer 18 for providing a gate function is provided.
And a gate electrode 19 are stacked.

【0037】ゲート絶縁層16としては、熱酸化膜、T
EOS、CVD膜等を用いることができる。また、ゲー
ト電極17に、減圧CVD法により形成された多結晶S
i層を用いれば、RIE(反応性イオンエッチング)に
より、ゲート電極形状は容易にパターニングできる。
As the gate insulating layer 16, a thermal oxide film, T
EOS, a CVD film, or the like can be used. Also, a polycrystalline S formed by a low pressure CVD method is formed on the gate electrode 17.
If an i layer is used, the shape of the gate electrode can be easily patterned by RIE (reactive ion etching).

【0038】図1で示されている範囲では、緩和SiG
e層6上に構成された半導体素子は、Pチャンネル型M
OSFET及びNチャンネル型MOSFETの夫々一素
子分であるが、実際のデバイスを構成するには、Pチャ
ンネル型MOSFET及びNチャンネル型MOSFET
共に多数を作り込む必要がある。
In the range shown in FIG. 1, the relaxed SiG
The semiconductor element formed on the e-layer 6 is a P-channel type M
OSFETs and N-channel MOSFETs each correspond to one element. However, to construct an actual device, a P-channel MOSFET and an N-channel MOSFET are used.
It is necessary to build many together.

【0039】また、歪Si層7を利用して作り込まれる
MOSFETは、格子歪の無いSi層を利用して作られ
る半導体素子に比較し、高速な動作が期待できるので、
回路的にはCMOS構成でロジックIC部として構成さ
れるのに適している。
Since a MOSFET fabricated using the strained Si layer 7 can be expected to operate at a higher speed than a semiconductor device fabricated using a Si layer having no lattice distortion,
The circuit is suitable to be configured as a logic IC unit with a CMOS configuration.

【0040】一方、絶縁層3上のSi層5は、CDE
(ケミカル・ドライ・エッチング)や、RIEなどのド
ライ・エッチング処理により絶縁層4及び緩和SiGe
層6が選択的に除去された露出表面を有しており、この
表面から比較的信頼性の高い動作を要求される半導体素
子が作り込まれている。
On the other hand, the Si layer 5 on the insulating layer 3
(Chemical dry etching) or dry etching such as RIE to form the insulating layer 4 and relaxed SiGe.
Layer 6 has an exposed surface that is selectively removed, from which a semiconductor device that requires relatively reliable operation has been fabricated.

【0041】絶縁層4及び緩和SiGe層6が除去され
たSi層5の表面からは、B,As,P等の不純物が導
入され、この層を利用して作り込まれるMOSFETの
チャネル領域の導電型を決定するため、P型ウェル領域
10及びN型ウェル領域11が形成されている。
Impurities such as B, As, and P are introduced from the surface of the Si layer 5 from which the insulating layer 4 and the relaxed SiGe layer 6 are removed, and the conductivity of the channel region of the MOSFET formed by using this layer is introduced. In order to determine the type, a P-type well region 10 and an N-type well region 11 are formed.

【0042】更に、P型ウェル領域10には、選択的に
P等のN型不純物が導入され、MOSFETのソース領
域20及びドレイン領域21が形成されている。それ
等、ソース領域20及びドレイン領域21間のチャンネ
ル領域上にはゲート機能を付与するためゲート絶縁層2
4及びゲート電極25が積層されている。
Further, an N-type impurity such as P is selectively introduced into the P-type well region 10 to form a source region 20 and a drain region 21 of the MOSFET. The gate insulating layer 2 is provided on the channel region between the source region 20 and the drain region 21 to provide a gate function.
4 and the gate electrode 25 are stacked.

【0043】ゲート絶縁層24としては、熱酸化膜、T
EOS、CVD膜等を用いることができる。また、ゲー
ト電極25に、減圧CVD法により形成された多結晶S
i層を用いれば、RIE(反応性イオンエッチング)に
より、ゲート電極形状は容易にパターニングできる。
As the gate insulating layer 24, a thermal oxide film, T
EOS, a CVD film, or the like can be used. Also, a polycrystalline S formed by a low pressure CVD method is formed on the gate electrode 25.
If an i layer is used, the shape of the gate electrode can be easily patterned by RIE (reactive ion etching).

【0044】同様にN型ウェル領域11には、選択的に
B等のP型不純物が導入され、MOSFETのソース領
域22及びドレイン領域23が形成されている。それ
等、ソース領域22及びドレイン領域23間のチャネル
領域上にはゲート機能を付与するためゲート絶縁層26
及びゲート電極27が積層されている。
Similarly, a P-type impurity such as B is selectively introduced into the N-type well region 11 to form a source region 22 and a drain region 23 of the MOSFET. On the channel region between the source region 22 and the drain region 23, a gate insulating layer 26 for imparting a gate function is provided.
And a gate electrode 27 are stacked.

【0045】図1で示されている範囲では、上部に絶縁
層4及び緩和SiGe層6が存在しない部分のSi層5
を利用した半導体素子は、Pチャンネル型MOSFET
及びNチャンネル型MOSFETの夫々一素子分である
が、実際のデバイスを構成するには、Pチャンネル型M
OSFET及びNチャンネル型MOSFET共に多数を
作り込む必要がある。
In the range shown in FIG. 1, the upper portion of the Si layer 5 where the insulating layer 4 and the relaxed SiGe layer 6 do not exist is provided.
Is a P-channel MOSFET
And an N-channel MOSFET, one element each. However, to construct an actual device, a P-channel M
It is necessary to build many OSFETs and N-channel MOSFETs.

【0046】また、Si層5は、結晶欠陥及び格子歪が
共に極力減少させて製造されるSi基板1と同等の状態
にあるため、信頼性及び安定性のある動作が期待できる
ので、回路的にはDRAM等のメモリ部として構成され
るのに適している。
Since the Si layer 5 is in the same state as the Si substrate 1 manufactured with the crystal defects and the lattice strain both reduced as much as possible, a reliable and stable operation can be expected. Is suitable for being configured as a memory unit such as a DRAM.

【0047】尚、ソース領域12,14,20,22及
びドレイン領域13,15,21,23には、電極2
8,29,30,31,32,33が、絶縁層34及び
35に選択的に設けられた開口を介してオーミックに接
続されている。
The source regions 12, 14, 20, 22 and the drain regions 13, 15, 21, 23 are provided with electrodes 2
8, 29, 30, 31, 32, and 33 are ohmically connected through openings selectively provided in the insulating layers and.

【0048】図1の実施例によれば、引っ張り歪が存在
するSi層を用いたMOSFETと結晶欠陥及び格子歪
が共に少ないSi層を用いたMOSFETとを同じ基板
上のSOI構造上に形成できるので、両Si層の特性を
十分引き出し半導体装置の高速・高性能化を図ることが
できる。
According to the embodiment shown in FIG. 1, a MOSFET using an Si layer having tensile strain and a MOSFET using an Si layer having less crystal defects and less lattice strain can be formed on the SOI structure on the same substrate. Therefore, the characteristics of both Si layers can be sufficiently extracted to achieve high speed and high performance of the semiconductor device.

【0049】この実施例では、歪Si層7中にソース領
域12,13及びドレイン領域14,15を形成した
が、歪Si層7をゲート絶縁層16,18直下のみ選択
的に形成してチャンネル領域とし、そのチャンネル領域
に隣接させて緩和SiGe層6中にソース領域12,1
3及びドレイン領域14,15を形成しても良い。
In this embodiment, the source regions 12, 13 and the drain regions 14, 15 are formed in the strained Si layer 7. However, the strained Si layer 7 is selectively formed only immediately below the gate insulating layers 16, 18 to form a channel. Source regions 12, 1 in the relaxed SiGe layer 6 adjacent to the channel region.
3 and the drain regions 14 and 15 may be formed.

【0050】図2乃び図3は、本発明に係る半導体装置
の製造方法の一部の工程を示す部分断面図である。図2
乃び図3により二層のSOI構造を得るための製造方法
を詳述する。
FIGS. 2 and 3 are partial sectional views showing some steps of a method of manufacturing a semiconductor device according to the present invention. FIG.
The manufacturing method for obtaining a two-layer SOI structure will be described in detail with reference to FIG.

【0051】まず、図2に示すように、Si基板1上に
格子歪を有するSiGe層(以下、歪SiGe層と称す
る。)2が100nm程度の厚さで形成されたウェハを
用意する。この歪SiGe層2は、40〜300nmの
範囲の膜厚が好ましく、CVD(Chemical V
apor Deposition)、MBE(Mole
cular Beam Epitaxy)等により形成
される。
First, as shown in FIG. 2, a wafer is prepared in which a SiGe layer 2 having lattice strain (hereinafter, referred to as a strained SiGe layer) 2 having a thickness of about 100 nm is formed on a Si substrate 1. The strained SiGe layer 2 preferably has a thickness in the range of 40 to 300 nm, and is formed by CVD (Chemical V).
apor Deposition), MBE (Mole
Circular Beam Epitaxy) or the like.

【0052】例えばCVDで形成する場合は、Siの原
料ガスとGeの原料ガスを、550℃に加熱したSi基
板1上に導入してSiGe層を堆積する。Ge濃度は2
%以上50%以下の範囲で選択して良いが、素子特性の
向上の観点から10%〜40%程度が望ましく、20%
〜30%の範囲が最適である。
For example, in the case of forming by CVD, a source gas of Si and a source gas of Ge are introduced onto the Si substrate 1 heated to 550 ° C. to deposit a SiGe layer. Ge concentration is 2
% To 50%, but may be selected from the range of about 10% to 40% from the viewpoint of improvement of device characteristics, and 20% to 50%.
The range of 3030% is optimal.

【0053】次に、所望の加速電圧及び、ドーズ量で、
Si基板1中に酸素をイオン注入する。酸素のイオン注
入条件は、注入エネルギー180KeV、注入量4E1
7cm−2、基板温度600℃とした。
Next, at a desired acceleration voltage and a desired dose,
Oxygen is ion-implanted into the Si substrate 1. The oxygen ion implantation conditions are as follows: implantation energy 180 KeV, implantation amount 4E1.
7 cm-2 and a substrate temperature of 600C.

【0054】この段階では、歪SiGe層2とSi基板
1の界面からSi基板1側へ10nm〜2μmの範囲
で、好ましくは500nm〜600nmの位置に酸素の
濃度ピークが、その濃度ピークよりも歪SiGe層2側
に200nm〜300nm寄った位置にダメージ・ピー
クが存在するが、いわゆる酸化層は形成されていない。
At this stage, the oxygen concentration peak at a position within a range of 10 nm to 2 μm, preferably 500 nm to 600 nm from the interface between the strained SiGe layer 2 and the Si substrate 1 to the Si substrate 1 is more strained than the concentration peak. Although a damage peak exists at a position closer to the SiGe layer 2 by 200 nm to 300 nm, a so-called oxide layer is not formed.

【0055】このイオン注入の後、高温アニールを施す
ことによって、図3に示すように、濃度ピーク近傍に絶
縁層3が、ダメージ・ピーク近傍に絶縁層4が形成さ
れ、二層のSOI構造、即ち、格子歪の緩和された10
nm〜200nmのSiGe層(以下、緩和SiGe層
と称する。)6、10nm〜500nmのSiO2層
(絶縁層4)、10nm〜200nmのSi層5、10
nm〜500nmのSiO2層(絶縁層3)、及びSi
基板1の積層構造が形成される。
After this ion implantation, high-temperature annealing is performed to form an insulating layer 3 near the concentration peak and an insulating layer 4 near the damage peak, as shown in FIG. In other words, 10 in which the lattice strain was relaxed
6 nm to 200 nm (hereinafter referred to as relaxed SiGe layer) 6, 10 nm to 500 nm SiO 2 layer (insulating layer 4), 10 nm to 200 nm Si layer 5, 10
nm to 500 nm SiO2 layer (insulating layer 3) and Si
A laminated structure of the substrate 1 is formed.

【0056】この高温アニールは、真空中でも、Ar、
水素、He、窒素などの不活性ガスのいずれか1種類の
雰囲気中、或いはそれ等の不活性ガスの混合雰囲気中で
も良く、更には、上記不活性ガスに酸素ガスを加えた混
合ガス雰囲気中であっても良い。アニール温度は、絶縁
層3及び4が図3の如く形成される温度であることが必
要で、SiO2層により形成する場合は、1000℃〜
1400℃の間であることが望ましいが、1270〜1
370℃が最適である。
This high-temperature anneal is performed in a vacuum, even if Ar,
In an atmosphere of any one of inert gases such as hydrogen, He, and nitrogen, or in a mixed atmosphere of such inert gases, and further in a mixed gas atmosphere obtained by adding oxygen gas to the above inert gas. There may be. The annealing temperature is required to be a temperature at which the insulating layers 3 and 4 are formed as shown in FIG. 3.
It is desirable to be between 1400 ° C.,
370 ° C. is optimal.

【0057】また、この高温アニールにより、図2の歪
SiGe層2の格子歪は緩和され、格子歪が緩和された
状態のSiGe混晶層、即ち緩和SiGe層6が形成さ
れる。
Also, by this high-temperature annealing, the lattice strain of the strained SiGe layer 2 in FIG. 2 is relaxed, and a SiGe mixed crystal layer in which the lattice strain is relaxed, that is, the relaxed SiGe layer 6 is formed.

【0058】尚、高温アニール直後は、最上層のSiG
e層6表面にも酸化層が形成されているが、この酸化層
はその後のWet処理により取り除かれるので、図3で
はその酸化層の除去後の構造を示した。
Immediately after the high-temperature annealing, the uppermost layer of SiG
An oxide layer is also formed on the surface of the e-layer 6, but since this oxide layer is removed by a subsequent Wet process, FIG. 3 shows the structure after the removal of the oxide layer.

【0059】また、上述の高温アニール工程で、絶縁層
3及び絶縁層4の形成に要するアニール時間が長い場合
には、SiGe層2中のGeが、Si層5に1%以上も
拡散することがある。これを避け、且つ図3と同様のS
i基板1、絶縁層3、Si層5、絶縁層4、及び緩和S
iGe層6の積層構造を得たい場合には、次の様な工程
により製造することが好ましい。
If the annealing time required for forming the insulating layers 3 and 4 is long in the above-described high-temperature annealing step, Ge in the SiGe layer 2 may diffuse by 1% or more into the Si layer 5. There is. This is avoided, and S similar to FIG.
i-substrate 1, insulating layer 3, Si layer 5, insulating layer 4, and relaxed S
When it is desired to obtain a laminated structure of the iGe layer 6, it is preferable to manufacture the iGe layer 6 by the following steps.

【0060】即ち、SIMOX工程を用いて一層のSO
I基板を準備し、そのSOI基板表面のSi層に予め酸
化膜を形成して、SiGe層を有する基板とウェハの張
り合せ技術により接合する。ウェハの張り合せ技術によ
れば、比較的低温での接合が可能なため、Geの拡散を
抑制することができ、元々のSiGe層中のGe濃度を
大きく変えることなく図3に示される積層構造を得るこ
とができる。 (実施例2)図4は、本発明の第2の実施例に係る半導
体装置を示す断面図である。
That is, one layer of SOX is formed by using the SIMOX process.
An I substrate is prepared, an oxide film is previously formed on a Si layer on the surface of the SOI substrate, and the substrate having the SiGe layer is bonded to a wafer by a bonding technique. According to the wafer bonding technique, bonding at a relatively low temperature is possible, so that the diffusion of Ge can be suppressed, and the stacked structure shown in FIG. 3 can be obtained without largely changing the Ge concentration in the original SiGe layer. Can be obtained. (Embodiment 2) FIG. 4 is a sectional view showing a semiconductor device according to a second embodiment of the present invention.

【0061】尚、図1の実施例における半導体装置と対
応する部分には同一符号を付し、その詳細な説明は省略
する。
The parts corresponding to those of the semiconductor device in the embodiment of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0062】この実施例では、Si層5の上に更に圧縮
歪を有するSiGe層100(以下、圧縮歪SiGe層
と称する。)を形成し、この層をチャネル層として利用
するゲート構造を、ゲート絶縁層101及びゲート電極
102を形成して構成したものである。ソース領域22
及びドレイン領域23は、チャンネル層である圧縮歪S
iGe層100に隣接するよう形成されている。
In this embodiment, an SiGe layer 100 having a compressive strain (hereinafter referred to as a compressively strained SiGe layer) is further formed on the Si layer 5, and a gate structure using this layer as a channel layer is referred to as a gate structure. It is formed by forming an insulating layer 101 and a gate electrode 102. Source area 22
And the drain region 23 has a compressive strain S which is a channel layer.
It is formed so as to be adjacent to the iGe layer 100.

【0063】このような構成にすることで、一層目のS
OI構造上にも高速動作を必要とする半導体素子が形成
可能となる。また、この形態で一層目のSOI構造上に
高速動作を必要とする半導体素子を形成する場合は、歪
Si層7の形成を省略して緩和SiGe層6により信頼
性及び安定性の要求されるメモリ素子等を形成しても良
い。 (実施例3)図5は、本発明の第3の実施例に係る半導
体装置を示す断面図である。
With such a configuration, the first S
A semiconductor element requiring high-speed operation can also be formed on the OI structure. In the case where a semiconductor element requiring high-speed operation is formed on the first SOI structure in this mode, the formation of the strained Si layer 7 is omitted, and the relaxed SiGe layer 6 requires reliability and stability. A memory element or the like may be formed. (Embodiment 3) FIG. 5 is a sectional view showing a semiconductor device according to a third embodiment of the present invention.

【0064】尚、図1の実施例における半導体装置と対
応する部分には同一符号を付し、その詳細な説明は省略
する。
The parts corresponding to those of the semiconductor device in the embodiment of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0065】この実施例では、絶縁層3より上に形成さ
れている二層のSOI構造が、緩和SiGe層200及
び緩和SiGe層201で形成されている。緩和SiG
e層201上には引っ張り歪みを有する歪Si層7が形
成され、この層がチャネル層として利用できるように、
ゲート絶縁層16とゲート電極17が形成されているこ
と等は第1の実施例と同様である。
In this embodiment, the two-layer SOI structure formed above the insulating layer 3 is formed by the relaxed SiGe layer 200 and the relaxed SiGe layer 201. Relaxed SiG
A strained Si layer 7 having a tensile strain is formed on the e layer 201, and this layer can be used as a channel layer.
The formation of the gate insulating layer 16 and the gate electrode 17 is the same as in the first embodiment.

【0066】上述の構成を得るためには、図2により説
明した製造方法における歪SiGe層2の厚さを、酸素
イオン注入の際のダメージ・ピーク及び濃度ピークの深
さが共にSi基板1との界面を上回らないように設定す
ればよい。 (実施例4)図6は、本発明の半導体装置に用いる図1
乃至図3で説明された基板とは別の基板を示す断面図で
ある。
In order to obtain the above configuration, the thickness of the strained SiGe layer 2 in the manufacturing method described with reference to FIG. May be set so as not to exceed the interface. (Embodiment 4) FIG. 6 is a cross-sectional view of FIG.
FIG. 4 is a cross-sectional view illustrating a substrate different from the substrate described in FIGS.

【0067】尚、図1の実施例における半導体装置と対
応する部分には同一符号を付し、その詳細な説明は省略
する。
Parts corresponding to those of the semiconductor device in the embodiment of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0068】図6では、図3の絶縁層4上の緩和SiG
e層6とSi層5の上下が逆になった構造を示してい
る。即ち、Si層7、SiO2層(絶縁層4)、緩和S
iGe層6、SiO2層(絶縁層3)、Si基板1の順
に積層された二層のSOI構造が示されている。このよ
うな二層のSOI構造を得るには、図2で用意したウェ
ハの歪SiGe層2の表面に、更にSi層を上述のMB
E及びCVD等の手法で連続成長させたウェハを用いる
ことが必要である。
In FIG. 6, the relaxed SiG on the insulating layer 4 of FIG.
The structure in which the e layer 6 and the Si layer 5 are upside down is shown. That is, the Si layer 7, the SiO2 layer (insulating layer 4), the relaxed S
2 shows a two-layer SOI structure in which an iGe layer 6, a SiO2 layer (insulating layer 3), and a Si substrate 1 are stacked in this order. To obtain such a two-layer SOI structure, a Si layer is further added to the surface of the strained SiGe layer 2 of the wafer prepared in FIG.
It is necessary to use a wafer continuously grown by a technique such as E and CVD.

【0069】また、その後のイオン注入工程では、高温
アニール後に緩和SiGe層6に接した絶縁層4が形成
されるように、歪SiGe層2上のSi層中の適切な位
置にダメージ・ピークを形成するよう制御する必要があ
る。しかしながら、その他のイオン注入時の濃度ピーク
の位置や、高温アニール等の処理については、上記図1
の実施例で説明したものと同様に行えば良い。
In the subsequent ion implantation step, a damage peak is formed at an appropriate position in the Si layer on the strained SiGe layer 2 so that the insulating layer 4 in contact with the relaxed SiGe layer 6 is formed after the high-temperature annealing. It needs to be controlled to form. However, regarding the position of the concentration peak at the time of ion implantation and the processing such as high-temperature annealing, FIG.
What is necessary is just to carry out similarly to what was demonstrated in the Example of this.

【0070】この図6に示される二層のSOI構造を用
いる場合には、絶縁層3及び絶縁層4の間にある緩和S
iGe層6の一部を選択的に露出させ、その表面に歪S
i層を積層して高速動作素子を形成すればよく、一方高
信頼性素子はSi層7を利用して作り込めば良い。
When the two-layer SOI structure shown in FIG. 6 is used, the relaxed S between insulating layer 3 and insulating layer 4 is used.
A part of the iGe layer 6 is selectively exposed, and a strain S
A high-speed operation element may be formed by laminating i-layers, while a highly reliable element may be formed using the Si layer 7.

【0071】[0071]

【発明の効果】以上、本発明によれば、SOI構造の効
果を損なわずに、元素、組成の異なる連続した二層のS
OI構造が提供できるため、例えば、歪Si系の高速論
理演算素子と、高信頼性が要求されるDRAM等の素子
とを同一基板上の任意の位置に作り分けることが可能で
ある。従って、従来よりも、素子特性の劣化を抑え、低
消費電力化、高集積化が可能となり、半導体素子の高性
能化が実現できる。
As described above, according to the present invention, two consecutive layers of S and S having different elements and compositions can be used without impairing the effect of the SOI structure.
Since an OI structure can be provided, for example, a strained Si-based high-speed logical operation element and an element such as a DRAM requiring high reliability can be separately formed at an arbitrary position on the same substrate. Therefore, deterioration of device characteristics is suppressed, power consumption is reduced, and integration is increased, and higher performance of the semiconductor device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に半導体基板の部分断面
図。
FIG. 1 is a partial cross-sectional view of a semiconductor substrate according to a first embodiment of the present invention.

【図2】本発明の半導体装置の製造方法の工程を示す部
分断面図。
FIG. 2 is a partial cross-sectional view showing steps of a method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法の工程を示す部
分断面図。
FIG. 3 is a partial cross-sectional view showing steps of a method for manufacturing a semiconductor device according to the present invention.

【図4】本発明の第2の実施例に係る半導体装置の部分
断面図。
FIG. 4 is a partial cross-sectional view of a semiconductor device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例に係る半導体装置の部分
断面図。
FIG. 5 is a partial sectional view of a semiconductor device according to a third embodiment of the present invention.

【図6】本発明の半導体装置に使用される基板の部分断
面図。
FIG. 6 is a partial cross-sectional view of a substrate used in the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・Si基板 2・・・歪SiGe層 3,4,34,35・・・絶縁層 4・・・絶縁層 5・・・緩和Si層 6・・・緩和SiGe層 7・・・歪Si層 8,10・・・P型ウェル領域 9,11・・・N型ウェル領域 12,14,20,22・・・ソース領域 13,15,21,23・・・ドレイン領域 16,18,24,26・・・ゲート絶縁層 17,19,25,27・・・ゲート電極層 28〜33・・・電極 DESCRIPTION OF SYMBOLS 1 ... Si board | substrate 2 ... Strained SiGe layer 3,4,34,35 ... Insulating layer 4 ... Insulating layer 5 ... Relaxed Si layer 6 ... Relaxed SiGe layer 7 ... Strain Si layer 8, 10, P-type well region 9, 11, N-type well region 12, 14, 20, 22 ... source region 13, 15, 21, 23 ... drain region 16, 18, 24, 26: gate insulating layer 17, 19, 25, 27: gate electrode layer 28 to 33: electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 智久 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 畠山 哲夫 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 杉山 直治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 高木 信一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 5F110 AA04 AA09 BB04 BB06 CC02 DD01 DD02 DD04 DD05 DD13 EE09 EE45 FF02 FF23 FF29 GG01 GG02 GG12 GG19 GG25 GG32 GG42 GG44 NN78 QQ17 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohisa Mizuno 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Works Co., Ltd. In the Toshiba R & D Center (72) Inventor Naoji Sugiyama 1 in Komukai Toshiba-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture 8F Town Toshiba Yokohama Office F Term (Reference) 5F110 AA04 AA09 BB04 BB06 CC02 DD01 DD02 DD04 DD05 DD13 EE09 EE45 FF02 FF23 FF29 GG01 GG02 GG12 GG19 GG25 GG32 GG42 GG44 NN78 QQ17

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】一主面を有する半導体基板と、 この半導体基板の内部に前記一主面とは略平行に離間し
て形成された第1絶縁層と、 この第1絶縁層上に位置させられた第1半導体層と、 この第1半導体層上に選択的に形成された第2絶縁層
と、 前記第1半導体層とは異なる組成で前記第2絶縁層上に
位置させられた第2半導体層と、 前記第1半導体層とは異なる組成で前記第1半導体層上
に積層して形成された第3半導体層とを備え、 前記第2半導体層がチャネル領域として使用された電界
効果トランジスタ及び第3半導体層がチャネル領域とし
て使用された電界効果トランジスタとにより集積回路が
構成されていることを特徴とする半導体装置。
A semiconductor substrate having one main surface; a first insulating layer formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface; and a first insulating layer positioned on the first insulating layer. A first semiconductor layer, a second insulating layer selectively formed on the first semiconductor layer, and a second insulating layer positioned on the second insulating layer with a composition different from that of the first semiconductor layer. A field effect transistor comprising: a semiconductor layer; and a third semiconductor layer formed by stacking on the first semiconductor layer with a composition different from that of the first semiconductor layer, wherein the second semiconductor layer is used as a channel region. And a field effect transistor in which the third semiconductor layer is used as a channel region to form an integrated circuit.
【請求項2】一主面を有する半導体基板と、 この半導体基板の内部に前記一主面とは略平行に離間し
て形成された第1絶縁層と、 この第1絶縁層上に位置させられた第1半導体層と、こ
の第1半導体層上に選択的に形成された第2絶縁層と、 前記第1半導体層とは異なる組成で前記第2絶縁層上に
位置させられた第2半導体層と、 この第2半導体層とは異なる組成で前記第2半導体層上
に積層形成された第4半導体層とを備え、 前記第1半導体層がチャネル領域として使用された電界
効果トランジスタ及び第4半導体層がチャネル領域とし
て使用された電界効果トランジスタとにより集積回路が
構成されていることを特徴とする半導体装置。
2. A semiconductor substrate having one main surface; a first insulating layer formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface; The first semiconductor layer, a second insulating layer selectively formed on the first semiconductor layer, and a second insulating layer positioned on the second insulating layer with a composition different from that of the first semiconductor layer. A field effect transistor, comprising: a semiconductor layer; and a fourth semiconductor layer laminated on the second semiconductor layer with a composition different from that of the second semiconductor layer, wherein the first semiconductor layer is used as a channel region. 4. A semiconductor device, wherein an integrated circuit is formed by four field effect transistors in which a semiconductor layer is used as a channel region.
【請求項3】一主面を有する半導体基板と、 この半導体基板の内部に前記一主面とは略平行に離間し
て形成された第1絶縁層と、 この第1絶縁層上に位置させられた第1半導体層と、 この第1半導体層上に選択的に形成された第2絶縁層
と、 前記第1半導体層とは異なる組成で前記第2絶縁層上に
位置させられた第2半導体層と、 前記第1半導体層とは異なる組成で前記第1半導体層上
に積層して形成された第3半導体層と、 前記第2半導体層とは異なる組成で前記第2半導体層上
に積層形成された第4半導体層とを備え、 前記第3半導体層がチャネル領域として使用された電界
効果トランジスタ及び第4半導体層がチャネル領域とし
て使用された電界効果トランジスタとにより集積回路が
構成されていることを特徴とする半導体装置。
3. A semiconductor substrate having one main surface; a first insulating layer formed inside the semiconductor substrate so as to be substantially parallel to and separated from the one main surface; A first semiconductor layer, a second insulating layer selectively formed on the first semiconductor layer, and a second insulating layer positioned on the second insulating layer with a composition different from that of the first semiconductor layer. A semiconductor layer; a third semiconductor layer formed by being stacked on the first semiconductor layer with a composition different from the first semiconductor layer; and a third semiconductor layer having a composition different from the second semiconductor layer on the second semiconductor layer. A fourth semiconductor layer formed in a stacked manner, wherein an integrated circuit is formed by a field effect transistor in which the third semiconductor layer is used as a channel region and a field effect transistor in which the fourth semiconductor layer is used as a channel region A semiconductor device.
【請求項4】前記第3半導体層は、前記第1半導体層と
は異なる格子定数を有し、圧縮歪みを有することを特徴
とする請求項1又は請求項3記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the third semiconductor layer has a lattice constant different from that of the first semiconductor layer and has a compressive strain.
【請求項5】前記第4半導体層は、前記第2半導体層と
は異なる格子定数を有し、引っ張り歪みを有することを
特徴とする請求項2又は請求項3記載の半導体装置。
5. The semiconductor device according to claim 2, wherein the fourth semiconductor layer has a lattice constant different from that of the second semiconductor layer and has a tensile strain.
【請求項6】前記第1半導体層はSi単結晶層であり、
前記第2半導体層はSiGe混晶層であることを特徴と
する請求項1乃至請求項5記載の半導体装置。
6. The first semiconductor layer is a single-crystal Si layer,
The semiconductor device according to claim 1, wherein the second semiconductor layer is a SiGe mixed crystal layer.
【請求項7】前記第1半導体層はSi、B、As、P、
C、Ge、Ga、In、Al、Zn、Seから選ばれた
少なくとも一つの材料で構成される結晶または混晶層で
あることを特徴とする請求項1乃至請求項5記載の半導
体装置。
7. The semiconductor device according to claim 1, wherein the first semiconductor layer comprises Si, B, As, P,
6. The semiconductor device according to claim 1, wherein the semiconductor device is a crystal or mixed crystal layer made of at least one material selected from C, Ge, Ga, In, Al, Zn, and Se.
【請求項8】前記半導体基板は、GaAs、ZnSe、
SiC、Ge、SiGe、サファイア、有機ガラス、無
機ガラス、プラスチックから選ばれた少なくとも一つの
材料で構成される基板と積層されていることを特徴とす
る請求項1乃至請求項5記載の半導体装置。
8. The semiconductor substrate according to claim 1, wherein said semiconductor substrate is GaAs, ZnSe,
6. The semiconductor device according to claim 1, wherein the semiconductor device is laminated on a substrate made of at least one material selected from SiC, Ge, SiGe, sapphire, organic glass, inorganic glass, and plastic.
【請求項9】前記第2絶縁層と前記第2半導体層のと
は、ウェハーの張り合わせ技術により一体化されている
ことを特徴とする請求項1乃至請求項5記載の半導体装
置。
9. The semiconductor device according to claim 1, wherein said second insulating layer and said second semiconductor layer are integrated by a wafer bonding technique.
【請求項10】前記第1半導体層の厚さが100nm以
下であることを特徴とする請求項1乃至請求項6記載の
半導体装置。
10. The semiconductor device according to claim 1, wherein said first semiconductor layer has a thickness of 100 nm or less.
【請求項11】半導体基板の一主面に、その半導体基板
と異なる組成の第1半導体層を形成する工程と、 イオン注入によるダメージ・ピークと濃度ピークが前記
半導体基板内部において異なる深さとなる条件で、前記
半導体基板内部に前記一主面側から酸素をイオン注入す
る工程と、前記半導体基板を加熱し、前記半導体基板内
部に注入された酸素と半導体基板構成材料との酸化物を
形成することにより、前記半導体基板内部のより深い位
置に第1絶縁層を、その第1絶縁層よりも浅い位置に第
2絶縁層を互いに離間させて形成する工程とを具備する
ことを特徴とする半導体装置の製造方法。
11. A step of forming a first semiconductor layer having a composition different from that of the semiconductor substrate on one principal surface of the semiconductor substrate, and a condition that damage peaks and concentration peaks due to ion implantation have different depths inside the semiconductor substrate. A step of ion-implanting oxygen into the semiconductor substrate from the one main surface side, and heating the semiconductor substrate to form an oxide of the oxygen implanted inside the semiconductor substrate and a semiconductor substrate constituent material. Forming a first insulating layer at a deeper position inside the semiconductor substrate and forming a second insulating layer at a position shallower than the first insulating layer by separating them from each other. Manufacturing method.
【請求項12】前記第1絶縁層上の半導体基板の一部
に、前記半導体基板とは異なる組成の第2半導体層を、
前記半導体基板の一部に積層して形成する工程を更に備
えることを特徴とする請求項11記載の半導体装置の製
造方法。
12. A second semiconductor layer having a composition different from that of the semiconductor substrate on a part of the semiconductor substrate on the first insulating layer.
The method of manufacturing a semiconductor device according to claim 11, further comprising a step of laminating the semiconductor device on a part of the semiconductor substrate.
【請求項13】前記第1半導体層とは異なる組成の第3
半導体層を前記第1半導体層上に積層して形成する工程
を更に備えることを特徴とする請求項11または請求項
12記載の半導体装置の製造方法。
13. A third semiconductor having a composition different from that of the first semiconductor layer.
The method of manufacturing a semiconductor device according to claim 11, further comprising a step of forming a semiconductor layer by laminating the semiconductor layer on the first semiconductor layer.
JP2000065911A 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3512701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065911A JP3512701B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065911A JP3512701B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001257351A true JP2001257351A (en) 2001-09-21
JP3512701B2 JP3512701B2 (en) 2004-03-31

Family

ID=18585359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065911A Expired - Fee Related JP3512701B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3512701B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849883B2 (en) 2002-09-02 2005-02-01 Oki Electric Industry Co., Ltd. Strained SOI MOSFET device and method of fabricating same
WO2005013375A1 (en) * 2003-08-05 2005-02-10 Fujitsu Limited Semiconductor device and its manufacturing method
JP2005286341A (en) * 2004-03-30 2005-10-13 Samsung Electronics Co Ltd Low-noise and high-performance lsi element, layout, and its manufacturing method
WO2005112097A1 (en) * 2004-05-13 2005-11-24 Fujitsu Limited Semiconductor device and method for fabricating the same, semiconductor substrate and method for producing the same
JP2006032785A (en) * 2004-07-20 2006-02-02 Sumco Corp Method for manufacturing soi substrate and soi substrate
JP2006041516A (en) * 2004-07-23 2006-02-09 Internatl Business Mach Corp <Ibm> Patterned strained semiconductor substrate and device
JP2006049673A (en) * 2004-08-06 2006-02-16 Seiko Epson Corp Semiconductor substrate, manufacturing method thereof, semiconductor device, and manufacturing method thereof
JP2006513567A (en) * 2003-01-08 2006-04-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor structure and manufacturing method thereof (high performance embedded DRAM technology using strained silicon)
JP2007027194A (en) * 2005-07-12 2007-02-01 Renesas Technology Corp Semiconductor device
JP2008505488A (en) * 2004-06-30 2008-02-21 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Technology for forming substrates having crystalline semiconductor regions with different characteristics
JP2008521229A (en) * 2004-11-18 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション SOI substrate material and method of forming Si-containing SOI and lower substrate having different orientations
JP2009177306A (en) * 2008-01-22 2009-08-06 Hitachi Ltd Magnetic logic element
JP4751825B2 (en) * 2004-05-13 2011-08-17 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof, semiconductor substrate and manufacturing method thereof
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
JP2013016789A (en) * 2011-06-10 2013-01-24 Sumitomo Chemical Co Ltd Semiconductor device, semiconductor substrate, semiconductor substrate manufacturing method and semiconductor device manufacturing method
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036966A (en) 2015-09-24 2017-04-04 삼성전자주식회사 Method of fabricating semiconductor device

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849883B2 (en) 2002-09-02 2005-02-01 Oki Electric Industry Co., Ltd. Strained SOI MOSFET device and method of fabricating same
JP2006513567A (en) * 2003-01-08 2006-04-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor structure and manufacturing method thereof (high performance embedded DRAM technology using strained silicon)
WO2005013375A1 (en) * 2003-08-05 2005-02-10 Fujitsu Limited Semiconductor device and its manufacturing method
US7449379B2 (en) 2003-08-05 2008-11-11 Fujitsu Limited Semiconductor device and method for fabricating the same
US9425182B2 (en) 2004-03-30 2016-08-23 Samsung Electronics Co., Ltd. Low noise and high performance LSI device
US8816440B2 (en) 2004-03-30 2014-08-26 Samsung Electronics Co., Ltd. Low noise and high performance LSI device
JP2005286341A (en) * 2004-03-30 2005-10-13 Samsung Electronics Co Ltd Low-noise and high-performance lsi element, layout, and its manufacturing method
US9899386B2 (en) 2004-03-30 2018-02-20 Samsung Electronics Co., Ltd. Low noise and high performance LSI device
US9093306B2 (en) 2004-03-30 2015-07-28 Samsung Electronics Co., Ltd. Low noise and high performance LSI device
WO2005112129A1 (en) * 2004-05-13 2005-11-24 Fujitsu Limited Semiconductor device and process for fabricating same, and process for producing semiconductor substrate
WO2005112097A1 (en) * 2004-05-13 2005-11-24 Fujitsu Limited Semiconductor device and method for fabricating the same, semiconductor substrate and method for producing the same
US7910415B2 (en) 2004-05-13 2011-03-22 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same, and semiconductor substrate and method of manufacturing the same
JP4751825B2 (en) * 2004-05-13 2011-08-17 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof, semiconductor substrate and manufacturing method thereof
JP2008505488A (en) * 2004-06-30 2008-02-21 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Technology for forming substrates having crystalline semiconductor regions with different characteristics
JP2006032785A (en) * 2004-07-20 2006-02-02 Sumco Corp Method for manufacturing soi substrate and soi substrate
US9053970B2 (en) 2004-07-23 2015-06-09 International Business Machines Corporation Patterned strained semiconductor substrate and device
JP2006041516A (en) * 2004-07-23 2006-02-09 Internatl Business Mach Corp <Ibm> Patterned strained semiconductor substrate and device
US9515140B2 (en) 2004-07-23 2016-12-06 Globalfoundries Inc. Patterned strained semiconductor substrate and device
JP2006049673A (en) * 2004-08-06 2006-02-16 Seiko Epson Corp Semiconductor substrate, manufacturing method thereof, semiconductor device, and manufacturing method thereof
JP4706204B2 (en) * 2004-08-06 2011-06-22 セイコーエプソン株式会社 Semiconductor substrate manufacturing method and semiconductor device manufacturing method
JP2008521229A (en) * 2004-11-18 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション SOI substrate material and method of forming Si-containing SOI and lower substrate having different orientations
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8519436B2 (en) 2005-05-17 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8796734B2 (en) 2005-05-17 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8629477B2 (en) 2005-05-17 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP2007027194A (en) * 2005-07-12 2007-02-01 Renesas Technology Corp Semiconductor device
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8629047B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US10680126B2 (en) 2007-04-09 2020-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
JP2009177306A (en) * 2008-01-22 2009-08-06 Hitachi Ltd Magnetic logic element
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9356103B2 (en) 2008-07-01 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8629045B2 (en) 2008-07-01 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US8809106B2 (en) 2008-09-24 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
JP2013016789A (en) * 2011-06-10 2013-01-24 Sumitomo Chemical Co Ltd Semiconductor device, semiconductor substrate, semiconductor substrate manufacturing method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP3512701B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP2001257351A (en) Semiconductor device and its manufacturing method
US6709909B2 (en) Semiconductor device and method of manufacturing the same
JP3376211B2 (en) Semiconductor device, method of manufacturing semiconductor substrate, and method of manufacturing semiconductor device
JP4678877B2 (en) Silicon devices on Si: C-OI and SGOI and manufacturing methods
CN100378918C (en) Insulating layer coating substrate for strain semiconductor and its making process
US8319285B2 (en) Silicon-on-insulator chip having multiple crystal orientations
US6717213B2 (en) Creation of high mobility channels in thin-body SOI devices
US7528056B2 (en) Low-cost strained SOI substrate for high-performance CMOS technology
US7498229B1 (en) Transistor and in-situ fabrication process
US20020008289A1 (en) Mosfet with strained channel layer
US7018882B2 (en) Method to form local “silicon-on-nothing” or “silicon-on-insulator” wafers with tensile-strained silicon
JP2009105427A (en) Method of manufacturing semiconductor substrate
US20060006412A1 (en) Semiconductor substrate, method of manufacturing the same and semiconductor device
JP2002237590A (en) Mos field effect transistor
JPH09219524A (en) Semiconductor device and its manufacture
WO2005122272A1 (en) Mis field-effect transistor having strained silicon channel layer
TW200539425A (en) Integrated circuit with strained and non-strained transistors, and method of forming thereof
JP2000031491A (en) Semiconductor device, its manufacture, semiconductor substrate and its manufacture
JP2001284558A (en) Laminated wafer, producing method therefor and semiconductor device
US20070166960A1 (en) Method for forming a strained si-channel in a mosfet structure
JPH1092947A (en) Semiconductor device and manufacture thereof
JP4296726B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of field effect transistor
JPH11163343A (en) Semiconductor device and its manufacture
JP4322706B2 (en) Manufacturing method of semiconductor device
JP2004055943A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees