JP2001253799A - Method for producing single crystal silicon carbide - Google Patents

Method for producing single crystal silicon carbide

Info

Publication number
JP2001253799A
JP2001253799A JP2000066693A JP2000066693A JP2001253799A JP 2001253799 A JP2001253799 A JP 2001253799A JP 2000066693 A JP2000066693 A JP 2000066693A JP 2000066693 A JP2000066693 A JP 2000066693A JP 2001253799 A JP2001253799 A JP 2001253799A
Authority
JP
Japan
Prior art keywords
sic
single crystal
crystal
substrates
end surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000066693A
Other languages
Japanese (ja)
Other versions
JP3487254B2 (en
Inventor
Yasukazu Tanishita
保亟 谷下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2000066693A priority Critical patent/JP3487254B2/en
Publication of JP2001253799A publication Critical patent/JP2001253799A/en
Application granted granted Critical
Publication of JP3487254B2 publication Critical patent/JP3487254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal SiC which is improved in quality, has a large-size area and can be used in wider application ranges and to provide a method for producing the same. SOLUTION: A large-size single crystal SiC is obtained by subjecting a plurality of SiC single crystal substrates 1 and 2 to heat treatment under an inert gas atmosphere containing excess Si in such a state that the end surfaces 1b and 2b inclined to a prescribed face, e.g. the (0001) face, or the like are abutted together and mutually superposed, thereby unifying the SiC single crystal substrates 1 and 2 in such a state that the inclined end surfaces 1b and 2b of the SiC single crystal substrates 1 and 2 are completely and closely jointed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶SiC及び
その製造方法に関するもので、詳しくは、発光ダイオー
ドや整流素子、スイッチング素子、増幅素子、光センサ
ーなどの高温半導体電子素子の基板ウエハなどに適用さ
れる単結晶SiC及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal SiC and a method of manufacturing the same, and more particularly, to a substrate wafer of a high-temperature semiconductor electronic device such as a light emitting diode, a rectifier, a switching device, an amplifier, and an optical sensor. The present invention relates to a single crystal SiC to be applied and a manufacturing method thereof.

【0002】[0002]

【従来の技術】SiC(炭化珪素)の単結晶体は、耐熱
性および機械的強度に優れているだけでなく、不純物の
添加によって電子や正孔の価電子制御が容易である上、
広い禁制帯幅を持つ(因みに、6H型のSiC単結晶で
約3.0eV、4H型のSiC単結晶で3.26eV)
ために、Si(シリコン)やGaAs(ガリウムヒ素)
などの既存の半導体材料では得ることができない優れた
高温特性、高周波特性、耐圧特性、耐環境特性を実現す
ることが可能で、次世代のパワーデバイス用半導体材料
として注目され、かつ期待されている。
2. Description of the Related Art A single crystal of SiC (silicon carbide) not only has excellent heat resistance and mechanical strength, but also easily controls valence electrons and holes by adding impurities.
It has a wide band gap (about 3.0 eV for 6H-type SiC single crystal and 3.26 eV for 4H-type SiC single crystal)
Therefore, Si (silicon) and GaAs (gallium arsenide)
It can realize excellent high-temperature characteristics, high-frequency characteristics, withstand voltage characteristics, and environmental resistance characteristics that cannot be obtained with existing semiconductor materials such as, for example, and is attracting attention and expected as a semiconductor material for next-generation power devices. .

【0003】ところで、この種のSiC単結晶の製造方
法として、従来では、所定の面、例えば(0001)面
を露出させたSiC単結晶基板を種結晶として用い、こ
のSiC単結晶基板の(0001)面上に昇華再結晶法
による気相成長によってSiC単結晶を一体に育成する
改良レーリー法が一般的に知られている。
Conventionally, as a method for producing this type of SiC single crystal, a SiC single crystal substrate having a predetermined surface, for example, a (0001) plane exposed, is used as a seed crystal, and the (0001) An improved Rayleigh method for integrally growing a SiC single crystal on a surface by vapor phase growth by a sublimation recrystallization method is generally known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の改良レーリー法による製造方法は、結晶成長速
度が約100μm/hr.程度と非常に低いのはもとよ
り、気相成長によって得られたSiC単結晶には多くの
欠陥が存在し品質面で十分満足することができないばか
りでなく、気相成長時にSiC単結晶基板の(000
1)面に対してオーバーハング状態に育成されるSiC
単結晶によりSiC単結晶基板が徐々に大きくなる程度
で、面積的に大きくて応用範囲の拡大に繋がるような大
型の単結晶SiCは到底得ることができない。因みに、
改良レーリー法によって製造され現在市販されている単
結晶SiCは、直径2インチ(約5cm)程度のものが
最大サイズであり、それ以上に大きいサイズの単結晶S
iCは現存しない。したがって、既述のようにSiやG
aAsなどの既存の半導体材料に比べて多くの優れた特
徴を有する単結晶SiCの実用化を促進する上で、応用
範囲の拡大に繋がるような大型で、かつ、高品質な単結
晶SiCの出現が強く要望されている。
However, the above-mentioned conventional method using the improved Rayleigh method has a crystal growth rate of about 100 μm / hr. In addition to the very low degree, the SiC single crystal obtained by vapor phase growth has many defects and cannot be sufficiently satisfied in terms of quality. 000
1) SiC grown in an overhang state with respect to the surface
Since the single crystal substrate gradually increases in size due to the single crystal, a large single crystal SiC that is large in area and leads to expansion of the application range cannot be obtained at all. By the way,
The largest single crystal SiC manufactured by the modified Rayleigh method and currently on the market is about 2 inches (about 5 cm) in diameter.
iC does not exist. Therefore, as described above, Si and G
Appearance of large-size, high-quality single-crystal SiC that leads to expansion of application range in promoting the practical use of single-crystal SiC having many superior characteristics compared to existing semiconductor materials such as aAs Is strongly desired.

【0005】本発明は上記の要望に応えるべくなされた
もので、品質の向上だけでなく、面積的に大型サイズで
応用範囲の著しい拡大を図ることができる単結晶SiC
及びその製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to meet the above-mentioned demands, and is intended to improve the quality as well as increase the area of application of single-crystal SiC which is remarkably large.
And a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に提案した請求項1に記載の発明に係る単結晶SiC
は、所定の面に対して傾斜する端面を有する複数枚のS
iC単結晶基板をそれらの傾斜端面同士の突き合わせ状
に重ねた状態で、不活性ガス雰囲気、かつ、Siの過剰
雰囲気下で熱処理することにより、複数枚のSiC単結
晶基板同士を接合し一体化してなることを特徴とし、ま
た、請求項5に記載の発明に係る単結晶SiCの製造方
法は、所定の面に対して傾斜する端面を有する複数枚の
SiC単結晶基板をそれらの傾斜端面同士が突き合わせ
られるように重ねた状態で、これら複数枚のSiC単結
晶基板を不活性ガス雰囲気、かつ、Siの過剰雰囲気下
で熱処理することにより、複数枚のSiC単結晶基板同
士を接合し一体化することを特徴とするものである。
A single-crystal SiC according to the first aspect of the present invention proposed to achieve the above object.
Is a plurality of S having an end surface inclined with respect to a predetermined surface.
A plurality of SiC single crystal substrates are joined and integrated by performing a heat treatment in an inert gas atmosphere and an excess Si atmosphere in a state where the iC single crystal substrates are overlapped with each other at the inclined end faces thereof. The method of manufacturing a single-crystal SiC according to claim 5, wherein a plurality of SiC single-crystal substrates having an end surface inclined with respect to a predetermined surface are connected to each other by the inclined end surfaces. The plurality of SiC single-crystal substrates are heat-treated in an inert gas atmosphere and an excessive Si atmosphere in a state where they are overlapped so that they are brought into contact with each other, thereby joining and integrating the plurality of SiC single-crystal substrates. It is characterized by doing.

【0007】[0007]

【外3】 [Outside 3]

【0008】上記構成の請求項1及び請求項5に記載の
発明によれば、複数枚のSiC単結晶基板の所定の面、
例えば(0001)面に対して傾斜する端面同士を突き
合わせ状に重ねて熱処理することにより、(0001)
面などの所定の面に対して平行な端面同士を突き合わせ
て熱処理する場合のように、端面同士の全体が密着しな
いままで熱処理されて複数枚のSiC単結晶基板同士の
接合一体化が不完全となったり、あるいは、端面同士の
密着性が悪いためにSiC単結晶基板同士の接合が部分
的なものとなり、熱処理による端面間の品質改善効果が
得られなかったりすることがなく、端面同士全体の密着
性がよくSiC単結晶基板同士の接合一体化を確実にし
て単結晶SiCの大型化が図れるとともに、その大型の
単結晶SiC全体に熱処理による品質改善効果を現出さ
せることが可能である。
According to the first and fifth aspects of the present invention, the predetermined surface of the plurality of SiC single crystal substrates,
For example, heat treatment is performed by overlapping end surfaces inclined with respect to the (0001) plane in an abutting manner, so that (0001)
As in the case where heat treatment is performed by abutting parallel end surfaces against a predetermined surface such as a surface, heat treatment is performed without the entire end surfaces being in close contact with each other, resulting in incomplete bonding and integration of multiple SiC single crystal substrates. Or the bonding between the SiC single crystal substrates becomes partial due to poor adhesion between the end faces, and the quality improvement effect between the end faces cannot be obtained by the heat treatment. Of SiC single crystal substrates, and the size of the single crystal SiC can be increased, and the quality improvement effect by heat treatment can be exerted on the entire large single crystal SiC. .

【0009】なお、SiC単結晶基板のポリタイプを表
わす4H、6H、3Cの最初の数字は、結晶の1単位胞
に含まれる原子単位層の層数を示し、後ろのアルファベ
ットは、結晶系、すなわち、Hは六方晶系、Cは立方晶
系を示し、3C−SiCをβ−SiC、その他をα−S
iCと総称することもある。
The first numbers of 4H, 6H and 3C representing the polytype of the SiC single crystal substrate indicate the number of atomic unit layers contained in one unit cell of the crystal, and the alphabets at the back indicate the crystal system, That is, H indicates a hexagonal system, C indicates a cubic system, and 3C-SiC is β-SiC, and others are α-S
It may be generically called iC.

【0010】また、請求項3に記載の発明に係る単結晶
SiCは、所定の面に対し傾斜する端面を有する複数枚
のSiC単結晶基板をそれらの傾斜端面同士を突き合わ
せ状に重ねた状態で、不活性ガス雰囲気、かつ、Siの
過剰雰囲気下で熱処理することにより、複数枚のSiC
単結晶基板同士を接合してなる単結晶SiCを種結晶と
し、この種結晶の所定の面上に気相、液相もしくは固相
成長によりSiC単結晶を一体に育成してなることを特
徴とし、また、請求項7に記載の発明に係る単結晶Si
Cの製造方法は、所定の面に対し傾斜する端面を有する
複数枚のSiC単結晶基板をそれらの傾斜端面同士が突
き合わせられるように重ねた状態で、不活性ガス雰囲
気、かつ、Siの過剰雰囲気下で熱処理することによ
り、複数枚のSiC単結晶基板同士が接合された単結晶
SiCを製造し、この製造された単結晶SiCを種結晶
として使用し、この種結晶の所定の面上に気相、液相も
しくは固相成長によりSiC単結晶を一体に育成するこ
とを特徴とするものである。
The single crystal SiC according to the third aspect of the present invention is obtained by stacking a plurality of SiC single crystal substrates having end surfaces inclined with respect to a predetermined surface in such a manner that their inclined end surfaces are abutted on each other. By performing heat treatment in an inert gas atmosphere and an excess Si atmosphere, a plurality of SiC
A single crystal SiC formed by joining single crystal substrates is used as a seed crystal, and a SiC single crystal is grown integrally on a predetermined surface of the seed crystal by vapor phase, liquid phase or solid phase growth. And a single-crystal Si according to the invention of claim 7.
The method of manufacturing C is such that, in a state where a plurality of SiC single crystal substrates having end surfaces inclined with respect to a predetermined surface are stacked so that their inclined end surfaces are brought into contact with each other, an inert gas atmosphere and an excess Si atmosphere are used. By performing a heat treatment below, a single-crystal SiC in which a plurality of SiC single-crystal substrates are bonded to each other is manufactured, and the manufactured single-crystal SiC is used as a seed crystal, and air is applied to a predetermined surface of the seed crystal. It is characterized in that a SiC single crystal is integrally grown by phase, liquid or solid phase growth.

【0011】[0011]

【外4】 [Outside 4]

【0012】上記構成の請求項3及び請求項7に記載の
発明は、上述した請求項1及び請求項5に記載の発明に
より得られた大型かつ高品質の単結晶SiCを種結晶と
して活用し、この種結晶の所定の面、例えば(000
1)面上に気相、液相もしくは固相成長によりSiC単
結晶を一体に育成することで、一層大型で応用範囲の拡
大が図れる単結晶SiCを得ることができる。
According to the third and seventh aspects of the present invention, the large and high-quality single-crystal SiC obtained by the first and fifth aspects of the present invention is used as a seed crystal. , A predetermined surface of the seed crystal, for example, (000
1) By growing SiC single crystal integrally on the surface by vapor phase, liquid phase or solid phase growth, it is possible to obtain single crystal SiC which is larger and can be applied to a wider range of applications.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は請求項1及び請求項5に
記載の発明に係る単結晶SiCの熱処理前の状態の断面
構造を示す模式図であり、同図において、1は六方晶系
(4H型)のSiC単結晶基板、2は六方晶系(6H
型)のSiC単結晶基板であり、これら両SiC単結晶
基板1,2の(0001)Si面1a及び(0001)
C面2aを精密研磨により鏡面仕上げして厚みt1,t
2を揃えるとともに、その面1a,2aに対して垂直方
向(結晶方位を合わせた)の端面1b,2bは(000
1)面に対して5〜60°、好ましくは20°傾斜した
面に切断されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing a cross-sectional structure of a single crystal SiC according to the first and fifth aspects of the present invention before heat treatment. In FIG. 1, reference numeral 1 denotes a hexagonal (4H type) SiC single crystal. Crystal substrate, 2 is hexagonal (6H
Type) SiC single crystal substrates, and the (0001) Si surfaces 1a and (0001)
The C surface 2a is mirror-finished by precision polishing and has a thickness t1, t
2 and the end faces 1b and 2b in the direction perpendicular to the planes 1a and 2a (with the crystal orientation adjusted) are (000).
1) It is cut into a plane inclined at 5 to 60 °, preferably 20 ° with respect to the plane.

【0014】上記両SiC単結晶基板1,2の傾斜端面
1b,2bを精密研磨して鏡面仕上げした後、それら鏡
面仕上げされた傾斜端面1b,2b同士が突き合わせに
より互いに密着状態に重ねられるように、両SiC単結
晶基板1,2をカーボンるつぼ(図示省略する)内のカ
ーボン治具(グラフォイル)上に固定しカーボンるつぼ
にセットする。
After the inclined end surfaces 1b and 2b of both SiC single crystal substrates 1 and 2 are precisely polished and mirror-finished, the mirror-finished inclined end surfaces 1b and 2b are brought into close contact with each other by abutting. Then, both the SiC single crystal substrates 1 and 2 are fixed on a carbon jig (Grafoil) in a carbon crucible (not shown) and set in the carbon crucible.

【0015】一方、カーボンるつぼ内には、Arガスを
吹き込むとともに、助剤として平均粒径が1700μm
のα−SiC粉体の約20gと平均粒径が8μmのα−
SiC粉体の約2gを加えることで不活性ガス雰囲気
で、かつ、Siの過剰雰囲気とする。この雰囲気下で1
900〜2400℃、好ましくは2000℃まで1時間
かけて平均速度で昇温するとともに、その2000℃の
温度を30分間保持させるといった熱処理を行なうこと
により、上記両SiC単結晶基板1,2同士をそれらの
傾斜端面1b,2bが温度差によって全面において完全
に接合された状態に一体化し、これによって、図2に示
すように、面積的に大型サイズで高品質の単結晶SiC
3が製造される。
On the other hand, Ar gas is blown into the carbon crucible, and the average particle size is 1700 μm as an auxiliary.
About 20 g of α-SiC powder having an average particle size of 8 μm
By adding about 2 g of SiC powder, an inert gas atmosphere and an excess Si atmosphere are obtained. Under this atmosphere 1
The two SiC single-crystal substrates 1 and 2 are heated to 900 to 2400 ° C., preferably 2000 ° C., at an average rate over 1 hour, and heat-treated to maintain the temperature of 2000 ° C. for 30 minutes. Due to the temperature difference, the inclined end surfaces 1b and 2b are integrated into a completely joined state over the entire surface, thereby, as shown in FIG.
3 is manufactured.

【0016】上記のようにして製造された大型の単結晶
SiC3は、それを所望の大きさに切断することで、例
えば高温半導体電子素子の基板ウエハなどとして用いる
ことができるのはもちろん、図3に示すように、製造さ
れた大型の単結晶SiC3を種結晶とし、この種結晶と
なる大型単結晶SiC3の表面、即ち、(0001)面
3aに熱化学的蒸着法などにより3C−SiC層4を成
膜し、この複合体Mを上記と同様に、不活性ガス雰囲気
で、かつ、Siの過剰雰囲気下で熱処理するという固相
成長により、3C−SiC層4の少なくとも一部に単結
晶SiC3に倣って同一の結晶方位を持つ単結晶部分6
を一体に育成させることによって、図4に示すように、
面積的に大型サイズであるだけでなく、肉厚Tも一層大
きく、しかも、突き合わせ界面における歪みを消失させ
て品質的にも一段と優れた単結晶SiC5を製造するこ
とができる。
The large single-crystal SiC3 manufactured as described above can be cut into a desired size to be used as, for example, a substrate wafer of a high-temperature semiconductor electronic device. As shown in FIG. 3, the manufactured large single-crystal SiC3 is used as a seed crystal, and the surface of the large single-crystal SiC3 serving as the seed crystal, that is, the (0001) plane 3a is formed on the 3C-SiC layer 4 by a thermochemical vapor deposition method or the like. Similarly, the composite M is heat-treated in an inert gas atmosphere and an excess Si atmosphere in the same manner as described above, so that at least a portion of the 3C-SiC layer 4 is made of single-crystal SiC3. Single crystal part 6 having the same crystal orientation according to
As shown in FIG. 4,
It is possible to manufacture a single crystal SiC5 which is not only large in area but also large in thickness T, and furthermore has excellent quality in eliminating distortion at the butt interface.

【0017】ここでは、製造された大型の単結晶SiC
3を種結晶として使用し、この種結晶の(0001)面
3a上に固相成長によりSiC単結晶を一体に育成する
大型単結晶SiCの製造方法について説明したが、これ
以外に種結晶の(0001)
Here, the manufactured large single-crystal SiC
3 is used as a seed crystal, and a method for producing a large single-crystal SiC in which a SiC single crystal is integrally grown on the (0001) plane 3a of the seed crystal by solid-phase growth has been described. 0001)

【外5】 気相成長もしくは液相成長によりSiC単結晶を一体に
育成してもよく、いずれの場合も、面積的に大型で、か
つ、肉厚の大きい単結晶SiCを得ることができる。
[Outside 5] An SiC single crystal may be integrally grown by vapor phase growth or liquid phase growth. In any case, single-crystal SiC having a large area and a large wall thickness can be obtained.

【0018】なお、上記実施の形態では、α−SiCの
一例である4H−SiC単結晶基板1と6H−SiC単
結晶基板2とを組み合わせて熱処理することについて説
明したが、傾斜面同士が突き合わせ状に重ねられるSi
C単結晶基板としては、α−SiC同士の組み合わせ、
α−SiCとβ−SiCの組み合わせ、β−SiC同士
の組み合わせのいずれでもよい。いずれの場合も上記の
ごとく製造された大型の単結晶SiC3は、ヘテロジャ
ンクションを利用したHEMT{(High Electron Mobil
ity Transister) 、たとえば、高電子移動度の3C(1
000cm2 V/s.)や4H−SiC(900cm2
V/s.)と比較的電子移動度の低い6H−SiC(4
50cm2 V/s.)との組み合わせによる}などに有
効に応用することが可能である。
In the above embodiment, a description has been given of the case where the 4H-SiC single-crystal substrate 1 and the 6H-SiC single-crystal substrate 2, which are examples of α-SiC, are heat-treated in combination. Si layered
As a C single crystal substrate, a combination of α-SiCs,
Any of a combination of α-SiC and β-SiC and a combination of β-SiC may be used. In each case, the large-sized single-crystal SiC3 manufactured as described above is obtained by using a HEMT (High Electron Mobil) using a heterojunction.
ity Transister), for example, 3C (1
000 cm 2 V / s. ) And 4H-SiC (900 cm 2
V / s. ) And 6H-SiC (4
50 cm 2 V / s. ) Can be effectively applied to} etc.

【0019】また、上記実施の形態では、両SiC単結
晶基板1,2の傾斜端面1b,2bを直接に突き合わせ
密着状態に重ねた上、熱処理したが、両傾斜端面1b,
2b間にSiOまたはSiあるいはそれらの混合物を介
在させて重ねることで、両傾斜端面1b,2bの密着性
をより高めて熱処理してもよい。
In the above embodiment, the inclined end faces 1b, 2b of both SiC single crystal substrates 1, 2 are directly abutted and superimposed on each other, and heat-treated.
Heat treatment may be performed by further increasing the adhesion between the two inclined end surfaces 1b and 2b by stacking SiO or Si or a mixture thereof between the two inclined surfaces 2b.

【0020】[0020]

【発明の効果】以上のように、請求項1及び請求項5に
記載の発明によれば、複数枚のSiC単結晶基板の所定
の面、例えば(0001)面に対して傾斜する端面同士
を突き合わせ状に重ねて熱処理することにより、傾斜端
面同士の密着性がよくなり、SiC単結晶基板同士の接
合一体化を確実にして大型で、しかも、全体に熱処理に
よる品質改善効果が現出された高品質な単結晶SiCを
得ることができる。これによって、単結晶SiCの応用
範囲の著しい拡大を図れ、既存の半導体材料に比べて高
温、高周波、耐電圧、耐環境性などに優れパワーデバイ
ス用半導体材料として期待されている単結晶SiCの実
用化を強力に促進することができるという効果を奏す
る。
As described above, according to the first and fifth aspects of the present invention, the end faces inclined with respect to a predetermined face, for example, the (0001) face of a plurality of SiC single crystal substrates are formed. By performing heat treatment in a butt-like manner, the adhesion between the inclined end faces is improved, and the bonding and integration of the SiC single crystal substrates are ensured and large, and the quality improvement effect by the heat treatment is entirely exhibited. High quality single crystal SiC can be obtained. As a result, the application range of single crystal SiC can be remarkably expanded, and the practical use of single crystal SiC, which is superior to existing semiconductor materials in high temperature, high frequency, withstand voltage, environmental resistance, etc. and is expected as a semiconductor material for power devices, is expected. This has the effect that the conversion can be strongly promoted.

【0021】また、請求項4及び請求項7に記載の発明
によれば、上述した請求項1及び請求項5に記載の発明
により得られた大型かつ高品質の単結晶SiCを種結晶
として活用し、この種結晶の所定の面、例えば(000
1)面上に気相、液相もしくは固相成長によりSiC単
結晶を一体に育成することにより、一層大型かつ肉厚の
大きい単結晶SiCを得ることができ、その応用範囲を
一段と拡大することができる。特に、固相成長による場
合は、突き合わせ界面における歪みを消失させて品質的
にも一段と優れた単結晶SiC5を得ることができる。
According to the fourth and seventh aspects of the present invention, the large and high-quality single-crystal SiC obtained by the first and fifth aspects of the present invention is utilized as a seed crystal. Then, a predetermined surface of the seed crystal, for example, (000
1) By growing a SiC single crystal integrally on the surface by vapor phase, liquid phase or solid phase growth, it is possible to obtain a single crystal SiC having a larger size and a larger thickness, thereby further expanding its application range. Can be. In particular, in the case of solid-phase growth, distortion at the butting interface can be eliminated to obtain single-crystal SiC5 having much better quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶SiCの熱処理前の状態の
断面構造を示す模式図である。
FIG. 1 is a schematic diagram showing a cross-sectional structure of a single crystal SiC according to the present invention before a heat treatment.

【図2】熱処理(製造)された大型サイズかつ高品質な
単結晶SiCの断面構造を示す模式図である。
FIG. 2 is a schematic diagram illustrating a cross-sectional structure of a large-sized and high-quality single-crystal SiC that has been heat-treated (manufactured).

【図3】大型サイズの単結晶SiCを種結晶として用い
てSiC単結晶を一体に育成する時の熱処理前の状態の
断面構造を示す模式図である。
FIG. 3 is a schematic diagram showing a cross-sectional structure before heat treatment when integrally growing a SiC single crystal using a large-sized single crystal SiC as a seed crystal.

【図4】最終的に得られた大型サイズかつ肉厚の大きい
単結晶SiCの断面構造を示す模式図である。
FIG. 4 is a schematic diagram showing a cross-sectional structure of a finally obtained single-crystal SiC having a large size and a large thickness.

【符号の説明】[Explanation of symbols]

1 4H−SiC単結晶基板 1a (0001)Si面 2 6H−SiC単結晶基板 2a (0001)C面 1b,2b 傾斜端面 3 大型サイズかつ高品質の単結晶SiC 4 3C−SiC層 Reference Signs List 14H-SiC single crystal substrate 1a (0001) Si plane 26H-SiC single crystal substrate 2a (0001) C plane 1b, 2b Inclined end face 3 Large-sized and high-quality single crystal SiC 4 3C-SiC layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の面に対して傾斜する端面を有する
複数枚のSiC単結晶基板をそれらの傾斜端面同士の突
き合わせ状に重ねた状態で、不活性ガス雰囲気、かつ、
Siの過剰雰囲気下で熱処理することにより、複数枚の
SiC単結晶基板同士を接合し一体化してなることを特
徴とする単結晶SiC。
1. An inert gas atmosphere and a plurality of SiC single crystal substrates having end surfaces inclined with respect to a predetermined surface are superposed on each other in such a manner that the inclined end surfaces are abutted against each other.
A single crystal SiC characterized in that a plurality of SiC single crystal substrates are bonded and integrated by heat treatment in an excessive Si atmosphere.
【請求項2】 互いに接合されるSiC単結晶基板は、
そのポリタイプが4H同士、6H同士、4Hと6H、3
Cと4H、3Cと6Hまたは3C同士の組み合わせの中
から選択された一つである請求項1に記載の単結晶Si
C。
2. The SiC single crystal substrates bonded to each other,
The polytype is between 4H, between 6H, 4H and 6H, 3
The single crystal Si according to claim 1, wherein the single crystal Si is one selected from a combination of C and 4H, 3C and 6H or 3C.
C.
【請求項3】 所定の面に対し傾斜する端面を有する複
数枚のSiC単結晶基板をそれらの傾斜端面同士を突き
合わせ状に重ねた状態で、不活性ガス雰囲気、かつ、S
iの過剰雰囲気下で熱処理することにより、複数枚のS
iC単結晶基板同士を接合してなる単結晶SiCを種結
晶とし、この種結晶の所定の面上に気相、液相もしくは
固相成長によりSiC単結晶を一体に育成してなること
を特徴とする単結晶SiC。
3. An inert gas atmosphere and a plurality of SiC single crystal substrates having an end surface inclined with respect to a predetermined surface are stacked in a state where the inclined end surfaces are overlapped with each other.
By performing heat treatment in an excess atmosphere of i, a plurality of S
A single crystal SiC obtained by bonding iC single crystal substrates to each other is used as a seed crystal, and a SiC single crystal is grown integrally on a predetermined surface of the seed crystal by vapor phase, liquid phase or solid phase growth. Single crystal SiC.
【請求項4】 【外1】 (4) 【請求項5】 所定の面に対して傾斜する端面を有する
複数枚のSiC単結晶基板をそれらの傾斜端面同士が突
き合わせられるように重ねた状態で、これら複数枚のS
iC単結晶基板を不活性ガス雰囲気、かつ、Siの過剰
雰囲気下で熱処理することにより、複数枚のSiC単結
晶基板同士を接合し一体化することを特徴とする単結晶
SiCの製造方法。
5. A plurality of SiC single crystal substrates each having an end surface inclined with respect to a predetermined surface are superposed such that their inclined end surfaces abut each other.
A method for producing single-crystal SiC, wherein a plurality of SiC single-crystal substrates are joined and integrated by heat-treating the iC single-crystal substrate in an inert gas atmosphere and an excess Si atmosphere.
【請求項6】 互いに接合されるSiC単結晶基板とし
て、そのポリタイプが4H同士、6H同士、4Hと6
H、3Cと4H、3Cと6Hまたは3C同士の組み合わ
せの中から選択された一つを用いる請求項5に記載の単
結晶SiCの製造方法。
6. The SiC single crystal substrates to be joined to each other, the polytypes of which are 4H, 6H, 4H and 6H.
The method for producing a single crystal SiC according to claim 5, wherein one selected from a combination of H, 3C and 4H, 3C and 6H or 3C is used.
【請求項7】 所定の面に対し傾斜する端面を有する複
数枚のSiC単結晶基板をそれらの傾斜端面同士が突き
合わせられるように重ねた状態で、不活性ガス雰囲気、
かつ、Siの過剰雰囲気下で熱処理することにより、複
数枚のSiC単結晶基板同士が接合された単結晶SiC
を製造し、この製造された単結晶SiCを種結晶として
使用し、この種結晶の所定の面上に気相、液相もしくは
固相成長によりSiC単結晶を一体に育成することを特
徴とする単結晶SiCの製造方法。
7. An inert gas atmosphere, wherein a plurality of SiC single crystal substrates having end surfaces inclined with respect to a predetermined surface are stacked so that their inclined end surfaces abut each other.
In addition, a single crystal SiC in which a plurality of SiC single crystal substrates are bonded to each other by performing a heat treatment in an excessive Si atmosphere.
And using the produced single crystal SiC as a seed crystal, and integrally growing a SiC single crystal on a predetermined surface of the seed crystal by vapor phase, liquid phase or solid phase growth. Manufacturing method of single crystal SiC.
【請求項8】 【外2】 (8)
JP2000066693A 2000-03-10 2000-03-10 Single crystal SiC and method for producing the same Expired - Fee Related JP3487254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066693A JP3487254B2 (en) 2000-03-10 2000-03-10 Single crystal SiC and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066693A JP3487254B2 (en) 2000-03-10 2000-03-10 Single crystal SiC and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001253799A true JP2001253799A (en) 2001-09-18
JP3487254B2 JP3487254B2 (en) 2004-01-13

Family

ID=18586012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066693A Expired - Fee Related JP3487254B2 (en) 2000-03-10 2000-03-10 Single crystal SiC and method for producing the same

Country Status (1)

Country Link
JP (1) JP3487254B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852974A1 (en) * 2003-03-31 2004-10-01 Soitec Silicon On Insulator PROCESS FOR THE PRODUCTION OF MONOCRYSTALLINE CRYSTALS
WO2007135965A1 (en) * 2006-05-18 2007-11-29 Showa Denko K.K. Method for producing silicon carbide single crystal
WO2011052320A1 (en) * 2009-10-30 2011-05-05 住友電気工業株式会社 Silicon carbide substrate production method and silicon carbide substrate
WO2011052321A1 (en) * 2009-10-30 2011-05-05 住友電気工業株式会社 Silicon carbide substrate production method and silicon carbide substrate
KR101140291B1 (en) * 2009-06-29 2012-05-02 에스케이씨 주식회사 single crystal growth method
CN102549715A (en) * 2009-09-24 2012-07-04 住友电气工业株式会社 Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
US20120168774A1 (en) * 2010-05-28 2012-07-05 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method for manufacturing same
CN105525351A (en) * 2015-12-24 2016-04-27 中国科学院上海硅酸盐研究所 Efficient SiC crystal diameter-expanding method
JP2017119596A (en) * 2015-12-28 2017-07-06 昭和電工株式会社 SiC SINGLE CRYSTAL CONJUGATE, SiC SINGLE CRYSTAL CONJUGATE MANUFACTURING METHOD, SiC INGOT MANUFACTURING METHOD, AND SiC WAFER MANUFACTURING METHOD

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852974A1 (en) * 2003-03-31 2004-10-01 Soitec Silicon On Insulator PROCESS FOR THE PRODUCTION OF MONOCRYSTALLINE CRYSTALS
WO2004090201A2 (en) * 2003-03-31 2004-10-21 S.O.I. Tec Silicon On Insulator Technologies Method for the production of monocrystalline crystals
WO2004090201A3 (en) * 2003-03-31 2004-11-18 Soitec Silicon On Insulator Method for the production of monocrystalline crystals
US7993453B2 (en) 2006-05-18 2011-08-09 Showa Denko K.K. Method for producing silicon carbide single crystal
WO2007135965A1 (en) * 2006-05-18 2007-11-29 Showa Denko K.K. Method for producing silicon carbide single crystal
KR101140291B1 (en) * 2009-06-29 2012-05-02 에스케이씨 주식회사 single crystal growth method
CN102549715A (en) * 2009-09-24 2012-07-04 住友电气工业株式会社 Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
WO2011052320A1 (en) * 2009-10-30 2011-05-05 住友電気工業株式会社 Silicon carbide substrate production method and silicon carbide substrate
WO2011052321A1 (en) * 2009-10-30 2011-05-05 住友電気工業株式会社 Silicon carbide substrate production method and silicon carbide substrate
US20120032191A1 (en) * 2009-10-30 2012-02-09 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide substrate and silicon carbide substrate
CN102449734A (en) * 2009-10-30 2012-05-09 住友电气工业株式会社 Silicon carbide substrate production method and silicon carbide substrate
CN102473594A (en) * 2009-10-30 2012-05-23 住友电气工业株式会社 Silicon carbide substrate production method and silicon carbide substrate
US20120168774A1 (en) * 2010-05-28 2012-07-05 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method for manufacturing same
CN105525351A (en) * 2015-12-24 2016-04-27 中国科学院上海硅酸盐研究所 Efficient SiC crystal diameter-expanding method
JP2017119596A (en) * 2015-12-28 2017-07-06 昭和電工株式会社 SiC SINGLE CRYSTAL CONJUGATE, SiC SINGLE CRYSTAL CONJUGATE MANUFACTURING METHOD, SiC INGOT MANUFACTURING METHOD, AND SiC WAFER MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP3487254B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP4979579B2 (en) Silicon carbide growth system and seed crystal sublimation method for growing silicon carbide large single crystals
WO1999000538A1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
JP4388741B2 (en) Method for transferring semiconductor thin layer and method for manufacturing donor wafer used therefor
CN107881557B (en) Method for manufacturing nitride crystal substrate and nitride crystal laminated body
JP2008303137A (en) Process for fabricating composite structure for epitaxy and multilayer structure including the composite structure
JP2009117533A (en) Manufacturing method of silicon carbide substrate
CN101147235A (en) Diamond based substrate for electronic devices
JP3296998B2 (en) Single crystal SiC and method for producing the same
JP3254559B2 (en) Single crystal SiC and method for producing the same
JP2884085B1 (en) Single crystal SiC and method for producing the same
CN114207825A (en) Substrate for electronic device and method for manufacturing the same
JP2001253799A (en) Method for producing single crystal silicon carbide
CN116053120B (en) Nitride epitaxial structure and preparation method and application thereof
JP3043675B2 (en) Single crystal SiC and method for producing the same
JP3248071B2 (en) Single crystal SiC
EP1130137B1 (en) Material for raising single crystal sic and method of preparing single crystal sic
JP3254557B2 (en) Single crystal SiC and method for producing the same
JP2003218031A (en) Method of manufacturing semiconductor wafer
JP3043690B2 (en) Single crystal SiC and method for producing the same
JP7203511B2 (en) Aluminum nitride template and device
JP3087070B1 (en) Single crystal SiC composite material for semiconductor device production and method for producing the same
JP2004039766A (en) 3C-SiC SEMICONDUCTOR OR GaN SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2946418B1 (en) Single crystal SiC and method for producing the same
TWI844930B (en) Bonded substrate and method of manufacturing the same
JP2917149B1 (en) Single crystal SiC and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees