JP2001252557A - Carbon dioxide gas absorbing material and manufacturing method therefor - Google Patents

Carbon dioxide gas absorbing material and manufacturing method therefor

Info

Publication number
JP2001252557A
JP2001252557A JP2000070422A JP2000070422A JP2001252557A JP 2001252557 A JP2001252557 A JP 2001252557A JP 2000070422 A JP2000070422 A JP 2000070422A JP 2000070422 A JP2000070422 A JP 2000070422A JP 2001252557 A JP2001252557 A JP 2001252557A
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium
dioxide gas
composite oxide
lithium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000070422A
Other languages
Japanese (ja)
Other versions
JP3443550B2 (en
Inventor
Toshiyuki Ohashi
俊之 大橋
Kazuaki Nakagawa
和明 中川
Masanori Kato
雅礼 加藤
Sawako Yoshikawa
佐和子 吉川
Kenji Koshizaki
健司 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000070422A priority Critical patent/JP3443550B2/en
Publication of JP2001252557A publication Critical patent/JP2001252557A/en
Application granted granted Critical
Publication of JP3443550B2 publication Critical patent/JP3443550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To abate the deterioration of carbon dioxide gas absorbing properties of a carbon dioxide gas absorbing material using lithium zirconate, when the carbon dioxide gas absorbing material is repeatedly used. SOLUTION: A porous body obtained by sintering lithium zirconate particles 1 is used as a nucleus 11 and a shell 12 with openings 6 is formed on the surface of the nucleus 11. The volume of zirconium 3 and lithium carbonate 2 formed by a chemical reaction between the lithium zirconate and the carbon dioxide gas is larger than the lithium zirconate, so that the zirconium 3 and the lithium carbonate 2 are no longer stored in the nucleus. The surplus lithium carbonate 2 is uniformly dispersed on the surface of the nucleus by storing the surplus lithium carbonate 2 in the openings 6 and thus it is possible to certainly perform the regeneration reaction between the lithium zirconate and the carbon dioxide gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温域において炭
酸ガスを吸収する炭酸ガス吸収材およびその製造方法に
係り、特にリチウムジルコネートやリチウムシリケート
など炭酸ガスと反応して炭酸リチウムを生成するリチウ
ム含有複合酸化物を用いた炭酸ガス吸収材およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide absorbing material which absorbs carbon dioxide in a high temperature range and a method for producing the same, and more particularly to lithium which reacts with carbon dioxide such as lithium zirconate or lithium silicate to produce lithium carbonate. The present invention relates to a carbon dioxide gas absorbent using a mixed oxide and a method for producing the same.

【0002】[0002]

【従来の技術】排ガス中からの炭酸ガスの分離方法とし
て,アルカノールアミン系溶媒などによる化学吸収法
や、ゼオライトなどを用いた物理吸着法、深冷分離法、
膜分離法などが知られている。しかし、これらの方法
は、使用される膜や溶媒など材料の耐熱性の限界から、
導入ガス温度の上限を200℃程度以下に抑える必要が
ある。従って、エネルギープラント、化学プラントある
は自動車などから発生する高温の排ガス中から直接炭酸
ガスを分離することができず、一度室温まで冷却する工
程をとらなければならなかった。
2. Description of the Related Art As a method for separating carbon dioxide from exhaust gas, a chemical absorption method using an alkanolamine-based solvent, a physical adsorption method using a zeolite or the like, a cryogenic separation method,
A membrane separation method and the like are known. However, these methods are limited by the heat resistance of materials such as membranes and solvents used.
It is necessary to keep the upper limit of the introduced gas temperature at about 200 ° C. or less. Therefore, carbon dioxide gas cannot be directly separated from high-temperature exhaust gas generated from energy plants, chemical plants or automobiles, and a step of once cooling to room temperature has to be taken.

【0003】そのような中で、リチウム化ジルコニアを
用いた炭酸ガスの分離方法が検討されている。このリチ
ウム化ジルコニアは500℃程度の高温の排ガス中から
直接炭酸ガスを吸収することが可能な材料で、さらに7
00℃程度以上の温度域で炭酸ガスを放出する可逆反応
を利用しているため、特に高温の炭酸ガスを使用する際
には、炭酸ガスのリサイクルに適した材料である。
Under such circumstances, a method of separating carbon dioxide gas using lithiated zirconia has been studied. This lithiated zirconia is a material capable of directly absorbing carbon dioxide from exhaust gas at a high temperature of about 500 ° C.
Since the reversible reaction of releasing carbon dioxide gas in a temperature range of about 00 ° C. or higher is used, the material is suitable for recycling carbon dioxide gas, particularly when high-temperature carbon dioxide gas is used.

【0004】このリチウム化ジルコニアを成形体として
用いることも検討されており(特開平11−25374
6号公報)、具体的には有機化合物バインダにより成形
した成形体などが知られている。
[0004] The use of this lithiated zirconia as a molded article has also been studied (JP-A-11-25374).
No. 6), specifically, a molded article molded with an organic compound binder is known.

【0005】このような成形体は、粉末と同等レベルの
炭酸ガス吸収能が得られるものの、繰り返し使用するう
ちに炭酸ガス吸収特性が低下するという問題がある。
[0005] Although such a molded article can obtain carbon dioxide gas absorbing ability at a level equivalent to that of powder, there is a problem that the carbon dioxide gas absorbing property is reduced during repeated use.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の炭酸ガス吸収材は、成形体として繰り返し使用したと
きに炭酸ガス吸収能が低下するという問題があった。
As described above, the conventional carbon dioxide-absorbing material has a problem that the carbon dioxide-absorbing ability is reduced when repeatedly used as a molded article.

【0007】本発明はこのような問題に鑑みて為された
ものであり、繰り返しの使用に対しても特性劣化の少な
い炭酸ガス吸収材を提供することを目的とする。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a carbon dioxide gas absorbent that has less characteristic deterioration even when used repeatedly.

【0008】[0008]

【課題を解決するための手段】本発明の炭酸ガス吸収材
は、炭酸ガスと反応して炭酸リチウムを生成するリチウ
ム含有複合酸化物を含有し、所定径の微細孔を有する多
孔質体からなる核と、前記核を囲むように設けられ、前
記微細孔の所定径よりも大きな径の開口を有する多孔質
体からなる外殻とを具備することを特徴とする。
The carbon dioxide gas absorbing material of the present invention contains a lithium-containing composite oxide which reacts with carbon dioxide to produce lithium carbonate, and is made of a porous material having fine pores of a predetermined diameter. It is characterized by comprising a core and an outer shell made of a porous body provided so as to surround the core and having an opening having a diameter larger than a predetermined diameter of the micropore.

【0009】また、前記リチウム含有複合酸化物は、リ
チウムジルコネートおよびリチウムシリケートから選ば
れる少なくとも一種を用いることが望ましい。
Preferably, the lithium-containing composite oxide is at least one selected from lithium zirconate and lithium silicate.

【0010】また、前記外殻を形成する材料は、前記リ
チウム複合酸化物よりも難焼結性の材料であることが望
ましい。
It is preferable that the material forming the outer shell is a material that is more difficult to sinter than the lithium composite oxide.

【0011】本発明の炭酸ガス吸収材の製造方法は、炭
酸ガスと反応して炭酸リチウムを生成するリチウム含有
複合酸化物粉末からなる造粒粉表面を、前記リチウム複
合酸化物よりも難焼結性の材料粉末で被覆した後、前記
造粒紛を焼結することを特徴とする。
[0011] In the method for producing a carbon dioxide gas absorbent according to the present invention, the surface of the granulated powder comprising a lithium-containing composite oxide powder that reacts with carbon dioxide to produce lithium carbonate is harder to sinter than the lithium composite oxide. After being coated with a powdery material, the granulated powder is sintered.

【0012】[0012]

【発明の実施の形態】以下、本発明の炭酸ガス吸収材に
ついて図面を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a carbon dioxide absorbent according to the present invention will be described with reference to the drawings.

【0013】図1は本発明の炭酸ガス吸収材の一例を示
す断面図を示す。図1において(a)は初期状態、
(b)は炭酸ガス吸収後、(c)は再度炭酸ガスを放出
した後の様子を示す。
FIG. 1 is a sectional view showing an example of the carbon dioxide gas absorbent of the present invention. In FIG. 1, (a) is an initial state,
(B) shows the state after carbon dioxide gas absorption, and (c) shows the state after carbon dioxide gas is released again.

【0014】図1(a)に示すように、本発明の炭酸ガ
ス吸収材はリチウム含有複合酸化物粉末1を焼結するな
どして得られた多孔質体からなる核11と、この核11
上に形成された外殻12とから構成されている。
As shown in FIG. 1A, the carbon dioxide absorbent of the present invention comprises a core 11 made of a porous material obtained by sintering a lithium-containing composite oxide powder 1 and the like.
And an outer shell 12 formed thereon.

【0015】例えばリチウム含有複合酸化物としてリチ
ウムジルコネートを使用した場合、500℃付近の炭酸
ガスを含有するガスを供給すると、リチウム含有複合酸
化物と炭酸ガスとの間に式(1)で示すような反応し、
炭酸リチウム2とジルコニア3が生成される。
For example, when lithium zirconate is used as the lithium-containing composite oxide, if a gas containing carbon dioxide at around 500 ° C. is supplied, the formula (1) is given between the lithium-containing composite oxide and carbon dioxide. React like
Lithium carbonate 2 and zirconia 3 are produced.

【0016】 Li2ZrO3+CO2→Li2CO3+ZrO2…(1) すなわちガス中の炭酸ガスを吸収する。このときの生成
物の総体積(炭酸リチウム2とジルコニア3との合計の
体積)は、反応前のリチウム含有複合酸化物よりも増加
するため、核11内には収まりきらなくなり、核11外
へ押出される。
Li 2 ZrO 3 + CO 2 → Li 2 CO 3 + ZrO 2 (1) That is, carbon dioxide in the gas is absorbed. At this time, the total volume of the product (total volume of lithium carbonate 2 and zirconia 3) is larger than that of the lithium-containing composite oxide before the reaction. Extruded.

【0017】そして、炭酸ガス吸収反応温度において、
ジルコニア3は固体、炭酸リチウム2は溶融状態である
ので、生成物のうちジルコニア骨格から形成される核1
1内に収まらない炭酸リチウムは最寄の外殻12に存在
する開口6へ溢れ出し、図1(b)に示すようにそれぞ
れの開口6に分散して貯蔵される。
At the carbon dioxide absorption reaction temperature,
Since zirconia 3 is solid and lithium carbonate 2 is in a molten state, nuclei 1 formed from a zirconia skeleton in the product
Lithium carbonate that does not fit in 1 overflows into the openings 6 in the nearest outer shell 12, and is dispersed and stored in the respective openings 6 as shown in FIG.

【0018】こうして炭酸ガスを吸収した使用済みの炭
酸ガス吸収材は、その後炭酸ガスを必要とする他の所望
の場所において炭酸ガスを放出し、図1(c)に示すよ
うに元の状態に再生される。
The used carbon dioxide-absorbing material which has absorbed carbon dioxide in this way releases carbon dioxide at other desired places where carbon dioxide is required, and returns to its original state as shown in FIG. 1 (c). Will be played.

【0019】炭酸ガス放出は、使用済みの炭酸ガスを7
00℃程度に加熱し、骨格を形成するジルコニア3と、
骨格内部および開口6内に貯蔵された炭酸リチウム2と
に式(2)で示すような反応を生じさせ、リチウム含有
複合酸化物と炭酸ガスを生成する。
The release of carbon dioxide gas is performed by
Zirconia 3 which is heated to about 00 ° C. to form a skeleton;
The lithium carbonate 2 stored in the skeleton and in the opening 6 reacts with the lithium carbonate 2 as shown in the formula (2) to generate a lithium-containing composite oxide and carbon dioxide gas.

【0020】 Li2CO3+ZrO2→ Li2ZrO3+CO2… (2) すなわち、使用済みの炭酸ガス吸収材を逆反応させるこ
とで、初期の炭酸ガス吸収材を再生することが可能であ
る。
Li 2 CO 3 + ZrO 2 → Li 2 ZrO 3 + CO 2 (2) That is, it is possible to regenerate the initial carbon dioxide absorbing material by causing a reverse reaction of the used carbon dioxide absorbing material. .

【0021】次に、本発明の炭酸ガス吸収材の各構成に
ついて説明する。
Next, each component of the carbon dioxide absorbent of the present invention will be described.

【0022】本発明に係る核は、少なくともリチウム複
合酸化物を含有した多孔質体であり、リチウム複合酸化
物粒子を焼成して得られる成形体、リチウム複合酸化物
を圧縮して得られる成形体、あるいは複数のリチウム複
合酸化物粒子からなる凝集体などの形態で使用できる。
The core according to the present invention is a porous body containing at least a lithium composite oxide, and is a molded article obtained by firing lithium composite oxide particles and a molded article obtained by compressing a lithium composite oxide. Alternatively, it can be used in the form of an aggregate composed of a plurality of lithium composite oxide particles.

【0023】このリチウム複合酸化物は、炭酸ガスと反
応して炭酸リチウムを生成するリチウム含有複合酸化物
が使用できる。
As the lithium composite oxide, a lithium-containing composite oxide which reacts with carbon dioxide to generate lithium carbonate can be used.

【0024】前述したリチウムジルコネート以外にも、
リチウムシリケート、リチウムフェライト、リチウムナ
イオベートなど、各種用いることができ、これらの材料
は、所定の温度域で下記(1)、(3)、(4)、
(5)などの反応によって炭酸ガスを吸収する。
In addition to the above-described lithium zirconate,
Various materials such as lithium silicate, lithium ferrite, and lithium niobate can be used. These materials can be used in the following temperature ranges (1), (3), (4),
Carbon dioxide gas is absorbed by the reaction such as (5).

【0025】 Li2ZrO3+CO2→ ZrO2+ Li2CO3 …(1) Li4SiO4+2CO2→SiO2+2Li2CO3 …(3) 2LiFeO2+CO2→Fe2+Li2CO3 …(4) Li2NiO2+CO2→NiO+Li2CO3 …(5) また、これらの反応は全て可逆反応であるので、ジルコ
ニアなどの酸化物粒子と炭酸リチウムとを所定の逆反応
温度に加熱し本発明のリチウム含有複合酸化物を製造し
たり、炭酸ガスを吸収した後に所定の逆反応温度に過熱
して再生することができる。
[0025] Li 2 ZrO 3 + CO 2 → ZrO 2 + Li 2 CO 3 ... (1) Li 4 SiO 4 + 2CO 2 → SiO 2 + 2Li 2 CO 3 ... (3) 2LiFeO 2 + CO 2 → Fe 2 O 3 + Li 2 CO 3 (4) Li 2 NiO 2 + CO 2 → NiO + Li 2 CO 3 (5) Since these reactions are all reversible reactions, oxide particles such as zirconia and lithium carbonate are brought to a predetermined reverse reaction temperature. The lithium-containing composite oxide of the present invention can be produced by heating, or can be regenerated by heating to a predetermined reverse reaction temperature after absorbing carbon dioxide gas.

【0026】これらのリチウム含有複合酸化物の中で
も、特にリチウムジルコネートやリチウムシリケート
は、炭酸ガス吸収能が高い点で優れている。
Among these lithium-containing composite oxides, lithium zirconate and lithium silicate are particularly excellent in that they have a high carbon dioxide gas absorbing ability.

【0027】また、リチウム含有複合酸化物は、アルカ
リ金属あるいはアルカリ土類金属からなる酸化物・炭酸
塩・水和物等の反応促進剤を含有していることが望まし
い。これらの成分は反応性生物である炭酸リチウムを低
温で溶融させる機能を持ち、低温でのリチウム複合酸化
物の炭酸ガス吸収速度の向上に寄与する。具体的には、
2CO3、LiKCO3、Na2CO3等を添加すればよ
い。
It is desirable that the lithium-containing composite oxide contains a reaction accelerator such as an oxide, a carbonate, or a hydrate of an alkali metal or an alkaline earth metal. These components have the function of melting lithium carbonate, which is a reactive product, at a low temperature, and contribute to improving the carbon dioxide absorption rate of the lithium composite oxide at a low temperature. In particular,
K 2 CO 3 , LiKCO 3 , Na 2 CO 3 and the like may be added.

【0028】リチウム含有複合酸化物に反応促進剤など
の他の成分を混合する場合、反応促進剤の含有量を50
wt%以下にすることが望ましい。他の成分の含有量が
50wt%を超え、リチウム含有複合酸化物の比率が小
さくなると、炭酸ガスの吸収量が低下する恐れがある。
When other components such as a reaction accelerator are mixed with the lithium-containing composite oxide, the content of the reaction accelerator is adjusted to 50%.
It is desirable that the content be not more than wt%. When the content of other components exceeds 50 wt% and the ratio of the lithium-containing composite oxide decreases, the carbon dioxide gas absorption may decrease.

【0029】このようなリチウム含有複合酸化物は、多
孔質体として用いられる。この多孔質体中の微細孔の径
は、1nm〜100nmの範囲内にすることが望まし
い。その理由は以下のとおりである。
Such a lithium-containing composite oxide is used as a porous body. It is desirable that the diameter of the fine pores in the porous body be in the range of 1 nm to 100 nm. The reason is as follows.

【0030】本発明に係るリチウム含有複合酸化物は、
含有されるリチウムがリチウム含有複合酸化物の表面に
拡散し、炭酸ガスと接触して反応するため、炭酸ガスと
の接触面積を大きくすることで反応速度を速めたり、反
応量を増加させることができる。また、多孔質体中の微
細孔は、炭酸ガスの流路であるだけでなく、生成された
炭酸リチウムの流路としても機能する。このような効果
が得られる微細孔の径は1nm〜100nmの範囲内、
さらには5nm〜50nmの範囲内が望ましい。
The lithium-containing composite oxide according to the present invention comprises:
Since the contained lithium diffuses to the surface of the lithium-containing composite oxide and reacts with carbon dioxide gas, the reaction speed can be increased by increasing the contact area with carbon dioxide gas, or the reaction amount can be increased. it can. Further, the micropores in the porous body function not only as a flow path for carbon dioxide gas but also as a flow path for generated lithium carbonate. The diameter of the micropore in which such an effect is obtained is in the range of 1 nm to 100 nm,
More preferably, it is within a range of 5 nm to 50 nm.

【0031】上述したような形態を有するために、例え
ばポリビニルアルコール(PVA)溶液などの有機化合
物とリチウム複合酸化物粉末との混合物を焼成し、PV
Aを焼却することでPVA成分が存在した領域を気孔部
とした多孔質体を製造することができる。したがって、
混合するPVAの混合比を制御することで核を形成する
多孔質体の細孔径を調整することが可能になる。
In order to have the above-mentioned form, a mixture of an organic compound such as a polyvinyl alcohol (PVA) solution and a lithium composite oxide powder is fired,
By burning A, a porous body having pores in the region where the PVA component was present can be manufactured. Therefore,
By controlling the mixing ratio of PVA to be mixed, it becomes possible to adjust the pore diameter of the porous body forming the nucleus.

【0032】次に本発明に係る外殻について説明する。Next, the outer shell according to the present invention will be described.

【0033】本発明の外殻は、開口を有するものであ
り、前述したように、炭酸ガスを吸収した際に生成され
る炭酸リチウムを所定領域に保持し、核表面に分散させ
るためのものであり、以下により詳細に説明する。
The outer shell of the present invention has an opening, as described above, for holding lithium carbonate generated when carbon dioxide gas is absorbed in a predetermined region and dispersing it on the core surface. Yes, and will be described in more detail below.

【0034】まず、外殻のない従来の炭酸ガス吸収材に
ついて説明する。
First, a conventional carbon dioxide absorbent having no outer shell will be described.

【0035】図2は、従来の炭酸ガス吸収材の断面図で
あり、図1と同様、(a)、(b)、(c)はそれぞれ
初期状態、炭酸ガス吸収後の状態、再度炭酸ガスを放出
した後の様子を示す。
FIG. 2 is a cross-sectional view of a conventional carbon dioxide absorbing material. As in FIG. 1, (a), (b), and (c) show the initial state, the state after absorbing the carbon dioxide gas, and the carbon dioxide gas again. The state after releasing is shown.

【0036】図1で説明した通り、リチウムジルコネー
ト101は、炭酸ガスと反応してジルコニア103と炭
酸リチウム102とを生成する際に、体積膨張して一部
の炭酸リチウムを核111表面に溢れる。核111の微
細孔から溢れ出た炭酸リチウムは相互に吸収し合い、核
111表面に大きなかたまり102aを形成する。
As described with reference to FIG. 1, when the lithium zirconate 101 reacts with carbon dioxide to generate zirconia 103 and lithium carbonate 102, the lithium zirconate 101 expands in volume and overflows a part of the lithium carbonate to the surface of the core 111. . The lithium carbonate that has overflowed from the fine pores of the nucleus 111 absorbs each other and forms a large lump 102 a on the surface of the nucleus 111.

【0037】このような状態の使用済み炭酸ガス吸収材
から炭酸ガスを放出し再生を行うと、炭酸リチウムのか
たまり102a近傍では過剰の炭酸リチウムが存在する
ため、未反応の炭酸リチウム102が残存し、表面に炭
酸リチウムが存在しない領域ではジルコニアと反応する
炭酸リチウム量が足りずに、未反応のジルコニア103
が残存し、リチウムジルコネートの再生効率が低下す
る。さらに炭酸ガス吸収材の再生を数十回と繰り返して
いくと、この減少は顕著になっていく。
When carbon dioxide gas is released from the used carbon dioxide gas absorbent in such a state and regeneration is performed, unreacted lithium carbonate 102 remains because there is an excess of lithium carbonate near the lump of lithium carbonate 102a. In a region where lithium carbonate does not exist on the surface, the amount of lithium carbonate that reacts with zirconia is insufficient, and unreacted zirconia 103
Remain and the regeneration efficiency of lithium zirconate decreases. Further, when the regeneration of the carbon dioxide absorbent is repeated several tens of times, this decrease becomes remarkable.

【0038】本発明は、図1に示すように、この炭酸リ
チウムのかたまりを、核11の表面に分散させるため
に、核11表面に炭酸リチウムを貯蔵する開口(細孔)
を有する外殻12を形成することを特徴としている。
According to the present invention, as shown in FIG. 1, in order to disperse the mass of lithium carbonate on the surface of the core 11, an opening (pore) for storing lithium carbonate on the surface of the core 11 is formed.
The outer shell 12 having the following is formed.

【0039】本発明に係る外殻12についてより詳細に
説明する。
The outer shell 12 according to the present invention will be described in more detail.

【0040】本発明に係る外殻12は、前述のように炭
酸リチウムを貯蔵するための複数の開口を有しているた
め、炭酸リチウムは外殻に仕切られた開口に分散して貯
蔵される。そのため、核11表面に形成される炭酸リチ
ウムのかたまりのサイズを開口サイズに小さくすること
が可能である。
Since the outer shell 12 according to the present invention has a plurality of openings for storing lithium carbonate as described above, lithium carbonate is dispersed and stored in the openings partitioned by the outer shell. . Therefore, the size of the lump of lithium carbonate formed on the surface of the core 11 can be reduced to the size of the opening.

【0041】前記開口が大きすぎると、炭酸リチウムの
かたまりが大きくなり、再生時に核11全体に炭酸リチ
ウムを供給できなくなる恐れがあることから、その開口
径は500μm以下とすることが望ましい。また、開口
径が小さすぎると、核11へ炭酸リチウムを浸透させに
くくなるため、開口径を核11に形成される微細孔より
も大きくすることが望ましく、例えば0.1μm以上と
することが望ましい。
If the opening is too large, the lump of lithium carbonate becomes large, and it may not be possible to supply lithium carbonate to the whole nucleus 11 during reproduction. Therefore, the opening diameter is desirably 500 μm or less. On the other hand, if the opening diameter is too small, it becomes difficult for lithium carbonate to penetrate into the nucleus 11. Therefore, the opening diameter is desirably larger than the fine holes formed in the nucleus 11, for example, preferably 0.1 μm or more. .

【0042】また、外殻を形成する材料は特に限定され
ないが、炭酸ガス吸収材の使用温度域において、安定性
の高い材料とすることが好ましく、例えば、可塑性を有
する粘度材料、具体的にはセリナイト、雲母、木節粘度
などを使用することが望ましい。
The material forming the outer shell is not particularly limited, but it is preferable to use a material having high stability in the operating temperature range of the carbon dioxide gas absorbing material. For example, a viscous material having plasticity, specifically, It is desirable to use serinite, mica, wood knot viscosity and the like.

【0043】また、後述するような方法で外殻を形成す
ることを考慮すると、リチウム複合酸化物よりも難焼結
性、すなわち緻密度の上がらずに多孔質体となる材料を
選択することが望まれる。
Considering that the outer shell is formed by the method described later, it is more difficult to select a material which is less sinterable than the lithium composite oxide, that is, a material which does not increase in the density and becomes a porous body. desired.

【0044】本発明の炭酸ガス吸収材の製造方法の一例
を以下に説明する。
An example of the method for producing a carbon dioxide absorbent of the present invention will be described below.

【0045】まず、直径100μm〜1mm程度のリチ
ウム含有複合酸化物造粒粉と、外殻を形成するための材
料を含有するスラリーとを準備する。
First, a lithium-containing composite oxide granulated powder having a diameter of about 100 μm to 1 mm and a slurry containing a material for forming an outer shell are prepared.

【0046】リチウム含有複合酸化物造粒粉は、例えば
平均粒径0.1μm〜1μm程度のリチウム含有複合酸
化物粉末に、PVA溶液を滴下・乾燥させることで得る
ことができる。またスラリーは、所望のセラミック粉末
を水等の溶媒中に分散・混合することで得られる。
The lithium-containing composite oxide granulated powder can be obtained by, for example, dropping and drying a PVA solution on a lithium-containing composite oxide powder having an average particle diameter of about 0.1 μm to 1 μm. The slurry is obtained by dispersing and mixing desired ceramic powder in a solvent such as water.

【0047】次に、リチウム含有複合酸化物造粒粉にス
ラリーを塗布・乾燥し、リチウム複合酸化物造粒粉表面
に、外殻を形成する材料の粉末層を形成し、これを焼成
する。
Next, a slurry is applied to the lithium-containing composite oxide granulated powder and dried to form a powder layer of a material forming an outer shell on the surface of the lithium composite oxide granulated powder, which is then fired.

【0048】リチウム含有複合酸化物造粒紛、外殻を形
成する材料は、それぞれ焼成され、それぞれの焼結特性
にしたがって多孔質体を形成する。
The lithium-containing composite oxide granulated powder and the material forming the outer shell are each fired to form a porous body according to their sintering characteristics.

【0049】例えば、外殻を形成する材料としてリチウ
ム含有複合酸化物よりも焼結性の低いセリサイトを使用
すれば、核に形成される微細孔よりも細孔径の大きな多
孔質体が得られる。
For example, if sericite having a lower sintering property than the lithium-containing composite oxide is used as the material forming the outer shell, a porous body having a larger pore diameter than the fine pores formed in the nucleus can be obtained. .

【0050】あるいは、外殻を形成する材料をPVA溶
液などの有機材料と混合し、この混合物からなるスラリ
ーを核に塗布した後に焼成し、焼成時の熱で有機材料を
焼却することで、外殻に開口を形成することもできる。
この場合、有機材料の混合比を調整することで、外殻に
形成される開口径を制御することが可能である。
Alternatively, the material forming the outer shell is mixed with an organic material such as a PVA solution, a slurry made of this mixture is applied to a core, and then fired. An opening can be formed in the shell.
In this case, the diameter of the opening formed in the outer shell can be controlled by adjusting the mixing ratio of the organic material.

【0051】また、前記スラリーの塗布は1度に限ら
ず、複数回塗布乾燥を繰り返すことで、外殻の厚さを制
御し、気効率や開口の径を制御することもができる。
The application of the slurry is not limited to once, but by repeating the application and drying a plurality of times, the thickness of the outer shell can be controlled, and the air efficiency and the diameter of the opening can be controlled.

【0052】外殻の厚さを大きくすることで、外殻に形
成された開口の容積を大きくすることができるが、炭酸
ガス吸収材中のリチウム含有複合酸化物の比率が小さく
なるため、炭酸ガス吸収効率が低下する恐れがある。こ
のような理由から、核と外殻との比率が重量比で90:
10〜70:30程度の範囲になるように、スラリーの
塗布回数を制御することが好ましい。
By increasing the thickness of the outer shell, it is possible to increase the volume of the opening formed in the outer shell. However, since the ratio of the lithium-containing composite oxide in the carbon dioxide gas absorbent becomes small, the amount of carbon dioxide is reduced. Gas absorption efficiency may be reduced. For this reason, the ratio between the core and the shell is 90:
It is preferable to control the number of times of application of the slurry so as to be in a range of about 10 to 70:30.

【0053】上述したようにして、リチウム含有複合酸
化物を含有する多孔質体からなる核に、炭酸リチウムを
貯蔵する複数の開口を設けた外殻を形成することで、炭
酸ガス吸収材が炭酸ガスを吸収した際に生成される炭酸
リチウムを核表面に分散させることが可能となり、炭酸
ガス吸収材の再生時に、ジルコニアなどの酸化物と、炭
酸リチウムとの反応を速やかに生じさせることが可能と
なり、繰り返し特性の良好な炭酸ガス吸収材を得ること
ができる。
As described above, by forming the outer shell having a plurality of openings for storing lithium carbonate in the core made of the porous body containing the lithium-containing composite oxide, the carbon dioxide gas absorbing material is made of carbon dioxide. Lithium carbonate generated when gas is absorbed can be dispersed on the core surface, and the reaction between oxides such as zirconia and lithium carbonate can be quickly caused during regeneration of the carbon dioxide absorbent. And a carbon dioxide gas absorbent having good repetition characteristics can be obtained.

【0054】[0054]

【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0055】実施例1 純度99.9wt%の平均粒子径1μmのLi2CO3粉末
と純度99.9%の平均粒子径0.5μmのMgO部分
安定化ZrO2粉末と純度99.9%の平均粒子径1μ
mのK2CO3粉末とを原料とし、Li2CO3:Zr
2:K2CO3=1.1:1:0.1のモル割合で秤量
し、その粉末を乾式混合した後、900℃で10時間大
気中にて焼成して、Li2ZrO3: Li2CO3: K2
CO3=1:0.1:0.1のモル割合、平均粒径1μ
mのリチウム複合酸化物を得た。このリチウム複合酸化
物粉末に10wt%のPVA溶液を滴下して造粒し、平
均粒径600μmのリチウム含有複合酸化物の造粒粉を
得た。
Example 1 Li 2 CO 3 powder having an average particle diameter of 1 μm having a purity of 99.9 wt%, partially stabilized ZrO 2 powder having an average particle diameter of 0.5 μm having a purity of 99.9%, and a powder having a purity of 99.9% were obtained. Average particle size 1μ
m of K 2 CO 3 powder and Li 2 CO 3 : Zr
O 2 : K 2 CO 3 = 1.1: 1: 0.1 was weighed in a molar ratio, the powder was dry-mixed, and then calcined at 900 ° C. for 10 hours in the air to obtain Li 2 ZrO 3 : Li 2 CO 3 : K 2
CO 3 = 1: 0.1: 0.1 molar ratio, average particle size 1μ
m of the lithium composite oxide was obtained. A 10 wt% PVA solution was dropped into the lithium composite oxide powder and granulated to obtain a granulated powder of a lithium-containing composite oxide having an average particle diameter of 600 μm.

【0056】一方、水を溶媒としたスラリーにセリサイ
トを溶解させ、このセリサイト成分が核に対し、出来上
がりでセリサイト成分:炭酸ガス吸収材粉末=20:8
0wt%となるように複数回のディッピングを行った。
このディッピング後のリチウム含有複合酸化物造粒粉を
焼成し、核と外殻とからなる炭酸ガス吸収材を得た。
On the other hand, sericite is dissolved in a slurry using water as a solvent, and this sericite component is completed with respect to the nucleus, and the resulting sericite component: carbon dioxide gas absorbent powder = 20: 8.
Dipping was performed a plurality of times so as to be 0 wt%.
This dipped lithium-containing composite oxide granulated powder was calcined to obtain a carbon dioxide absorbent comprising a core and an outer shell.

【0057】この炭酸ガス吸収材の核部分の細孔径を窒
素ガス吸着法で、外殻部分の平均細孔径を水銀ポロシメ
ータで測定した値と、炭酸ガス吸収材の圧壊強度値を表
1に示す。
Table 1 shows the value obtained by measuring the pore diameter of the core portion of the carbon dioxide gas absorbent by a nitrogen gas adsorption method and the average pore diameter of the outer shell portion by a mercury porosimeter, and the crushing strength of the carbon dioxide gas absorbent. .

【0058】得られた炭酸ガス吸収材の炭酸ガス吸収・
放出能の測定を大気中、CO220vol%含有ガスを
200ml/min流通下のもと、熱重量分析装置を用
いて行った。なお、炭酸ガス吸収材の重量変化分が炭酸
ガスの吸収量、放出量として換算される。
The obtained carbon dioxide gas absorbing material absorbs carbon dioxide gas.
The measurement of the release capacity was performed using a thermogravimetric analyzer under the flow of a gas containing 20 vol% of CO 2 at 200 ml / min in the atmosphere. The change in weight of the carbon dioxide gas absorbent is converted into the amount of carbon dioxide gas absorbed and released.

【0059】温度プログラムは100℃〜800℃まで
毎分15℃の速度で昇温し、800℃で10分間保持し
た。
In the temperature program, the temperature was raised from 100 ° C. to 800 ° C. at a rate of 15 ° C./min and maintained at 800 ° C. for 10 minutes.

【0060】炭酸ガス吸収材の重量は、650℃程度ま
で増加し、さらにそれ以降800℃で10分間保持され
る間、重量が減少した。すなわち、650℃程度まで炭
酸ガスの吸収を行い、それ以上の温度で炭酸ガスの放出
を行い、炭酸ガス吸収材再生の1サイクル目を行った。
The weight of the carbon dioxide gas absorbent increased to about 650 ° C., and thereafter decreased during holding at 800 ° C. for 10 minutes. That is, the carbon dioxide gas was absorbed to about 650 ° C., the carbon dioxide gas was released at a temperature higher than 650 ° C., and the first cycle of the regeneration of the carbon dioxide gas absorbent was performed.

【0061】引続き、流通させるガスの温度を800℃
〜100℃まで15℃/分で降温した後さらに100℃
〜800℃まで15℃/分で昇温し、800℃で10分
間保持した。降温中、および650℃程度まで昇温する
間に炭酸ガス吸収材の重量が増加し、650℃〜800
℃に昇温する間炭酸ガス吸収材の重量は減少し、800
℃で10分保持した時には炭酸ガス吸収材の重量変化は
見られなくなった。
Subsequently, the temperature of the gas to be circulated was set to 800 ° C.
After cooling down at a rate of 15 ° C / min to ~ 100 ° C,
The temperature was raised to 800800 ° C. at a rate of 15 ° C./min, and kept at 800 ° C. for 10 minutes. The weight of the carbon dioxide gas absorbent increases during the temperature drop and during the temperature rise to about 650 ° C.
The temperature of the carbon dioxide absorbent decreases during the heating to
No change in the weight of the carbon dioxide gas absorbent was observed when the temperature was maintained at 10 ° C. for 10 minutes.

【0062】すなわち、800℃から100℃への降温
と100℃から800℃への昇温中に、炭酸ガスの吸収
と、炭酸ガスの放出を行い、炭酸ガス吸収材再生の2サ
イクル目を行った。
That is, during the temperature decrease from 800 ° C. to 100 ° C. and the temperature increase from 100 ° C. to 800 ° C., carbon dioxide is absorbed and carbon dioxide is released, and the second cycle of the regeneration of the carbon dioxide absorbent is performed. Was.

【0063】さらに、2サイクル目と同様に、降温、昇
温を繰り返し、炭酸ガス吸収材再生を40サイクル行っ
た。
Further, in the same manner as in the second cycle, the temperature was lowered and raised, and the carbon dioxide absorbent was regenerated for 40 cycles.

【0064】2サイクル目の炭酸ガス吸収能(炭酸ガス
吸収材の最大重量時の重量変化率)と、40サイクル目
の炭酸ガス吸収能を表1に併記する。
Table 1 also shows the carbon dioxide absorption capacity at the second cycle (weight change rate at the maximum weight of the carbon dioxide absorbent) and the carbon dioxide absorption capacity at the 40th cycle.

【表1】 比較例1 実施例1のリチウム複合酸化物の造粒粉をそのまま焼成
した炭酸ガス吸収材を作成し、炭酸ガスの吸収・放出能
を測定した。その結果を表2に併記する。
[Table 1] Comparative Example 1 A carbon dioxide gas absorbent was prepared by firing the granulated powder of the lithium composite oxide of Example 1 as it was, and the ability to absorb and release carbon dioxide was measured. The results are also shown in Table 2.

【0065】実施例2 純度99.9%の平均粒子径1μmのLi2CO3粉末と
純度99.9%の平均粒子径0.5μmのMgO部分安
定化ZrO2粉末と純度99.9%の平均粒子径1μm
のK2CO3粉末とを、Li2CO3:ZrO2:K2CO3
=1.1:1:0.1のモル割合で秤量し、その粉末を
乾式混合した後、900℃で10時間大気中にて焼成し
て、 Li2ZrO3: Li2CO3: K2CO3=1:
0.1:0.1のモル割合、平均粒径1μmのリチウム
複合酸化物を得た。
Example 2 Li 2 CO 3 powder having an average particle diameter of 1 μm having a purity of 99.9%, partially stabilized ZrO 2 powder having an average particle diameter of 0.5 μm having a purity of 99.9%, and a powder having a purity of 99.9% were obtained. Average particle size 1μm
Of K 2 CO 3 powder and Li 2 CO 3 : ZrO 2 : K 2 CO 3
= 1.1: 1: 0.1, and the powder was dry-mixed, calcined at 900 ° C. for 10 hours in the air, and Li 2 ZrO 3 : Li 2 CO 3 : K 2 CO 3 = 1:
A lithium composite oxide having a molar ratio of 0.1: 0.1 and an average particle diameter of 1 μm was obtained.

【0066】このリチウム複合酸化物を用い、実施例1
と同様にして平均粒径600μmの造粒粉を作成し、得
られた造粒粉に材料として木節粘度を用いた以外は実施
例1と同様に、スラリーの塗布、焼成を施し、リチウム
シリケートを核とし、木節粘度を外殻とし、木節粘度成
分:炭酸ガス吸収材粉末=20:80wt%の炭酸ガス
吸収材を得た。
Example 1 using this lithium composite oxide
A granulated powder having an average particle diameter of 600 μm was prepared in the same manner as described above, and the slurry was applied and calcined in the same manner as in Example 1 except that the obtained granulated powder was formed using the knotty viscosity. Was used as a core, and a knotty viscosity was used as an outer shell to obtain a knotty component: carbon dioxide gas absorbent powder = 20: 80 wt% carbon dioxide gas absorbent.

【0067】この炭酸ガス吸収材の核、外殻の平均細孔
径と、圧壊強度値を表1に併記する。
Table 1 also shows the average pore diameter of the core and outer shell of this carbon dioxide gas absorbent and the crushing strength value.

【0068】さらに、実施例1と同様にして、得られた
炭酸ガス吸収材の炭酸ガス吸収能を測定した。その結果
を表1に併記する。
Further, in the same manner as in Example 1, the carbon dioxide absorption capacity of the obtained carbon dioxide absorbent was measured. The results are also shown in Table 1.

【0069】実施例3 原料の組成比をLi2CO3:ZrO2:K2CO3=1.
1:1:0.4としたことを除き、実施例1と同様にし
て炭酸リチウム10モル%、炭酸カリウム0.4モル%
含有するリチウムジルコネートからなるリチウム含有複
合酸化物を得た。
Example 3 The composition ratio of the raw materials was Li 2 CO 3 : ZrO 2 : K 2 CO 3 = 1.
Lithium carbonate 10 mol%, potassium carbonate 0.4 mol% in the same manner as in Example 1 except that the ratio was 1: 1: 0.4.
Thus, a lithium-containing composite oxide comprising lithium zirconate was obtained.

【0070】さらに、10wt%のPVA溶液を滴下
し、平均粒径500μmの造粒紛を作成した。
Further, a 10 wt% PVA solution was dropped to prepare a granulated powder having an average particle diameter of 500 μm.

【0071】一方、エタノールを溶媒としたスラリーに
雲母を分散させ、この雲母成分がリチウム含有複合酸化
物に対し、出来上がりで雲母成分:リチウム含有複合酸
化物=15:85wt%となるように複数回のディッピ
ングを行った。このディッピング後の造粒紛を焼成して
炭酸ガス吸収材を得た。
On the other hand, mica is dispersed in a slurry using ethanol as a solvent, and the mica component is mixed with the lithium-containing composite oxide several times so that the mica component: lithium-containing composite oxide = 15: 85 wt%. Was dipped. The granulated powder after dipping was fired to obtain a carbon dioxide gas absorbent.

【0072】この炭酸ガス吸収材の核および外殻の平均
細孔径と、気孔率と、圧壊強度値を表1に併記する。
Table 1 also shows the average pore diameter of the core and outer shell of the carbon dioxide gas absorbent, the porosity, and the crushing strength value.

【0073】さらに、実施例1と同様にして、得られた
炭酸ガス吸収材の炭酸ガス吸収能を測定した。その結果
を表1に併記する。
Further, in the same manner as in Example 1, the carbon dioxide absorption capacity of the obtained carbon dioxide absorbent was measured. The results are also shown in Table 1.

【0074】表1から分かるように、外殻を形成してい
ない比較例1では、40サイクル目の炭酸ガス吸収特性
が1/3程度に減少しているのに対し、各実施例では炭
酸ガス吸収特性はほとんど低下していない。
As can be seen from Table 1, in Comparative Example 1 in which the outer shell was not formed, the carbon dioxide absorption characteristics at the 40th cycle were reduced to about 1/3, whereas in each of the examples, the carbon dioxide absorption characteristics were reduced. The absorption characteristics are hardly degraded.

【0075】[0075]

【発明の効果】上述したように、本発明の炭酸ガス吸収
材は、繰り返し再生した際に炭酸ガス吸収特性の劣化を
低減することができる。
As described above, the carbon dioxide-absorbing material of the present invention can reduce the deterioration of the carbon dioxide-absorbing characteristics upon repeated regeneration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は本発明の炭酸ガス吸収材の初期状態
を示す断面図。(b)は炭酸ガスを吸収した炭酸ガス吸
収材の断面図。(c)は再生後の炭酸ガス吸収材の断面
図。
FIG. 1A is a cross-sectional view showing an initial state of a carbon dioxide gas absorbent of the present invention. (B) is sectional drawing of the carbon dioxide absorber which absorbed carbon dioxide. (C) is a sectional view of the carbon dioxide absorbent after regeneration.

【図2】 (a)は従来の炭酸ガス吸収材の初期状態を
示す断面図。(b)は炭酸ガスを吸収した炭酸ガス吸収
材の断面図。(c)は再生後の炭酸ガス吸収材の断面
図。
FIG. 2A is a cross-sectional view showing an initial state of a conventional carbon dioxide gas absorbent. (B) is sectional drawing of the carbon dioxide absorber which absorbed carbon dioxide. (C) is a sectional view of the carbon dioxide absorbent after regeneration.

【符号の説明】[Explanation of symbols]

1…リチウム含有複合酸化物 2…炭酸リチウム 3…ジルコニア 6…開口 11…核 12…外殻 DESCRIPTION OF SYMBOLS 1 ... Lithium-containing composite oxide 2 ... Lithium carbonate 3 ... Zirconia 6 ... Opening 11 ... Nucleus 12 ... Outer shell

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 33/32 C01B 33/32 (72)発明者 加藤 雅礼 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 吉川 佐和子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 越崎 健司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 4G066 AA13B AA22B AA23B AA43A AA63D AC12D BA23 CA35 DA02 FA02 FA22 FA26 FA34 FA35 FA37 GA01 4G073 BA03 BA21 BA63 BD11 BD21 CB03 FB01 FB04 FB07 FD23 UA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 33/32 C01B 33/32 (72) Inventor Masareu Kato 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Address: In the Toshiba R & D Center (72) Inventor Sawako Yoshikawa 1 in Komukai Toshiba-cho, Yuki-ku, Kawasaki-shi, Kanagawa Prefecture In-house Toshiba R & D Center (72) Inventor Kenji Koshizaki, Yuki-ku, Kawasaki-shi, Kanagawa No. 1 Komukai Toshiba-cho Toshiba R & D Center F-term (reference) 4G066 AA13B AA22B AA23B AA43A AA63D AC12D BA23 CA35 DA02 FA02 FA22 FA26 FA34 FA35 FA37 GA01 4G073 BA03 BA21 BA63 BD11 BD21 CB03 FB01 FB04 FB07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭酸ガスと反応して炭酸リチウムを生成す
るリチウム含有複合酸化物を含有し、所定径の微細孔を
有する多孔質体からなる核と、 前記核を囲むように設けられ、前記微細孔の所定径より
も大きな径の開口を有する多孔質体からなる外殻とを具
備することを特徴とする炭酸ガス吸収材。
1. A nucleus comprising a porous body containing a lithium-containing composite oxide which reacts with carbon dioxide gas to generate lithium carbonate and has fine pores of a predetermined diameter, and a nucleus provided so as to surround the nucleus; An outer shell made of a porous body having an opening having a diameter larger than a predetermined diameter of the fine pores.
【請求項2】前記リチウム含有複合酸化物は、リチウム
ジルコネートおよびリチウムシリケートから選ばれる少
なくとも一種であることを特徴とする請求項1記載の炭
酸ガス吸収材。
2. The carbon dioxide absorbent according to claim 1, wherein the lithium-containing composite oxide is at least one selected from lithium zirconate and lithium silicate.
【請求項3】前記外殻を形成する材料は、前記リチウム
複合酸化物よりも難焼結性の材料であることを特徴とす
る請求項1記載の炭酸ガス吸収材。
3. The carbon dioxide absorbent according to claim 1, wherein the material forming the outer shell is a material that is more difficult to sinter than the lithium composite oxide.
【請求項4】炭酸ガスと反応して炭酸リチウムを生成す
るリチウム含有複合酸化物粉末からなる造粒粉表面を、
前記リチウム複合酸化物よりも難焼結性の材料粉末で被
覆した後、前記造粒紛を焼結することを特徴とする炭酸
ガス吸収材の製造方法。
4. A granulated powder surface comprising a lithium-containing composite oxide powder which produces lithium carbonate by reacting with carbon dioxide gas,
A method for producing a carbon dioxide gas absorbent, comprising sintering the granulated powder after coating with a material powder that is more difficult to sinter than the lithium composite oxide.
JP2000070422A 2000-03-14 2000-03-14 Carbon dioxide absorbent and method for producing carbon dioxide absorbent Expired - Lifetime JP3443550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070422A JP3443550B2 (en) 2000-03-14 2000-03-14 Carbon dioxide absorbent and method for producing carbon dioxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070422A JP3443550B2 (en) 2000-03-14 2000-03-14 Carbon dioxide absorbent and method for producing carbon dioxide absorbent

Publications (2)

Publication Number Publication Date
JP2001252557A true JP2001252557A (en) 2001-09-18
JP3443550B2 JP3443550B2 (en) 2003-09-02

Family

ID=18589157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070422A Expired - Lifetime JP3443550B2 (en) 2000-03-14 2000-03-14 Carbon dioxide absorbent and method for producing carbon dioxide absorbent

Country Status (1)

Country Link
JP (1) JP3443550B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703465B1 (en) 2005-08-09 2007-04-03 한춘 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics
US7744845B2 (en) 2005-08-25 2010-06-29 Magnesium Elektron Limited Synthesis of lithium zirconate
KR101155303B1 (en) 2009-10-30 2012-06-12 한국전력공사 Co2 sorbent and manufacturing method thereof
JP2013198899A (en) * 2012-03-26 2013-10-03 Samsung Electronics Co Ltd Carbon dioxide adsorbing agent, method for producing the same, and carbon dioxide collection module containing the agent
KR101560053B1 (en) 2013-11-11 2015-10-26 국립대학법인 울산과학기술대학교 산학협력단 Carbon dioxide absorbent having core-shell structure
KR101910805B1 (en) 2016-04-21 2018-12-28 전남대학교산학협력단 Preparation method of crushing strength enhanced novel carbon dioxide absorbent and carbon dioxide absorbent using the same
WO2022145217A1 (en) * 2020-12-28 2022-07-07 住友化学株式会社 Method for reducing carbon dioxide in living space, and carbon dioxide adsorbent and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703465B1 (en) 2005-08-09 2007-04-03 한춘 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics
US7744845B2 (en) 2005-08-25 2010-06-29 Magnesium Elektron Limited Synthesis of lithium zirconate
KR101155303B1 (en) 2009-10-30 2012-06-12 한국전력공사 Co2 sorbent and manufacturing method thereof
JP2013198899A (en) * 2012-03-26 2013-10-03 Samsung Electronics Co Ltd Carbon dioxide adsorbing agent, method for producing the same, and carbon dioxide collection module containing the agent
KR101560053B1 (en) 2013-11-11 2015-10-26 국립대학법인 울산과학기술대학교 산학협력단 Carbon dioxide absorbent having core-shell structure
KR101910805B1 (en) 2016-04-21 2018-12-28 전남대학교산학협력단 Preparation method of crushing strength enhanced novel carbon dioxide absorbent and carbon dioxide absorbent using the same
WO2022145217A1 (en) * 2020-12-28 2022-07-07 住友化学株式会社 Method for reducing carbon dioxide in living space, and carbon dioxide adsorbent and production method therefor

Also Published As

Publication number Publication date
JP3443550B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US9079798B2 (en) Method for making porous mullite-containing composites
EP2315732B1 (en) Method for making porous acicular mullite bodies
US20080318759A1 (en) Method of Producing Porous Ceramic Supports of Controlled Microstructure
US20060192325A1 (en) Silicon nitride honeycomb filter and method for its production
KR100543149B1 (en) Carbon Dioxide Absorbents, Process for the Preparation Thereof, and Process for the Regeneration Thereof
JP2001252557A (en) Carbon dioxide gas absorbing material and manufacturing method therefor
US20070072768A1 (en) Carbon dioxide absorbent and method of manufacturing carbon dioxide absorbent
KR100808976B1 (en) Porous ceramics and manufacturing method
JPH04253164A (en) Tape for fuel battery, electrode for fuel battery, method for sintering this kind of electrode and fuel battery having this kind of electrode
JP2006206390A (en) Ceramic body, ceramic carrier having catalyst carrying capacity, ceramic catalyst body and method for producing the same
JP5916255B2 (en) Ceramic filter
JP2014519970A (en) Low-temperature oxidation catalyst with remarkable hydrophobicity for the oxidation of organic pollutants
JP3816662B2 (en) Carbon dioxide absorbing member
JPH01167282A (en) Porous material of ceramic
JP2004025013A (en) Catalyst for exhaust gas purification and its manufacturing method
JP3552207B2 (en) Method for producing carbon dioxide absorber
JP3761371B2 (en) Carbon dioxide absorber and combustion device
JP2002085966A (en) Carbon dioxide absorbing material, its production method and combustion equipment
JPS60264365A (en) Porous silicon carbide sintered body and manufacture
JP3443548B2 (en) Carbon dioxide absorber
JPH11253746A (en) Carbon dioxide gas-absorbing material and its synthetic method
JPH0615044B2 (en) Catalyst carrier composed of porous silicon carbide sintered body
JPH06227874A (en) Production of porous sintered material
JP2001190950A (en) Carbon dioxide absorption material and production of the same
KR20220161221A (en) Passivated LLZO particles and tape casting of LLZO films

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3443550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term