JP2001248920A - Controller for refrigeration circuit - Google Patents

Controller for refrigeration circuit

Info

Publication number
JP2001248920A
JP2001248920A JP2000060336A JP2000060336A JP2001248920A JP 2001248920 A JP2001248920 A JP 2001248920A JP 2000060336 A JP2000060336 A JP 2000060336A JP 2000060336 A JP2000060336 A JP 2000060336A JP 2001248920 A JP2001248920 A JP 2001248920A
Authority
JP
Japan
Prior art keywords
degree
expansion valve
opening
supercooling
refrigeration circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000060336A
Other languages
Japanese (ja)
Inventor
Seiji Inoue
誠司 井上
Kazunobu Jiyoujima
一暢 城島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000060336A priority Critical patent/JP2001248920A/en
Publication of JP2001248920A publication Critical patent/JP2001248920A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly reliable controller for refrigeration circuit operating stably while utilizing refrigerant in the refrigeration circuit effectively. SOLUTION: The controller for refrigeration circuit comprises a compressor, a condenser, a motor expansion valve and an evaporator coupled sequentially through piping, and means for controlling the opening of the motor expansion valve. The control means controls the opening of the motor expansion valve by the degree of supercooling based on the degree of supercooling of the condenser and the degree of superheating of the evaporator when the degree of supercooling is equal to or higher than a target level, and controls the opening of the motor expansion valve by the degree of superheating when the degree of supercooling is lower than the target level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍回路の電動膨
張弁の過冷却度制御方法において、特に冷媒不足等によ
り電動膨張弁を絞り込み過ぎないようにする制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercooling degree control method for an electric expansion valve of a refrigeration circuit, and more particularly to a control method for preventing the electric expansion valve from being excessively narrowed due to insufficient refrigerant.

【0002】[0002]

【従来の技術】従来の冷凍回路の制御装置としては特開
平2−208469号公報があり、この概略構成を図1
0に示す。この図において、1は圧縮機、3は凝縮器、
4は開度の調整可能な膨張弁、5は蒸発器であり、これ
らの各機器は配管で順次接続され、冷凍サイクル(冷凍
回路)が構成され、この構成された蒸発器3の出口には
出口冷媒過熱度を検出する過熱度検出手段50Aと、該
過熱度検出手段50Aの出力を受け、過熱度が所定の制
御目標値に収束するように膨張弁4の開度を制御する開
度制御手段51Aと、この開度制御手段51Aの制御結
果及び過熱度検出手段50Aの検出結果で、膨張弁4が
最大開度で、かつ過熱度が所定値以上高い状態が一定時
間以上継続したときには、冷媒欠乏信号を出力する信号
出力手段52と、を具備した構成になっている。
2. Description of the Related Art A conventional refrigeration circuit control device is disclosed in Japanese Patent Application Laid-Open No. 2-208469.
0 is shown. In this figure, 1 is a compressor, 3 is a condenser,
Reference numeral 4 denotes an expansion valve whose degree of opening can be adjusted. Reference numeral 5 denotes an evaporator. These devices are sequentially connected by piping to form a refrigeration cycle (refrigeration circuit). Superheat degree detecting means 50A for detecting the superheat degree of the outlet refrigerant, and opening degree control for receiving the output of the superheat degree detecting means 50A and controlling the opening degree of the expansion valve 4 so that the superheat degree converges to a predetermined control target value. The means 51A, the control result of the opening degree control means 51A and the detection result of the superheat degree detection means 50A indicate that the expansion valve 4 has the maximum opening degree and the state where the superheat degree is higher than a predetermined value has continued for a certain period of time. Signal output means 52 for outputting a refrigerant deficiency signal.

【0003】次に、この動作について説明する。まず、
電源が投入され、冷凍回路が運転されると、過熱度検出
手段50Aにより蒸発器3における冷媒の過熱度が検出
され、開度制御手段51Aにより、過熱度が制御目標値
に収束するように膨張弁4の開度が制御され、冷媒循環
量が充分あれば、空調負荷に対応した冷凍能力で運転が
継続される。
Next, this operation will be described. First,
When the power is turned on and the refrigeration circuit is operated, the superheat degree of the refrigerant in the evaporator 3 is detected by the superheat degree detection means 50A, and the opening degree control means 51A expands the superheat degree so as to converge to the control target value. If the opening degree of the valve 4 is controlled and the refrigerant circulation amount is sufficient, the operation is continued with the refrigerating capacity corresponding to the air conditioning load.

【0004】しかし、空調負荷に対して冷凍能力が小さ
くなって蒸発器5の出口冷媒温度(過熱度)が上昇し、
この上昇した過熱度を制御目標値に維持すべく膨張弁4
の開度を開き、弁の開度を最大状態にしても、過熱度が
所定値を一定時間以上継続したときには、信号出力手段
52は冷媒不足と判断し冷媒欠乏信号を出力し、運転を
停止したり、或いは、そのまま運転を継続したりする。
However, the refrigerating capacity is reduced with respect to the air-conditioning load, and the temperature (superheat) of the refrigerant at the outlet of the evaporator 5 is increased.
In order to maintain the increased degree of superheat at the control target value, the expansion valve 4
Even if the opening degree of the valve is opened and the opening degree of the valve is maximized, if the degree of superheat continues for a predetermined value for a certain period of time or more, the signal output means 52 determines that the refrigerant is insufficient and outputs a refrigerant deficiency signal, and stops the operation. Or continue driving as it is.

【0005】以上説明したように、従来の冷凍回路の制
御装置は、膨張弁最大開度における出口冷媒温度の過熱
度が一定時間所定値を超えた時、冷媒不足と判断して制
御するため、言い換えれば、特に、蒸発器の出口冷媒温
度の過熱度で判断しているため、回路内の冷媒を充分活
用して運転するものではなかった。
As described above, the control device of the conventional refrigeration circuit determines that the refrigerant is insufficient when the superheat degree of the outlet refrigerant temperature at the maximum opening of the expansion valve exceeds a predetermined value for a certain period of time. In other words, in particular, since the determination is made based on the degree of superheating of the refrigerant temperature at the outlet of the evaporator, the operation is not performed by sufficiently utilizing the refrigerant in the circuit.

【0006】また、過冷却度を見ないで制御しているた
め、冷媒充填量が多い時には、高圧が上がり、ハイカッ
ト(異常高圧停止)するものであった。また、過熱度を
検出する専用の検出手段が必要であった。
In addition, since the control is performed without observing the degree of supercooling, when the refrigerant charging amount is large, the high pressure rises and high cut (abnormal high pressure stop) is performed. Also, a dedicated detecting means for detecting the degree of superheat was required.

【0007】次に、従来の他の冷凍回路の制御装置とし
ては、特開平8−254376号公報があり、この概略
構成を図11に示す。この図において、1は圧縮機、2
は四方切換弁、3は非利用側熱交換器(冷房時の凝縮
器)、4は膨張装置としての電動膨張弁、5は室内空気
と冷媒とを熱交換させる利用側熱交換器(冷房時の蒸発
器)であり、これらの各機器を順次配管で接続して冷凍
回路を形成している。なお、この図の14は圧縮機の吸
入配管に開閉弁15を介して接続され、冷凍回路A内の
冷媒量を調整する冷媒量調整手段としての冷媒調整容器
である。
Next, as another conventional control device for a refrigeration circuit, there is Japanese Patent Application Laid-Open No. 8-254376, which is schematically shown in FIG. In this figure, 1 is a compressor, 2
Is a four-way switching valve, 3 is a non-use side heat exchanger (condenser during cooling), 4 is an electric expansion valve as an expansion device, and 5 is a use side heat exchanger that exchanges heat between indoor air and a refrigerant (during cooling). These devices are sequentially connected by piping to form a refrigeration circuit. Reference numeral 14 in this figure denotes a refrigerant adjustment container connected to the suction pipe of the compressor via an on-off valve 15 and serving as refrigerant amount adjustment means for adjusting the amount of refrigerant in the refrigeration circuit A.

【0008】また、上記利用側熱交換器5の出入口配管
には配管表面温度をそれぞれに検出する利用側入口配管
センサ10−a、出口センサ10−bが取り付けられて
おり、また、非利用側熱交換器(暖房時の蒸発器)の出
入口配管には、非利用側入口配管センサ11−a、出口
センサ11−bが取り付けられ、かつ、非利用側熱交換
器3と膨張弁4、および利用側熱交換器5と膨張弁4と
の間にそれぞれの冷媒圧力を検出する第1、第2の圧力
検出装置10−c、11−cが取り付けられ、これらの
各センサの検出結果に基づいて制御手段6は前述した各
機器の動作を制御する。
A use side inlet pipe sensor 10-a and an outlet sensor 10-b for respectively detecting the pipe surface temperature are attached to the inlet and outlet pipes of the use side heat exchanger 5, and the non-use side heat exchanger 5 is provided. A non-use side inlet pipe sensor 11-a and an outlet sensor 11-b are attached to the inlet and outlet pipes of the heat exchanger (evaporator for heating), and the non-use side heat exchanger 3 and the expansion valve 4, and First and second pressure detectors 10-c and 11-c for detecting respective refrigerant pressures are attached between the use side heat exchanger 5 and the expansion valve 4, and based on the detection results of these sensors. The control means 6 controls the operation of each device described above.

【0009】次に、この動作を説明する。まず、電源が
入れられ、冷房運転が開始されると、冷凍回路A内を循
環する冷媒流量が適正か否かを、制御手段6が、蒸発器
としての利用側熱交換器5の出入口配管温度を温度検出
センサ10−a、10−bから、出入口温度差(温度検
出センサ10−bの検出値−温度検出センサ10−aの
検出値)を演算し、この演算結果の過熱度と予め設定さ
れた適正過熱度(目標SH)とを比較し、演算過熱度が
目標SHより大きいときは、膨張弁開度が上限値である
か否かを判断し、膨張弁開度が上限値である場合は、冷
媒が不足と判断し、開閉弁15を開き、冷媒調整容器1
4内から冷媒を放出し、冷凍回路内に冷媒を補充する。
Next, this operation will be described. First, when the power is turned on and the cooling operation is started, the control means 6 determines whether or not the flow rate of the refrigerant circulating in the refrigeration circuit A is appropriate by checking the temperature of the inlet / outlet pipe of the use side heat exchanger 5 as an evaporator. Is calculated from the temperature detection sensors 10-a and 10-b (the detection value of the temperature detection sensor 10-b-the detection value of the temperature detection sensor 10-a), and the degree of superheat of the calculation result is set in advance. The calculated superheat degree is compared with the target SH, and if the calculated superheat degree is larger than the target SH, it is determined whether or not the expansion valve opening is the upper limit value, and the expansion valve opening degree is the upper limit value. In this case, it is determined that the refrigerant is insufficient, the on-off valve 15 is opened, and the refrigerant regulating container 1 is opened.
The refrigerant is discharged from the inside of the refrigeration circuit 4 to replenish the refrigerant in the refrigeration circuit.

【0010】一方、膨張弁開度が上限値でない場合は、
膨張弁の開度を開いて冷房負荷とバランスをとるように
する。
On the other hand, when the opening degree of the expansion valve is not the upper limit,
Open the expansion valve to balance with the cooling load.

【0011】また逆に、膨張弁開度が下限値であるにも
関わらず、演算過熱度が目標SHより小さい時は、冷媒
が余剰と判断し、冷媒量調整手段が冷媒を回収する。
Conversely, when the calculated degree of superheat is smaller than the target SH despite the fact that the opening degree of the expansion valve is at the lower limit, it is determined that the refrigerant is excessive, and the refrigerant amount adjusting means recovers the refrigerant.

【0012】また、暖房運転時には、第2の圧力検出装
置10−cにより検出された検出圧力値と、利用側熱交
換器5の出口側冷媒温度を検出する温度センサ10−a
の検出値とから、制御装置6は過冷却度を演算し、この
演算された過冷却度と予め設定された適正過冷却度(目
標SC)とを比較し、演算過冷却度が目標SCより小さ
い場合は、膨張弁開度が下限値であるか否かを判断し、
膨張弁開度が下限値である場合は、冷媒不足と判断し、
開閉弁15を開き、冷媒調整容器14内から冷媒を放出
し、冷凍回路内に冷媒を補充する。
During the heating operation, the temperature sensor 10-a detects the detected pressure value detected by the second pressure detecting device 10-c and the outlet-side refrigerant temperature of the use-side heat exchanger 5.
The control device 6 calculates the degree of supercooling from the detected value of the subcooling and compares the calculated degree of supercooling with a preset appropriate degree of supercooling (target SC). If smaller, determine whether the expansion valve opening is the lower limit,
If the expansion valve opening is the lower limit, it is determined that the refrigerant is insufficient,
The on-off valve 15 is opened, the refrigerant is discharged from the refrigerant regulating container 14, and the refrigerant is replenished into the refrigeration circuit.

【0013】一方、膨張弁開度が下限値でない場合は、
膨張弁の開度を絞り、暖房負荷とバランスするようにす
る。
On the other hand, when the expansion valve opening is not at the lower limit,
Restrict the opening of the expansion valve to balance with the heating load.

【0014】また逆に、膨張弁開度が上限値であるにも
関わらず、演算過冷却度が目標SCより大きい時は、冷
媒が余剰と判断し、冷媒量調整手段が冷媒を回収する。
Conversely, when the calculated degree of supercooling is larger than the target SC despite the fact that the opening degree of the expansion valve is the upper limit value, it is determined that the refrigerant is excessive, and the refrigerant amount adjusting means recovers the refrigerant.

【0015】以上説明したように、このような従来の他
の冷凍回路の制御装置では、冷暖運転時の冷媒の過・不
足状態を、利用側熱交換器の出口側冷媒の過熱度とその
時の弁開度、或いは利用側熱交換器の出口側冷媒の過冷
却度とその時の弁開度との関係からのみ判断して、冷媒
調整容器で冷媒を冷凍回路内に供給したり、回収したり
して運転を継続するため、過熱度又は過冷却度を検出す
る専用の検出手段である利用側熱交換器5の出入口配管
温度を検出する温度検出センサ10−a、10−bや、
第2の圧力検出装置10−cが必要であったり、或い
は、開閉弁15や冷媒調整容器等の冷媒補充・回収部品
が必要になる共に、冷房運転時には過熱度を見ながら制
御しているため、冷媒充填量が多い時のハイカット(異
常高圧停止)を防止できなかったりする。また、暖房運
転時には過冷却度が常に所定値以上になるように制御し
ているため、回路内の充填冷媒量に相当する冷媒を充分
に活用して運転するものではなかった。
As described above, in such a conventional control device for a refrigerating circuit, the excess / deficiency state of the refrigerant during the cooling / heating operation is determined by determining the degree of superheat of the outlet-side refrigerant of the utilization-side heat exchanger and the degree of superheating at that time. Judging only from the relationship between the valve opening degree or the degree of supercooling of the outlet-side refrigerant of the use-side heat exchanger and the valve opening degree at that time, the refrigerant is supplied or collected into the refrigeration circuit by the refrigerant adjustment container. Temperature detection sensors 10-a and 10-b for detecting the inlet and outlet pipe temperatures of the use side heat exchanger 5, which are dedicated detection means for detecting the degree of superheating or the degree of supercooling,
Because the second pressure detecting device 10-c is required, or the refrigerant replenishment / recovery parts such as the on-off valve 15 and the refrigerant regulating container are required, and the cooling operation is performed while monitoring the degree of superheat. Also, high cut (abnormal high pressure stop) when the refrigerant charge amount is large cannot be prevented. In addition, during the heating operation, since the degree of supercooling is always controlled to be equal to or more than a predetermined value, the operation is not performed by sufficiently utilizing the refrigerant corresponding to the amount of the charged refrigerant in the circuit.

【0016】[0016]

【発明が解決しようとする課題】以上説明したように、
従来の冷凍回路の制御装置では、過熱度又は過冷却度を
検出する専用の検出手段を必要とするという問題点があ
った。
As described above,
The conventional control device for a refrigeration circuit has a problem that a dedicated detecting means for detecting the degree of superheating or the degree of supercooling is required.

【0017】また、回路内の充填冷媒量が循環冷媒とし
て充分に活用して運転するものではなかったという問題
点があった。
Further, there is a problem that the operation is not performed by sufficiently utilizing the amount of the charged refrigerant in the circuit as the circulating refrigerant.

【0018】この発明は係る問題を解決するためになさ
れたもので、少ない構成部品で、冷凍回路内の充填冷媒
量を循環冷媒として充分に活用して冷暖房する経済的
で、信頼性の高い冷凍回路の制御装置を得ることを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is an economical and highly reliable refrigeration system that uses only a small number of components and uses the amount of refrigerant charged in a refrigeration circuit as a circulating refrigerant for cooling and heating. It is an object to obtain a control device for a circuit.

【0019】[0019]

【課題を解決するための手段】本発明の冷凍回路の制御
装置においては、圧縮機、凝縮器、電動膨張弁、および
蒸発器を順次配管で接続し、前記電動膨張弁の開度を制
御する制御手段を具備した冷凍回路の制御装置におい
て、前記制御手段が、前記凝縮器の過冷却度と前記蒸発
器の過熱度とに基づいて、前記過冷却度が目標過冷却度
以上の時は前記電動膨張弁の開度を該過冷却度で制御
し、前記過冷却度が目標過冷却度より小さい時は前記電
動膨張弁の開度を前記過熱度で制御するものである。
In the control apparatus for a refrigeration circuit according to the present invention, a compressor, a condenser, a motor-operated expansion valve, and an evaporator are sequentially connected by piping to control the opening of the motor-operated expansion valve. In the control device for a refrigeration circuit including a control unit, the control unit is configured to determine whether the supercooling degree is equal to or more than a target supercooling degree based on the supercooling degree of the condenser and the superheat degree of the evaporator. The degree of opening of the electric expansion valve is controlled by the degree of supercooling, and when the degree of subcooling is smaller than the target degree of supercooling, the degree of opening of the electric expansion valve is controlled by the degree of superheating.

【0020】また、前記制御手段が、前記過熱度が目標
過熱度以下の時には、前記電動膨張弁の開度を閉じるよ
うに制御するものである。
Further, the control means controls to close the opening of the electric expansion valve when the superheat degree is equal to or less than the target superheat degree.

【0021】また、前記制御手段が、前記過熱度が目標
過熱度より大きい時には、前記電動膨張弁の開度を開く
ように制御するものである。
Further, the control means controls to open the electric expansion valve when the degree of superheat is larger than the target degree of superheat.

【0022】また、前記制御手段が、前記過熱度により
前記電動膨張弁の開度を大きくした後、前記電動膨張弁
の初期開度下限値を所定開度分だけ上げて制御するもの
である。
Further, the control means increases the opening of the electric expansion valve by the degree of superheat, and then controls the initial opening lower limit of the electric expansion valve by a predetermined opening.

【0023】また、前記制御手段が、前記冷凍回路の電
源OFF信号に基づいて前記電動膨張弁の下限開度を初
期開度下限値に戻して制御するものである。
Further, the control means controls the electric expansion valve to return the lower limit opening to the initial opening lower limit based on a power OFF signal of the refrigeration circuit.

【0024】また、前記制御手段が、前記過熱度により
前記電動膨張弁の開度を開く時、前記圧縮機の回転数を
前記開く開度に応じて上げるものである。
Further, when the control means opens the electric expansion valve according to the degree of superheat, the control means increases the rotational speed of the compressor in accordance with the opening degree.

【0025】また、アキムレータが、前記圧縮機と蒸発
器の間に設けられ、前記冷凍回路内の冷媒を調整するも
である。
Further, an accumulator is provided between the compressor and the evaporator to adjust the refrigerant in the refrigeration circuit.

【0026】また、圧縮機、四方流路切換弁、非利用側
熱交換器、電動膨張弁、および利用側熱交換器を順次配
管で接続し、前記電動膨張弁の開度を制御する制御手段
を具備した室内の冷暖房を行う冷凍回路の制御装置にお
いて、前記制御手段が、前記冷房運転時の非利用側熱交
換器の過冷却度を検出する過冷却手段を暖房運転時の過
熱度検出手段として活用し、この活用した過熱度と前記
利用側熱交換器の過冷却度の検出結果から、前記過冷却
度が目標過冷却度以上の時は前記電動膨張弁の開度を該
過冷却度で制御し、前記過冷却度検出結果が目標過冷却
度より小さい時は前記電動膨張弁の開度を前記過熱度で
制御するものである。
A control means for sequentially connecting the compressor, the four-way switching valve, the non-use side heat exchanger, the electric expansion valve, and the use side heat exchanger by piping to control the opening of the electric expansion valve. In the control device for a refrigeration circuit that performs cooling and heating of a room, the control device includes a supercooling device that detects a degree of supercooling of the non-use-side heat exchanger during the cooling operation. When the degree of supercooling is equal to or greater than a target degree of supercooling, the degree of opening of the electric expansion valve is determined based on the degree of superheating utilized and the detection result of the degree of supercooling of the use side heat exchanger. When the detection result of the degree of supercooling is smaller than the target degree of supercooling, the degree of opening of the electric expansion valve is controlled by the degree of superheating.

【0027】また、前記制御装置が、前記冷凍回路内の
冷媒の種類に応じて前記目標過熱度を変えて制御するも
のである。
Further, the control device controls the target degree of superheat by changing the target degree of superheat in accordance with the type of refrigerant in the refrigeration circuit.

【0028】[0028]

【発明の実施の形態】実施の形態1.本発明の実施の形
態1について図1を用いて説明する。なお、この図1は
冷凍回路の制御装置の概略構成図であり、この図におい
て、1は冷媒を圧縮する圧縮機、2はこの圧縮機からの
冷媒の流れを切換える四方切換弁、3は非利用側熱交換
器(室外側熱交換器)、4は電動膨張弁等の減圧装置、
5は室内に設けられ、室内を冷・暖房する利用側熱交換
器(室内側熱交換器)、7は圧縮機1の吸入側配管に接
続され、冷媒を貯留するアキュムレータであり、これら
機器は配管を介して順次接続され、冷凍回路Aが形成さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a control device of a refrigeration circuit. In FIG. 1, reference numeral 1 denotes a compressor for compressing a refrigerant, 2 denotes a four-way switching valve for switching the flow of the refrigerant from the compressor, and 3 denotes a non-return valve. User side heat exchanger (outdoor heat exchanger), 4 is a pressure reducing device such as an electric expansion valve,
Reference numeral 5 denotes a use-side heat exchanger (indoor heat exchanger) that cools and heats the room, and 7 denotes an accumulator that is connected to the suction-side pipe of the compressor 1 and stores refrigerant. The refrigeration circuit A is formed by being sequentially connected via a pipe.

【0029】また、10−aは利用側熱交換器5の暖房
運転時に出口側となる配管に取り付けられ、暖房運転時
の凝縮器出口の過冷却度を検出する第1の温度センサ、
10−dは利用側熱交換器5の暖房時入口と中央部との
ほぼ中間付近の配管に取り付けられ、暖房運転時の凝縮
器の凝縮飽和温度を検出する第2の温度センサであり、
また、11−aは非利用側熱交換器3の冷房運転時に出
口側となる配管に取り付けられ、冷房運転時の凝縮器出
口の過冷却度を検出する第3の温度センサ、11−dは
非利用側熱交換器3の冷房時入口と中央とのほぼ中間付
近の配管に取り付けられ、冷房運転時の凝縮器の凝縮飽
和温度を検出する第4の温度センサである。
A first temperature sensor 10-a is attached to a pipe on the outlet side during the heating operation of the use side heat exchanger 5, and detects a degree of supercooling at the condenser outlet during the heating operation.
10-d is a second temperature sensor that is attached to a pipe near the middle between the heating inlet and the center of the use side heat exchanger 5 and detects the condensation saturation temperature of the condenser during the heating operation.
11-a is a third temperature sensor that is attached to a pipe on the outlet side during the cooling operation of the non-use side heat exchanger 3 and detects the degree of supercooling at the condenser outlet during the cooling operation. The fourth temperature sensor is attached to a pipe near the middle between the cooling-use inlet and the center of the non-use-side heat exchanger 3, and detects the condensation saturation temperature of the condenser during the cooling operation.

【0030】即ち、10−a、dは、暖房運転時の凝縮
器の過冷却度を検出するために設けられた過冷却度検出
手段であり、11−a、dは、冷房運転時の凝縮器の過
冷却度を検出するために設けられた過冷却度検出手段で
あり、これらの過冷却度検出手段10−a、dは、冷房
運転時に蒸発器となる利用側熱交換器5の過熱度を検出
する過熱度検出手段として活用し、また、11−a、d
を、暖房運転時に蒸発器蒸発器となる非利用側熱交換器
3の過熱度を検出する過熱度検出手段として活用する。
That is, 10-a and 10-d are means for detecting the degree of supercooling of the condenser during the heating operation, and 11-a and 11d are condensation means during the cooling operation. The supercooling degree detecting means 10-a and 10d are provided for detecting the supercooling degree of the heat exchanger. The supercooling degree detecting means 10-a and 10d superheat the use-side heat exchanger 5 serving as an evaporator during the cooling operation. Utilized as a means for detecting the degree of superheat, and 11-a, d
Is used as superheat detecting means for detecting the superheat of the non-use side heat exchanger 3 which becomes the evaporator during the heating operation.

【0031】なお、6は制御手段であり、この制御手段
6は前述の各センサ10−a、d、及び11−a、dの
検出結果から冷凍回路の各機器の動作を制御するもので
ある。
Reference numeral 6 denotes a control means, which controls the operation of each device of the refrigeration circuit based on the detection results of the sensors 10-a, d and 11-a, d. .

【0032】次に、以上のように構成された冷凍回路の
制御装置の動作について暖房動作、冷房動作の順で説明
する。まず、電源が入れられ、暖房運転が開始される
と、四方切換弁2は図1の実線側に接続されるので、圧
縮機1で圧縮された高温高圧の冷媒は利用側熱交換器5
に流れ、凝縮し、液化した後、電動膨張弁4で絞られ、
低温低圧の二相状態となり、非利用側熱交換器3へ流
れ、蒸発し、ガス化して四方切換弁2、アキュムレータ
7を通って再び圧縮機1に戻る。即ち、図1の実線矢印
に示すように冷媒は循環する。なお、この時、冷房運転
時の冷媒充填量で暖房運転をすると、冷暖房時の高・低
圧の相違によって冷媒は過剰気味となる。
Next, the operation of the control device for a refrigeration circuit configured as described above will be described in the order of heating operation and cooling operation. First, when the power is turned on and the heating operation is started, the four-way switching valve 2 is connected to the solid line side in FIG.
After being condensed and liquefied, it is throttled by the electric expansion valve 4,
It becomes a two-phase state of low temperature and low pressure, flows to the non-use side heat exchanger 3, evaporates, gasifies, and returns to the compressor 1 again through the four-way switching valve 2 and the accumulator 7. That is, the refrigerant circulates as shown by the solid arrow in FIG. At this time, if the heating operation is performed with the amount of the refrigerant charged during the cooling operation, the refrigerant becomes excessive due to the difference between the high pressure and the low pressure during the cooling and heating.

【0033】次に、この運転状態で、制御装置6は、図
3のステップ41に示すように、凝縮器となる利用側熱
交換器5の出口冷媒の過冷却度(SC1[deg])を、第
1の温度センサ10−aと第2の温度センサ10−dが
検出した凝縮飽和温度T1[℃]および凝縮出口温度T2
[℃]から、SC1=T2−T1[deg]の式に基づいて算
出する。
Next, in this operation state, the controller 6 determines the degree of supercooling (SC1 [deg]) of the refrigerant at the outlet of the use side heat exchanger 5 as a condenser, as shown in step 41 of FIG. , The condensation saturation temperature T1 [° C.] and the condensation outlet temperature T2 detected by the first temperature sensor 10-a and the second temperature sensor 10-d.
From [° C.], it is calculated based on the equation SC1 = T2−T1 [deg].

【0034】次に、この算出された凝縮器である利用側
熱交換器5の出口冷媒過冷却度SC1(deg)と、予
め設定された第1の設定目標値SCT1とを制御装置6
は比較する。(ステップ42)
Next, the controller 6 compares the calculated refrigerant supercooling degree SC1 (deg) at the outlet of the use-side heat exchanger 5, which is a condenser, with a first set target value SCT1 set in advance.
Compare. (Step 42)

【0035】次に、この比較結果で、SC1=SCT1
の場合は、電動膨張弁4の開度は適正であると判断し、
その開度状態を維持して運転を継続する。(ステップ4
3)
Next, according to the comparison result, SC1 = SCT1
In the case of, it is determined that the opening of the electric expansion valve 4 is appropriate,
The operation is continued while maintaining the opening degree. (Step 4
3)

【0036】また、上記比較結果で、SC1>SCT1
の場合は、即ち、過冷却度が目標過冷却度より大きい場
合は、冷媒が凝縮器である利用側熱交換器5内に過剰に
溜まり込んでいると判断して、電動膨張弁4の開度を大
きくし、非利用側熱交換器3(蒸発器)へ流れる冷媒量
を多くなるように制御する。(ステップ44) 即ち、冷媒を蒸発器へ多く流し、気液二相状態で出て行
くようにし、液冷媒をアキュムレータ7内に溜るように
して循環冷媒量を調整する。
In the above comparison result, SC1> SCT1
In other words, if the degree of subcooling is larger than the target degree of subcooling, it is determined that the refrigerant is excessively accumulated in the use-side heat exchanger 5 as a condenser, and the electric expansion valve 4 is opened. The degree of refrigerant is controlled to increase the amount of refrigerant flowing to the non-use-side heat exchanger 3 (evaporator). (Step 44) That is, the amount of the circulating refrigerant is adjusted such that a large amount of the refrigerant flows into the evaporator and exits in a gas-liquid two-phase state, and the liquid refrigerant is stored in the accumulator 7.

【0037】また、上記比較結果で、SC1<SCT1
の場合は、凝縮器である利用側熱交換器5内の冷媒不足
から循環冷媒量が不足していると判断し、次のステップ
45に進む。
In the above comparison result, SC1 <SCT1
In the case of, it is determined that the amount of circulating refrigerant is insufficient due to the shortage of refrigerant in the use-side heat exchanger 5 which is a condenser, and the routine proceeds to the next step 45.

【0038】次に、このステップ45では、蒸発器の冷
媒過熱度SH1(deg)を、非利用側熱交換器3の入
口冷媒温度(蒸発飽和温度)を検出する第3の温度セン
サ11−aからの検出結果値T3(℃)と、非利用側熱
交換器の中間温度(過熱温度)を検出する第4の温度セ
ンサ11−dの検出値T4(℃)とからSH1=T4−
T3の式に基づいて算出する。
Next, in step 45, the refrigerant superheat degree SH1 (deg) of the evaporator is measured by the third temperature sensor 11-a for detecting the inlet refrigerant temperature (evaporation saturation temperature) of the non-use side heat exchanger 3. From the detection result value T3 (° C.) of the second temperature sensor and the detection value T4 (° C.) of the fourth temperature sensor 11-d for detecting the intermediate temperature (superheat temperature) of the non-use-side heat exchanger.
It is calculated based on the equation of T3.

【0039】次に、この算出値と予め設定された目標過
熱度値SHT1(deg)と比較(ステップ46)し、
この比較結果で、SH1≦SHT1であれば、即ち、蒸
発器中間付近の冷媒過熱度SH1が目標過熱度値SHT
1以下であれば、湿り気味であるから循環冷媒量はほぼ
最適あるものの、やや蒸発器に偏り気味であると判断
し、電動膨張弁4の開度を小さくして、凝縮器である利
用側熱交換器内に充分冷媒があるようにし、暖房能力を
確保するようにする。(ステップ47)
Next, the calculated value is compared with a preset target superheat degree value SHT1 (deg) (step 46).
As a result of this comparison, if SH1 ≦ SHT1, that is, if the refrigerant superheat SH1 near the middle of the evaporator is equal to the target superheat value SHT
If it is 1 or less, the amount of the circulating refrigerant is almost optimal because it is a little wet, but it is judged that it is slightly biased toward the evaporator, and the opening degree of the electric expansion valve 4 is reduced, and the usage side as a condenser is determined. Ensure that there is sufficient refrigerant in the heat exchanger to ensure heating capacity. (Step 47)

【0040】また、上記比較結果で、SH1>SHT1
であれば、乾き気味であるから蒸発器内の冷媒が不足し
ている。言い換えれば、凝縮器に偏り気味であると判断
して電動膨張弁4の開度を大きくし、凝縮器の冷媒を蒸
発器へ多く流して気液二相状態で蒸発器から出て行くよ
うにし、暖房能力を確保するようにする。しかし、その
ようにしても蒸発器から過熱状態の冷媒しか出て行かな
い時は、この過熱冷媒によってアキュムレータ内の余剰
液冷媒を蒸発させ、蒸発余剰冷媒で循環冷媒量を調整す
ることになる。(ステップ48)
In the above comparison result, SH1> SHT1
If so, the refrigerant in the evaporator is insufficient because it is slightly dry. In other words, when it is determined that the condenser is slightly biased, the opening of the electric expansion valve 4 is increased, so that a large amount of the refrigerant in the condenser flows to the evaporator and exits from the evaporator in a gas-liquid two-phase state. , To ensure the heating capacity. However, when only the superheated refrigerant flows out of the evaporator even in such a case, the excess liquid refrigerant in the accumulator is evaporated by the superheated refrigerant, and the amount of the circulating refrigerant is adjusted by the excess refrigerant. (Step 48)

【0041】また、その後最初のステップ(ステップ4
1)に戻り、所定時間経過後に、蒸発器の出口冷媒が過
熱状態を維持している時は、冷媒不足を表示したり、或
いは、運転を停止したりする。
The first step (step 4)
Returning to 1), if the outlet refrigerant of the evaporator maintains the overheated state after the elapse of the predetermined time, a shortage of the refrigerant is displayed or the operation is stopped.

【0042】なお、上記運転状態の変化をP−h線図に
示すと図2のようになり、この図において、横軸は冷媒
の比エンタルピ(kj/kg)であり、縦軸は冷媒の圧
力(MPa)である。
FIG. 2 shows the change of the operating state in a Ph diagram, in which the horizontal axis represents the specific enthalpy of the refrigerant (kj / kg), and the vertical axis represents the refrigerant. Pressure (MPa).

【0043】次に、冷房運転について説明する。まず、
電源が入れられ、冷房運転が開始されると、四方切換弁
2は図1の点線側に接続されるので、圧縮機1で圧縮さ
れた高温高圧の冷媒は非利用側熱交換器3に流れ、凝縮
し、液化した後、電動膨張弁4で絞られ、低温低圧の二
相状態となり、利用側熱交換器5へ流れ、蒸発し、ガス
化して四方切換弁2、アキュムレータ7を通って再び圧
縮機1に戻る。
Next, the cooling operation will be described. First,
When the power is turned on and the cooling operation is started, the four-way switching valve 2 is connected to the dotted line in FIG. 1, so that the high-temperature and high-pressure refrigerant compressed by the compressor 1 flows to the non-use-side heat exchanger 3. After being condensed and liquefied, it is throttled by the electric expansion valve 4 to be in a low-temperature and low-pressure two-phase state, flows to the use-side heat exchanger 5, evaporates, gasifies, and passes through the four-way switching valve 2 and the accumulator 7 again. Return to the compressor 1.

【0044】即ち、暖房運転から冷房運転に変わると、
利用側熱交換器5が凝縮器から蒸発器に変わり、非利用
側熱交換器が蒸発器から凝縮器に変わり、この変化に伴
って利用側熱交換器5に取り付けられた第1の温度セン
サ10−aと第2の温度センサ10−dが、非利用側熱
交換器3に取り付けられた第3の温度センサ11−aと
第4の温度センサ11−dの変わりをして、蒸発器の過
熱度を検出し、逆に、第3の温度センサ11−aと第4
の温度センサ11−dが凝縮器の過冷却度を検出して、
この検出結果から図3に基づいて制御装置6が制御す
る。言い換えれば、これらの機器の機能を逆にして説明
するだけなので、詳細な動作説明は割愛する。
That is, when changing from the heating operation to the cooling operation,
The use-side heat exchanger 5 changes from a condenser to an evaporator, the non-use-side heat exchanger changes from an evaporator to a condenser, and the first temperature sensor attached to the use-side heat exchanger 5 with this change. 10-a and the second temperature sensor 10-d replace the third temperature sensor 11-a and the fourth temperature sensor 11-d attached to the non-use side heat exchanger 3, and Of the third temperature sensor 11-a and the fourth
Temperature sensor 11-d detects the degree of subcooling of the condenser,
The control device 6 controls the detection result based on FIG. In other words, since the functions of these devices are only described in reverse, the detailed description of the operation is omitted.

【0045】また、以上説明では、冷・暖房運転時にお
ける凝縮器の過冷却検出手段を蒸発器の過熱度検出手段
として活用するような説明をしたが、必ずしも活用せず
に、別に、蒸発器出口の過熱度を検出する手段を設けて
も作用・効果が変わるものではない。しかも、蒸発器の
過熱度及び凝縮器の過冷却度を検出できるものあれば、
どんなものでも良い。
In the above description, the means for detecting the supercooling of the condenser during the cooling / heating operation is utilized as the means for detecting the degree of superheat of the evaporator. Even if a means for detecting the degree of superheat at the outlet is provided, the operation and effect do not change. Moreover, if it can detect the degree of superheat of the evaporator and the degree of supercooling of the condenser,
Anything is fine.

【0046】以上説明したように、凝縮器の過冷却度及
び蒸発器の過熱度に基づいて減圧装置(膨張弁)の開度
を制御するようにしたので、非利用側熱交換器(室外熱
交換器)や利用側熱交換器(室内熱交換器)の表面に異
物(紙等)が付いたり、或いは、回路内の冷媒が過・不
足になったりして、過冷却度や過熱度が変化しても、こ
の変化に対応して制御するようになるため、回路内の冷
媒を有効活用しながら安定した運転を行う経済的で、信
頼性の高い冷凍回路の制御装置が得られる。
As described above, the opening degree of the pressure reducing device (expansion valve) is controlled based on the degree of supercooling of the condenser and the degree of superheating of the evaporator. Foreign matter (paper, etc.) on the surface of the heat exchanger (exchanger) or the use-side heat exchanger (indoor heat exchanger), or the amount of refrigerant in the circuit becomes excessive or insufficient. Even if it changes, control is performed in accordance with this change, so that an economical and highly reliable refrigeration circuit control device that performs stable operation while effectively utilizing the refrigerant in the circuit can be obtained.

【0047】なお、冷房運転時の凝縮器の過冷却検出手
段を暖房運転時の蒸発器の過熱度検出手段として活用す
るようにすると、少ない構成部品で、回路内の冷媒を有
効活用しながら安定した運転を行う信頼性の高い冷凍回
路の制御装置が得られる。
If the means for detecting the supercooling of the condenser during the cooling operation is used as the means for detecting the degree of superheat of the evaporator during the heating operation, the components in the circuit can be stabilized while effectively utilizing the refrigerant in the circuit. Thus, a highly reliable refrigeration circuit control device that performs the above operation can be obtained.

【0048】実施の形態2.この実施の形態2において
は、図4に示すように、実施の形態1の図3にステップ
49(電動膨張弁4の開度下限値を上げるステップ)を
追加したものである。また、その他の構成は実施の形態
1とほぼ同じ構成である。
Embodiment 2 In the second embodiment, as shown in FIG. 4, step 49 (a step of increasing the lower limit of the opening of the electric expansion valve 4) is added to FIG. 3 of the first embodiment. Other configurations are almost the same as those of the first embodiment.

【0049】次に、この構成の動作について説明する。
まず、ステップ41から48までは実施の形態1で説明
したと同じように進む。次に、ステップ49で、電動膨
張弁4の開度下限値を、PLSa=PLSmin+N1
0の式に基づいて上げる方向に修正して、初期ステップ
に戻る。なお、上記式のPLSminは初期開度下限値
であり、例えば、PLSmin=50と設定して置く。
また、NはSC1<SCT1かつSH1≧SHT1の条
件を満たした回数、また、PLSaは修正後の開度下限
値であり、SC1<SCT1かつSH1≧SHT1の条
件をN回満たした時点の電動膨張弁の修正下限開度であ
る。
Next, the operation of this configuration will be described.
First, steps 41 to 48 proceed in the same manner as described in the first embodiment. Next, in step 49, the opening lower limit value of the electric expansion valve 4 is set as PLSa = PLSmin + N1.
The value is corrected in the upward direction based on the equation of 0, and the process returns to the initial step. Note that PLSmin in the above equation is the lower limit of the initial opening, and is set, for example, as PLSmin = 50.
N is the number of times that the conditions of SC1 <SCT1 and SH1 ≧ SHT1 are satisfied, and PLSa is the modified lower limit of the opening degree, and the electric expansion at the time of satisfying the conditions of SC1 <SCT1 and SH1 ≧ SHT1 N times. This is the modified lower limit opening of the valve.

【0050】従って、次回ステップ46へ進んだ時、前
回のステップ48で電動膨張弁4の開度を開き、凝縮器
から蒸発器に冷媒を移し、蒸発器出口の冷媒の乾き度が
小さくして湿り気味にしているので、SC1<SCT1
かつSH1≦SHT1の状態になる確率が高くなる。そ
の結果、ステップ47へ進むこととなり、電動膨張弁4
の開度を小さく、即ち、絞ることになる。この時、電動
膨張弁4の下限開度を初期状態のままにして置くと、絞
りが大きくなり、蒸発器から凝縮器へ冷媒が移動し、乾
き度(過熱度)がおおきくなり、次回ステップ46へ進
んだ時、ステップ48へ進むこととなり、前述した繰り
返し、所謂、膨張弁のハンチング現象を起こし、冷凍回
路が安定しなくなる恐れがある。
Therefore, when the process proceeds to the next step 46, the opening of the electric expansion valve 4 is opened in the previous step 48, the refrigerant is transferred from the condenser to the evaporator, and the dryness of the refrigerant at the evaporator outlet is reduced. SC1 <SCT1 because it is moist
In addition, the probability of the state of SH1 ≦ SHT1 increases. As a result, the process proceeds to step 47, and the electric expansion valve 4
Is reduced, that is, the aperture is reduced. At this time, if the lower limit opening of the electric expansion valve 4 is left in the initial state, the throttle becomes large, the refrigerant moves from the evaporator to the condenser, and the degree of dryness (superheat) increases. When the process proceeds to step 48, the process proceeds to step 48, and the above-mentioned repetition, a so-called hunting phenomenon of the expansion valve, may occur, and the refrigeration circuit may become unstable.

【0051】しかし、前述したように、ステップ49
で、電動膨張弁の開度下限値を所定値だけ、上げる方で
修正しているので、次回のステップ47では電動膨張弁
の開度を余り絞らないので、更に次次回ステップ48に
進む確率が小さくなり、例えステップ48へ進んだとし
ても、更に電動膨張弁の開度下限値が上方修正されるた
め、言い換えれば、電動膨張弁を通過する冷媒量の範囲
が修正されるため、最終的には膨張弁のハンチング現象
は収斂し、防止される。
However, as described above, step 49
Since the lower limit of the opening of the electric expansion valve is corrected by increasing it by a predetermined value, the opening of the electric expansion valve is not narrowed so much in the next step 47. Even if the value becomes smaller and the process proceeds to step 48, the lower limit of the opening degree of the electric expansion valve is further corrected upward, in other words, the range of the amount of refrigerant passing through the electric expansion valve is corrected. The hunting phenomenon of the expansion valve converges and is prevented.

【0052】以上説明したように、凝縮器出口冷媒の過
冷却度SC1が予め設定された過冷却目標値SCT1よ
り小さく、かつ蒸発器中間付近の冷媒の過熱度SH1が
予め設定された過熱度目標値SHT1以上(SC1<S
CT1かつSH1≧SHT1)の場合、電動膨張弁4の
開度下限値を上げて、その後制御をするようにしたの
で、膨張弁のハンチング現象による冷媒音の発生や吹き
出し温度の変動に伴う室内温度の快適性の劣悪化を防止
して、安定的に運転させる信頼性の高い冷凍回路の制御
装置が得られる。
As described above, the supercooling degree SC1 of the refrigerant at the outlet of the condenser is smaller than the preset supercooling target value SCT1, and the superheating degree SH1 of the refrigerant near the middle of the evaporator is the predetermined superheating degree SH1. Value SHT1 or more (SC1 <S
In the case of CT1 and SH1 ≧ SHT1), the lower limit of the opening of the electric expansion valve 4 is increased, and then the control is performed. Therefore, the generation of the refrigerant sound due to the hunting phenomenon of the expansion valve and the variation of the indoor temperature due to the fluctuation of the blowing temperature are performed. A highly reliable refrigeration circuit control device for preventing the deterioration of the comfort of the refrigeration circuit and for stably operating the refrigeration circuit is obtained.

【0053】また、上記制御状態において、運転スィツ
チが切られた時、電動膨張弁4の修正開度下限値PLS
aを初期設定値PLSmin戻すように、即ち、電動膨
張弁4の開度下限値を下げ、絞り込みを大きくできるよ
うにすると、運転開始時の絞り込み量が大きくできるよ
うになるため、停止時の蒸発器(低圧)への冷媒寝込み
(液冷媒の溜まり込み)による運転開始時の湿り気味運
転をスピ−デイに解消して、湿り気味運転によるトラブ
ルを防止した信頼性の高い冷凍回路の制御装置が得られ
る。
In the above control state, when the operation switch is turned off, the modified opening lower limit value PLS of the electric expansion valve 4 is set.
If the value of a is returned to the initial set value PLSmin, that is, the lower limit of the opening degree of the electric expansion valve 4 is lowered and the aperture can be increased, the amount of aperture at the start of operation can be increased. A highly reliable refrigeration circuit control device that eliminates the damp operation at the start of operation due to refrigerant stagnation (liquid refrigerant accumulation) in a cooler (low pressure) and prevents troubles due to damp operation is provided. can get.

【0054】なお、この実施の形態2においても、冷暖
房運転時における凝縮器の過冷却検出手段を蒸発器の過
熱度検出手段として活用しなくと共、別に、蒸発器出口
の過熱度を検出する手段を設けても作用・効果が変わる
ものではない。従って、この時は、蒸発器の過熱度及び
凝縮器の過冷却度を検出できるものあれば、どんなもの
でも良い。
In the second embodiment, too, the superheat degree at the outlet of the evaporator is detected separately, without using the supercool detection means of the condenser during the cooling / heating operation as the superheat degree detection means of the evaporator. The provision of the means does not change the operation and effect. Therefore, at this time, any device can be used as long as it can detect the degree of superheating of the evaporator and the degree of supercooling of the condenser.

【0055】即ち、蒸発器の過熱度を、図7,8に示す
ように、蒸発器の蒸発飽和温度と蒸発器の吸込空気温度
又は吹出空気温度とから求め、この求めた演算結果を過
熱度として図7のように実行して、電動膨張弁の開度を
制御しても良い。なお、その時は、利用側熱交換器5ま
たは非利用側熱交換器3を通過する空気の温度T6を検
出する温度センサ10−eと11−eとが必要となるも
のの、これらの室温及び外気温を検出する温度センサ1
0−e、11−eは冷却装置に必要なものであり、既存
されているのが一般的である。
That is, as shown in FIGS. 7 and 8, the degree of superheat of the evaporator is determined from the evaporation saturation temperature of the evaporator and the temperature of the intake air or blown air of the evaporator. 7, the opening degree of the electric expansion valve may be controlled. At that time, temperature sensors 10-e and 11-e for detecting the temperature T6 of the air passing through the use side heat exchanger 5 or the non-use side heat exchanger 3 are required, Temperature sensor 1 for detecting air temperature
0-e and 11-e are necessary for the cooling device, and generally exist.

【0056】実施の形態3.この実施の形態3において
は、図5に示すように、実施の形態2の図4にステップ
50(圧縮機の回転数を上げるステップ)を追加したも
のである。なお、その他の構成は実施の形態2とほぼ同
じ構成である。
Embodiment 3 In the third embodiment, as shown in FIG. 5, a step 50 (a step of increasing the rotation speed of the compressor) is added to FIG. 4 of the second embodiment. Other configurations are almost the same as those of the second embodiment.

【0057】次に、この構成の動作について説明する。
まず、ステップ41から49までは実施の形態2で説明
したと同じように進む。次に、ステップ50で、圧縮機
の回転数をFa=F+ΔF、(ここで、ΔF=10[H
z])の式やFa=F+×aF(ここで、a=0.1)に
基づいて上げ、初期のステップ41に戻る。
Next, the operation of this configuration will be described.
First, steps 41 to 49 proceed in the same manner as described in the second embodiment. Next, in step 50, the rotational speed of the compressor is set to Fa = F + ΔF, where ΔF = 10 [H
z]) or Fa = F + × aF (where a = 0.1), and the process returns to the initial step 41.

【0058】このようにすると、ステップ48において
電動膨張弁開度を大きくし、それにより冷凍回路の高圧
圧力(あるいは凝縮器中間付近の温度)が低下し、低圧
圧力(あるいは蒸発器中間付近の温度)が上昇しても、
ステップ50における圧縮機の容量(回転数)のアップ
により、高圧の低下が抑えられ、かつ低圧の上昇も抑え
られて圧力変化幅が小さくなると共に、冷媒の循環スピ
ードが増すため、各熱交換器内の気・液冷媒の液比率が
下がり、実際の冷媒充填量が増えたようになり、更に安
定性が向上した信頼性の高い冷凍回路の制御装置が得ら
れる。
In this manner, in step 48, the opening degree of the electric expansion valve is increased, whereby the high pressure (or the temperature near the middle of the condenser) of the refrigeration circuit decreases, and the low pressure (or the temperature near the middle of the evaporator) decreases. ) Rises,
By increasing the compressor capacity (rotational speed) in step 50, a decrease in high pressure is suppressed, and an increase in low pressure is also suppressed to reduce the pressure change width and increase the circulation speed of the refrigerant. As a result, the liquid ratio of the gas-liquid refrigerant in the inside is reduced, and the actual refrigerant charging amount is increased, so that a highly reliable refrigeration circuit control device with improved stability can be obtained.

【0059】実施の形態4.この実施の形態4において
は、実施の形態1から3において電動膨張弁の開度を制
御する時、冷媒の種類に応じて目標過熱度を変えること
によって制御できるようにしたものである。なお、ここ
では、電動膨張弁4をパルスモータで駆動して開度を調
整する場合の例を説明する。
Embodiment 4 FIG. In the fourth embodiment, when controlling the opening of the electric expansion valve in the first to third embodiments, the opening degree can be controlled by changing the target degree of superheat in accordance with the type of the refrigerant. Here, an example in which the opening degree is adjusted by driving the electric expansion valve 4 with a pulse motor will be described.

【0060】次に、この具体的な動作について説明す
る。まず、一般的に、図9に示すように、電動膨張弁4
をパルスモータで駆動する場合、電動膨張弁4の開度
は、パルスモータへ加えられる駆動電圧のパルス数PL
Sを大きくしたり、小さくしたりして、通過流量を大き
くしたり、小さくしたりする。即ち、電動膨張弁4を駆
動する駆動モータへ加える電圧パルスの変更量ΔPLS
を、暖房の場合は、制御装置6内部の演算部において、
ΔPLS=α(SC1−SCT1)のように算出し、制
御装置6の電動膨張弁駆動部により電動膨張弁6の開度
変更量パルスが出力される。なお、ここで、α>0の係
数である。
Next, the specific operation will be described. First, generally, as shown in FIG.
Is driven by a pulse motor, the degree of opening of the electric expansion valve 4 depends on the number of pulses PL of the drive voltage applied to the pulse motor.
By increasing or decreasing S, the passing flow rate is increased or decreased. That is, the change amount ΔPLS of the voltage pulse applied to the drive motor that drives the electric expansion valve 4
In the case of heating, in the arithmetic unit inside the control device 6,
ΔPLS = α (SC1−SCT1), and an electric expansion valve driving unit of the control device 6 outputs an opening change amount pulse of the electric expansion valve 6. Note that here, α> 0.

【0061】従って、SC1(演算過冷却度)<SCT
1(目標過冷却度)であれば、ΔPLS<0となるので
電動膨張弁開度は小さくなり、また、SC1>SCT1
であれば、ΔPLS>0となるので、電動膨張弁開度は
大きくなり、また、SC1=SCT1であれば、ΔPL
S=0となるので電動膨張弁開度は変更されない。
Therefore, SC1 (calculated degree of supercooling) <SCT
If 1 (target supercooling degree), ΔPLS <0, so that the electric expansion valve opening degree becomes small, and SC1> SCT1
If so, ΔPLS> 0, so the electric expansion valve opening degree increases. If SC1 = SCT1, ΔPLS
Since S = 0, the electric expansion valve opening is not changed.

【0062】次に、SCi<SCTiで、かつSHi≧
SHTi(i=1または2)の場合は、冷媒不足気味と
判断して、電動膨張弁4の駆動モータへ加える電圧パル
スの変更量ΔPLSを算出し、例えば、ΔPLS=βと
算出すると、この算出結果に対応した変更量パルスを出
力し、制御装置6が電動膨張弁駆動部によって電動膨張
弁6の開度を制御する。ここで、β>0である。
Next, if SCi <SCTi and SHi ≧
In the case of SHTi (i = 1 or 2), it is determined that the refrigerant is in short supply, and the change amount ΔPLS of the voltage pulse applied to the drive motor of the electric expansion valve 4 is calculated. A change amount pulse corresponding to the result is output, and the control device 6 controls the opening degree of the electric expansion valve 6 by the electric expansion valve driving unit. Here, β> 0.

【0063】また次に、各種冷媒に対応したSCT、S
HT、α、βの一例を挙げる。まず、R22やR134
aのようなフレオン、アンモニア、炭化水素のような単
一冷媒、或いは、R410Aに代表される擬似共沸混合
冷媒の場合は、SCT=7(deg)、α=0.05×
PLS、SHT=0(deg)、β=10のようにす
る。(なお、PLSは、開度変更前の電動膨張弁4の開
度である。)なお、このようにすると、上記冷媒の特性
から、蒸発器側の冷媒ガス密度が小さく、圧力損失が大
きくなるため、通常、蒸発器入口から中間に至るまでに
温度低下を考慮した値となり、制御精度が向上する。
Next, SCT, SCT corresponding to various refrigerants
Examples of HT, α, and β will be given. First, R22 and R134
In the case of a single refrigerant such as freon, ammonia, and hydrocarbon such as a, or a pseudo-azeotropic mixed refrigerant represented by R410A, SCT = 7 (deg) and α = 0.05 ×
PLS, SHT = 0 (deg), and β = 10. (Note that PLS is the opening degree of the electric expansion valve 4 before the opening degree is changed.) In this case, due to the characteristics of the refrigerant, the refrigerant gas density on the evaporator side is small and the pressure loss is large. For this reason, usually, the value takes into account the temperature drop from the entrance to the middle of the evaporator, and the control accuracy is improved.

【0064】また、冷媒が、R407C、R404Aに
代表される非共沸混合冷媒の場合、その冷媒圧力に対す
る温度滑りを考慮し、SCT=10(deg)、α=
0.05×PLS、SHT=2(deg)、β=10の
ようにする。なお、このようにすると、二相冷媒が凝縮
器内で温度滑り(温度低下)をしながら凝縮し、蒸発器
内で温度上昇しながら蒸発して行く非共沸混合冷媒の場
合は温度滑りを考慮した値となり、制御精度が向上す
る。
When the refrigerant is a non-azeotropic mixed refrigerant represented by R407C and R404A, SCT = 10 (deg) and α =
0.05 × PLS, SHT = 2 (deg), and β = 10. In this case, in the case of a non-azeotropic refrigerant mixture in which the two-phase refrigerant condenses while sliding in the condenser (temperature drop) in the condenser and evaporates while increasing the temperature in the evaporator, the temperature slip occurs. The value is considered, and the control accuracy is improved.

【0065】また、一般的に、R407Cの温度滑り
は、その循環組成、圧力条件にも依るが、おおよそ5
(deg)から7(deg)である。また上記値は、単
一冷媒と同様、蒸発器入口から出口に至る圧力損失の影
響で温度低下することも考慮した値であるが、この値よ
りも温度滑りによる温度上昇の方が大きい。
In general, the temperature slip of R407C depends on its circulating composition and pressure conditions.
(Deg) to 7 (deg). Also, the above value is a value in consideration of the fact that the temperature decreases due to the effect of the pressure loss from the evaporator inlet to the outlet as in the case of the single refrigerant, but the temperature rise due to the temperature slip is larger than this value.

【0066】また、冷凍回路内を循環する冷媒が単一冷
媒であっても、CO2のように凝縮側で臨界温度を超え
て使用される冷媒の場合は、凝縮器内で冷媒が凝縮液化
する工程では冷媒の温度が下がりつづけるため、SCT
はその温度降下を考慮して大き目の値に設定する。な
お、蒸発側でも臨界温度を超えている場合も同様な考え
方を加味してSHTを設定する。
Even if the refrigerant circulating in the refrigeration circuit is a single refrigerant, if the refrigerant used exceeds the critical temperature on the condensation side such as CO2, the refrigerant condenses and liquefies in the condenser. In the process, since the temperature of the refrigerant continues to fall,
Is set to a larger value in consideration of the temperature drop. Note that the SHT is set in consideration of the same concept when the critical temperature is exceeded even on the evaporation side.

【0067】以上説明したように、制御装置が、電動膨
張弁の開度を制御する時、冷媒の種類に応じて目標過熱
度を変えるようにすると、更に精度の良い制御ができる
ようになるため、更に信頼性が向上した冷凍回路の制御
装置が得られる。
As described above, if the control device changes the target degree of superheat in accordance with the type of refrigerant when controlling the opening of the electric expansion valve, more accurate control can be performed. Thus, a refrigeration circuit control device with further improved reliability can be obtained.

【0068】[0068]

【発明の効果】本発明によれば、制御手段が、凝縮器の
過冷却度と蒸発器の過熱度とに基づいて、前記過冷却度
が目標過冷却度以上の時は前記電動膨張弁の開度を該過
冷却度で制御し、前記過冷却度が目標過冷却度より小さ
い時は前記電動膨張弁の開度を前記過熱度で制御するの
で、凝縮器や蒸発器の表面に異物(紙等)が付いたり、
或いは、回路内の冷媒が過・不足になったりして、過冷
却度や過熱度が変化しても、この変化に対応して制御す
るようになるため、回路内の冷媒を有効活用しながら安
定した運転を行う経済的で、信頼性の高い冷凍回路の制
御装置が得られる。
According to the present invention, when the supercooling degree is equal to or larger than the target supercooling degree based on the supercooling degree of the condenser and the superheat degree of the evaporator, the control means controls the electric expansion valve. The degree of opening is controlled by the degree of subcooling, and when the degree of supercooling is smaller than the target degree of supercooling, the degree of opening of the electric expansion valve is controlled by the degree of superheating. Paper, etc.)
Alternatively, even if the amount of refrigerant in the circuit becomes excessive or insufficient, and the degree of supercooling or superheat changes, control is performed in response to this change. An economical and highly reliable refrigeration circuit control device that performs stable operation can be obtained.

【0069】また、前記制御手段が、前記過熱度が目標
過熱度以下の時には、前記電動膨張弁の開度を閉じるよ
うに制御するので、冷媒を凝縮器へ移動するようにして
過冷却度を確保するようになるため、冷却能力が向上し
て安定した運転をする信頼性の高い冷凍回路の制御装置
が得られる。
When the degree of superheat is equal to or less than the target degree of superheat, the control means controls the motor-operated expansion valve to close its opening, so that the refrigerant moves to the condenser to reduce the degree of supercooling. As a result, it is possible to obtain a highly reliable refrigeration circuit control device that improves the cooling capacity and performs stable operation.

【0070】また、前記制御手段が、前記過熱度が目標
過熱度より大きい時には、前記電動膨張弁の開度を開く
ように制御するので、凝縮器の冷媒を蒸発器へ多く流し
て気液二相状態で蒸発器から出て行くようにするため、
能力が向上して安定した運転をする信頼性の高い冷凍回
路の制御装置が得られる。
When the degree of superheat is greater than the target degree of superheat, the control means controls the opening of the electric expansion valve to be open. In order to leave the evaporator in phase,
A high-reliability refrigeration circuit control device with improved performance and stable operation can be obtained.

【0071】また、前記制御手段が、前記過熱度により
前記電動膨張弁の開度を大きくした後、前記電動膨張弁
の初期開度下限値を所定開度分だけ上げて制御するの
で、その後の膨張弁のハンチング現象による冷媒音の発
生や吹き出し温度の変動に伴う室内温度の快適性の劣悪
化を未然に防ぐように作用するため、更に安定的に運転
させる信頼性の高い冷凍回路の制御装置が得られる
Further, after the control means increases the opening of the electric expansion valve by the degree of superheat, the control means raises the initial lower limit of the opening of the electric expansion valve by a predetermined opening and controls the operation. A reliable refrigeration circuit controller that operates more stably to prevent the generation of refrigerant noise due to the hunting phenomenon of the expansion valve and the deterioration of indoor temperature comfort due to fluctuations in the outlet temperature. Is obtained

【0072】また、前記制御手段が、前記冷凍回路の電
源OFF信号に基づいて前記電動膨張弁の下限開度を初
期開度下限値に戻して制御するので、運転開始時の絞り
込み量が大きくできるようになるため、停止時の蒸発器
(低圧)への冷媒寝込み(液冷媒の溜まり込み)による
運転開始時の湿り気味運転をスピ−デイに解消して、ト
ラブルを防止した信頼性の高い冷凍回路の制御装置が得
られる。
Further, the control means returns the lower limit opening of the electric expansion valve to the initial lower limit of the opening based on the power supply OFF signal of the refrigeration circuit and controls it, so that the throttle amount at the start of operation can be increased. As a result, humid operation at the start of operation due to refrigerant stagnation (accumulation of liquid refrigerant) in the evaporator (low pressure) at the time of stoppage is speedily eliminated, and a highly reliable refrigeration system that prevents troubles A control device for the circuit is obtained.

【0073】また、前記制御手段が、前記過熱度により
前記電動膨張弁の開度を開く時、前記圧縮機の回転数を
前記開く開度に応じて上げるので、冷媒の循環スピード
が増し、各熱交換器内の気・液冷媒の液比率が下がり、
実冷媒充填量が増えたようになるため、更に回路内の冷
媒を有効活用しながら安定した運転をする信頼性の高い
冷凍回路の制御装置が得られる。
Further, when the control means increases the opening of the electric expansion valve according to the degree of superheat, the rotation speed of the compressor is increased in accordance with the degree of opening. The liquid ratio of gas-liquid refrigerant in the heat exchanger decreases,
Since the actual refrigerant charge amount is increased, a highly reliable refrigeration circuit control device that performs stable operation while effectively utilizing the refrigerant in the circuit can be obtained.

【0074】また、アキムレータが、前記圧縮機と蒸発
器の間に設けられ、前記冷凍回路内の冷媒を調整するの
で、循環冷媒量を適正に維持するようになるため、トラ
ブルが少なく、冷却能力を適正に維持する信頼性の高い
冷凍回路の制御装置が得られる。
Further, since an accumulator is provided between the compressor and the evaporator and regulates the refrigerant in the refrigeration circuit, the amount of circulating refrigerant is properly maintained, so that troubles are reduced and the cooling capacity is reduced. Refrigeration circuit control device with high reliability that properly maintains the temperature is obtained.

【0075】また、室内の冷暖房を行う冷凍回路の制御
装置において、前記制御手段が、前記冷房運転時の非利
用側熱交換器の過冷却度を検出する過冷却手段を暖房運
転時の過熱度検出手段として活用し、この活用した過熱
度と前記利用側熱交換器の過冷却度の検出結果から、前
記過冷却度が目標過冷却度以上の時は前記電動膨張弁の
開度を該過冷却度で制御し、前記過冷却度検出結果が目
標過冷却度より小さい時は前記電動膨張弁の開度を前記
過熱度で制御するので、少ない構成部品で、回路内の冷
媒を有効活用しながら安定した運転を行う信頼性の高い
冷凍回路の制御装置が得られる。
In the control apparatus for a refrigeration circuit for cooling and heating the room, the control means includes a supercooling means for detecting a degree of supercooling of the non-use-side heat exchanger during the cooling operation, the superheat degree during the heating operation. When the degree of supercooling is equal to or higher than the target degree of supercooling, the degree of opening of the electric expansion valve is determined based on the degree of superheating utilized and the result of detection of the degree of supercooling of the use side heat exchanger. Controlled by the degree of cooling, and when the result of detection of the degree of subcooling is smaller than the target degree of supercooling, the degree of opening of the electric expansion valve is controlled by the degree of superheating. Thus, a highly reliable refrigeration circuit control device that performs stable operation can be obtained.

【0076】また、前記制御装置が、前記冷凍回路内の
冷媒の種類に応じて前記目標過熱度を変えて制御するの
で、更に精度の良い制御ができるようになるため、更に
信頼性が向上した冷凍回路の制御装置が得られる。
Further, since the control device changes the target degree of superheat in accordance with the type of the refrigerant in the refrigeration circuit, the control can be performed with higher accuracy, and the reliability is further improved. A control device for the refrigeration circuit is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1における冷凍回路の構
成図である。
FIG. 1 is a configuration diagram of a refrigeration circuit according to Embodiment 1 of the present invention.

【図2】 本発明の冷凍回路の特性を説明する圧力−エ
ンタルピ線図である。
FIG. 2 is a pressure-enthalpy diagram illustrating characteristics of the refrigeration circuit of the present invention.

【図3】 本発明の実施の形態1における制御フロー図
である。
FIG. 3 is a control flow chart according to the first embodiment of the present invention.

【図4】 本発明の実施の形態2における制御フロー図
である。
FIG. 4 is a control flow chart according to Embodiment 2 of the present invention.

【図5】 本発明の実施の形態3における制御フロー図
である。
FIG. 5 is a control flow chart according to Embodiment 3 of the present invention.

【図6】 本発明の実施の形態2における他の概略図で
ある。
FIG. 6 is another schematic diagram according to the second embodiment of the present invention.

【図7】 本発明の実施の形態2における他の制御フロ
ー図である。
FIG. 7 is another control flow chart according to Embodiment 2 of the present invention.

【図8】 本発明の実施の形態4における制御フロー図
である。
FIG. 8 is a control flow chart according to Embodiment 4 of the present invention.

【図9】 本発明の電動膨張弁の流量特性を説明する図
である。
FIG. 9 is a diagram illustrating flow characteristics of the electric expansion valve of the present invention.

【図10】 従来の冷凍回路の制御装置における概略構
成図である。
FIG. 10 is a schematic configuration diagram of a conventional refrigeration circuit control device.

【図11】 従来の他の冷凍回路の制御装置における概
略構成図である。
FIG. 11 is a schematic configuration diagram of another conventional refrigeration circuit control device.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 四方切換弁、 3 非利用側熱交換
器、 4 減圧装置、5 利用側熱交換器、 6 制御
装置、 7 アキュムレータ、 10−a 第1の温度
センサ、10−d 第2の温度センサ、 11−a 第
3の温度センサ、 11−d 第4の温度センサ。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way switching valve, 3 Non-use side heat exchanger, 4 Decompression device, 5 Use side heat exchanger, 6 Control device, 7 Accumulator, 10-a 1st temperature sensor, 10-d 2nd A temperature sensor, 11-a a third temperature sensor, and 11-d a fourth temperature sensor.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、電動膨張弁、および蒸
発器を順次配管で接続し、前記電動膨張弁の開度を制御
する制御手段を具備した冷凍回路の制御装置において、
前記制御手段が、前記凝縮器の過冷却度と前記蒸発器の
過熱度とに基づいて、前記過冷却度が目標過冷却度以上
の時は前記電動膨張弁の開度を該過冷却度で制御し、前
記過冷却度が目標過冷却度より小さい時は前記電動膨張
弁の開度を前記過熱度で制御することを特徴とする冷凍
回路の制御装置。
1. A control device for a refrigeration circuit, comprising: a compressor, a condenser, a motor-operated expansion valve, and an evaporator, which are sequentially connected by piping, and control means for controlling an opening of the motor-operated expansion valve.
The control means, based on the degree of supercooling of the condenser and the degree of superheating of the evaporator, when the degree of supercooling is equal to or greater than the target degree of supercooling, sets the degree of opening of the electric expansion valve to the degree of supercooling. Controlling the opening degree of the electric expansion valve based on the degree of superheating when the degree of supercooling is smaller than a target degree of supercooling.
【請求項2】 前記制御手段が、前記過熱度が目標過熱
度以下の時には、前記電動膨張弁の開度を閉じるように
制御することを特徴とする請求項1記載の冷凍回路の制
御装置。
2. The control device for a refrigeration circuit according to claim 1, wherein said control means performs control so as to close an opening of said electric expansion valve when said superheat degree is equal to or less than a target superheat degree.
【請求項3】 前記制御手段が、前記過熱度が目標過熱
度より大きい時には、前記電動膨張弁の開度を開くよう
に制御することを特徴とする請求項1記載の冷凍回路の
制御装置。
3. The control device for a refrigeration circuit according to claim 1, wherein said control means controls to open the electric expansion valve when the degree of superheat is larger than a target degree of superheat.
【請求項4】 前記制御手段が、前記過熱度により前記
電動膨張弁の開度を大きくした後、前記電動膨張弁の初
期開度下限値を所定開度分だけ上げて制御することを特
徴とする請求項3記載の冷凍回路の制御装置。
4. The control device according to claim 1, wherein after increasing the opening of the electric expansion valve by the degree of superheat, the control unit raises the lower limit of the initial opening of the electric expansion valve by a predetermined opening and controls the electric expansion valve. The control device for a refrigeration circuit according to claim 3.
【請求項5】 前記制御手段が、前記冷凍回路の電源O
FF信号に基づいて前記電動膨張弁の下限開度を初期開
度下限値に戻して制御することを特徴とする請求項3記
載の冷凍回路の制御装置。
5. The power supply O of the refrigeration circuit is controlled by the control means.
4. The refrigeration circuit control device according to claim 3, wherein the lower limit opening of the electric expansion valve is controlled back to the initial opening lower limit based on the FF signal.
【請求項6】 前記制御手段が、前記過熱度により前記
電動膨張弁の開度を開く時、前記圧縮機の回転数を前記
開く開度に応じて上げることを特徴とする請求項3から
5までのいずれかに記載の冷凍回路の制御装置。
6. The system according to claim 3, wherein the control means increases the number of revolutions of the compressor in accordance with the opening when the opening of the electric expansion valve is opened by the degree of superheating. The control device for a refrigeration circuit according to any one of the above.
【請求項7】 アキムレータが、前記圧縮機と蒸発器の
間に設けられ、前記冷凍回路内の冷媒を調整することを
特徴とする請求項1から6までのいずれかに記載の冷凍
回路の制御装置。
7. The control of the refrigeration circuit according to claim 1, wherein an accumulator is provided between the compressor and the evaporator to adjust a refrigerant in the refrigeration circuit. apparatus.
【請求項8】 圧縮機、四方流路切換弁、非利用側熱交
換器、電動膨張弁、および利用側熱交換器を順次配管で
接続し、前記電動膨張弁の開度を制御する制御手段を具
備した室内の冷暖房を行う冷凍回路の制御装置におい
て、前記制御手段が、前記冷房運転時の非利用側熱交換
器の過冷却度を検出する過冷却手段を暖房運転時の過熱
度検出手段として活用し、この活用した過熱度と前記利
用側熱交換器の過冷却度の検出結果から、前記過冷却度
が目標過冷却度以上の時は前記電動膨張弁の開度を該過
冷却度で制御し、前記過冷却度検出結果が目標過冷却度
より小さい時は前記電動膨張弁の開度を前記過熱度で制
御することを特徴とする冷凍回路の制御装置。
8. A control means for sequentially connecting a compressor, a four-way flow path switching valve, a non-use side heat exchanger, an electric expansion valve, and a use side heat exchanger by piping, and controlling an opening degree of the electric expansion valve. In the control device for a refrigeration circuit that performs cooling and heating of a room, the control device includes a supercooling device that detects a degree of supercooling of the non-use-side heat exchanger during the cooling operation. When the degree of supercooling is equal to or higher than the target degree of supercooling, the degree of opening of the electric expansion valve is determined based on the degree of superheating utilized and the detection result of the degree of supercooling of the use side heat exchanger. And controlling the degree of opening of the electric expansion valve based on the degree of superheating when the result of detection of the degree of supercooling is smaller than a target degree of supercooling.
【請求項9】 前記制御装置が、前記冷凍回路内の冷媒
の種類に応じて前記目標過熱度を変えて制御することを
特徴とする請求項1から8でのいずれかに記載の冷凍回
路の制御装置。
9. The refrigeration circuit according to claim 1, wherein the control device changes and controls the target degree of superheat in accordance with the type of refrigerant in the refrigeration circuit. Control device.
JP2000060336A 2000-03-06 2000-03-06 Controller for refrigeration circuit Pending JP2001248920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060336A JP2001248920A (en) 2000-03-06 2000-03-06 Controller for refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060336A JP2001248920A (en) 2000-03-06 2000-03-06 Controller for refrigeration circuit

Publications (1)

Publication Number Publication Date
JP2001248920A true JP2001248920A (en) 2001-09-14

Family

ID=18580669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060336A Pending JP2001248920A (en) 2000-03-06 2000-03-06 Controller for refrigeration circuit

Country Status (1)

Country Link
JP (1) JP2001248920A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071211A (en) * 2004-09-03 2006-03-16 Advanced Kucho Kaihatsu Center Kk Air conditioner and its control method
WO2008072608A1 (en) * 2006-12-12 2008-06-19 Daikin Industries, Ltd. Freezing device
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009068728A (en) * 2007-09-10 2009-04-02 Hoshizaki Electric Co Ltd Cooling apparatus
JP2009133573A (en) * 2007-11-30 2009-06-18 Espec Corp Operation control method of refrigerator in environmental test system, and environmental test system
JP2010065855A (en) * 2008-09-08 2010-03-25 Kobe Steel Ltd Ammonia refrigerating device
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device
WO2010118745A3 (en) * 2009-04-16 2011-02-03 Danfoss A/S A method of controlling operation of a vapour compression system
JP2012002456A (en) * 2010-06-18 2012-01-05 Hitachi Plant Technologies Ltd Refrigerant circulation apparatus
WO2012000501A3 (en) * 2010-06-30 2012-05-10 Danfoss A/S A method for operating a vapour compression system using a subcooling value
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
JP2013181678A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Control device, method, program, air conditioning device with the same
JP2015215130A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
CN105605673A (en) * 2014-11-12 2016-05-25 松下知识产权经营株式会社 Air conditioning device
CN105612069A (en) * 2013-10-07 2016-05-25 三电控股株式会社 Vehicle air-conditioning device
CN105910357A (en) * 2016-04-25 2016-08-31 广东美的暖通设备有限公司 Air conditioner system and valve control method thereof
CN107421176A (en) * 2017-06-28 2017-12-01 珠海格力电器股份有限公司 The control method and heat pump of electric expansion valve
CN107990609A (en) * 2017-11-20 2018-05-04 珠海格力电器股份有限公司 The control method and coolant circulating system of electric expansion valve
CN111271814A (en) * 2019-07-22 2020-06-12 宁波奥克斯电气股份有限公司 Refrigerant flow control method and device and air conditioner
CN111780363A (en) * 2020-07-06 2020-10-16 海信(山东)空调有限公司 Control method and device of electronic expansion valve, storage medium and air conditioner
CN112944514A (en) * 2021-02-25 2021-06-11 青岛海尔空调电子有限公司 Heat pump air conditioning unit and control method thereof
CN113418275A (en) * 2021-05-13 2021-09-21 青岛海尔空调电子有限公司 Control method of electronic expansion valve of internal machine in multi-split air conditioner
CN114893902A (en) * 2022-04-25 2022-08-12 青岛海信日立空调***有限公司 Air conditioning system and control method thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071211A (en) * 2004-09-03 2006-03-16 Advanced Kucho Kaihatsu Center Kk Air conditioner and its control method
JP4583114B2 (en) * 2004-09-03 2010-11-17 三洋電機株式会社 Air conditioning apparatus and control method thereof
US7921670B2 (en) 2006-12-12 2011-04-12 Daikin Industries, Ltd. Refrigeration apparatus
WO2008072608A1 (en) * 2006-12-12 2008-06-19 Daikin Industries, Ltd. Freezing device
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2009068728A (en) * 2007-09-10 2009-04-02 Hoshizaki Electric Co Ltd Cooling apparatus
JP2009133573A (en) * 2007-11-30 2009-06-18 Espec Corp Operation control method of refrigerator in environmental test system, and environmental test system
JP2010065855A (en) * 2008-09-08 2010-03-25 Kobe Steel Ltd Ammonia refrigerating device
WO2010118745A3 (en) * 2009-04-16 2011-02-03 Danfoss A/S A method of controlling operation of a vapour compression system
JP2012002456A (en) * 2010-06-18 2012-01-05 Hitachi Plant Technologies Ltd Refrigerant circulation apparatus
WO2012000501A3 (en) * 2010-06-30 2012-05-10 Danfoss A/S A method for operating a vapour compression system using a subcooling value
US9797639B2 (en) 2010-06-30 2017-10-24 Danfoss A/S Method for operating a vapour compression system using a subcooling value
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device
US9517680B2 (en) 2011-03-03 2016-12-13 Sanden Holdings Corporation Vehicle air conditioning apparatus
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
US10183551B2 (en) 2011-03-03 2019-01-22 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9956847B2 (en) 2011-03-03 2018-05-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9937771B2 (en) 2011-03-03 2018-04-10 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9855822B2 (en) 2011-03-03 2018-01-02 Sanden Holdings Corporation Vehicle air conditioning apparatus
JP5934181B2 (en) * 2011-03-03 2016-06-15 サンデンホールディングス株式会社 Air conditioner for vehicles
US9849752B2 (en) 2011-03-03 2017-12-26 Sanden Holdings Corporation Vehicle air conditioning apparatus
CN103534539A (en) * 2011-03-03 2014-01-22 三电有限公司 Vehicle-use air conditioner
JP2013181678A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Control device, method, program, air conditioning device with the same
US10946719B2 (en) 2013-10-07 2021-03-16 Sanden Holdings Corporation Vehicle air-conditioning device
US10391836B2 (en) 2013-10-07 2019-08-27 Sanden Holdings Corporation Vehicle air-conditioning device
CN105612069B (en) * 2013-10-07 2018-01-19 三电控股株式会社 Air conditioner for vehicles
CN105612069A (en) * 2013-10-07 2016-05-25 三电控股株式会社 Vehicle air-conditioning device
JP2015215130A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
CN105605673A (en) * 2014-11-12 2016-05-25 松下知识产权经营株式会社 Air conditioning device
JP2016095045A (en) * 2014-11-12 2016-05-26 パナソニックIpマネジメント株式会社 Air conditioning device
CN105910357A (en) * 2016-04-25 2016-08-31 广东美的暖通设备有限公司 Air conditioner system and valve control method thereof
CN105910357B (en) * 2016-04-25 2018-11-20 广东美的暖通设备有限公司 Air-conditioning system and its valve body control method
CN107421176A (en) * 2017-06-28 2017-12-01 珠海格力电器股份有限公司 The control method and heat pump of electric expansion valve
CN107421176B (en) * 2017-06-28 2019-07-23 珠海格力电器股份有限公司 The control method and heat pump system of electric expansion valve
CN107990609B (en) * 2017-11-20 2020-01-10 珠海格力电器股份有限公司 Control method of electronic expansion valve and refrigerant circulating system
CN107990609A (en) * 2017-11-20 2018-05-04 珠海格力电器股份有限公司 The control method and coolant circulating system of electric expansion valve
CN111271814A (en) * 2019-07-22 2020-06-12 宁波奥克斯电气股份有限公司 Refrigerant flow control method and device and air conditioner
CN111780363A (en) * 2020-07-06 2020-10-16 海信(山东)空调有限公司 Control method and device of electronic expansion valve, storage medium and air conditioner
CN111780363B (en) * 2020-07-06 2021-08-24 海信(山东)空调有限公司 Control method and device of electronic expansion valve, storage medium and air conditioner
CN112944514A (en) * 2021-02-25 2021-06-11 青岛海尔空调电子有限公司 Heat pump air conditioning unit and control method thereof
CN112944514B (en) * 2021-02-25 2023-08-15 青岛海尔空调电子有限公司 Heat pump air conditioner unit and control method thereof
CN113418275A (en) * 2021-05-13 2021-09-21 青岛海尔空调电子有限公司 Control method of electronic expansion valve of internal machine in multi-split air conditioner
CN114893902A (en) * 2022-04-25 2022-08-12 青岛海信日立空调***有限公司 Air conditioning system and control method thereof
CN114893902B (en) * 2022-04-25 2023-09-19 青岛海信日立空调***有限公司 Air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
JP2001248920A (en) Controller for refrigeration circuit
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US7424807B2 (en) Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
KR101355689B1 (en) Air conditioning system and accumulator thereof
CN102419024B (en) Refrigeration cycle apparatus and hot-water heating apparatus
WO2013088590A1 (en) Outdoor unit and air-conditioning device
JP4895883B2 (en) Air conditioner
JP2008175476A (en) Refrigerating air conditioner
JP4905018B2 (en) Refrigeration equipment
JP2002081767A (en) Air conditioner
JP2006250479A (en) Air conditioner
JP2002054836A (en) Indoor multi-air conditioner
JP2006112708A (en) Refrigerating air conditioner
WO2010119705A1 (en) Heat source unit
JP2009257756A (en) Heat pump apparatus, and outdoor unit for heat pump apparatus
JP4082435B2 (en) Refrigeration equipment
JP2001263831A (en) Refrigerating cycle system
JP2007139257A (en) Refrigeration device
JP3731174B2 (en) Refrigeration cycle
JP3724239B2 (en) Cooling system
JPH11270918A (en) Refrigerating device
JPH08152208A (en) Refrigerant-circulating system, and refrigerating and air-conditioner apparatus
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
EP2084464A2 (en) Controlling method of air conditioner
JPH04340046A (en) Operation control device of air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802