JP2001239995A - Underwater discharge devices for exhaust gas in ship - Google Patents

Underwater discharge devices for exhaust gas in ship

Info

Publication number
JP2001239995A
JP2001239995A JP2000053943A JP2000053943A JP2001239995A JP 2001239995 A JP2001239995 A JP 2001239995A JP 2000053943 A JP2000053943 A JP 2000053943A JP 2000053943 A JP2000053943 A JP 2000053943A JP 2001239995 A JP2001239995 A JP 2001239995A
Authority
JP
Japan
Prior art keywords
seawater
exhaust gas
ship
pipe
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000053943A
Other languages
Japanese (ja)
Inventor
Sadahiro Abe
貞宏 安部
Shogo Yamaguchi
昇吾 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000053943A priority Critical patent/JP2001239995A/en
Publication of JP2001239995A publication Critical patent/JP2001239995A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underwater discharge device for exhaust gas in a ship, capable of raising propulsion efficiency of the ship and absorption efficiency of carbon dioxide with a simple and inexpensive means and without requiring any special device, by efficiently using energy of the exhaust gas and energy caused by navigation of the ship, when making the seawater absorb carbon dioxide in the exhaust gas while obtaining propulsion force of the ship by the seawater mixed with the exhaust gas. SOLUTION: In this underwater discharge device for exhaust gas in a ship, the exhaust gas discharged from an exhaust gas source discharged into the seawater from a pipe passing through a hull, and the discharge device is equipped with a seawater pipe made to pass through a hull and connected to an exhaust outlet provided on the bottom of the ship from a seawater intake opened at the front of the hull, a force-feeding means to force-feed the seawater in the seawater pipe toward the exhaust outlet, and an ejector device to suction the exhaust gas in an exhaust gas pipe branched from a discharge pipe by a venturi action caused by the flow speed of the seawater in the seawater pipe provided at the downstream location of the force-feeding means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶に搭載される
内燃機関等の排ガス源から排出される排ガスを、排ガス
管を通して、海水管内を流れる海水と混合させて、この
排ガス混入海水を前記船体後方底部の開口から海中に放
出するようにした船舶における排ガスの水中排出装置に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a technique for mixing exhaust gas discharged from an exhaust gas source such as an internal combustion engine mounted on a ship with seawater flowing through a seawater pipe through an exhaust gas pipe. The present invention relates to an underwater discharge device for exhaust gas in a ship that discharges into the sea through an opening at the rear bottom.

【0002】[0002]

【従来の技術】近年、船舶に搭載されるデイーゼル機関
から排出される排ガス中の炭酸ガス(二酸化炭素)を海
水に吸収させて海中に排出する際に、該排ガス混入海水
を船体の前部近傍から放出して気泡を形成し、この気泡
で船体を包むことにより航行の摩擦抵抗を低減し、船舶
の推進効率を上昇せしめる技術が提供されてきている。
かかる技術の1つに、特開昭62−286886号の発
明がある。この発明においては、船舶推進機関からの排
ガスを冷却装置において冷却した後、圧縮機で高圧に加
圧し、これを混合器にて水と混合させて、船体前部の噴
射ノズルから船体周りに噴射して微小気泡を形成し、該
微小気泡により船体全域を包み航行の摩擦抵抗を低減し
ている。
2. Description of the Related Art In recent years, when carbon dioxide (carbon dioxide) in exhaust gas discharged from a diesel engine mounted on a ship is absorbed into seawater and discharged into the sea, the seawater mixed with the exhaust gas is located near a front portion of a hull. There has been provided a technique for reducing the frictional resistance of navigation by increasing the propulsion efficiency of a ship by forming bubbles by discharging the bubbles from the air and wrapping the hull with the bubbles.
One such technique is the invention of JP-A-62-286886. In the present invention, after cooling the exhaust gas from the ship propulsion engine in the cooling device, the compressor is pressurized to a high pressure, mixed with water by the mixer, and injected around the hull from the injection nozzle at the front of the hull. Thus, microbubbles are formed, and the microbubbles cover the entire hull to reduce the frictional resistance during navigation.

【0003】[0003]

【発明が解決しようとする課題】排ガス中の炭酸ガスを
海水に吸収させて海中に排出する際に、該排ガス混入海
水を船体後部から放出して推進力を得る手段、あるいは
前記排ガス混入海水を船体の前部近傍から放出して気泡
を形成し、この気泡で船体を包むことにより航行の摩擦
抵抗を低減し船舶の推進力を得る手段を用いた船舶にお
いては、該排ガスの圧力(静圧)レベルが大気圧レベル
にあっても排ガスを容易に海水中に吸収でき、前記排ガ
ス混入海水を船体後部から放出しあるいは前記気泡を形
成するために格別な装置を必要とせず、かつ排ガスに加
えるエネルギーを最少限にして、排ガスのエネルギーを
有効に利用し、船舶の推進効率を上昇させつつ、炭酸ガ
スを海水に効率良く吸収させることが要求される。
When carbon dioxide gas in exhaust gas is absorbed into seawater and discharged into the sea, the seawater mixed with exhaust gas is discharged from the rear of the hull to obtain propulsion, or In the case of a ship using a means for discharging from the vicinity of the front of the hull and forming bubbles, and wrapping the hull with these bubbles to reduce the frictional resistance of navigation and obtain the thrust of the ship, the pressure (static pressure) of the exhaust gas Even if the level is at atmospheric pressure, the exhaust gas can be easily absorbed into the seawater, and the exhaust gas-containing seawater is discharged from the rear of the hull or requires no special device to form the bubbles, and is added to the exhaust gas. It is required that carbon dioxide gas be efficiently absorbed in seawater while minimizing energy, effectively utilizing the energy of exhaust gas, and increasing the propulsion efficiency of the ship.

【0004】しかるに、特開昭62−286886号の
発明にあっては、排ガスを海水に混入させ炭酸ガスを海
水に吸収させる作用を促進するため、排ガスを冷却装置
において海水あるいは清水と熱交換させて冷却し、さら
に、この排ガスを、海面下にあって圧力の高い海水が流
れている海水管内に放出して該海水と混合させるため、
該排ガスを、圧縮機を用いて高圧に加圧して圧力(静
圧)を上昇せしめている。このため、かかる従来技術に
あっては、排ガス中の炭酸ガスを海水に吸収させるとと
もに、前記排ガス混入海水により船舶の推進力を得るた
めに、熱交換器としての冷却装置及び加圧用の圧縮機を
設置するという格別な装置を必要とし、装置が複雑化す
るとともに高コストとなり、排ガスのエネルギーの利用
率が低下する。
However, in the invention disclosed in Japanese Patent Application Laid-Open No. 62-286886, in order to promote the action of mixing exhaust gas into seawater and absorbing carbon dioxide gas into seawater, the exhaust gas is subjected to heat exchange with seawater or fresh water in a cooling device. To cool and further discharge this exhaust gas into a seawater pipe under the sea surface where high pressure seawater is flowing and mixed with the seawater,
The exhaust gas is pressurized to a high pressure using a compressor to increase the pressure (static pressure). For this reason, in such a conventional technique, a cooling device as a heat exchanger and a compressor for pressurization are used in order to absorb carbon dioxide in exhaust gas into seawater and obtain the propulsion of a ship by the seawater mixed with exhaust gas. This requires a special device for installation of the fuel cell, which makes the device complicated and expensive, and reduces the utilization rate of exhaust gas energy.

【0005】本発明はかかる従来技術の課題に鑑み、排
ガス中の炭酸ガスを海水に吸収させるとともに、前記排
ガス混入海水により船舶の推進力を得るにあたり、排ガ
スのエネルギー及び船舶の航行に伴うエネルギーを有効
利用することにより、格別な装置を必要とせず、簡単か
つ低コストの手段で以って、船舶の推進効率及び炭酸ガ
スの吸収効率を上昇させ得る船舶における排ガスの水中
排出装置を提供することを目的とする。
In view of the problems of the prior art, the present invention absorbs the carbon dioxide gas in the exhaust gas into seawater, and uses the exhaust gas energy and the energy accompanying the navigation of the ship to obtain the propulsion of the ship by the seawater mixed with the exhaust gas. To provide an underwater exhaust gas discharge device for a ship that can increase the propulsion efficiency of the ship and the absorption efficiency of carbon dioxide gas by simple and low-cost means without using any special device by effectively utilizing it. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題を解
決するため、請求項1記載の発明として、船舶に搭載さ
れる内燃機関等の排ガス源から排出される排ガスを、船
体を貫通した海水管路を流れる海水中に排出するように
した船舶において、船体前部の浸水部外板に開口された
海水取入口と、該海水取入口から前記船体内を貫通され
前記船底に設けられた排水口に接続される海水管と、該
海水管に設けられて該海水管内の海水を前記排水口へ向
けて圧送する圧送手段と、前記排ガスからの排ガスを煙
突に導く排出管から分岐された排ガス管と、前記海水管
路の圧送手段の下流部位に設けられるとともに前記排ガ
ス管に接続され、前記海水管内の海水の流速によるベン
チュリ作用によって前記排ガス管内の排ガスを吸引する
エジェクタ装置とを備えてなることを特徴とする船舶に
おける排ガスの水中排出装置を提案する。
In order to solve the above-mentioned problems, the present invention is directed to an invention as set forth in claim 1, wherein exhaust gas discharged from an exhaust gas source such as an internal combustion engine mounted on a ship is supplied to a sea passing through the hull. In a ship designed to be discharged into seawater flowing through a water pipe, a seawater intake opening formed in a flooded portion outer plate at a front part of a hull, and a drain provided through the hull from the seawater intake and provided at the bottom of the ship A seawater pipe connected to the mouth, a pumping means provided on the seawater pipe for pumping seawater in the seawater pipe toward the discharge port, and an exhaust gas branched from an exhaust pipe for guiding the exhaust gas from the exhaust gas to a chimney. A pipe, and an ejector device that is provided at a downstream portion of the pumping means of the seawater pipe and is connected to the exhaust gas pipe, and suctions exhaust gas in the exhaust gas pipe by a Venturi action by a flow rate of seawater in the seawater pipe. Suggest underwater discharge device for the exhaust gas in the vessels characterized in that it comprises.

【0007】請求項2記載の発明は、前記圧送手段の具
体的構成に係り、請求項1において、前記圧送手段は、
回転駆動される渦巻き羽根により前記海水を圧送する渦
巻きポンプからなることを特徴とする。
The invention according to claim 2 relates to a specific configuration of the pumping means. In claim 1, the pumping means comprises:
It is characterized by comprising a vortex pump for pumping the seawater by a vortex blade driven to rotate.

【0008】請求項3記載の発明は、請求項1におい
て、前記海水管の前記エジェクタ装置と前記排水口との
間に、該エジェクタ装置にて排ガスと混合された海水を
整流して前記排水口に送るデイフューザを設けたことを
特徴とする。
According to a third aspect of the present invention, in the first aspect, the seawater mixed with the exhaust gas in the ejector device is rectified between the ejector device and the drainage port of the seawater pipe to form the drainage port. It is characterized by having provided a diffuser to send to.

【0009】請求項4ないし5記載の発明は、排ガスの
水中排出装置の配置構造に係り、請求項4記載の発明
は、請求項1において、前記海水取入口及びこれに接続
される海水管を前記船体の幅方向に複数設けるととも
に、各海水管に前記エジェクタ装置を設け、各エジェク
タ装置に前記排ガス源から分配された排ガス管を夫々接
続したことを特徴とする。
The invention according to claims 4 and 5 relates to an arrangement of an underwater exhaust gas discharging device. The invention according to claim 4 is the invention according to claim 1, wherein the seawater intake and the seawater pipe connected thereto are connected to each other. A plurality of the hulls are provided in the width direction, and the ejector devices are provided in each of the seawater pipes, and exhaust gas pipes distributed from the exhaust gas source are connected to the respective ejector devices.

【0010】請求項5記載の発明は、請求項4におい
て、前記船体の中央部に、船舶の推進機関により駆動さ
れるプロペラ軸を貫設し、該プロペラ軸に連結されたプ
ロペラの船幅方向両側の船底に前記排水口を開口したこ
とを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect, a propeller shaft driven by a propulsion engine of a ship is provided through a center portion of the hull, and a propeller connected to the propeller shaft in a ship width direction. The drain port is opened at the bottom of both sides of the ship.

【0011】かかる発明によれば、船体前部に開口され
た海水取入口から海水を取り入れることにより、船舶の
航行によるスクープ作用により海水管内を高速で海水を
流し、さらにこの高速海水を請求項2記載の渦巻きポン
プのような圧送手段によって加圧するという2段の高速
化手段により高速化し、かかる高速海水をエジェクタ装
置にて噴出せしめて負圧を形成することにより、大きな
負圧が得られて該エジェクタ装置の吸引力が上昇し、か
かる高吸引力でのベンチュリ作用によって排ガスを吸引
せしめるので、煙突近傍における大気圧レベルにある排
ガスをも容易に海水中に吸引し、海水と接触させて微細
気泡化することができ、排ガス中の炭酸ガスを効率良く
海水中に溶解させることができる。また、前記のよう
に、エジェクタ装置にて大きな負圧に圧力低下した海水
流中に排ガスを吸引させるので、排ガスを、排ガス源か
ら煙突に至る排ガス通路の圧力状態のままで、圧縮機等
で加圧することなく、容易に海水中に混入させることが
できる。これにより、従来技術のように、排ガスを海水
中に溶解させるのに、圧縮機等のような格別な動力や装
置を必要とせず、簡単かつ低コストの手段でもって、排
ガス中の炭酸ガスを効率良く海水中に溶解させることが
できるとともに、船舶の推進効率を上昇させることがで
きる。
According to this invention, the seawater is taken in from the seawater intake port opened in the front part of the hull, so that the seawater flows at high speed in the seawater pipe by the scoop action by the navigation of the ship. The speed is increased by a two-stage speed-up means of pressurizing by a pumping means such as the spiral pump described above, and a large negative pressure is obtained by ejecting such high-speed seawater with an ejector device to form a negative pressure. The suction force of the ejector device increases, and the exhaust gas is sucked by the venturi action with such a high suction force, so that even the exhaust gas at the atmospheric pressure level near the chimney can be easily sucked into the seawater and brought into contact with the seawater to cause fine bubbles. The carbon dioxide gas in the exhaust gas can be efficiently dissolved in seawater. Also, as described above, the exhaust gas is sucked into the seawater stream whose pressure has been reduced to a large negative pressure by the ejector device, so that the exhaust gas is passed through a compressor or the like while maintaining the pressure state of the exhaust gas passage from the exhaust gas source to the chimney. It can be easily mixed into seawater without pressurization. This eliminates the need for special power and equipment such as a compressor to dissolve the exhaust gas in seawater as in the prior art, and reduces the carbon dioxide gas in the exhaust gas by simple and low-cost means. It can be efficiently dissolved in seawater and the propulsion efficiency of the ship can be increased.

【0012】また、かかる発明によれば、前記のよう
に、海水を2段の高速化手段により高速化し、かかる高
速海水をエジェクタ装置にて噴出せしめて大きな負圧を
形成し、該エジェクタ装置において高吸引力で排ガスを
吸引するため、排ガスの吸引作用が増大し、海水中に吸
収される排ガスの気泡径が微小径化されて、該気泡中の
炭酸ガスの海水への吸収速度が増大され、該炭酸ガスの
吸収効率が上昇する。また、前記のように、排ガスを高
効率で以って吸引し、海水中での排ガスの微細気泡化が
促進されることにより、排ガス混入海水の見かけ容積が
取り入れ海水よりも大きくなって、船舶の航行速度より
も大きな速度で排水口から後方へ噴出させることがで
き、該噴出海水を効率的に船舶の推進動力化することが
できる。さらに請求項2記載の発明のように、前記圧送
手段を渦巻きポンプで構成すれば、該渦巻きポンプは大
流量化が容易であるので、前記エジェクタ装置を流れる
海水流量を増大して、さらなる高速海水を得ることがで
きる。また、大気に解放された煙突に近い排出管から分
岐された排ガス管によりエジェクタ装置に排ガスを導く
ので、推進機関側の背圧が上昇することは無い。
According to the invention, as described above, the seawater is accelerated by the two-stage speed-up means, and the high-speed seawater is ejected by the ejector to form a large negative pressure. Since the exhaust gas is sucked with a high suction force, the exhaust gas suction action is increased, the bubble diameter of the exhaust gas absorbed in the seawater is reduced, and the absorption speed of the carbon dioxide gas in the bubbles into the seawater is increased. As a result, the absorption efficiency of the carbon dioxide increases. Further, as described above, the exhaust gas is sucked with high efficiency, and the generation of fine bubbles of the exhaust gas in the seawater is promoted, so that the apparent volume of the seawater mixed with the exhaust gas becomes larger than that of the intake seawater. Can be jetted rearward from the drain at a speed greater than the sailing speed of the ship, and the jetted seawater can be efficiently used as propulsion power for the ship. Further, if the pumping means is constituted by a spiral pump as in the invention according to claim 2, the spiral pump can easily increase the flow rate. Therefore, the flow rate of seawater flowing through the ejector device is increased to further increase the speed of the seawater. Can be obtained. Further, since exhaust gas is guided to the ejector device by an exhaust gas pipe branched from a discharge pipe close to a chimney opened to the atmosphere, the back pressure on the propulsion engine side does not increase.

【0013】また、かかる発明においては、前記エジェ
クタ装置にて排ガスと海水とを接触させることにより前
記海水中での排ガスの微細気泡化が促進された海水を、
請求項3に係るデイフューザによって整流して、船底の
外板に沿って後方に流すので、船底の周りに前記微細気
泡を保持し易くなる。これにより、該排ガス混入海水中
の微細気泡による船体の摩擦抵抗の低減効果が増大し、
船舶の推進効率が上昇する。
[0013] In the invention, the seawater, in which the exhaust gas is finely bubbled in the seawater by bringing the exhaust gas into contact with the seawater by the ejector device,
Since the flow is straightened by the diffuser according to the third aspect and flows backward along the outer plate on the bottom of the ship, it is easy to hold the fine bubbles around the bottom of the ship. Thereby, the effect of reducing the frictional resistance of the hull due to the fine bubbles in the seawater mixed with the exhaust gas increases,
The propulsion efficiency of the ship increases.

【0014】さらに、請求項4ないし5記載の発明によ
れば、前記海水取入口及びこれに接続される海水管を前
記船体の幅方向に複数組設け、各海水管に前記渦巻きポ
ンプ等の圧送手段及びエジェクタ装置を設け、各エジェ
クタ装置に前記排ガス管を接続し、前記海水取入口、海
水管、圧送手段及びエジェクタ装置からなる排ガス噴出
装置を、前記船舶推進用のエンジンにより駆動されるプ
ロペラ軸に並設することにより、該プロペラ軸の推進動
力に前記排ガス混入海水の噴出による推進動力が重畳さ
れ、さらなる推進効率の上昇が得られる。
According to the fourth and fifth aspects of the present invention, a plurality of sets of the seawater inlet and seawater pipes connected to the seawater inlet are provided in the width direction of the hull, and each seawater pipe is pumped by the spiral pump or the like. Means and an ejector device, the exhaust gas pipe is connected to each ejector device, and the exhaust gas ejection device including the seawater intake, the seawater pipe, the pumping means, and the ejector device is connected to a propeller shaft driven by the ship propulsion engine. , The propulsion power of the propeller shaft is superimposed on the propulsion power of the seawater mixed with the exhaust gas, thereby further increasing the propulsion efficiency.

【0015】[0015]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
ている構成部品の寸法、材質、形状、その相対配置など
は特に特定的な記載がない限り、この発明の範囲をそれ
のみに限定する趣旨ではなく、単なる説明例にすぎな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just

【0016】図1は本発明の実施形態に係る船舶におけ
る排ガスの水中排出装置の配置構造を示す側面図、図2
は図1のA―A矢視図、図3は渦巻きポンプ及びエジェ
クタ装着部の縦断面図である。
FIG. 1 is a side view showing an arrangement structure of an underwater exhaust gas discharge device in a ship according to an embodiment of the present invention.
Is a view taken in the direction of arrows AA in FIG. 1, and FIG. 3 is a longitudinal sectional view of the spiral pump and the ejector mounting portion.

【0017】本発明に係る船舶における排ガスの水中排
出装置の配置構造を示す図1ないし図2において、1は
船舶の船体、2は該船体の船底である。4は船体1の後
部寄りの部位に設置されたデイーゼル機関(以下エンジ
ンという)で、図2に示すように船体幅の中央部に設置
されている。8は前記エンジン4の出力軸に連結される
プロペラ軸、6は煙突、5は前記エンジン4からの排ガ
スを前記煙突6に導く排出管である。また100は海面
である。3は前記排出管5の前記煙突6の手前位置から
分岐されて後述するエジェクタ30に接続される排ガス
管である。11は海水管で、これの海水取入口10は前
記船体前部の浸水部外板に開口されている。該海水管1
1は前記海水取入口10から船尾方向に延設され、その
途中に、上流側から順に、後述する渦巻きポンプ20、
エジェクタ30、デイフューザ12等が設けられ、前記
船底2の後部に設けられた排水口13に開口している。
In FIGS. 1 and 2 showing the arrangement of an underwater discharge device for exhaust gas in a ship according to the present invention, reference numeral 1 denotes a hull of the ship, and 2 denotes a bottom of the hull. Reference numeral 4 denotes a diesel engine (hereinafter referred to as an engine) installed at a portion near the rear of the hull 1 and is installed at the center of the hull width as shown in FIG. Reference numeral 8 denotes a propeller shaft connected to the output shaft of the engine 4, reference numeral 6 denotes a chimney, and reference numeral 5 denotes a discharge pipe for guiding exhaust gas from the engine 4 to the chimney 6. 100 is the sea surface. Reference numeral 3 denotes an exhaust gas pipe branched from a position of the discharge pipe 5 before the chimney 6 and connected to an ejector 30 described later. Reference numeral 11 denotes a seawater pipe, and a seawater inlet 10 of the seawater pipe is opened in a flooded portion outer plate at the front of the hull. The seawater pipe 1
Reference numeral 1 denotes a stern extending from the seawater inlet 10 in the stern direction.
An ejector 30, a diffuser 12, and the like are provided, and open to a drain port 13 provided at a rear portion of the boat bottom 2.

【0018】図2に示すように、前記海水管11、渦巻
きポンプ20、エジェクタ30、及びデイフューザ12
等からなる排ガス噴出装置は、前記船体1の幅方向に2
組配設され、その間に前記エンジン4からのプロペラ軸
8が配置されている。前記排ガス噴出装置は1組、ある
いは3組以上並列に設けても良い。
As shown in FIG. 2, the seawater pipe 11, the vortex pump 20, the ejector 30, and the diffuser 12
The exhaust gas ejection device composed of
A propeller shaft 8 from the engine 4 is arranged between the two. The exhaust gas ejection device may be provided in one set, or three or more sets in parallel.

【0019】前記渦巻きポンプ及びエジェクタ装着部の
詳細を示す図3において、20は渦巻きポンプで、回転
駆動される渦巻き羽根により海水を加圧し渦巻き状のケ
ーシングを通して圧送するように構成された公知のポン
プである。30はエジェクタで、その中心部に前記海水
管11の端部が縮径されたノズル部31が開口し、外周
部の環状空間030には、図2に示すように前記排出管
5から分岐され左右に分配された排ガス管3が開口して
いる。12は前記エジェクタ30の下流側に設けられた
デイフューザで、前記エジェクタ30の出口から徐々に
通路面積が拡大されて、図1、2に示す排水口13に接
続されている。
In FIG. 3 showing the details of the spiral pump and the ejector mounting portion, reference numeral 20 denotes a spiral pump, which is a known pump configured to pressurize seawater by a swirling blade driven by rotation and to pump seawater through a spiral casing. It is. Numeral 30 denotes an ejector, which has a nozzle part 31 whose central portion is reduced in diameter at the end of the seawater pipe 11 and which is branched from the discharge pipe 5 as shown in FIG. Exhaust gas pipes 3 distributed to the left and right are open. Reference numeral 12 denotes a diffuser provided on the downstream side of the ejector 30. The diffuser 12 has a passage area gradually enlarged from an outlet of the ejector 30, and is connected to a drain 13 shown in FIGS.

【0020】かかる構成からなる排ガスの水中排出装置
を備えた船舶の航行時において、前記各エンジン4から
の排ガスは排出管5を通って煙突6から大気中に排出さ
れる。該排出管5を通る排ガスは、図示しない分配手段
によって、適当量が分流されて排ガス管3に入り、該排
ガス管3からエジェクタ30の環状空間030に入る。
一方、船舶の航行に伴うスクープ作用により、海水が船
速相当の流速で以って船首の海水取入口10から海水管
11に導入されて、前記渦巻きポンプ20に送られる。
該渦巻きポンプ20においては、電動モータ等の駆動源
により回転駆動される渦巻き羽根により、前記海水管1
1を通流してきた海水を加圧、増速し、前記エジェクタ
30のノズル部31に送る。
During the navigation of a ship equipped with the underwater exhaust gas discharging device having the above-described configuration, the exhaust gas from each of the engines 4 is discharged into the atmosphere from the chimney 6 through the discharge pipe 5. Exhaust gas passing through the discharge pipe 5 is divided by a distribution means (not shown) in an appropriate amount and enters the exhaust gas pipe 3, and enters the annular space 030 of the ejector 30 from the exhaust gas pipe 3.
On the other hand, the seawater is introduced into the seawater pipe 11 from the seawater intake port 10 at the bow at a flow velocity corresponding to the ship speed by the scoop action accompanying the navigation of the ship, and is sent to the spiral pump 20.
In the centrifugal pump 20, the seawater pipe 1 is rotated by a centrifugal blade driven by a driving source such as an electric motor.
The seawater flowing through 1 is pressurized, accelerated, and sent to the nozzle 31 of the ejector 30.

【0021】該ノズル部31においては、通路面積が絞
られるとともに、海水が前記スクープ作用と前記渦巻き
ポンプ20による加圧との2段の高速化手段により高速
化されているため、該海水は高速で下流のデイフューザ
12側に向けて噴出せしめられる。かかるノズル部31
からの海水の高速噴出により、該ノズル部31の周囲に
形成された環状空間030内の圧力が負圧まで低下し、
この圧力低下によるベンチュリ作用によって、前記排ガ
ス管3から環状空間030内に導入されている排ガス
は、図3の矢印のように高速で吸引されて海水と混合せ
しめられる。そして、前記排ガス混入海水は、前記デイ
フューザ12に送られ、該デイフューザ12にて整流さ
れるとともに圧力が回復されて、排水口13から船底0
2に噴出される。
In the nozzle section 31, the passage area is reduced, and the seawater is accelerated by a two-stage speed-up means of the scoop action and the pressurization by the vortex pump 20, so that the seawater is high-speed. At the downstream of the diffuser 12 side. Such a nozzle part 31
, The pressure in the annular space 030 formed around the nozzle portion 31 is reduced to a negative pressure,
The exhaust gas introduced into the annular space 030 from the exhaust gas pipe 3 is sucked at a high speed as shown by the arrow in FIG. Then, the seawater mixed with the exhaust gas is sent to the diffuser 12, where the seawater is rectified and the pressure is recovered by the diffuser 12, and the ship bottom 0 is discharged from the drain 13.
Squirted into 2.

【0022】前記エジェクタ30において、排ガスは、
前記ベンチュリ作用によって海水中に吸引される際に微
細気泡にされて海水と効率良く接触し、該排ガス中の炭
酸ガスは海水中に確実に溶解せしめられる。即ちかかる
実施例によれば、船体1の前部に開口された海水取入口
10から海水を取り入れることにより、船舶の航行によ
るスクープ作用により海水管内を高速で海水を流し、さ
らにこの高速海水を渦巻きポンプ20によって加圧する
という2段の高速化手段により高速化し、かかる高速海
水をエジェクタ30にて噴出せしめて負圧を形成するこ
とにより、大きな負圧が得られる。これにより、前記エ
ジェクタ30の吸引力が上昇し、かかる高吸引力でのベ
ンチュリ作用によって排ガスを吸引せしめるので、煙突
6の近傍における大気圧レベルにある排出管5からの排
ガスをも容易に海水中に吸引し、該海水と接触させて微
細気泡化することができ、排ガス中の炭酸ガスを効率良
く海水中に溶解させることができる。
In the ejector 30, the exhaust gas is
When sucked into seawater by the Venturi effect, it is formed into fine bubbles and comes into contact with seawater efficiently, so that carbon dioxide gas in the exhaust gas is surely dissolved in seawater. That is, according to this embodiment, seawater is taken in from the seawater intake port 10 opened at the front part of the hull 1 so that the seawater flows at high speed in the seawater pipe by the scoop action by the navigation of the ship, and further, the high-speed seawater is swirled. The speed is increased by a two-stage speed-up means of pressurization by the pump 20, and the high-speed seawater is ejected by the ejector 30 to form a negative pressure, whereby a large negative pressure is obtained. As a result, the suction force of the ejector 30 is increased, and the exhaust gas is sucked by the venturi action with the high suction force. Therefore, the exhaust gas from the discharge pipe 5 at the atmospheric pressure level in the vicinity of the chimney 6 can be easily removed from the seawater. To form fine bubbles by contacting with the seawater, so that carbon dioxide in the exhaust gas can be efficiently dissolved in the seawater.

【0023】また、前記のように、エジェクタ30にて
大きな負圧に圧力低下した海水流中に排ガスを吸引させ
るので、該排ガスを、エンジン4から煙突6に至る排出
管5内の圧力状態のままで、圧縮機等で加圧することな
く、容易に海水中に混入させることができる。
Further, as described above, the exhaust gas is sucked into the seawater stream whose pressure has been reduced to a large negative pressure by the ejector 30, so that the exhaust gas is subjected to the pressure condition in the discharge pipe 5 from the engine 4 to the chimney 6. As it is, it can be easily mixed into seawater without pressurizing with a compressor or the like.

【0024】また、かかる実施例によれば、前記のよう
に、海水を2段の高速化手段により高速化し、かかる高
速海水をエジェクタ30にて噴出せしめて大きな負圧を
形成し、該エジェクタ30において高吸引力で排ガスを
吸引するため、排ガスの吸引作用が増大する。これによ
り、海水中に吸収される排ガスの気泡径が微小径化され
て、該気泡中の炭酸ガスの海水への吸収速度が増大さ
れ、該炭酸ガスの吸収効率が上昇する。
Further, according to this embodiment, as described above, the seawater is accelerated by the two-stage speed-up means, and the high-speed seawater is ejected by the ejector 30 to form a large negative pressure. In this case, the exhaust gas is sucked with a high suction force, so that the exhaust gas suction action is increased. Thereby, the bubble diameter of the exhaust gas absorbed in the seawater is reduced to a small diameter, and the absorption speed of the carbon dioxide gas in the bubbles into the seawater is increased, so that the absorption efficiency of the carbon dioxide gas is increased.

【0025】また、前記のように、排ガスを高効率で以
って吸引し、海水中での排ガスの微細気泡化が促進され
ることにより、排ガス混入海水の見かけ容積が海水取入
口10からの取り入れ海水よりも大きくなって、船舶の
航行速度よりも大きな速度で船底2後部の排水口13か
ら後方へ噴出させることができ、該噴出海水を効率的に
船舶の推進動力化することができる。さらに、前記海水
管11を流れる海水の圧送手段を渦巻きポンプ20で構
成しているので、該渦巻きポンプ20は大流量化が容易
であることから、前記エジェクタ30を流れる海水流量
を増大して、さらなる高速海水を得ることができる。
Further, as described above, the exhaust gas is sucked with high efficiency, and the formation of fine bubbles in the exhaust gas in the seawater is promoted, so that the apparent volume of the seawater mixed with the exhaust gas is reduced from the seawater inlet 10. It becomes larger than the intake seawater and can be jetted backward from the drain port 13 at the rear of the bottom 2 at a speed greater than the navigation speed of the ship, and the jetted seawater can be efficiently used as the propulsion power of the ship. Further, since the pumping means for seawater flowing through the seawater pipe 11 is constituted by the spiral pump 20, the spiral pump 20 can easily increase the flow rate, so that the seawater flow rate flowing through the ejector 30 is increased. More high-speed seawater can be obtained.

【0026】また、前記エジェクタ30にて排ガスと海
水とを接触させることにより、海水中での排ガスの微細
気泡化が促進された海水を、デイフューザ12によって
整流して、船底2の外板に沿って後方に流すので、該船
底2の周りに前記微細気泡を保持し易くなる。これによ
り、該排ガス混入海水中の微細気泡による船体1の摩擦
抵抗の低減効果が増大する。
Further, the exhaust gas is brought into contact with the seawater by the ejector 30, so that the seawater in which the generation of fine bubbles of the exhaust gas in the seawater is promoted is rectified by the diffuser 12, and the seawater is formed along the outer plate of the ship bottom 2. As a result, the fine bubbles are easily held around the bottom 2 of the ship. Thereby, the effect of reducing the frictional resistance of the hull 1 by the fine bubbles in the seawater mixed with the exhaust gas increases.

【0027】また、前記海水取入口10及びこれに接続
される海水管11を前記船体1の幅方向に複数組設け、
各海水管11に前記渦巻きポンプ20及びエジェクタ3
0を設け、各エジェクタ30に前記排ガス管3を接続
し、前記海水取入口10、海水管11、渦巻きポンプ2
0及びエジェクタ30からなる排ガス噴出装置を、前記
エンジン4により駆動されるプロペラ軸8に並設するこ
とにより、該プロペラ軸8の推進動力に前記排ガス混入
海水の噴出による推進動力が重畳され、さらなる推進効
率の上昇が得られる。
A plurality of sets of the seawater inlet 10 and the seawater pipe 11 connected thereto are provided in the width direction of the hull 1,
The vortex pump 20 and the ejector 3 are provided in each seawater pipe 11.
0, the exhaust gas pipe 3 is connected to each ejector 30, and the seawater intake 10, seawater pipe 11, spiral pump 2
By disposing an exhaust gas ejection device including an exhaust gas generator and an ejector 30 in parallel with a propeller shaft 8 driven by the engine 4, the propulsion power of the exhaust gas mixed seawater is superimposed on the propulsion power of the propeller shaft 8, and further. Increase in propulsion efficiency is obtained.

【0028】[0028]

【発明の効果】以上記載の如く本発明によれば、海水
を、船舶の航行によるスクープ作用と圧送手段による加
圧との2段の高速化手段により高速化し、かかる高速海
水をエジェクタ装置にて噴出せしめて負圧を形成するこ
とにより、大きな負圧が得られ高吸引力でのベンチュリ
作用によって排ガスを吸引することが可能となる。これ
によって、大気圧レベルにある排ガスをも容易に海水中
に吸引し、海水と接触させて微細気泡化することがで
き、排ガス中の炭酸ガスを効率良く海水中に溶解させる
ことができることとなり、排ガスを、排ガス源から煙突
に至る排ガス通路の圧力状態のままで、圧縮機等で加圧
することなく、容易に海水中に混入させることができ
る。これにより、従来技術のように、排ガスを海水中に
溶解させるのに、圧縮機等のような格別な動力や装置を
必要とせず、簡単かつ低コストの手段で以って、排ガス
中の炭酸ガスを効率良く海水中に溶解させることができ
るとともに、船舶の推進効率を上昇させることができ
る。
As described above, according to the present invention, the speed of seawater is increased by a two-stage speed-up means of the scooping action by the navigation of the ship and the pressurization by the pumping means, and the high-speed seawater is ejected by the ejector device. By generating a negative pressure by ejecting the gas, a large negative pressure can be obtained, and exhaust gas can be sucked by the Venturi action with a high suction force. As a result, the exhaust gas at the atmospheric pressure level can be easily sucked into the seawater, contacted with the seawater to form fine bubbles, and the carbon dioxide gas in the exhaust gas can be efficiently dissolved in the seawater, Exhaust gas can be easily mixed into seawater without being pressurized by a compressor or the like while maintaining the pressure state of the exhaust gas passage from the exhaust gas source to the chimney. This eliminates the need for special power or equipment such as a compressor to dissolve the exhaust gas in seawater as in the prior art, and enables the carbon dioxide in the exhaust gas to be dissolved by simple and low-cost means. The gas can be efficiently dissolved in seawater, and the propulsion efficiency of the ship can be increased.

【0029】また、本発明によれば、前記のように、海
水を2段の高速化手段により高速化し、エジェクタ装置
において高吸引力で排ガスを吸引するため、排ガスの吸
引作用が増大し、海水中に吸収される排ガスの気泡径が
微小径化されて、該気泡中の炭酸ガスの海水への吸収速
度が増大され、該炭酸ガスの吸収効率が上昇する。ま
た、前記のように、排ガスを高効率で以って吸引し、海
水中での排ガスの微細気泡化が促進されることにより、
船舶の航行速度よりも大きな速度で排水口から後方へ噴
出させることができ、該噴出海水を効率的に船舶の推進
動力化することができる。
According to the present invention, as described above, the speed of seawater is increased by the two-stage speed-up means, and the exhaust gas is sucked by the ejector device with a high suction force. The diameter of the bubble of the exhaust gas absorbed therein is reduced, so that the absorption speed of carbon dioxide in the bubble into seawater is increased, and the absorption efficiency of the carbon dioxide is increased. Further, as described above, the exhaust gas is suctioned with high efficiency, and the formation of fine bubbles of the exhaust gas in seawater is promoted,
The water can be jetted backward from the drainage port at a speed greater than the navigation speed of the ship, and the jetted seawater can be efficiently used as propulsion power for the ship.

【0030】さらに請求項2記載の発明のように、前記
圧送手段を渦巻きポンプで構成すれば、該渦巻きポンプ
は大流量化が容易であるので、前記エジェクタ装置を流
れる海水流量を増大して、さらなる高速海水を得ること
ができる。また、かかる発明においては、前記海水中で
の排ガスの微細気泡化が促進された海水を、底の外板に
沿って後方に流すので、船底の周りに前記微細気泡を保
持し易くなり、これにより、該排ガス混入海水中の微細
気泡による船体の摩擦抵抗の低減効果が増大し、船舶の
推進効率が上昇する。
Further, if the pumping means is constituted by a spiral pump, the spiral pump can easily increase the flow rate, so that the flow rate of seawater flowing through the ejector device is increased. More high-speed seawater can be obtained. Further, in such an invention, the seawater in which the generation of fine bubbles of the exhaust gas in the seawater is promoted is flown backward along the bottom outer plate, so that the fine bubbles are easily held around the ship bottom, Thereby, the effect of reducing the frictional resistance of the hull by the fine bubbles in the seawater mixed with the exhaust gas increases, and the propulsion efficiency of the marine vessel increases.

【0031】さらに、請求項4ないし5記載の発明によ
れば、海水取入口、海水管、圧送手段及びエジェクタ装
置からなる排ガス噴出装置を、前記船舶推進用のエンジ
ンにより駆動されるプロペラ軸に並設することにより、
該プロペラ軸の推進動力に前記排ガス混入海水の噴出に
よる推進動力が重畳され、さらなる推進効率の上昇が得
られる。
Further, according to the invention as set forth in claims 4 and 5, an exhaust gas ejection device comprising a seawater intake, a seawater pipe, a pumping means and an ejector device is arranged in parallel with a propeller shaft driven by the ship propulsion engine. By setting
The propulsion power of the propeller shaft is superimposed with the propulsion power of the seawater mixed with the exhaust gas, thereby further increasing the propulsion efficiency.

【0032】以上、要するに本発明によれば、排ガスの
エネルギー及び船舶の航行に伴うエネルギーを有効利用
することにより、格別な動力や装置を必要とせず、簡単
かつ低コストの手段で以って船舶の推進効率を上昇させ
得るとともに、排ガス中の炭酸ガスを効率良く海水中に
溶解させることができる。
In summary, according to the present invention, by effectively utilizing the energy of the exhaust gas and the energy involved in the navigation of the ship, no special power or equipment is required and the ship can be easily and inexpensively manufactured. And the carbon dioxide in the exhaust gas can be efficiently dissolved in seawater.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る船舶における排ガス
の水中排出装置の配置構造を示す側面図である。
FIG. 1 is a side view showing an arrangement structure of an underwater exhaust gas discharge device in a ship according to an embodiment of the present invention.

【図2】 図1のA―A矢視図である。FIG. 2 is a view taken along the line AA of FIG. 1;

【図3】 渦巻きポンプ及びエジェクタ装着部の縦断面
図である。
FIG. 3 is a longitudinal sectional view of a centrifugal pump and an ejector mounting section.

【符号の説明】[Explanation of symbols]

1 船体 2 船底 3 排ガス管 4 エンジン 5 排出管 6 煙突 8 プロペラ軸 10 海水取入口 11 海水管 12 デイフューザ 13 排水口 20 渦巻きポンプ 30 エジェクタ 030 環状空間 31 ノズル部 DESCRIPTION OF SYMBOLS 1 Hull 2 Ship bottom 3 Exhaust gas pipe 4 Engine 5 Drain pipe 6 Chimney 8 Propeller shaft 10 Seawater intake 11 Seawater pipe 12 Diffuser 13 Drain outlet 20 Swirl pump 30 Ejector 030 Annular space 31 Nozzle part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 船舶に搭載される内燃機関等の排ガス源
から排出される排ガスを、船体を貫通した海水管路を流
れる海水中に排出するようにした船舶において、船体前
部の浸水部外板に開口された海水取入口と、該海水取入
口から前記船体内を貫通され前記船底に設けられた排水
口に接続される海水管と、該海水管に設けられて該海水
管内の海水を前記排水口へ向けて圧送する圧送手段と、
前記排ガスからの排ガスを煙突に導く排出管から分岐さ
れた排ガス管と、前記海水管路の圧送手段の下流部位に
設けられるとともに前記排ガス管に接続され、前記海水
管内の海水の流速によるベンチュリ作用によって前記排
ガス管内の排ガスを吸引するエジェクタ装置とを備えて
なることを特徴とする船舶における排ガスの水中排出装
置。
1. A marine vessel that discharges exhaust gas discharged from an exhaust gas source such as an internal combustion engine mounted on the marine vessel into seawater flowing through a seawater pipeline penetrating the hull. A seawater intake opening in the plate, a seawater pipe penetrating through the hull from the seawater intake and connected to a drainage port provided in the bottom of the ship, and a seawater provided in the seawater pipe and in the seawater pipe. Pumping means for pumping toward the drain,
An exhaust pipe branched from a discharge pipe for guiding exhaust gas from the exhaust gas to a chimney; and a venturi action provided at a downstream portion of the pumping means of the seawater pipeline and connected to the exhaust gas pipe, and caused by the flow rate of seawater in the seawater pipe. And an ejector device for sucking the exhaust gas in the exhaust gas pipe.
【請求項2】 前記圧送手段は、回転駆動される渦巻き
羽根により前記海水を圧送する渦巻きポンプからなるこ
とを特徴とする請求項1記載の船舶における排ガスの水
中排出装置。
2. The underwater discharge device for exhaust gas in a ship according to claim 1, wherein said pumping means comprises a vortex pump for pumping said seawater by a vortex blade driven to rotate.
【請求項3】 前記海水管の前記エジェクタ装置と前記
排水口との間に、該エジェクタ装置にて排ガスと混合さ
れた海水を整流して前記排水口に送るデイフューザを設
けたことを特徴とする請求項1記載の船舶における排ガ
スの水中排出装置。
3. A diffuser is provided between the ejector device and the drainage port of the seawater pipe, the diffuser rectifying the seawater mixed with the exhaust gas by the ejector device and sending it to the drainage port. An underwater discharge device for exhaust gas in a ship according to claim 1.
【請求項4】 前記海水取入口及びこれに接続される海
水管を前記船体の幅方向に複数設けるとともに、各海水
管に前記エジェクタ装置を設け、各エジェクタ装置に前
記排ガス源から分配された排ガス管を夫々接続したこと
を特徴とする請求項1記載の船舶における排ガスの水中
排出装置。
4. A seawater intake port and a plurality of seawater pipes connected to the seawater intake port are provided in the width direction of the hull, the seawater pipes are provided with the ejector devices, and the exhaust gas distributed from the exhaust gas source to each ejector device is provided. The underwater discharge device for exhaust gas in a ship according to claim 1, wherein the pipes are connected to each other.
【請求項5】 前記船体の中央部に、船舶の推進機関に
より駆動されるプロペラ軸を貫設し、該プロペラ軸に連
結されたプロペラの船幅方向両側の船底に前記排水口を
開口したことを特徴とする請求項4記載の船舶における
排ガスの水中排出装置。
5. A propeller shaft driven by a propulsion engine of a ship penetrates a central portion of the hull, and the drain port is opened at a bottom of both sides in a ship width direction of a propeller connected to the propeller shaft. The underwater discharge device for exhaust gas in a ship according to claim 4, characterized in that:
JP2000053943A 2000-02-29 2000-02-29 Underwater discharge devices for exhaust gas in ship Withdrawn JP2001239995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053943A JP2001239995A (en) 2000-02-29 2000-02-29 Underwater discharge devices for exhaust gas in ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053943A JP2001239995A (en) 2000-02-29 2000-02-29 Underwater discharge devices for exhaust gas in ship

Publications (1)

Publication Number Publication Date
JP2001239995A true JP2001239995A (en) 2001-09-04

Family

ID=18575265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053943A Withdrawn JP2001239995A (en) 2000-02-29 2000-02-29 Underwater discharge devices for exhaust gas in ship

Country Status (1)

Country Link
JP (1) JP2001239995A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582456A1 (en) 2004-03-29 2005-10-05 Siemens Aktiengesellschaft Under-pressure mixing device for ship exhaust gasses
WO2005092702A1 (en) 2004-03-29 2005-10-06 Siemens Aktiengesellschaft Method and device for discharging exhaust gases of internal combustion engines of boats into the water surrounding the boats
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships
WO2010098361A1 (en) * 2009-02-25 2010-09-02 Sato Tadaaki Method for generating air bubbles in an apparatus for reducing friction resistance in a ship
US7997221B2 (en) * 2009-03-23 2011-08-16 Dan Nicolaus Costas Apparatus for reducing drag on a nautical vessel
US8327784B2 (en) 2009-03-23 2012-12-11 Dan Nicolaus Costas Apparatus for generating and distributing compressed air for reducing drag
CN102849195A (en) * 2012-09-18 2013-01-02 南通中远川崎船舶工程有限公司 Guide pipe device for stem
CN103770924A (en) * 2014-01-16 2014-05-07 中国船舶重工集团公司第七一〇研究所 Automatic folded-down type fully-sealed air intake and exhaust device
US8763547B2 (en) 2012-07-25 2014-07-01 Dan Nicolaus Costas Apparatus for lowering drag on a moving nautical vessel
WO2016157633A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Frictional resistance-reducing device for air-lubricated ship, and ship
JP2019123282A (en) * 2018-01-12 2019-07-25 国立大学法人 筑波大学 Bubble generation device
KR102005186B1 (en) 2018-04-23 2019-07-29 목포해양대학교 산학협력단 Friction Resistance Reduction Apparatus using Exhaust Gas and Stepped Hull Vessel having the Same
CN110758633A (en) * 2019-10-30 2020-02-07 西安交通大学 Venturi system for reducing resistance of hull bubbles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092702A1 (en) 2004-03-29 2005-10-06 Siemens Aktiengesellschaft Method and device for discharging exhaust gases of internal combustion engines of boats into the water surrounding the boats
US7517266B2 (en) 2004-03-29 2009-04-14 Siemens Aktiengesellschaft Method and device for discharging exhaust gases of internal combustion engine of boats into the water surrounding the boats
EP1582456A1 (en) 2004-03-29 2005-10-05 Siemens Aktiengesellschaft Under-pressure mixing device for ship exhaust gasses
WO2010098361A1 (en) * 2009-02-25 2010-09-02 Sato Tadaaki Method for generating air bubbles in an apparatus for reducing friction resistance in a ship
US7997221B2 (en) * 2009-03-23 2011-08-16 Dan Nicolaus Costas Apparatus for reducing drag on a nautical vessel
US8327784B2 (en) 2009-03-23 2012-12-11 Dan Nicolaus Costas Apparatus for generating and distributing compressed air for reducing drag
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships
WO2011043146A1 (en) * 2009-10-05 2011-04-14 Sato Tadaaki Device for reducing frictional resistance on ship
JP2011079381A (en) * 2009-10-05 2011-04-21 Masaaki Sato Device for reducing frictional resistance in ship
CN102574563A (en) * 2009-10-05 2012-07-11 佐藤正明 Device for reducing frictional resistance on ship
US8763547B2 (en) 2012-07-25 2014-07-01 Dan Nicolaus Costas Apparatus for lowering drag on a moving nautical vessel
CN102849195A (en) * 2012-09-18 2013-01-02 南通中远川崎船舶工程有限公司 Guide pipe device for stem
CN103770924A (en) * 2014-01-16 2014-05-07 中国船舶重工集团公司第七一〇研究所 Automatic folded-down type fully-sealed air intake and exhaust device
WO2016157633A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Frictional resistance-reducing device for air-lubricated ship, and ship
JP2016193642A (en) * 2015-03-31 2016-11-17 三菱重工業株式会社 Friction resistance reduction device of air lubrication type ship, and ship
CN107406124A (en) * 2015-03-31 2017-11-28 三菱重工业株式会社 The frictional resistance of air lubrication formula ship reduces device, ship
CN107406124B (en) * 2015-03-31 2019-09-20 三菱重工业株式会社 The frictional resistance of air lubrication formula ship reduces device, ship
JP2019123282A (en) * 2018-01-12 2019-07-25 国立大学法人 筑波大学 Bubble generation device
JP7064212B2 (en) 2018-01-12 2022-05-10 国立大学法人 筑波大学 Bubble generator
KR102005186B1 (en) 2018-04-23 2019-07-29 목포해양대학교 산학협력단 Friction Resistance Reduction Apparatus using Exhaust Gas and Stepped Hull Vessel having the Same
CN110758633A (en) * 2019-10-30 2020-02-07 西安交通大学 Venturi system for reducing resistance of hull bubbles

Similar Documents

Publication Publication Date Title
US3273333A (en) Water jet propulsion device
JP2001239995A (en) Underwater discharge devices for exhaust gas in ship
KR100761107B1 (en) Propulsion system for a fast seagoing ship, especially a naval ship
US7160161B2 (en) Reduced pressure mixing device for marine vessel exhaust gas
JP7334339B2 (en) Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship
CA1211000A (en) Shipboard ice lubrication system and jet pump for use therein
US4543900A (en) Shipboard ice lubrication system and jet pump for use therein
JP2001260987A (en) Underwater discharging device for exhaust gas in ship
JP2019142482A (en) System for minimizing bow wave
US3643438A (en) Jet engines
JP2001233292A (en) Underwater discharge device for exhaust gas from ship
US6629866B2 (en) Marine vehicle propulsion system
JP2001239994A (en) Underwater discharge device for exhaust gas in ship
JP2010208435A (en) Resistance reducing apparatus of ship
JP2002002582A (en) Friction resistance reducing ship
JP3334034B2 (en) Ship water jet propulsion device
JP2001233281A (en) Exhaust gas blowout device for ship
JP2001233282A (en) Exhaust gas blowout device for ship
KR100855400B1 (en) Method and device for discharging exhaust gases of internal combustion engines of boats into the water surrounding the boats
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP2768480B2 (en) Water lock device for small jet propulsion boat
JP3358718B2 (en) Planing boat reverse mechanism
US6939185B2 (en) Exhaust system for small watercraft and personal watercraft
RU56326U1 (en) WATER JET ENGINE
JP2008273493A (en) Minute bubble generating device and hull resistance reduction vessel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501