JP2001220604A - Wear resistant member - Google Patents

Wear resistant member

Info

Publication number
JP2001220604A
JP2001220604A JP2000026220A JP2000026220A JP2001220604A JP 2001220604 A JP2001220604 A JP 2001220604A JP 2000026220 A JP2000026220 A JP 2000026220A JP 2000026220 A JP2000026220 A JP 2000026220A JP 2001220604 A JP2001220604 A JP 2001220604A
Authority
JP
Japan
Prior art keywords
wear
resistant member
hard particles
ultra
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000026220A
Other languages
Japanese (ja)
Inventor
Katsunori Tsuzuki
克典 都築
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000026220A priority Critical patent/JP2001220604A/en
Publication of JP2001220604A publication Critical patent/JP2001220604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wear resistant member inexpensive in the stock cost, excellent in wear resistance and moreover capable or repolishing. SOLUTION: This wear resistant member contains superhard particles with the average particle size of 1 to 100 μm which are not mutually bonded by 5 to 45 vol.%, and the balance at least either cemented carbide or cermet as the main. The maximum difference of the elevation Rmax of ruggedness in the surface of the wear resistant member is 0.005d+0.4 to 0.1d+0.95 μm (d: the average particle size (μm) of the superhard particles), and also, 70% or more of the projecting parts are composed of the superhard particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐摩摺動部材や治工
具などに適した耐摩耗性部材に関するものである。特
に、ダイヤモンド粒子や立方晶窒化硼素粒子を含有した
超硬合金またはサーメットからなる耐摩耗性部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant member suitable for a wear-resistant sliding member, a jig and the like. In particular, it relates to a wear-resistant member made of a cemented carbide or cermet containing diamond particles or cubic boron nitride particles.

【0002】[0002]

【従来の技術】従来より耐摩材料には超硬合金、サーメ
ット、ダイヤモンド焼結体、立方晶窒化硼素焼結体とい
った材料が用いられていた。また、近年では低圧下での
気相成長法によるダイヤモンド膜等の硬質炭素膜の合成
が可能となったため、摺動部材、治工具類、研磨材、耐
摩耗性機械部品などの各種部材への需要が増加しつつあ
る。
2. Description of the Related Art Conventionally, materials such as cemented carbide, cermet, sintered diamond, and sintered cubic boron nitride have been used as wear-resistant materials. In recent years, it has become possible to synthesize a hard carbon film such as a diamond film by a vapor phase growth method under a low pressure, so that it can be used for various members such as sliding members, jigs and tools, abrasives, and wear-resistant mechanical parts. Demand is increasing.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の技術に
は次のような問題があった。 超硬合金やサーメットでは耐摩耗性が不足する。 ダイヤモンド焼結体や立方晶窒化硼素焼結体では耐摩
耗性に優れるものの、これらの耐摩材料は超高圧発生容
器を用いて製造されるため、製造コストが高価であっ
た。 特開平9-124394号公報に示す硬質炭素被膜耐摩耗性部
材は比較的安価で耐摩耗性にも優れるものの、膜厚が薄
くてしかも難加工性材料なので一度摩耗してしまうと再
研磨して再び使用することができない。
However, the above technique has the following problems. Wear resistance is insufficient with cemented carbide and cermet. Although a diamond sintered body and a cubic boron nitride sintered body are excellent in wear resistance, since these wear-resistant materials are manufactured using an ultrahigh pressure generating vessel, the manufacturing cost is high. The hard carbon film wear-resistant member disclosed in JP-A-9-124394 is relatively inexpensive and has excellent wear resistance, but it has a thin film thickness and is difficult to work. Can not be used again.

【0004】従って、本発明の主目的は素材費が安く、
耐摩耗性に優れ、しかも再研磨が可能な耐摩耗性部材を
提供することである。
Accordingly, the main object of the present invention is to reduce material costs,
An object of the present invention is to provide a wear-resistant member having excellent wear resistance and capable of being polished again.

【0005】[0005]

【課題を解決するための手段】本発明の耐摩耗性部材
は、平均粒径1〜100μmの互いに直接結合していない超
硬質粒子を5〜45体積%含有し、残部が超硬合金および
サーメットの少なくとも一方を主体とする耐摩耗性部材
において、前記耐摩耗性部材の表面における凹凸の最大
高低差Rmaxを0.005d+0.4〜0.1d+0.95μm(d:超硬質粒
子の平均粒径(μm))にすることを特徴とする。
The wear-resistant member of the present invention contains 5 to 45% by volume of super hard particles having an average particle diameter of 1 to 100 μm which are not directly bonded to each other, with the balance being cemented carbide and cermet. In the wear-resistant member mainly composed of at least one of the above, the maximum height difference Rmax of the irregularities on the surface of the wear-resistant member is 0.005d + 0.4 to 0.1d + 0.95 μm (d: average particle size of ultra-hard particles (μm) ).

【0006】本発明では耐摩耗性機能を発揮する超硬質
粒子の含有量が5〜45体積%と少なく、超硬質粒子同士
が直接結合していないことから、加工性が非常に優れて
いる。その結果、素材自体が摩耗しても再研磨によって
再び使用することが可能である。
In the present invention, the content of the super-hard particles exhibiting the abrasion resistance function is as small as 5 to 45% by volume, and the super-hard particles are not directly bonded to each other. As a result, even if the material itself is worn, it can be reused by re-polishing.

【0007】上記超硬質粒子の含有量が5体積%未満で
は耐摩耗性の向上効果が小さく、45体積%を越えると加
工性が悪くなる。特に好ましいのは10〜30体積%であ
り、これにより、耐摩耗性、加工性を両立することがで
きる。
[0007] When the content of the ultra-hard particles is less than 5% by volume, the effect of improving the wear resistance is small, and when it exceeds 45% by volume, the workability deteriorates. Particularly preferred is 10 to 30% by volume, whereby both abrasion resistance and workability can be achieved.

【0008】上記超硬質粒子の平均粒子径としては1〜1
00μmが好ましい。100μmよりも粗粒の超硬質粒子を用
いると加工性が低下する。また、1μmよりも小さい超硬
質粒子は脱落が生じやすいので1〜100μmに限定した。
特に好ましいのは60μm以下のときであり、これによ
り、強度、加工性がより向上できる。
[0008] The average particle size of the ultra-hard particles is 1 to 1
00 μm is preferred. If ultra-hard particles coarser than 100 μm are used, workability will be reduced. Further, ultrahard particles smaller than 1 μm are apt to fall off, so they were limited to 1 to 100 μm.
Particularly preferred is a thickness of 60 μm or less, whereby the strength and workability can be further improved.

【0009】上記超硬質粒子としてはダイヤモンド粒子
および立方晶窒化硼素粒子の少なくとも一方が好まし
い。これは上記耐摩耗性部材の耐摩耗性を高めるためで
あり、Hv硬度で39GPa以下の硬質粒子を添加しても超硬
合金またはサーメットに対して耐摩耗性の優位差が出な
いからである。
The ultra-hard particles are preferably at least one of diamond particles and cubic boron nitride particles. This is to enhance the wear resistance of the wear-resistant member, because even if hard particles having an Hv hardness of 39 GPa or less are added, there is no significant difference in wear resistance with respect to a cemented carbide or a cermet. .

【0010】超硬質粒子を含む層のマトリックスには超
硬合金が好ましいが、鋼加工の際には鋼材との親和性の
低いサーメットを用いることが好ましい。超硬合金もし
くはサーメットをマトリックスの主体となるように用い
ることにより、耐摩材料の剛性率を高めることができ、
かつ従来のダイヤモンド焼結体や立方晶窒化硼素焼結体
で問題であった突発的な欠損がなくなり、耐摩耗性と耐
欠損性が両立できる。なお、耐食性を向上させたい場合
には結合相金属としてNiやCrを用いたり、IVa、Va、VIa
族元素の炭化物、窒化物又は炭窒化物を添加し、用途に
よりマトリックスを変更すればよい。
[0010] A cemented carbide is preferable for the matrix of the layer containing the superhard particles, but it is preferable to use a cermet having a low affinity for the steel material when working the steel. By using cemented carbide or cermet as the main component of the matrix, the rigidity of the wear-resistant material can be increased,
In addition, sudden defects, which have been a problem with conventional diamond sintered bodies and cubic boron nitride sintered bodies, are eliminated, and both wear resistance and chipping resistance can be achieved. When it is desired to improve the corrosion resistance, Ni or Cr may be used as the binder phase metal, or IVa, Va, VIa
What is necessary is just to add a carbide, nitride or carbonitride of a group element and change the matrix according to the use.

【0011】上記耐摩耗性部材の表面における凹凸の最
大高低差Rmaxは0.005d+0.4〜0.1d+0.95μm(d:超硬質
粒子の平均粒径(μm))が好ましい。上記耐摩耗性部材の
表面状態は、超硬質粒子が超硬合金またはサーメット表
面から突出した状態になっており、通常は超硬合金また
はサーメットが凹部となり、超硬質粒子が凸部となる。
そのため、耐摩耗性部材の表面における凹凸の最大高低
差は、図1に示すように、最も突出した超硬質粒子1と
最も低いマトリックス部分2との高低差となる。この最
大高低差が0.1d+0.95μm(d:超硬質粒子の平均粒径(μ
m))よりも大きいと耐摩耗性が低下し、しかも突出した
超硬質粒子が耐摩耗性部材と接する相手材に傷をつけて
しまう。また、最大高低差を0.005d+0.4μm(d:超硬質
粒子の平均粒径(μm))よりも小さくするには超硬質粒子
を1μmよりも小さくする必要があり、そうすると前記
のように超硬質粒子の脱落を招いてしまう。さらに凹凸
の最大高低差Rmaxをこの範囲に制御することにより、研
削油、潤滑油中で本発明材料を使用した場合に油だまり
の効果が得られ、耐摩耗性が向上する。最大高低差Rmax
を制御するには、前記ダイヤモンドの平均粒径限定の
他、部材表面をダイヤモンド砥石などで研摩することが
挙げられる。特に好ましいのは凹凸の最大高低差Rmaxが
0.005d+0.4〜0.05d+0.95μm(d:超硬質粒子の平均粒
径(μm))の範囲内のときであり、これによって耐摩耗性
がより向上できる。
The maximum height difference Rmax of the irregularities on the surface of the wear-resistant member is preferably 0.005 d + 0.4 to 0.1 d + 0.95 μm (d: average particle size (μm) of the ultra-hard particles). The surface state of the wear-resistant member is such that the super-hard particles protrude from the surface of the super-hard alloy or the cermet. Usually, the super-hard alloy or the cermet becomes concave portions and the super-hard particles become convex portions.
Therefore, the maximum height difference between the irregularities on the surface of the wear-resistant member is the height difference between the most protruding super-hard particles 1 and the lowest matrix portion 2, as shown in FIG. This maximum height difference is 0.1d + 0.95μm (d: average particle diameter of ultra-hard particles (μ
If it is larger than m)), the wear resistance is reduced, and the protruding ultra-hard particles damage the mating material in contact with the wear-resistant member. Further, in order to make the maximum height difference smaller than 0.005 d + 0.4 μm (d: average particle size of ultra-hard particles (μm)), it is necessary to make the super-hard particles smaller than 1 μm. This causes the particles to fall off. Further, by controlling the maximum height difference Rmax of the unevenness in this range, the effect of the oil pool is obtained when the material of the present invention is used in grinding oil and lubricating oil, and the wear resistance is improved. Maximum height difference Rmax
In order to control the average particle diameter of the diamond, the surface of the member may be polished with a diamond grindstone or the like. Particularly preferred is a maximum height difference Rmax of the unevenness.
This is within the range of 0.005 d + 0.4 to 0.05 d + 0.95 μm (d: average particle size (μm) of ultra-hard particles), whereby the wear resistance can be further improved.

【0012】特に、超硬質粒子自体の表面における最大
高低差が1μm以下のとき、更に耐摩耗性が向上でき、相
手材への損傷も抑制できる。なお、超硬質粒子自体の表
面における最大高低差とは、図1に示すように、一つの
超硬質粒子表面において最も突出した部分と最も低い部
分の高低差を言う。
In particular, when the maximum height difference on the surface of the ultra-hard particle itself is 1 μm or less, the abrasion resistance can be further improved and the damage to the mating material can be suppressed. In addition, the maximum height difference on the surface of the ultra-hard particle itself refers to the height difference between the most protruding part and the lowest part on one super-hard particle surface, as shown in FIG.

【0013】上記耐摩耗性部材は3層以上の積層構造で
あることが好ましい。2層以下だと本発明部材を鋼など
の熱膨張係数の大きい材料と接合して使用する場合、接
合の際に熱膨張係数の差によって発生する応力によって
界面から割れが発生してしまう。しかし、3層以上の積
層構造にすることによって熱膨張係数の差をなくし、割
れを抑制させることができる。また、下層にいくにつれ
て熱膨張係数を徐々に大きくさせることによって各層に
生じる熱応力の発生を緩和させ、界面の割れを防ぐこと
ができる。最下層のHv硬度は9.8GPa以下が望ましい。こ
のHv硬度が9.8GPaを超えると鋼との接合の際に界面に応
力が発生し、接合界面から割れてしまうからである。
Preferably, the wear-resistant member has a laminated structure of three or more layers. When the member of the present invention is used by joining it with a material having a large coefficient of thermal expansion such as steel if the number of layers is two or less, cracks are generated from the interface due to stress generated due to a difference in coefficient of thermal expansion during joining. However, with a laminated structure of three or more layers, a difference in thermal expansion coefficient can be eliminated, and cracks can be suppressed. Further, by gradually increasing the coefficient of thermal expansion toward the lower layer, it is possible to alleviate the occurrence of thermal stress occurring in each layer and prevent the interface from cracking. The lowermost layer preferably has a Hv hardness of 9.8 GPa or less. If the Hv hardness exceeds 9.8 GPa, stress is generated at the interface at the time of joining with steel, and cracks occur at the joining interface.

【0014】また、耐摩耗性部材表面の凹凸における凸
部は70%以上が超硬質粒子であることが望ましい。ここ
で、凸部の超硬質粒子の比率は、凸部全体の面積に対す
る超硬質粒子の面積比を指している。例えば、耐摩耗性
部材の表面を三次元粗さ解析装置とEDS(Energy-disper
sive X-ray Spectroscopy)及び画像解析装置を組み
合わせることで、この比率を算出することができる。凸
部の超硬質粒子の比率が70%以上だと突出した超硬質粒
子による耐摩耗性の効果が顕著に表れる。
It is desirable that 70% or more of the projections in the irregularities on the surface of the wear-resistant member are ultra-hard particles. Here, the ratio of the super-hard particles in the projections indicates the area ratio of the super-hard particles to the entire area of the projections. For example, a 3D roughness analyzer and EDS (Energy-disper
This ratio can be calculated by combining sive X-ray Spectroscopy) with an image analyzer. When the ratio of the super-hard particles in the convex portion is 70% or more, the effect of wear resistance due to the protruding super-hard particles is remarkably exhibited.

【0015】なお、上記のような超硬質粒子同士が直接
結合していない材料は、超硬質粒子が安定な条件で製造
するよりも超硬質粒子が準安定な条件で製造した方が製
造しやすく、コスト面でも超高圧発生容器を用いずに製
造できるので好ましい。
It is to be noted that a material in which the super-hard particles are not directly bonded to each other as described above is easier to manufacture when the super-hard particles are manufactured under metastable conditions than when manufactured under stable conditions. It is also preferable in terms of cost because it can be manufactured without using an ultrahigh pressure generating vessel.

【0016】好ましい焼結条件としては、焼結温度が12
00〜1450℃、その温度での保持時間が10秒以上10分以
内、加圧力が3〜100MPaのときである。この条件を満た
す焼結方法としては通電加圧、高周波加熱、マイクロ波
加熱などをあげることができる。
Preferred sintering conditions include a sintering temperature of 12
00-1450 ° C., the holding time at that temperature is 10 seconds or more and 10 minutes or less, and the pressing force is 3-100 MPa. Examples of the sintering method satisfying this condition include energization pressing, high-frequency heating, microwave heating, and the like.

【0017】また、超硬質粒子同士が直接結合している
かどうかは、塩酸や硝酸などの酸性溶液中でマトリック
スである超硬合金もしくはサーメットを溶解したとき
に、超硬質粒子がばらばらになるかどうかで判断するこ
とが可能である。
Whether or not the super-hard particles are directly bonded to each other is determined by whether or not the super-hard particles fall apart when the matrix hard metal or cermet is dissolved in an acidic solution such as hydrochloric acid or nitric acid. It is possible to judge by.

【0018】[0018]

【発明の実施の形態】(試験例1)平均粒径3μmのWC粉
末、平均粒径1μmのCo、Ni、Cr粉末、平均粒径2μmのTi
CN粉末、平均粒径10μmのダイヤモンド粉末、立方晶窒
化硼素、炭化チタン粉末を準備し、表1の組成に配合
後、ボールミルを用いて混合し、焼結用粉末を用意し
た。このようにして準備した粉末を厚みが焼結後に2mm
となるように内径80mmの黒鉛型に充填し、0.01Torr(1.
33Pa)以下の真空中で圧力3MPaを付加しながら、パルス
電流を流して通電加圧焼結し、径80mm、厚さ2mmの焼結
体を作製した。昇温パターンは10分間で1330℃まで昇
温、その温度で1分間保持して、30℃/minの速度で冷却
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Test Example 1) WC powder having an average particle size of 3 μm, Co, Ni, Cr powder having an average particle size of 1 μm, and Ti having an average particle size of 2 μm
CN powder, diamond powder having an average particle diameter of 10 μm, cubic boron nitride, and titanium carbide powder were prepared, blended into the compositions shown in Table 1, and mixed using a ball mill to prepare a powder for sintering. The powder prepared in this way has a thickness of 2 mm after sintering.
Into a graphite mold with an inner diameter of 80 mm so that the pressure becomes 0.01 Torr (1.
While applying a pressure of 3 MPa in a vacuum of not more than 33 Pa), a pulse current was passed and current pressure sintering was performed to produce a sintered body having a diameter of 80 mm and a thickness of 2 mm. In the heating pattern, the temperature was raised to 1330 ° C. in 10 minutes, kept at that temperature for 1 minute, and cooled at a rate of 30 ° C./min.

【0019】[0019]

【表1】 [Table 1]

【0020】次に、このようにして得られた焼結体No.2
-1〜2-11からワイヤカット装置を用いて長さ11mm、幅3m
m、厚み2mmのチップを切りだし、全面をダイヤモンド砥
石を用いて研削した。研削の際に研削抵抗を測定したの
で、その結果を表2に示す。なお、ここでの研削抵抗の
値は試料No.2-11の値を100とした相対値である。また、
試料No.2-3〜2-5、2-7〜2-9については、より細かい番
手のダイヤモンド砥石を用いて研削した。これら全ての
チップの表面粗さ(Rmax)を触針式表面粗さ計により測
定した。測定は、耐摩耗性部材の表面粗さと硬質粒子の
表面粗さとの両方について行った。耐摩耗性部材の表面
粗さの測定条件は、測定距離1.5mm、縦倍率5000倍、横
倍率100倍で測定し、超硬質粒子の表面粗さの測定条件
は、測定距離0.5mm、縦倍率10000倍、横倍率1000倍で測
定した。その結果を表2に示す。
Next, the sintered body No. 2
From 11 to 2-11, using a wire cutting device, length 11mm, width 3m
A chip having a thickness of 2 mm and a thickness of 2 mm was cut out, and the entire surface was ground using a diamond grindstone. The grinding resistance was measured during grinding, and the results are shown in Table 2. Here, the value of the grinding resistance is a relative value with the value of Sample No. 2-11 being 100. Also,
Sample Nos. 2-3 to 2-5 and 2-7 to 2-9 were ground using a finer diamond wheel. The surface roughness (Rmax) of all these chips was measured by a stylus type surface roughness meter. The measurement was performed for both the surface roughness of the wear-resistant member and the surface roughness of the hard particles. The conditions for measuring the surface roughness of the wear-resistant member were measured at a measuring distance of 1.5 mm, a vertical magnification of 5,000 times, and a lateral magnification of 100 times. It was measured at a magnification of 10,000 times and a magnification of 1000 times. Table 2 shows the results.

【0021】これらのチップに対して、耐摩耗摺動特性
(回転試験片および試料の摩耗量)を津谷式(二線式)
トライボメーターにより評価した。摺動試験の条件は室
温、研削油中、荷重50N、摺動速度1m/sec、2時間で行っ
た。回転試験片はSUJ2を用いた。摺動試験後の試料およ
び回転試験片の摩耗深さを触針式表面粗さ計により測定
したのでその結果を表2に示す。
For these chips, the wear-resistant sliding characteristics (the wear amount of the rotating test piece and the sample) were determined by the Tsuya method (two-wire method).
It was evaluated by a tribometer. The conditions of the sliding test were room temperature, in grinding oil, a load of 50 N, a sliding speed of 1 m / sec, and 2 hours. The rotating test piece used was SUJ2. The wear depth of the sample and the rotating test piece after the sliding test was measured by a stylus type surface roughness meter, and the results are shown in Table 2.

【0022】また、ダイヤモンド粒子同士が直接接合し
ているかどうかを確認するため、各焼結体を強酸中で超
硬合金、サーメット成分を溶かし、残ったダイヤモンド
粒子が互いに直接結合しているかどうかを走査型電子顕
微鏡を用いて調査した。
Further, in order to confirm whether or not the diamond particles are directly bonded to each other, each sintered body is melted with a cemented carbide and a cermet component in a strong acid to determine whether or not the remaining diamond particles are directly bonded to each other. The investigation was performed using a scanning electron microscope.

【0023】[0023]

【表2】 [Table 2]

【0024】表2に見ても分かるように、ダイヤモンド
の直接接合のない試料No.2-1〜9は研削抵抗が少なく加
工し易いため、再研磨が可能である。更に、細かい番手
のダイヤモンド砥石を用いて研削した試料No.2-3、4、
5、7、8、9は表面粗さ(Rmax:μm)が0.005×10+0.4〜
0.1×10+0.95μmの間に入っており、相手材への損傷が
少なくなっている。中でも本発明である試料No.2-3、
4、7、8は硬質粒子としてダイヤモンド、立方晶窒化硼
素を使用しているため、相手材(回転試験片)への損傷
も少なく、しかも非常に耐摩耗性に優れた結果を示し
た。これに対して、耐摩耗性部材の表面粗さが大きい試
料No.2-1、2-2、2-6、及びダイヤモンドあるいは立方晶
窒化硼素を含まないNo.2-5、2-9は、試料または相手材
の摩耗量が大きい。
As can be seen from Table 2, samples Nos. 2-1 to 9 having no direct bonding of diamond have low grinding resistance and are easy to process, so that re-polishing is possible. In addition, samples No. 2-3, 4, and 4
5, 7, 8, and 9 have a surface roughness (Rmax: μm) of 0.005 × 10 + 0.4 to
It is between 0.1 × 10 + 0.95μm, and the damage to the mating material is reduced. Among them, the sample No. 2-3 of the present invention,
Samples Nos. 4, 7, and 8 used diamond and cubic boron nitride as hard particles, so that damage to the mating material (rotating test piece) was small and the results showed extremely excellent wear resistance. On the other hand, samples No. 2-1, 2-2, and 2-6 having a large surface roughness of the wear-resistant member, and Nos. 2-5 and 2-9 containing no diamond or cubic boron nitride, The amount of wear of the sample or the mating material is large.

【0025】(試験例2)試験例1で作製したNo.2-3と
同じ構造の焼結体を最上層のダイヤモンド粒径のみ表3
に示すように変化させて、試料No.3-1〜3-10を試験例1
と同様にして作製した。
(Test Example 2) The sintered body having the same structure as that of No. 2-3 prepared in Test Example 1 was prepared using only the diamond particle diameter of the uppermost layer.
Sample Nos. 3-1 to 3-10 were changed as shown in
It was produced in the same manner as described above.

【0026】[0026]

【表3】 [Table 3]

【0027】次に、このようにして得られた焼結体No.3
-1〜3-10からワイヤカット装置を用いて長さ11mm、幅3m
m、厚み2mmのチップを切りだし、全面を試験例1と同様
にダイヤモンド砥石を用いて研削した。この研削の際に
研削抵抗を測定したのでその結果を表3に示す。なお、
研削抵抗の値は試験例1の試料No.2-11の測定値を100と
して表3中に記載した。次に、これら全てのチップの表
面をより細かい番手のダイヤモンド砥石を用いて研削
し、特に試料No.3-6、3-8については更に細かい番手の
ダイヤモンド砥石にて表面を研削した。これら全てのチ
ップの表面粗さ(Rmax)を触針式表面粗さ計により測定
した。測定は、耐摩耗性部材の表面粗さと硬質粒子の表
面粗さとの両方について行った。耐摩耗性部材の表面粗
さの測定条件は試験例1と同じ条件で、超硬質粒子の表
面粗さの測定条件は、試料No.3-1〜3-4は測定距離0.5m
m、縦倍率10000倍、横倍率1000倍、試料No.3-5〜3-9は
測定距離1.0mm、縦倍率10000倍、横倍率200倍、試料No.
3-10は測定距離3mm、縦倍率10000倍、横倍率100倍で測
定した。その結果を表3に示す。
Next, the sintered body No. 3
From 11 to 3-10, using a wire cutting device, length 11mm, width 3m
A chip having a thickness of 2 mm and a thickness of 2 mm was cut out, and the entire surface was ground using a diamond grindstone as in Test Example 1. Table 3 shows the results of the measurement of the grinding resistance during this grinding. In addition,
The values of the grinding resistance are shown in Table 3 with the measured value of Sample No. 2-11 of Test Example 1 being 100. Next, the surfaces of all of these chips were ground using a finer diamond wheel, and the surfaces of samples Nos. 3-6 and 3-8 were particularly ground with a finer diamond wheel. The surface roughness (Rmax) of all these chips was measured by a stylus type surface roughness meter. The measurement was performed for both the surface roughness of the wear-resistant member and the surface roughness of the hard particles. The measurement conditions for the surface roughness of the abrasion-resistant member were the same as those in Test Example 1. 3-1 to 3-4 are measuring distance 0.5m
m, vertical magnification 10000 times, horizontal magnification 1000 times, sample No. 3-5 to 3-9 are measuring distance 1.0mm, vertical magnification 10000 times, horizontal magnification 200 times, sample No.
3-10 was measured at a measurement distance of 3 mm, a vertical magnification of 10,000 times, and a horizontal magnification of 100 times. Table 3 shows the results.

【0028】これらのチップに対して、耐摩耗摺動特性
(回転試験片および試料の摩耗量)を津谷式(二線式)
トライボメーターにより評価した。摺動試験の条件は室
温、研削油中、荷重50N、摺動速度1m/sec、2時間で行っ
た。回転試験片はSUJ2を用いた。摺動試験後の試料およ
び回転試験片の摩耗深さを触針式表面粗さ計により測定
したので、その結果を表3に示す。
For these chips, the abrasion resistance sliding characteristics (the wear amount of the rotating test piece and the sample) were evaluated by the Tsuya method (two-wire method).
It was evaluated by a tribometer. The conditions of the sliding test were room temperature, in grinding oil, a load of 50 N, a sliding speed of 1 m / sec, and 2 hours. The rotating test piece used was SUJ2. The wear depth of the sample and the rotating test piece after the sliding test was measured by a stylus type surface roughness meter, and the results are shown in Table 3.

【0029】また、耐摩耗性部材表面の写真を画像解析
装置に取り入れて、凸部のダイヤモンド粒子の比率を求
めたので、その結果も表3に示す。
A photograph of the surface of the abrasion-resistant member was taken into an image analyzer, and the ratio of the diamond particles in the convex portion was determined. The results are also shown in Table 3.

【0030】表3の凸部のダイヤモンドの比率を見ても
分かるように、ダイヤモンド粒径の小さい試料No.3-1は
ダイヤモンドの比率が少ないため耐摩耗性に劣り、しか
も脱落したダイヤモンドが相手材を摩耗させている。ま
た、ダイヤモンド粒径が大きい試料No.3-8〜3-10は研削
抵抗が大きく、しかも研削時に超硬合金部分と段差が生
じるため表面粗さが悪くなり、その結果相手材を摩耗さ
せている。一方、本発明である試料No.3-2〜3-7は相手
材へのダメージも少なく、耐摩耗性においても優れた性
能を示していた。特に試料No.3-2〜5、3-7は耐摩部材の
表面粗さRmaxが0.005d+0.4〜0.05d+0.95μm(d:超硬
質粒子の平均粒径(μm))の範囲に入っており、相手材へ
のダメージが少ない。
As can be seen from the ratio of the diamonds in the convex portions in Table 3, Sample No. 3-1 having a small diamond particle diameter has a low abrasion resistance due to a small ratio of diamonds. Worn material. Samples Nos. 3-8 to 3-10, which have a large diamond grain size, have high grinding resistance, and have a step difference from the cemented carbide part during grinding, resulting in poor surface roughness. I have. On the other hand, Sample Nos. 3-2 to 3-7 of the present invention showed little damage to the mating material and exhibited excellent performance in abrasion resistance. In particular, for samples Nos. 3-2 to 5 and 3-7, the surface roughness Rmax of the wear-resistant member falls within the range of 0.005 d + 0.4 to 0.05 d + 0.95 μm (d: average particle diameter of ultra-hard particles (μm)). And less damage to the opponent.

【0031】(試験例3)平均粒径3μmのWC粉末、平均
粒径1μmのCo、Ni、Cr粉末、平均粒径2μmのTiCN粉末、
平均粒径30μmのダイヤモンド粉末を準備し、表4の組
成に配合後、ボールミルを用いて混合し、焼結用粉末を
用意した。このようにして準備した粉末を各層の厚みが
焼結後に2mmとなるように表4の順に積層して、試料No.
4-1〜4-5を試験例1と同様にして作製し、全面を試験例
1と同様にダイヤモンド砥石を用いて研削し、更に細か
い番手のダイヤモンド砥石で研削した。そして、最下層
のHv硬度を測定した。なお、最上層における表面凹凸の
最大高低差Rmaxは1.3μmである。
(Test Example 3) WC powder having an average particle diameter of 3 μm, Co, Ni, Cr powder having an average particle diameter of 1 μm, TiCN powder having an average particle diameter of 2 μm,
A diamond powder having an average particle diameter of 30 μm was prepared, blended into the composition shown in Table 4, and then mixed using a ball mill to prepare a powder for sintering. The powder thus prepared was laminated in the order shown in Table 4 so that the thickness of each layer became 2 mm after sintering.
4-1 to 4-5 were prepared in the same manner as in Test Example 1, and the entire surface was ground using a diamond grindstone in the same manner as in Test Example 1, and further ground with a finer diamond wheel. Then, the Hv hardness of the lowermost layer was measured. The maximum height difference Rmax of the surface irregularities in the uppermost layer is 1.3 μm.

【0032】[0032]

【表4】 [Table 4]

【0033】このようにして得られた焼結体No.4-1〜4-
5からワイヤカット装置を用いて径30mm、厚み2〜6mmの
試料を切り出した。そして、各試料を径30mm、厚み10mm
のSCM440製鋼材に銀ロウ(住友電工製SA3)とフラック
ス(硝酸25%、硼砂30%、酸性フッ化カリ45%)を用い
て、高周波炉で大気中、500℃以上に加熱しながら最下
層と鋼材のロウ付け接合を行ない、熱亀裂の発生の有無
を評価した。
The thus obtained sintered bodies No. 4-1 to No. 4-
A sample having a diameter of 30 mm and a thickness of 2 to 6 mm was cut out from 5 using a wire cutting device. Each sample is 30mm in diameter and 10mm in thickness.
Using silver brazing (Sumitomo Electric Industries SA3) and flux (Nitric acid 25%, Borax 30%, Potassium fluoride 45%) in SCM440 steelmaking material, the bottom layer while heating to 500 ° C or more in air with a high frequency furnace And the steel material were brazed, and the presence or absence of the occurrence of thermal cracks was evaluated.

【0034】結果を表5に示すが、単層である試料No.4
-1は鋼との熱膨張係数の差が大きいため鋼との接合界面
から割れが生じた。また、試料No.4-2、4-4は最上層と
中間層との熱膨張係数の差が大きかったため、試料切り
だし時に界面から割れが生じた。試料No.4-5については
最下層と鋼との熱膨張係数の差が大きかったため、ロウ
付け箇所に熱亀裂が発生していた。これらに対し、試料
No.4-3は熱膨張係数が最下層にいくほど徐々に大きくな
っており、最下層の熱膨張係数を鋼と近くしているため
割れや熱亀裂がなく強固に接合されていた。
The results are shown in Table 5. Sample No. 4 which is a single layer
-1 cracked from the joint interface with steel due to a large difference in thermal expansion coefficient with steel. Further, in samples Nos. 4-2 and 4-4, the difference in the thermal expansion coefficient between the uppermost layer and the intermediate layer was large. Regarding Sample No. 4-5, the difference in thermal expansion coefficient between the lowermost layer and the steel was large, so that a thermal crack was generated at the brazing point. For these, the sample
In No.4-3, the coefficient of thermal expansion gradually increased toward the lowermost layer, and since the coefficient of thermal expansion of the lowermost layer was close to that of steel, there was no crack or thermal crack, and the joint was strong.

【0035】[0035]

【表5】 [Table 5]

【0036】尚、本発明の耐摩耗性部材は、上述の具体
例にのみ限定されるものではなく、本発明の要旨を逸脱
しない範囲内において種々変更を加え得ることは勿論で
ある。
Incidentally, the wear-resistant member of the present invention is not limited to the above-described specific examples, and it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】以上説明したように、本発明耐摩耗性部
材は、耐摩耗性に優れ、しかも再研磨が可能である。従
って、摩耗しても研磨することで再利用することができ
る。
As described above, the wear-resistant member of the present invention has excellent wear resistance and can be polished again. Therefore, even if worn, it can be reused by polishing.

【0038】また、超高圧発生容器を用いることなく製
造できるため、製造コストを抑えることができる。
Further, the production can be carried out without using an ultrahigh pressure generating vessel, so that the production cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐摩耗性部材表面の最大高低差と、超硬質粒子
自体の表面における最大高低差とを示す説明図である。
FIG. 1 is an explanatory diagram showing the maximum height difference on the surface of a wear-resistant member and the maximum height difference on the surface of ultra-hard particles themselves.

【符号の説明】[Explanation of symbols]

1 超硬質粒子 2 マトリックス部分 1 Super hard particles 2 Matrix part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/10 C22C 1/10 F 29/02 29/02 Z 29/04 29/04 Z (72)発明者 池ヶ谷 明彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4K018 AA20 AB04 AB07 AC01 AD14 AD18 BA11 BB04 BC02 BC12 BC16 BD10 CA02 DA25 DA29 DA32 JA07 JA14 JA16 KA02 KA05 4K020 AA22 AB02 AC07 AC09 BA08 BB08 BB29 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 1/10 C22C 1/10 F 29/02 29/02 Z 29/04 29/04 Z (72) Invention Person Akihiko Ikegaya 1-1-1 Kunyokita, Itami-shi, Hyogo F-term (reference) in Itami Works, Sumitomo Electric Industries, Ltd. 4K018 AA20 AB04 AB07 AC01 AD14 AD18 BA11 BB04 BC02 BC12 BC16 BD10 CA02 DA25 DA29 DA32 JA07 JA14 JA16 KA02 KA05 4K020 AA22 AB02 AC07 AC09 BA08 BB08 BB29

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1〜100μmの互いに直接結合し
ていない超硬質粒子を5〜45体積%含有し、残部が超硬
合金およびサーメットの少なくとも一方を主体とする耐
摩耗性部材において、 前記耐摩耗性部材の表面における凹凸の最大高低差Rmax
が0.005d+0.4〜0.1d+0.95μm(d:超硬質粒子の平均粒
径(μm))の範囲内であり、かつ前記凸部の70%以上は超
硬質粒子であることを特徴とする耐摩耗性部材。
An abrasion-resistant member containing 5 to 45% by volume of superhard particles having an average particle size of 1 to 100 μm and not directly bonded to each other, with the balance being at least one of a cemented carbide and a cermet. Maximum height difference Rmax of irregularities on the surface of the wear-resistant member
Is within a range of 0.005 d + 0.4 to 0.1 d + 0.95 μm (d: average particle size of ultra-hard particles (μm)), and 70% or more of the projections are ultra-hard particles. Wearable member.
【請求項2】 前記超硬質粒子の含有量は10〜30体積%
であることを特徴とする請求項1に記載の耐摩耗性部
材。
2. The content of the ultra-hard particles is 10 to 30% by volume.
2. The wear-resistant member according to claim 1, wherein
【請求項3】 前記超硬質粒子の粒径が60μm以下であ
ることを特徴とする請求項1に記載の耐摩耗性部材。
3. The wear-resistant member according to claim 1, wherein the particle size of the ultra-hard particles is 60 μm or less.
【請求項4】 前記耐摩耗性部材の表面における凹凸の
最大高低差Rmaxが0.005d+0.4〜0.05d+0.95μm(d:超
硬質粒子の平均粒径(μm))の範囲内であることを特徴と
する請求項1に記載の耐摩耗性部材。
4. The method according to claim 1, wherein a maximum height difference Rmax of the irregularities on the surface of the wear-resistant member is in a range of 0.005 d + 0.4 to 0.05 d + 0.95 μm (d: average particle size (μm) of the ultra-hard particles). The wear-resistant member according to claim 1, wherein:
【請求項5】 前記凸部の超硬質粒子表面のRmaxが1μm
以下であることを特徴とする請求項1に記載の耐摩耗性
部材。
5. The Rmax of the surface of the super-hard particles of the convex portion is 1 μm.
2. The wear-resistant member according to claim 1, wherein:
【請求項6】 前記超硬質粒子はダイヤモンド粒子およ
び立方晶窒化硼素粒子の少なくとも一方からなることを
特徴とする請求項1に記載の耐摩耗性部材。
6. The wear-resistant member according to claim 1, wherein the ultra-hard particles are made of at least one of diamond particles and cubic boron nitride particles.
【請求項7】 請求項1に記載の耐摩耗性部材が最表面
で、最下層が超硬合金を主体とする積層構造であること
を特徴とする耐摩耗性部材。
7. A wear-resistant member according to claim 1, wherein the wear-resistant member has a laminated structure in which the outermost surface is the uppermost surface and the lowermost layer is mainly made of a cemented carbide.
【請求項8】 前記積層構造が3層以上であることを特
徴とする請求項7に記載の耐摩耗性部材。
8. The wear-resistant member according to claim 7, wherein the laminated structure has three or more layers.
【請求項9】 前記積層構造は下層にいくにつれて熱膨
張係数が大きくなるように構成されたことを特徴とする
請求項7に記載の耐摩耗性部材。
9. The wear-resistant member according to claim 7, wherein the laminated structure is configured such that a thermal expansion coefficient increases toward a lower layer.
【請求項10】 前記最下層のHv硬度が9.8GPa以下であ
ることを特徴とする請求項7に記載の耐摩耗性部材。
10. The wear-resistant member according to claim 7, wherein the lowermost layer has an Hv hardness of 9.8 GPa or less.
JP2000026220A 2000-02-03 2000-02-03 Wear resistant member Pending JP2001220604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026220A JP2001220604A (en) 2000-02-03 2000-02-03 Wear resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026220A JP2001220604A (en) 2000-02-03 2000-02-03 Wear resistant member

Publications (1)

Publication Number Publication Date
JP2001220604A true JP2001220604A (en) 2001-08-14

Family

ID=18551978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026220A Pending JP2001220604A (en) 2000-02-03 2000-02-03 Wear resistant member

Country Status (1)

Country Link
JP (1) JP2001220604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523682A (en) * 2008-06-09 2011-08-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2013543539A (en) * 2010-09-24 2013-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for producing a sintered composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523682A (en) * 2008-06-09 2011-08-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
US8679208B2 (en) 2008-06-09 2014-03-25 Nedret Can Cubic boron nitride compact
JP2013543539A (en) * 2010-09-24 2013-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for producing a sintered composite
US9399600B2 (en) 2010-09-24 2016-07-26 Sandvik Intellectual Property Ab Method for producing a sintered composite body

Similar Documents

Publication Publication Date Title
JP4927559B2 (en) Cubic boron nitride sintered body and cutting tool using the same
JP2015142959A (en) Thick thermal barrier coating for super-abrasive tool
JP2001502246A (en) Cutting tools
JP2000054007A (en) Diamond-sintered body and its production
JP4446469B2 (en) Coated cutting tool
JP2012503095A (en) Wear parts with hard surfaces
JP5235449B2 (en) Cutting tools
KR20130027514A (en) Rotation tool
Miao et al. Influence of graphite addition on bonding properties of abrasive layer of metal-bonded CBN wheel
JP5031182B2 (en) Cemented carbide
JPH06297206A (en) Hard sintered tool and its manufacture
Li et al. Preparation and performance of resin-bonded grinding wheel with braze-coated diamond grits
JP2001220604A (en) Wear resistant member
JP5447845B2 (en) Surface coated cutting tool
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2001040446A (en) Diamond-containing hard member and its production
JP4845490B2 (en) Surface coated cutting tool
JP2016020540A (en) Super hard alloy and cutting tool
JPH10310840A (en) Superhard composite member and its production
JP4936742B2 (en) Surface coating tools and cutting tools
JP2004115897A (en) Wear resistant member
JP4721644B2 (en) Milling tool and inspection method thereof
JP2002220628A (en) Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite
JP2013521134A (en) Thick thermal barrier coating for superabrasive tools
JP2013521134A6 (en) Thick thermal barrier coating for superabrasive tools

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308