JP2001214231A - Heat exchange tube for high temperature gas furnace and its producing method - Google Patents

Heat exchange tube for high temperature gas furnace and its producing method

Info

Publication number
JP2001214231A
JP2001214231A JP2000021550A JP2000021550A JP2001214231A JP 2001214231 A JP2001214231 A JP 2001214231A JP 2000021550 A JP2000021550 A JP 2000021550A JP 2000021550 A JP2000021550 A JP 2000021550A JP 2001214231 A JP2001214231 A JP 2001214231A
Authority
JP
Japan
Prior art keywords
tube
metal
heat exchange
powder
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021550A
Other languages
Japanese (ja)
Inventor
Takashi Nishi
隆 西
Yoshio Katayama
善雄 片山
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000021550A priority Critical patent/JP2001214231A/en
Publication of JP2001214231A publication Critical patent/JP2001214231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tube to be used for a heat exchange tube for high temperature gas furnace which has a high melting point, high oxidation resistance or the like, and is provided with good weldability. SOLUTION: This heat exchange tube has a tube base body (11), tube edge part (13) as joint forming parts and transition parts (12) connecting the tube base body to the edge fringe parts, the base body (11) consists of a Cr-Fe series alloy having a Cr content of 60 wt.% or more, the tube edge part (13) consists of easily weldable metal, and the tansition part (12) is a multilayer structure consisting of metal having a gradient composition in which the ratio of the mixing quantity of easily weldable metal/a Cr-Fe series alloy is gradually increased from the substrate side toward the tube edge part side. As the easily weldable metal, stainless steel or the like are exemplified. Metal powder prepared to a prescribed composition is charged into a capsule in a laminated manner, and is subjected to a hot isostatic pressing formation to produce the tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温ガスを熱源と
して被処理物を間接加熱するための、特に1000℃を
超える高温加熱を必要とする各種熱処理炉のラジアント
チューブ等として有用な高温特性に優れた熱交換用チュ
ーブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature characteristic useful for indirect heating of an object to be processed by using a high-temperature gas as a heat source, particularly useful as a radiant tube of various heat treatment furnaces requiring a high-temperature heating exceeding 1000 ° C. It relates to an excellent heat exchange tube.

【0002】[0002]

【従来の技術】鋼材等を被処理材として間接加熱する熱
処理炉の加熱方式には、高温燃焼ガスを熱源とするガス
加熱方式と、抵抗発熱を利用した電気加熱方式とがあ
る。ガス加熱方式は、ラジアンチューブの開口端部に装
着されたバーナーから高温燃焼炎・燃焼ガスを噴射して
チューブを赤熱状態とし、チューブ表面から放射される
輻射熱で被処理物を所定温度に加熱する。電気加熱方式
では、抵抗発熱体を内蔵した保護管を炉内に設置し、保
護管表面からの輻射熱により被処理物の加熱が行われ
る。従来、ガス加熱方式の加熱炉(ガス炉)は、約96
0℃以下の熱処理を行う加熱に適用され、1000℃を
超える加熱温度を要求される鍛造炉,焼結炉,その他の
高温熱処理炉には、電気加熱方式が使用されている。
2. Description of the Related Art As a heating method of a heat treatment furnace for indirectly heating a steel material or the like as a material to be treated, there are a gas heating method using a high-temperature combustion gas as a heat source and an electric heating method using resistance heating. In the gas heating method, a high-temperature combustion flame / combustion gas is injected from a burner attached to the opening end of the radian tube to make the tube a red heat state, and the object to be processed is heated to a predetermined temperature by radiant heat radiated from the tube surface. . In the electric heating method, a protection tube having a built-in resistance heating element is installed in a furnace, and the object to be processed is heated by radiant heat from the surface of the protection tube. Conventionally, a heating furnace (gas furnace) of a gas heating system has a capacity of about 96
An electric heating method is used in forging furnaces, sintering furnaces, and other high-temperature heat treatment furnaces that are applied to heating for performing heat treatment at 0 ° C. or lower and require a heating temperature exceeding 1000 ° C.

【0003】[0003]

【発明が解決しようとする課題】ガス加熱方式は、電気
加熱方式に比しエネルギー効率などの点で大きく優れて
いる。従って、1000℃を超えるような高温熱処理炉
にも、電気加熱方式に代えてガス加熱方式を適用するこ
とが望まれる。しかし、ガス加熱方式に使用されるラジ
アントチューブは、電気加熱方式と異なって、バーナー
の高温燃焼火炎・燃焼ガスによる苛酷な酸化作用を受け
る。1000℃を超える高温域では、酸化作用によるチ
ューブの損耗は顕著となる。
The gas heating system is significantly superior to the electric heating system in terms of energy efficiency and the like. Therefore, it is desired to apply a gas heating method to a high temperature heat treatment furnace having a temperature exceeding 1000 ° C. instead of the electric heating method. However, unlike the electric heating system, the radiant tube used in the gas heating system is subjected to severe oxidizing action due to the high temperature combustion flame and combustion gas of the burner. In a high-temperature region exceeding 1000 ° C., the wear of the tube due to the oxidizing action becomes significant.

【0004】従来の代表的なチューブ材料であるo基耐
熱合金(40Co−20Ni−25Cr−Fe)でも、
その使用限界温度は1250℃程度であり、上記の高温
環境では、長期の安定使用を確保することができない。
このため、1000℃を超える高温熱処理炉では、やむ
を得ず電気加熱方式を使用しているのである。本発明は
上記に鑑み、1000℃を超える高温加熱のラジアント
チューブ等として安定に使用することを可能とする改良
された高温諸特性を有する熱交換用チューブを提供する
ものである。
[0004] O-based heat-resistant alloy (40Co-20Ni-25Cr-Fe) which is a typical conventional tube material,
Its use limit temperature is about 1250 ° C., and in the high temperature environment described above, long-term stable use cannot be ensured.
For this reason, in a high-temperature heat treatment furnace exceeding 1000 ° C., an electric heating method is unavoidably used. The present invention has been made in view of the above, and provides a heat exchange tube having improved high-temperature characteristics that can be used stably as a radiant tube heated at a high temperature exceeding 1000 ° C.

【0005】[0005]

【課題を解決するための手段】本発明に係る高温ガス炉
の熱交換用チューブは、チューブ基体(11)、継手形
成部としての管端部(13)、および該チューブ基体と
端縁部とを連結する遷移部(12)を有し、チューブ基
体は、Cr含有量60重量%以上であるCr−Fe系合
金からなり、管端部は易溶接性金属からなり、遷移部
は、易溶接性金属/Cr−Fe系合金の混合量比が、基
体側から管端部側に向かって漸次増加している傾斜組成
を有する金属からなる多層構造体である。
According to the present invention, there is provided a HTGR heat exchange tube comprising a tube base (11), a tube end (13) as a joint forming portion, and a tube base and an end edge. The tube base is made of a Cr-Fe-based alloy having a Cr content of 60% by weight or more, the tube end is made of a weldable metal, and the transition part is made of a weldable metal. This is a multilayer structure made of a metal having a gradient composition in which the mixing ratio of the reactive metal / Cr-Fe alloy gradually increases from the base side toward the tube end.

【0006】上記熱交換用チューブは、枠部材である円
筒体(21)、該円筒体の軸心に設置された芯金(2
2)、および円筒体(21)の両端部にあてがわれる蓋
板(23)(24)からなるカプセル(20)の内側空
間部に、基体(11)の形成材料である、Cr含有量が
60重量%以上であるCr−Fe系合金粉末の充填層、
遷移部(12)の形成材料である、易溶接性金属/Cr
−Fe系合金の量比が、基体の粉末充填層側から円筒体
の端部側に向かって漸増した傾斜組成を与えられている
混合粉末の充填層、および管端部(13)の形成材料で
ある易溶接性金属の粉末充填層を積層形成し、脱気密封
したうえ、これに熱間静水等方圧プレス処理を施すこと
により製造される。
The heat exchange tube is composed of a cylindrical body (21) as a frame member, and a metal core (2) installed at the axis of the cylindrical body.
2) and the inner space of the capsule (20) comprising the lid plates (23) and (24) applied to both ends of the cylindrical body (21), the Cr content, which is a material for forming the base (11), A packed layer of Cr-Fe-based alloy powder of 60% by weight or more,
Easily weldable metal / Cr which is the material for forming the transition portion (12)
-Filling layer of mixed powder in which the amount ratio of the Fe-based alloy is gradually increased from the powder filling layer side of the substrate toward the end of the cylindrical body, and the material for forming the pipe end (13) Is formed by laminating a powder-filled layer of an easy-to-weld metal, followed by degassing and sealing, followed by hot isostatic pressing.

【0007】本発明の熱交換用チューブの基体を構成す
る、Cr60%以上のCr−Fe系合金(以下「Cr基
合金」)は、約1600℃以上の高融点を有すると共
に、高温燃焼炎の直接被曝・燃焼ガスの接触による酸化
作用や熱的損傷に対する卓抜した抵抗性を示し、かつ座
屈・変形等を生じ難い高温強度を有する。この高温諸特
性は1000℃付近の温度域はむろん、従来のCo基合
金の使用限界温度である約1250℃を超える高温環境
での使用を可能にする。
[0007] The Cr-Fe-based alloy (hereinafter referred to as "Cr-based alloy") of 60% or more of Cr, which constitutes the base of the heat exchange tube of the present invention, has a high melting point of about 1600 ° C or more and a high-temperature combustion flame. It exhibits outstanding resistance to oxidation and thermal damage due to direct exposure and contact with combustion gases, and has high temperature strength that does not easily cause buckling or deformation. These high-temperature characteristics make it possible to use in a high-temperature environment exceeding about 1250 ° C., which is the use limit temperature of the conventional Co-based alloy, as well as a temperature range around 1000 ° C.

【0008】Cr基合金は、上記のように卓抜した高温
諸特性を有する反面、溶接性に乏しい。このため、チュ
ーブ全体をCr基合金で形成すると、炉体に設置する際
の炉壁や関連部材(これらは通常ステンレス鋼や普通鋼
等からなる)との連結・接合固定に溶接を適用すること
ができない。溶接金属部にブローホールが発生し易く、
仮に溶接できても、その溶接継手部の機械強度は不十分
であるからである。本発明の熱交換用チューブは、その
管端部が易溶接性金属で形成されているので、所要の機
械強度を有する健全な溶接継手を効率よく形成すること
ができる。また、複数本のチューブ同士を接合(突合せ
溶接)することにより、炉体のスケールおよび設置態様
に応じた所望の管長を有するチューブに仕上げることも
容易である。
[0008] Although the Cr-based alloy has outstanding high-temperature characteristics as described above, it has poor weldability. For this reason, if the entire tube is formed of a Cr-based alloy, welding must be applied to connect and join with the furnace wall and related members (these are usually made of stainless steel or ordinary steel) when installed in the furnace body. Can not. Blow holes easily occur in the weld metal,
This is because even if welding can be performed, the mechanical strength of the welded joint portion is insufficient. Since the tube end of the heat exchange tube of the present invention is formed of an easily weldable metal, a sound welded joint having required mechanical strength can be efficiently formed. Also, by joining (butt-welding) a plurality of tubes, it is easy to finish a tube having a desired tube length according to the scale and installation mode of the furnace body.

【0009】基体(Cr基合金)(11)と管端部(易
溶接性金属)(13)との間に、遷移部(12)を設け
ているのは、基体と管端部との間の金属組成の急激な変
化とそれに起因する不具合(両者の熱膨張率の相違によ
り生じる熱応力とそれに起因する亀裂等のチューブ破損
等)を回避するためである。遷移部に組成勾配が付与さ
れていることにより、上記不具合が解消され、操業開始
時・炉運転途中における昇降温の温度変化が繰り返され
る熱交換用チューブとしての安定性を確保することを可
能にしている。
The transition portion (12) is provided between the base (Cr-based alloy) (11) and the pipe end (easy-to-weld metal) (13) because of the gap between the base and the pipe end. This is in order to avoid a rapid change in the metal composition and problems caused by the change (thermal stress caused by a difference in the coefficient of thermal expansion between the two and tube damage such as a crack caused by the stress). By providing the composition gradient in the transition section, the above-mentioned problem is solved, and it is possible to secure the stability as a heat exchange tube in which the temperature change of the temperature rise and fall at the start of operation and during the furnace operation is repeated. ing.

【0010】[0010]

【発明の実施の形態】図1は本発明の熱交換用チューブ
の構成を模式的に示している。熱交換用チューブ(1
0)は、基体(11)、遷移部(12)、および管端部
(13)とからなり、遷移部(12)は、管軸方向に積
層された、合金組成を異にする複数の層(図は、層12
〜12の4層の例である)で構成されている。
FIG. 1 schematically shows the structure of a heat exchange tube according to the present invention. Heat exchange tube (1
0) is composed of a substrate (11), a transition portion (12), and a tube end (13), and the transition portion (12) is composed of a plurality of layers having different alloy compositions laminated in the tube axis direction. (The figure shows layer 12
It is composed of an a) Example of 1-12 4 4 layers.

【0011】基部(11)を形成するCr基合金は、そ
の化学組成として、0.8%以下のC、5%以下のSi
の混在が許容される。この範囲内であれば、前記の高温
特性は損なわれない。Cr基合金は、所望により、W,
Mo,Nb,Ta,Hf,Co,Al,V,Mnから選
ばれる1種又は2種以上の元素を含む組成が与えられ
る。これらの各元素は高温強度の向上等に奏効する。し
かし、多量の添加は、耐酸化性,靭性、加工性の低下を
招くので、各元素ともそれぞれ10%以下に制限され
る。
The Cr-based alloy forming the base (11) has a chemical composition of 0.8% or less of C and 5% or less of Si.
Is allowed. Within this range, the high-temperature characteristics described above are not impaired. The Cr-based alloy can be made of W,
A composition containing one or more elements selected from Mo, Nb, Ta, Hf, Co, Al, V, and Mn is provided. Each of these elements is effective in improving high-temperature strength and the like. However, addition of a large amount causes reduction in oxidation resistance, toughness, and workability, so that each element is limited to 10% or less.

【0012】管端部(13)を形成する易溶接性金属
は、炉壁および関連部材との溶接施工を可能とする各種
の金属材料が適宜選択される。むろん、熱交換用チュー
ブとして必要な耐熱性を具備するものであることを要す
るが、その材種の選択に困難はなく、炉壁部材として使
用されている金属材料、例えば、JIS G4303 SUS316L
ステンレス鋼(0.03≧C-13Ni-17Cr-Fe)、JIS G5121
SCS12(0.2≧C-10Ni-20Cr-Fe)等を任意に適用すること
ができる。
As the easily weldable metal forming the pipe end portion (13), various metal materials capable of performing welding with the furnace wall and related members are appropriately selected. Of course, it is necessary to have the heat resistance necessary for the heat exchange tube, but there is no difficulty in selecting the material type, and the metal material used as the furnace wall member, for example, JIS G4303 SUS316L
Stainless steel (0.03 ≧ C-13Ni-17Cr-Fe), JIS G5121
SCS12 (0.2 ≧ C-10Ni-20Cr-Fe) or the like can be arbitrarily applied.

【0013】遷移部(12)は、金属組成を異にする複
数の層(12〜12)からなる多層構造を有してい
る。基体(11)に接する層(12)は基体(11)
に近似した組成を、管端部(13)に接する層(1
)は管端部(13)に近似した組成をそれぞれ有
し、かつその組成は層(12)から(12)に亘っ
て漸次変化している。遷移部(12)の管軸方向長さ
は、概ね20〜40mm程度である。なお、図の遷移部
(12)は4層からなる例を示しているが、むろんこれ
に限定されず、基体(11)および管端部(13)の化
学組成に応じて適宜増減調整される。
[0013] Transition portion (12) has a multilayer structure composed of a plurality of layers having different metal composition (12 1 to 12 4). The layer (12 1 ) in contact with the substrate (11) is the substrate (11)
The composition similar to that of the layer (1) in contact with the pipe end (13)
3 4 ) each have a composition close to the tube end (13), and the composition changes gradually from the layers (12 1 ) to (12 4 ). The length of the transition portion (12) in the tube axis direction is generally about 20 to 40 mm. Although the transition part (12) in the figure shows an example composed of four layers, it is a matter of course that the transition part (12) is not limited to this, and is appropriately increased or decreased according to the chemical composition of the base (11) and the pipe end (13). .

【0014】管端部(13)の形状設計は任意である。
例えば、図1の管端部(13)に示すように、チュー
ブの形状(径と肉厚)と同一の形状が与えられる。この
形状を有する管端部(13)は、炉壁や関連部材との
溶接接合を可能とするほか、複数本のチューブ(10)
(10)の管端部同士を連結し、所望の管長を有するチ
ューブに仕上げるための突合せ溶接を可能とする。ま
た、熱交換用チューブ(10)の管端部(13)に示
すように、フランジ形状を与えることにより、炉壁への
取付け・他部材との溶接による連結形態の自由度を高め
ることができる。
The shape design of the tube end (13) is optional.
For example, as shown in the tube end (13 1 ) in FIG. 1, the same shape as the tube shape (diameter and thickness) is given. The tube end (13 1 ) having this shape enables welding and joining to the furnace wall and related members, and a plurality of tubes (10).
The pipe ends of (10) are connected to each other to enable butt welding for finishing a tube having a desired pipe length. Further, as shown in the tube end of the heat exchanger tubes (10) (13 2), by providing a flange shape, to increase the flexibility of the connecting form by welding the mounting-other members of the furnace wall it can.

【0015】次に、本発明の熱交換用チューブを製造す
る熱間静水等方圧プレス(HIP)処理について、図3
および図4を参照して説明する。図3は、HIP原料の
キャニングの態様を示している。21はカプセルの外殻
を形成する円筒体(軟鋼製等)、22は芯金、23,2
4は円筒体(21)の両端の開口部にあてがわれた蓋材
である。円筒体(21)と芯金(22)は、互いの軸芯
を一致させて蓋板(23)に溶接等で固定されて垂直に
設置され、その内側空間に、チューブの形成原料である
金属粉末の充填層(P)(P11,P12,P13)が
積層形成される。
Next, the hot isostatic pressing (HIP) process for producing the heat exchange tube of the present invention will be described with reference to FIG.
This will be described with reference to FIG. FIG. 3 shows an embodiment of canning of the HIP raw material. 21 is a cylindrical body (made of mild steel or the like) forming the outer shell of the capsule, 22 is a cored bar, 23, 2
Reference numeral 4 denotes a cover material applied to the openings at both ends of the cylindrical body (21). The cylindrical body (21) and the core metal (22) are fixed vertically by welding or the like to the cover plate (23) so that their axes coincide with each other, and are installed vertically. A powder filling layer (P) (P 11 , P 12 , P 13 ) is laminated.

【0016】P11は、熱交換用チューブの基体(1
1)となるCr基合金粉末の充填層、P12は遷移部
(12)となる粉末(Cr基合金と易溶接性金属の混合
粉末)の充填層、P13は管端部(13)となる易溶接
性金属の粉末充填層である。遷移部となる粉末充填層
(P12)は、図4に示すように、複数の粉末層(P
121〜P124)からなる。該粉末層(P121〜P
124)は、Cr基合金と易溶接性金属との混合量比が
段階的に変化(P121層からP124層に向かって易
溶接性金属粉末の量比が漸増)するように調整されてい
る。この粉末充填層(P12)の粉末層(P121〜P
124)は、混合の均一性が確保されるように、ボール
ミル等で十分混練した粉末を使用するのが望ましい。
P11Is the base of the heat exchange tube (1
1) Cr-based alloy powder packed layer, P12Is the transition part
(12) Powder (mixture of Cr-based alloy and easily weldable metal)
Powder) packed bed, P13Is easy welding to become pipe end (13)
It is a powder-filled layer of a conductive metal. Powder packed bed as transition
(P12), As shown in FIG. 4, a plurality of powder layers (P
121~ P124). The powder layer (P121~ P
124) Indicates that the mixing ratio between the Cr-based alloy and the easily weldable metal is
Stepwise change (P121P from layer124Easy towards layers
(The amount ratio of weldable metal powder is gradually increased.)
You. This powder packed bed (P12) Powder layer (P121~ P
124) Balls to ensure uniformity of mixing
It is desirable to use powder sufficiently kneaded with a mill or the like.

【0017】上記のようにカプセル内に粉末充填層
(P)を積層形成した後、円筒体(21)の上端開口部
に蓋板(24)を被せ、カプセル内を脱気密封したう
え、HIP処理に付す。HIP処理は、温度約1000
〜1500℃、加圧力約100〜200MPaの加熱加
圧条件下に適当時間(例えば0.5〜4Hr)保持することに
より達成される。具体的処理条件は、組み合わされる基
材,管端部等の形成原料の材種に応じて上記範囲内で個
々に設定される。HIP処理後、円筒体(21),芯金
(22)および両端の蓋材(23)(24)を機械加工
等により除去することにより、HIP成形体である、基
体(11)と遷移部(12)と管端部(13)とからな
るチューブを取出す。
After the powder-filled layer (P) is formed in the capsule as described above, the lid (24) is put on the opening at the upper end of the cylindrical body (21), and the inside of the capsule is degassed and sealed. Attach to processing. The HIP process is performed at a temperature of about 1000
This can be achieved by maintaining a heating and pressurizing condition of about 1500 ° C. and a pressure of about 100 to 200 MPa for an appropriate time (for example, 0.5 to 4 hours). Specific processing conditions are individually set within the above range according to the type of the forming raw material such as the base material and the pipe end to be combined. After the HIP processing, the cylindrical body (21), the cored bar (22) and the lid members (23) (24) at both ends are removed by machining or the like, so that the HIP molded body (11) and the transition portion ( Take out the tube consisting of 12) and the tube end (13).

【0018】前記図3に示したHIP原料のキャニング
において、蓋材(23)(24)の一方又は両方の部材
として、易溶接性金属からなる板部材(鋳造材,塑性加
工材等)を使用する場合は、その板部材と接する側の粉
末充填層(P)を省略することができる。すなわち、
その板部材に蓋材(23)又は/及び(24)の役目
と、管端部(13)(13,13)の形成材料とし
ての役目を兼ねさせるのである。そのキャニング構成
は、円筒体(21)内の粉末充填層(P)が省略する
点を除いて、図3,図4のそれと異ならない。
In the canning of the HIP raw material shown in FIG. 3, a plate member (cast material, plastic work material, etc.) made of an easily weldable metal is used as one or both of the lid members (23) and (24). In this case, the powder filling layer (P 3 ) on the side in contact with the plate member can be omitted. That is,
And the role of the lid (23) or / and (24) in the plate member is to serve also as a role of as the material of the tube end (13) (13 1, 13 2). The canning configuration is not different from that of FIGS. 3 and 4, except that the powder packed layer (P 3 ) in the cylinder (21) is omitted.

【0019】HIP処理の後、円筒体(21)および芯
金(22)を機械加工で除去してHIP成形体を取出
す。その機械加工において、蓋材(23)(又は/及び
(24))を管端部(13)として残置させることによ
り、図1に示す熱交換用チューブ(10)を得る。管端
部(13)と遷移部(12)との界面は、HIP処理過
程で生じる固相拡散により冶金的に接合されている。
After the HIP treatment, the cylindrical body (21) and the core metal (22) are removed by machining to take out the HIP molded body. In the machining, the lid (23) (or / and (24)) is left as the pipe end (13) to obtain the heat exchange tube (10) shown in FIG. The interface between the pipe end (13) and the transition (12) is metallurgically joined by solid phase diffusion that occurs during the HIP process.

【0020】HIP処理により得られるチューブ(1
0)は、熱間塑性加工(例えば、高周波曲げ加工、熱間
押し曲げ加工等)により、各種のベンド管(U字型、L
字型等)に成形することができ、縮径加工なども可能で
ある。またU字型管とストレート管とを突合せ溶接する
ことにより、U字型、W字型チューブ等、所望の形態を
有するチューブに仕上げることができる。
The tube (1) obtained by the HIP treatment
0) shows various types of bend tubes (U-shaped, L-shaped) by hot plastic working (for example, high-frequency bending, hot pressing bending, etc.).
(Shape, etc.) and diameter reduction processing is also possible. By butt-welding the U-shaped tube and the straight tube, a tube having a desired shape such as a U-shaped tube or a W-shaped tube can be finished.

【0021】[0021]

【実施例】[1]供試チューブの製作 (1)原料粉末の調製とキャニング Cr基合金のA粉末および易溶接性金属のB粉末(いず
れも粒度100メッシュアンダー)を所定の組成となるよ
うにボールミルで混練し、図3に示すようにカプセル
(軟鋼製)内に積層充填する。カプセル内の粉末充填層
(図4参照)のP11(基体11となる部分)、P
(遷移部12となる部分)、およびP13(管端部13
となる部分)の組成は下記のとおりである。P121,
122,P123,P124、P13の充填層厚はそれ
ぞれ約10mmである。
EXAMPLES [1] Production of test tube (1) Preparation and canning of raw material powder A powder of Cr-based alloy and B powder of easily weldable metal (both having a particle size of under 100 mesh) are made to have a predetermined composition. The mixture is kneaded with a ball mill, and is laminated and filled in a capsule (made of mild steel) as shown in FIG. Powder-filled layer in the capsule (portion to be the base 11) P 11 (see FIG. 4), P 1 2
(The part to be the transition part 12), and P 13 (the pipe end 13
Is as follows. P 121 ,
Filling layer thickness of P 122, P 123, P 124 , P 13 is about 10mm, respectively.

【0022】A粉末…Cr−Fe合金(Cr90wt%) B粉末…SUS316Lステンレス鋼(0.025C-0.50Si-1.5Mn-1
3Ni-17Cr-2.5Mo-Fe) 粉末充填層組成(重量比) P11 : A/B=100/0 P12 : P121 A/B=80/20 P122 A/B=60/40 P123 A/B=40/60 P124 A/B=20/80 P13 : A/B=0/100
A powder: Cr-Fe alloy (Cr90wt%) B powder: SUS316L stainless steel (0.025C-0.50Si-1.5Mn-1)
3Ni-17Cr-2.5Mo-Fe) Powder packed layer composition (weight ratio) P 11 : A / B = 100/0 P 12 : P 121 A / B = 80/20 P 122 A / B = 60/40 P 123 A / B = 40/60 P 124 A / B = 20/80 P 13 : A / B = 0/100

【0023】(2)HIP処理 カプセル内を脱気(0.1MPa)後、密封し、温度1
200℃×100MPa×保持時間3Hrの処理を実
施。処理後、カプセルを機械加工で除去してチューブを
取出す。これをチューブT1とする。比較例として、粉
末Aのみを使用した点を除いて上記と同一条件のHIP
処理を行ってCr基合金単体チューブを得た。これをチ
ューブT2とする。
(2) HIP treatment After degassing the inside of the capsule (0.1 MPa), the capsule is sealed,
Processing of 200 ° C. × 100 MPa × holding time of 3 hours was performed. After processing, the capsule is machined away and the tube is removed. This is called tube T1. As a comparative example, HIP under the same conditions as above except that only powder A was used
The treatment was performed to obtain a Cr-based alloy simple tube. This is designated as tube T2.

【0024】供試チューブT1およびT2のサイズ(機
械加工後)は、いずれも全長1000mm、内径100mm、
肉厚6mmである。チューブT1における遷移部(1
2)の層厚(管軸方向厚さ)は約32mm、管端部(1
3)の層厚(管軸方向厚さ)は約8mmである。
Each of the test tubes T1 and T2 (after machining) has a total length of 1000 mm, an inner diameter of 100 mm,
The thickness is 6 mm. Transition part (1) in tube T1
The layer thickness (thickness in the pipe axis direction) of 2) is about 32 mm, and the pipe end (1
The layer thickness (thickness in the tube axis direction) of 3) is about 8 mm.

【0025】[2]溶接継手性能 供試チューブT1,T2のそれぞれについて、管端部を
TIG溶接にて炉壁部材(ステンレス鋼製)に固定する
ことにより炉内に設置した。設置後、1200℃、真空
中で500時間加熱した。この模擬試験において、チュー
ブT1(発明材)は、クラック等の損傷を生じず、健全
な形態を維持した。他方、チューブT2(Cr基合金単
体)では、フランジへの取付け部にクラックが発生し、
真空雰囲気を保持することができなかった。
[2] Weld Joint Performance Each of the test tubes T1 and T2 was installed in the furnace by fixing the tube end to a furnace wall member (made of stainless steel) by TIG welding. After installation, it was heated in a vacuum at 1200 ° C. for 500 hours. In this simulation test, the tube T1 (invention material) did not cause damage such as cracks, and maintained a healthy form. On the other hand, in the case of the tube T2 (Cr-based alloy alone), cracks occur in the mounting portion to the flange,
The vacuum atmosphere could not be maintained.

【0026】[0026]

【発明の効果】本発明の熱交換用チューブは、Cr基合
金による卓抜した高温特性、耐酸化性等を有している。
また溶接性を備えているので、溶接を適用して配管施工
・炉への設置などを効率よく行うことができる。本発明
の熱交換用チューブを使用することにより、鍛造炉,焼
結炉,高温熱処理炉などの1000℃を超える燃焼炎や
ガスが接触する高温酸化雰囲気下にも、溶損や酸化損耗
を抑制防止され、従来の耐熱合金製チューブでは不可能
な安定使用が確保され、メンテナンスの改善、操炉効率
の向上等の効果を得ることができる。なお、本発明のチ
ューブは、熱間静水等方圧プレス成形体として製造され
るので、ニアネットシェイプを有し、仕上げ機械加工の
負担も少なく、コスト的にも有利である。
The heat exchange tube of the present invention has excellent high-temperature characteristics, oxidation resistance and the like made of a Cr-based alloy.
In addition, since it has weldability, it is possible to efficiently perform welding, installation of piping and installation in a furnace by applying welding. By using the heat exchange tube of the present invention, erosion and oxidative wear can be suppressed even in a high-temperature oxidizing atmosphere in which a combustion flame exceeding 1000 ° C. or a gas comes into contact, such as a forging furnace, a sintering furnace, and a high-temperature heat treatment furnace. Thus, stable use that is impossible with a conventional tube made of a heat-resistant alloy is secured, and effects such as improved maintenance and improved furnace operation efficiency can be obtained. In addition, since the tube of the present invention is manufactured as a hot isostatic press formed body, it has a near net shape, has less burden on finishing machining, and is advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換用チューブの形態および多層構
造を模式的に示す管軸方向断面図である。
FIG. 1 is a sectional view in the axial direction of a tube schematically showing the form and multilayer structure of a heat exchange tube of the present invention.

【図2】本発明の熱交換用チューブの多層構造を示す断
面説明図である。
FIG. 2 is an explanatory sectional view showing a multilayer structure of the heat exchange tube of the present invention.

【図3】本発明の熱交換用チューブを製造するための熱
間静水等方圧プレスにおけるカプセルと原料のキャニン
グを示す断面説明図である。
FIG. 3 is an explanatory cross-sectional view showing canning of capsules and raw materials in a hot isostatic press for producing a heat exchange tube of the present invention.

【図4】カプセル内の原料粉末の積層充填態様を示す説
明図である。
FIG. 4 is an explanatory view showing a lamination filling mode of raw material powder in a capsule.

【符号の説明】[Explanation of symbols]

10:熱交換用チューブ 11:基体 12:遷移部 13(13,13):管端部 21:カプセル円筒体 22:芯金 23,24:蓋材 P:金属粉末充填層 P11:Cr基合金粉末層 P12:Cr基合金と易溶接性金属の混合粉末層 P13:易溶接性金属粉末層10: heat exchanger tube 11: base 12: Transition portion 13 (13 1, 13 2): tube end 21: Capsule cylindrical body 22: metal core 23, 24: lid member P: metal powder-filled layer P 11: Cr Base alloy powder layer P 12 : Mixed powder layer of Cr-based alloy and easily weldable metal P 13 : Easy weld metal powder layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船越 淳 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 Fターム(参考) 4K018 AA40 BA14 EA13 EA15 HA03 JA07 JA27 KA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Atsushi Funakoshi 1-1-1 Nakamiya Oike, Hirakata City, Osaka Prefecture F-term in Kubota Hirakata Plant (reference) 4K018 AA40 BA14 EA13 EA15 HA03 JA07 JA27 KA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チューブ基体、継手形成部としての管端
部、および該チューブ基体と端縁部とを連結する遷移部
を有し、チューブ基体はCr含有量60重量%以上であ
るCr−Fe系合金からなり、管端部は易溶接性金属か
らなり、遷移部は、易溶接性金属/Cr−Fe系合金の
混合量比が、基体側から管端部側に向かって漸次増加し
ている傾斜組成を有する金属からなる高温ガス炉の熱交
換用チューブ。
1. A tube base comprising: a tube base; a tube end as a joint forming portion; and a transition portion connecting the tube base to an end portion, wherein the tube base has a Cr-Fe content of 60% by weight or more. In the transition part, the mixing ratio of the easily weldable metal / Cr-Fe alloy gradually increases from the base side toward the pipe end. For heat exchange of a high temperature gas furnace made of a metal having a graded composition.
【請求項2】 Cr−Fe系合金からなる基体、継手形
成部となる易溶接性金属からなる管端部、および易溶接
性金属/Cr−Fe系合金の混合量比が、基体側から管
端部側に向かって漸次増加している傾斜組成を有する金
属からなる遷移部を有する熱交換用チューブを製造する
方法であって、 枠部材である円筒体、該円筒体の軸心に設置された芯
金、および円筒体の両端部にあてがわれる蓋板からなる
カプセルの内側空間部に、基体の形成材料である、Cr
含有量が60重量%以上であるCr−Fe系合金の粉末
充填層、遷移部の形成材料である、易溶接性金属/Cr
−Fe系合金の量比が基体の粉末充填層側から円筒体の
端部側に向かって漸増した傾斜組成を与えられている混
合粉末の充填層、および管端部の形成材料である易溶接
性金属の粉末充填層を積層形成し、脱気密封したうえ、
熱間静水等方圧プレス処理することからなる高温ガス炉
の熱交換用チューブの製造方法。
2. A base material made of a Cr—Fe alloy, a pipe end made of an easily weldable metal to be a joint forming portion, and a mixture ratio of the easily weldable metal / Cr—Fe alloy being determined from the base side to the pipe. A method for producing a heat exchange tube having a transition portion made of a metal having a gradient composition gradually increasing toward an end portion, comprising: a cylindrical member serving as a frame member; and a cylindrical member provided at an axis of the cylindrical member. Cr, which is a material for forming a base, is formed in the inner space of a capsule formed of a cored bar and a lid plate applied to both ends of a cylindrical body.
Easy weldable metal / Cr, which is a material for forming a powder-filled layer and a transition portion of a Cr-Fe alloy having a content of 60% by weight or more
A filler layer of a mixed powder having a gradient composition in which the amount ratio of the Fe-based alloy is gradually increased from the powder filler layer side of the substrate toward the end of the cylindrical body; After forming a powder-filled layer of conductive metal and sealing it by degassing,
A method for producing a heat exchange tube of a high-temperature gas furnace, comprising hot isostatic pressing.
【請求項3】 円筒体の少なくとも一方の端部側におけ
るCr−Fe系合金の粉末充填層を省略すると共に、そ
の端部にあてがわれる蓋板として易溶接性金属からなる
板部材を使用し、該板部材を管端部の形成材料とする請
求項2に記載の熱交換用チューブの製造方法。
3. A plate member made of an easy-to-weld metal is used as a lid plate applied to the end while omitting a powder-filled layer of a Cr—Fe alloy on at least one end of the cylindrical body. The method for producing a tube for heat exchange according to claim 2, wherein the plate member is used as a material for forming a tube end.
JP2000021550A 2000-01-31 2000-01-31 Heat exchange tube for high temperature gas furnace and its producing method Pending JP2001214231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021550A JP2001214231A (en) 2000-01-31 2000-01-31 Heat exchange tube for high temperature gas furnace and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021550A JP2001214231A (en) 2000-01-31 2000-01-31 Heat exchange tube for high temperature gas furnace and its producing method

Publications (1)

Publication Number Publication Date
JP2001214231A true JP2001214231A (en) 2001-08-07

Family

ID=18547948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021550A Pending JP2001214231A (en) 2000-01-31 2000-01-31 Heat exchange tube for high temperature gas furnace and its producing method

Country Status (1)

Country Link
JP (1) JP2001214231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527063A1 (en) * 2011-05-24 2012-11-28 Electric Power Research Institute, Inc. Functionally graded compositional control methods to eliminate dissimilar metal welds (DMWs) during manufacture of integral headers
EP2527064A1 (en) * 2011-05-24 2012-11-28 Electric Power Research Institute, Inc. Method of manufacturing a weld-free apparatus for connection of dissimilar metals using functionally graded compositionally control powder metallurgy and hot isostatic processing methods
CN106041097A (en) * 2016-07-22 2016-10-26 东莞市金瑞五金股份有限公司 Copper and iron powder metallurgical pipe and preparing method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527063A1 (en) * 2011-05-24 2012-11-28 Electric Power Research Institute, Inc. Functionally graded compositional control methods to eliminate dissimilar metal welds (DMWs) during manufacture of integral headers
EP2527064A1 (en) * 2011-05-24 2012-11-28 Electric Power Research Institute, Inc. Method of manufacturing a weld-free apparatus for connection of dissimilar metals using functionally graded compositionally control powder metallurgy and hot isostatic processing methods
CN106041097A (en) * 2016-07-22 2016-10-26 东莞市金瑞五金股份有限公司 Copper and iron powder metallurgical pipe and preparing method and application thereof
CN106041097B (en) * 2016-07-22 2019-11-29 东莞市金瑞五金股份有限公司 A kind of copper and iron powder metallurgy pipe and its application

Similar Documents

Publication Publication Date Title
EP2059620B1 (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
EP2676759B1 (en) Turbine rotor, method of manufacturing such turbine rotor, and steam turbine having such turbine rotor
EP2182086B1 (en) Process for producing a ni-base alloy-high chromium steel structure
JP4929399B2 (en) Rotor for rotating equipment and method for manufacturing the same
JPH07299592A (en) Method of making self brazing composite material
US20100028705A1 (en) Dissimilar metal transition for superheater or reheater tubes
US20130121868A1 (en) Method of manufacturing a weld-free apparatus for connection of dissimilar metals using functionally graded compositionally control powder metallurgy and hot isostatic processing methods
JP5694564B2 (en) Reduction of residual stress in welding
CN114505619A (en) Nickel-based welding wire, manufacturing method of nickel-based welding wire and welding process of nickel-based welding wire
JPH02140688A (en) Dispersion strengthening ferritic steel cladding pipe for nuclear reactor and production thereof
JP2004276035A (en) Welded joint excellent in resistance to caulking of metallic composite pipe
JPH08506315A (en) High heat resistant structural parts
JP2001214231A (en) Heat exchange tube for high temperature gas furnace and its producing method
US20110035924A1 (en) Developments in or relating to drum rotors
CN116079279A (en) Wear-resistant corrosion-resistant Fe-based welding wire and preparation method thereof
JP2004243380A (en) Composite roll for rolling made of cemented carbide
EP2527063B1 (en) Functionally graded compositional control methods to eliminate dissimilar metal welds (DMWs) during manufacture of integral headers
US20230123302A1 (en) Method for welding iron-aluminum intermetallic compound microporous material and welded part made thereby
JPH06330226A (en) Multiple-layered steel excellent in high temperature corrosion resistance and its production
WO2017173243A1 (en) Method to eliminate dissimilar metal welds
CN107175421B (en) A kind of compressive pre-stress bimetal centrifugal is cast the welding procedures of compound pipe end flanges
GB2383336A (en) Rotor and method for welding an element of a rotor
JP2001304793A (en) High temperature gas heat exchanging tube
Rebak et al. Fabrication and Mechanical Aspects of Using FeCrAl for Light Water Reactor Fuel Cladding
JPH0481291A (en) Submerged arc welding wire