JP2001210329A - Manufacturing method of negative electrode material for nonaqueous lithium secondary battery - Google Patents

Manufacturing method of negative electrode material for nonaqueous lithium secondary battery

Info

Publication number
JP2001210329A
JP2001210329A JP2000347569A JP2000347569A JP2001210329A JP 2001210329 A JP2001210329 A JP 2001210329A JP 2000347569 A JP2000347569 A JP 2000347569A JP 2000347569 A JP2000347569 A JP 2000347569A JP 2001210329 A JP2001210329 A JP 2001210329A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
substance
electrode material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000347569A
Other languages
Japanese (ja)
Inventor
Toru Fuse
亨 布施
Hideji Sato
秀治 佐藤
Keiko Nishioka
圭子 西岡
Shinji Kasamatsu
真治 笠松
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000347569A priority Critical patent/JP2001210329A/en
Publication of JP2001210329A publication Critical patent/JP2001210329A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce a negative electrode material which has a high capacity, a long cycle life and in which an irreversible capacity in the first time charge is small as well, that is, this is friendly with an electrolyte. SOLUTION: In a manufacturing method of the negative electrode material for nonaqueous lithium secondary battery, it is characterized as follows; a metallic material M, a graphite material, and a carbonaceous matter precursor which is an organic compound are mixed and calcined at the inert atmosphere lower part; the metallic material M is composed of solid phase A, B; a part or the entire surface of periphery of nuclear particle consisting of solid phase A has a structure coated by the solid phase B5 further, the solid phase A at least contains silicon as a constituent element; the solid phase B is a solid solution or intermetallic compound between at least a kind of element selected from the group consisted of II group element, transition metal element, XII group element, XIII group element, XIV group element except for carbon and silicon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型、計量の電気
機器や電気自動車の電源として好適な、非水系リチウム
二次電池用負極材の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a negative electrode material for a non-aqueous lithium secondary battery, which is suitable as a power source for small and weighed electric devices and electric vehicles.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、高容量
の二次電池が求められている。そのため、ニッケル・カ
ドミウム電池、ニッケル・水素電池に比べ、エネルギー
密度の高い非水系リチウム二次電池が注目されている。
2. Description of the Related Art In recent years, as electronic devices have become smaller, high-capacity secondary batteries have been demanded. For this reason, non-aqueous lithium secondary batteries having higher energy density than nickel-cadmium batteries and nickel-metal hydride batteries have attracted attention.

【0003】[0003]

【発明が解決しようとする課題】負極材料としては、最
初リチウム金属を用いる事が試みられたが、充放電を繰
り返すうちに、樹枝状のリチウムが析出し、セパレータ
ーを貫通して正極にまで達し、この結果短絡を起こす可
能性があることが判明した。
At first, the use of lithium metal as the negative electrode material was attempted. However, as charge and discharge were repeated, dendritic lithium was precipitated and penetrated through the separator to reach the positive electrode. As a result, it has been found that a short circuit may occur.

【0004】また、特開昭57−208079には、リ
チウムを負極材とし、電極板として結晶化度が高い黒鉛
を使用することが提案された。しかしながら、黒鉛は、
リチウム吸蔵に黒鉛結晶中へのインターカレーションを
利用するため、常温、常圧では、その体積理論容量であ
る820mAh/ccを超えるものは得られないという欠点が
あった。
Japanese Patent Application Laid-Open No. 57-208079 has proposed that lithium be used as a negative electrode material and graphite having high crystallinity be used as an electrode plate. However, graphite
Since the intercalation into the graphite crystal is used for lithium occlusion, there is a drawback that a material exceeding its volume theoretical capacity of 820 mAh / cc cannot be obtained at normal temperature and normal pressure.

【0005】より高容量を発現できる負極材料として
は、Al、Si、Sn等、リチウムと化合する金属を用
いれば良いことが知られているが、これらの材料は充放
電サイクルに伴い、容量が著しく低下するという問題が
あった。
It is known that as a negative electrode material capable of exhibiting a higher capacity, a metal which combines with lithium, such as Al, Si, Sn, etc., may be used. There has been a problem that it is significantly reduced.

【0006】特開平5−286763には、Alに複数
種の炭素を添加する事で、充放電サイクルに伴う容量の
低下が抑制されることが開示されているが、Alを用い
ると、その体積当たりの容量は、最大でも2,839mA
h/ccと制限される。一方、Siはその体積当たりの容量
が最大4,648mAh/ccと大きいが、充放電時の体積変
化も大きく、上述の問題が生じる為、負極材料として実
用化に至っていない。
Japanese Patent Application Laid-Open No. 5-286763 discloses that the addition of a plurality of types of carbon to Al suppresses a decrease in capacity due to a charge / discharge cycle. The maximum capacity per unit is 2,839mA
Limited to h / cc. On the other hand, Si has a large capacity per volume as large as 4,648 mAh / cc, but has a large change in volume at the time of charge and discharge, and causes the above-mentioned problem. Therefore, Si has not been put to practical use as a negative electrode material.

【0007】近年、これらの欠点を解決する方法とし
て、珪化物粉体をLi二次電池用負極材として用いる技
術が、特開平7−240201に開示されている。これ
らの化合物は体積容量が大きく、サイクル寿命も長いこ
とがわかってきたが、本材料は電導度が低く、単体で用
いるとLiと十分に化合できず、理論容量を発現できな
い。そこで、特開平8−153517には本材料粉体に
アセチレンブラックなどの導電剤を添加して負極材を形
成する技術が開示されている。
In recent years, as a method for solving these drawbacks, Japanese Patent Laid-Open No. 7-240201 discloses a technique using silicide powder as a negative electrode material for a Li secondary battery. It has been found that these compounds have a large volume capacity and a long cycle life, but this material has a low electric conductivity, and when used alone, cannot be sufficiently combined with Li to exhibit a theoretical capacity. Therefore, Japanese Patent Application Laid-Open No. 8-153517 discloses a technique for forming a negative electrode material by adding a conductive agent such as acetylene black to the present material powder.

【0008】しかし、アセチレンブラックは、一般的に
その粒子径が1μm未満と非常に小さいため、比表面積
が大きく、初回充電時の不可逆容量を増大させると言う
問題がある。
However, acetylene black generally has a very small particle size of less than 1 μm, and thus has a problem that the specific surface area is large and the irreversible capacity at the time of the first charge is increased.

【0009】この様な欠点を解決するため、珪化物とと
もに導電材として結晶性の高い黒鉛粒子を用いること
が、特開平10−199527に記載されている。これ
により、珪化物単体で使用するよりも、容量は向上し、
サイクル寿命も向上、更に初回充電時の不可逆容量は低
減されるが、やはり長期にわたるサイクルを行うと容量
の漸次低下が起こる。これは、リチウムの充放電に伴う
珪化物の体積変化が、黒鉛で導電化されている負極構造
に変化を及ぼし、充放電サイクルに伴いこれを破壊して
いっているためと考えられる。
Japanese Patent Laid-Open Publication No. Hei 10-199527 discloses the use of highly crystalline graphite particles as a conductive material together with silicide in order to solve such disadvantages. This improves the capacity compared to using silicide alone,
Although the cycle life is improved and the irreversible capacity at the time of the first charge is reduced, the capacity gradually decreases after a long cycle. This is presumably because the change in volume of the silicide caused by the charge and discharge of lithium changes the structure of the negative electrode made conductive with graphite, and destroys the structure with the charge and discharge cycle.

【0010】負極の主活物質が珪化物でなくSi金属で
はあるものの、上述の構造破壊を抑制するために、主活
物質に対し、導電剤である黒鉛質物をより近接させた構
造を得るために、活物質粉体と黒鉛を共に機械処理する
発明が特開平9−249407に開示されている。本技
術を珪化物に適用すればSiの場合と同様、サイクル寿
命は更に伸びると推察されるが、その一方で、黒鉛粒子
を機械処理することは、結果として黒鉛の比表面積の増
加に繋がり、初回充電時の不可逆容量の増加を招いてし
まう。
Although the main active material of the negative electrode is Si metal instead of silicide, in order to suppress the above-mentioned structural destruction, it is necessary to obtain a structure in which a graphite material as a conductive agent is brought closer to the main active material. Japanese Patent Application Laid-Open No. 9-249407 discloses an invention in which both active material powder and graphite are mechanically treated. If this technology is applied to silicide, the cycle life is expected to be further extended as in the case of Si, but on the other hand, mechanical treatment of graphite particles leads to an increase in the specific surface area of graphite, This causes an increase in the irreversible capacity at the time of the first charge.

【0011】我々は、鋭意検討した結果、後述する方法
で作成したリチウム二次電池用負極材が、高容量、且つ
長期にわたる充放電サイクルを行っても容量劣化が極め
て小さく、更に初回充放電時に発生する不可逆容量も抑
制した材料であることを見いだした。
As a result of our intensive studies, we have found that the negative electrode material for a lithium secondary battery prepared by the method described below has a very small capacity deterioration even after a long-term charge / discharge cycle with a high capacity. It has been found that the material has a reduced irreversible capacity.

【0012】即ち、本発明の目的は、高容量で、長サイ
クル寿命、且つ初回充電時の不可逆容量が小さく、即ち
電解液に対し優しい負極材を製造する事にある。
That is, an object of the present invention is to produce a negative electrode material having a high capacity, a long cycle life, and a small irreversible capacity at the time of the first charge, that is, an electrolyte-friendly negative electrode material.

【0013】[0013]

【課題を解決するための手段】本発明の目的を達するた
め、負極材は、金属質物M、黒鉛質物、及び有機物であ
る炭素質物前駆体を混合、不活性雰囲気下で焼成してな
ることを特徴とし、該金属質物Mには、固相A、Bから
なり、固相Aからなる核粒子の周囲の一部又は全面は固
相Bによって被覆された構造を持ち、更に前記固相Aは
構成元素としてケイ素を少なくとも含み、前記固相Bは
周期律表の2族元素、遷移元素、12族、13族、並び
に炭素とケイ素を除く14族元素からなる群から選ばれ
た少なくとも一種の元素と、ケイ素との固溶体、又は金
属間化合物を用いる。
In order to achieve the object of the present invention, a negative electrode material is prepared by mixing a metallic substance M, a graphite substance, and a carbonaceous precursor which is an organic substance, and firing the mixture under an inert atmosphere. Characteristically, the metallic substance M has a structure in which solid phases A and B are formed, and a part or the entire periphery of a core particle composed of the solid phase A is covered with a solid phase B. The solid phase B contains at least silicon as a constituent element, and the solid phase B is at least one element selected from the group consisting of Group 2 elements of the periodic table, transition elements, Group 12 and Group 13 and Group 14 elements excluding carbon and silicon. And a solid solution with silicon or an intermetallic compound.

【0014】体積容量の大きい上記金属質物Mと導電性
粒子である黒鉛を炭素質物で一体に接触処理する事によ
って、高容量と長サイクル寿命を両立すると共に、表面
に炭素質物が存在することで初回充電時に生じる不可逆
容量を抑制できる。
The metal material M having a large volume capacity and the graphite, which is conductive particles, are integrally treated with a carbonaceous material to achieve both a high capacity and a long cycle life, and the presence of the carbonaceous material on the surface. The irreversible capacity generated at the time of initial charging can be suppressed.

【0015】[0015]

【発明の実施の形態】次に本発明の詳細を述べる。本発
明の材料を構成する、上記金属質物M、黒鉛質物、及び
炭素質物前駆体を不活性雰囲気下で焼成してなる材料の
複合方法としては、(1)金属質物M粒子、黒鉛質物粒
子、及び炭素質物前駆体を焼成した炭素質物粒子、それ
ぞれを混合した形態、(2)金属質物M粉体の表面の一
部又は全部を、前記炭素質物前駆体により接触処理し、
焼成後、適当な解砕や粉砕工程を行い粉体化し、ここに
黒鉛質物粉体を混合した形態、(3)金属質物Mの表面
の一部又は全部を前記炭素質前駆体により接触処理し、
焼成後、前記工程で粉体とし、ここに黒鉛質物粉体の表
面の一部又は全部を炭素質物前駆体により接触処理し、
焼成後、粉体化したものを混合した形態、(4)金属質
物Mの表面の一部又は全部に、黒鉛質物と前記炭素質前
駆体の混合物を接触処理し、焼成後、前記工程で粒子状
とした形態、(5)金属質物Mの表面の一部又は全部
に、予め黒鉛質物を被覆し、更にこれに炭素質物前駆体
を接触処理し、二層以上の複合層からなる材料を作成
後、焼成し、前記工程により粒子状とした形態、更にこ
れらの形態の一種以上が混成された形態が挙げられる。
Next, the details of the present invention will be described. The method of compounding the metal material M, the graphite material, and the material obtained by firing the carbonaceous material precursor under an inert atmosphere, which constitutes the material of the present invention, includes (1) metal material M particles, graphite material particles, And carbonaceous material particles obtained by calcining the carbonaceous material precursor, a form in which each is mixed, and (2) a part or all of the surface of the metallic material M powder is contact-treated with the carbonaceous material precursor,
After firing, a suitable crushing or pulverizing step is performed to form a powder, and a graphite material powder is mixed therein. (3) A part or all of the surface of the metal material M is contact-treated with the carbonaceous precursor. ,
After firing, powdered in the above step, a part or all of the surface of the graphite material powder is contact-treated with a carbonaceous material precursor,
After firing, a form in which powdered materials are mixed. (4) A mixture of a graphite material and the carbonaceous precursor is contact-treated with a part or all of the surface of the metal material M, and after firing, the particles are treated in the above step. (5) A graphite material is previously coated on a part or all of the surface of the metal material M, and a carbonaceous material precursor is further subjected to contact treatment to prepare a material composed of two or more composite layers. After that, there is a form in which the powder is baked and formed into particles by the above process, and a form in which one or more of these forms are mixed.

【0016】また、ここで言う炭素質物前駆体の接触処
理とは、該物質による粒子同士の結着から、粒子表面に
該物質からなる層を設ける様な、いわゆる被覆までの概
念を含む。
The term "contact treatment of a carbonaceous material precursor" as used herein includes a concept from binding of particles by the substance to so-called coating, such as providing a layer made of the substance on the particle surface.

【0017】負極材の構成材料である上記3種の混合の
順序は、請求項の範囲を損なわない限り、いずれも可能
であるが、金属質物Mと黒鉛質物をまず混合し、これに
炭素質物前駆体を更に添加、更に混合すると、金属質物
M表面に導電剤である黒鉛質物が近接するため、充放電
サイクル進行時においても導電性が保たれ好ましい。
The order of mixing the above three types of constituent materials of the negative electrode material may be any as long as the scope of the claims is not impaired. However, the metallic substance M and the graphite substance are first mixed, and then the carbonaceous substance is added thereto. When the precursor is further added and further mixed, the graphite material as a conductive agent approaches the surface of the metal material M, so that the conductivity is preferably maintained even during the progress of the charge / discharge cycle.

【0018】上記活物質を作成するためのそれぞれの材
料の複合手段については、従来公知の方法が可能であ
り、例えば、Vブレンダー等の粉体混合機、アキシャル
ミキサー、ディスパーザー、パドルミキサー、レーディ
ゲミキサー、プラネタリーミキサー、乳化分散機等の攪
拌機、KRCニーダー、ニーダー、グラインダー等の混
練機、ターボミル、ボールミル、ジェットミル、ディス
クミル、インパクトミル、ピンミル、ハンマーミル等の
粉砕機や解砕機、メカノフュージョン、ハイブリダイザ
ー、シータ・コンポーザ等の造粒、表面改質、コーティ
ング装置を一種以上組み合わせて用いることが可能であ
る。
As a means for compounding the respective materials for producing the active material, a conventionally known method can be used, for example, a powder mixer such as a V blender, an axial mixer, a disperser, a paddle mixer, a lathe. Stirrers such as digue mixers, planetary mixers, emulsifying and dispersing machines, kneaders such as KRC kneaders, kneaders, grinders, etc., crushers and crushers such as turbo mills, ball mills, jet mills, disk mills, impact mills, pin mills, hammer mills, etc. , Mechanofusion, hybridizer, theta composer, etc., granulation, surface modification, and coating devices can be used in combination.

【0019】特に上記(4)の複合形態に於いては、グ
ラインダーやニーダーを用いると原材料を均質に混合す
る事が可能なため、使用することが好ましい。(5)の
複合形態に於いては、前述のメカノフュージョンやハイ
ブリダイザーを用いると、操作条件を適当に設定するこ
とにより、効率よく金属質物Mの表面を黒鉛質物で被覆
処理できるので好ましい。メカノフュージョンやハイブ
リダイザーでの機械処理は、大気中でも可能であるが、
導電材である黒鉛粒子の主に表面が酸化によってダメー
ジを受け、電導度が低下することがあるので、該処理は
窒素やアルゴン等の不活性雰囲気下で行うことが好まし
い。処理の強さは機器によって異なるが、剪断速度10
-1以上で行うことが好ましい。これ以上剪断速度が遅
いと金属質物Mと黒鉛質物の比重が違うため、両材料が
十分混合されず不均一なものになりやすい。更に好まし
くは剪断速度1000s-1以上で行う。
Particularly, in the composite form of the above (4), it is preferable to use a grinder or a kneader, since the raw materials can be homogeneously mixed by using a grinder or a kneader. In the composite form of (5), it is preferable to use the above-mentioned mechanofusion or hybridizer since the surface of the metal material M can be efficiently coated with the graphite material by appropriately setting the operating conditions. Mechanical processing with mechanofusion and hybridizers is possible even in the atmosphere,
Since the surface of the graphite particles, which is a conductive material, is mainly damaged by oxidation and the electrical conductivity may be reduced, the treatment is preferably performed in an inert atmosphere such as nitrogen or argon. The processing intensity varies depending on the equipment, but the shear rate is 10
It is preferable to carry out at s −1 or more. If the shear rate is lower than this, the specific gravities of the metallic substance M and the graphite substance are different, so that the two materials are not sufficiently mixed and tend to be non-uniform. More preferably, it is performed at a shear rate of 1000 s -1 or more.

【0020】本発明の負極材を作成するためには、上記
のような手段を用いて原材料を混合した後、更に焼成を
する必要があるが、この温度は700〜1500℃の範
囲にあることが好ましい。この温度以下では炭素質物の
芳香性が十分発達しないため、電導度が低く、リチウム
充放電時に不可逆容量が発生しやすい。また、この温度
以上では、原材料の金属質物の融点に近いため、金属部
分が溶融してしまい、活物質とすることが困難である。
この温度の範囲は800〜1300℃が更に好ましく、
800〜1100℃であることが最も好ましい。
In order to produce the negative electrode material of the present invention, it is necessary to mix the raw materials using the above-mentioned means and then to perform further firing, but this temperature must be in the range of 700 to 1500 ° C. Is preferred. Below this temperature, the aromaticity of the carbonaceous material does not sufficiently develop, so that the electric conductivity is low and irreversible capacity is likely to be generated during lithium charge and discharge. At a temperature higher than this temperature, the melting point of the metallic material as a raw material is close to the melting point, so that the metal portion is melted, making it difficult to use the active material as an active material.
This temperature range is more preferably 800 to 1300 ° C.,
Most preferably, it is 800 to 1100 ° C.

【0021】次に、本負極材を製造するために必要な原
材料の説明をする。
Next, raw materials necessary for producing the present negative electrode material will be described.

【0022】金属質物Mは固相A、Bからなり、固相A
からなる核粒子の周囲の一部又は全面は固相Bによって
被覆された構造を持ち、更に前記固相Aは構成元素とし
てケイ素を少なくとも含み、前記固相Bは周期律表の2
族元素、遷移元素、12族、13族、並びに炭素とケイ
素を除く14族元素からなる群から選ばれた少なくとも
一種の元素と、ケイ素との固溶体、又は金属間化合物で
あるものが好ましい。例えば、前記固相AがSiからな
り、固相BがNiSi2、CoSi2、VSi2、TiS
2、MnSi1.8、及び/又はMg2Siからなる金属
質物が挙げられる。
The metallic substance M is composed of solid phases A and B.
Has a structure in which a part or the entire surface of a core particle composed of is covered with a solid phase B, further, the solid phase A contains at least silicon as a constituent element, and the solid phase B corresponds to 2 of the periodic table.
It is preferably a solid solution or an intermetallic compound of silicon and at least one element selected from the group consisting of a group 14 element, a transition element, groups 12 and 13 and a group 14 element excluding carbon and silicon. For example, the solid phase A is made of Si, and the solid phase B is made of NiSi 2 , CoSi 2 , VSi 2 , TiS
Examples of the metal material include i 2 , MnSi 1.8 , and / or Mg 2 Si.

【0023】黒鉛質物としては、その結晶面(002)
の面間隔d002が0.348nm以下、且つ黒鉛質物の積
層層の厚さLcが10nm以上である高結晶性の黒鉛粉体
を用いることが好ましい。d002が0.338nm以下、
且つ該積層層の厚さLcが20nm以上であるものは更に
好ましく、d002が0.337nm以下、且つ該積層層の
厚さLcが40nm以上であるものは最も好ましい。
As the graphite material, its crystal plane (002)
It is preferable to use a highly crystalline graphite powder in which the interplanar spacing d 002 is 0.348 nm or less and the thickness Lc of the graphite layer is 10 nm or more. d 002 is 0.338 nm or less,
And those thicknesses Lc of the laminated layer is 20nm or more and more preferably, d 002 is 0.337nm or less and those thicknesses Lc of the laminated layer is 40nm or more is most preferred.

【0024】また、黒鉛質物を波長514.3nmのアル
ゴンイオンレーザー光を用いたラマンスペクトル分析
し、その1580cm-1〜1620cm-1の範囲に現れるピ
ークの強度をIA、1350cm-1〜1370cm-1の範囲
に現れるピークの強度をIBとしたときの、ピーク強度
比R(=IB/IA)が0.4以下である黒鉛質物は好
ましい。Rが0.3以下であるものは更に好ましく、
0.25以下であるものは最も好ましい。
Further, the graphite pledge Raman spectroscopy using an argon ion laser beam having a wavelength 514.3Nm, the intensity of the peak appearing in the range of 1580cm -1 ~1620cm -1 IA, 1350cm -1 ~1370cm -1 The graphitic material having a peak intensity ratio R (= IB / IA) of 0.4 or less, where IB is the peak intensity appearing in the range described above, is preferable. More preferably, R is 0.3 or less,
Those having a value of 0.25 or less are most preferred.

【0025】使用する黒鉛質物の平均粒子径は1μm以
上1mm以下であるものが好ましい。平均粒子径がこれ以
上大きいと、金属質物Mと均一に混合することが難し
く、これ以上小さいと、比表面積が大きすぎて初回充放
電時の不可逆容量が大きくなる。この平均粒子径が1〜
40μmであるものは更に好ましく、平均粒子径が1〜
25μmのものは最も好ましい。平均粒子径が上記範囲
を逸脱していても、請求項3、4記載の機械処理をする
段階で、当該範囲に収めることができれば、その様なも
のも使用可能である。
The average particle size of the graphite used is preferably 1 μm or more and 1 mm or less. If the average particle diameter is larger than this, it is difficult to uniformly mix with the metallic substance M, and if it is smaller than this, the specific surface area is too large and the irreversible capacity at the time of initial charge / discharge becomes large. This average particle size is 1 to
More preferably, the average particle diameter is 1 to 40 μm.
25 μm is most preferred. Even if the average particle diameter is out of the above range, such a particle can be used as long as the average particle diameter can be kept in the range at the stage of the mechanical treatment according to claims 3 and 4.

【0026】この様な黒鉛質物は、結晶面(002)の
面間隔d002が0.348nm以下である様な、適当な天
然黒鉛、人造黒鉛、これらの高純度精製品、これらの再
加熱処理品、或いは、これらからなる混合物の粉体でま
かなうことができる。
Such a graphite-like material is suitable natural graphite, artificial graphite, a high-purity purified product thereof, and a reheat treatment thereof, in which the interplanar spacing d 002 of the crystal plane (002) is 0.348 nm or less. Or a powder of a mixture of these.

【0027】炭素質物前駆体には、軟ピッチから硬ピッ
チまでのコールタールピッチ,或いは乾留液化油などの
石炭系重質油、常圧残油、減圧残油の直流系重質油、原
油、ナフサなどの熱分解時に副生するエチレンタール等
分解系重質油の石油系重質油、更にアセナフチレン、デ
カシクレン、アントラセン、フェナントレンなどの芳香
族炭化水素、フェナジンやアクリジンなどのN環化合
物、チオフェン、ビチオフェンなどのS環化合物、ビフ
ェニル、テルフェニルなどのポリフェニレン、ポリ塩化
ビニル、ポリビニルアルコール、ポリビニルブチラー
ル、これらのものの不溶化処理品、含窒素性のポリアク
リロニトリル、ポリピロールなどの有機高分子、含硫黄
性のポリチオフェン、ポリスチレンなどの有機高分子、
セルロース、リグニン、マンナン、ポリガラクトウロン
酸、キチン、キトサン、サッカロースに代表される多糖
類などの天然高分子、ポリフェニレンサルファイド、ポ
リフェニレンオキシド等の熱可塑性樹脂、フルフリルア
ルコール樹脂、フェノール−ホルムアルデヒド樹脂、イ
ミド樹脂等の熱硬化性樹脂,以上のものとベンゼン、ト
ルエン、キシレン、キノリン、n−ヘキサンなどの低分
子有機溶媒の混合品、などから選ばれる一種以上の炭素
化可能な有機化合物を用いる。
The carbonaceous material precursor includes coal-based heavy oil such as coal tar pitch from soft pitch to hard pitch or dry-distilled liquefied oil, normal-pressure residual oil, DC-based heavy oil of reduced-pressure residual oil, crude oil, Petroleum heavy oil such as ethylene tar, which is a by-product of thermal decomposition such as naphtha, and other aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, and phenanthrene; S-ring compounds such as bithiophene, polyphenylenes such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products thereof, organic polymers such as nitrogen-containing polyacrylonitrile and polypyrrole, sulfur-containing Organic polymers such as polythiophene and polystyrene,
Cellulose, lignin, mannan, polygalacturonic acid, chitin, chitosan, natural polymers such as polysaccharides represented by saccharose, thermoplastic resins such as polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide One or more carbonizable organic compounds selected from thermosetting resins such as resins, and mixtures of the above with low molecular weight organic solvents such as benzene, toluene, xylene, quinoline, and n-hexane are used.

【0028】上記炭素質物前駆体は、H/C(原子比)
が0.4以上1.8以下であるものを用いると金属質物
Mや黒鉛質物と混合しやすいので好ましい。0.6以上
1.2以下が更に好ましく、0.8以上1.1以下であ
るものは最も好ましい。H/Cがこれ以上であると焼成
後の炭化収率が悪くなり、これ以上であると材料同士の
混合が難しい。
The above carbonaceous material precursor is H / C (atomic ratio)
Is preferably 0.4 or more and 1.8 or less, because it is easy to mix with the metallic substance M or the graphite substance. It is more preferably 0.6 or more and 1.2 or less, and most preferably 0.8 or more and 1.1 or less. If the H / C is more than this, the carbonization yield after firing is deteriorated, and if it is more than this, it is difficult to mix the materials.

【0029】金属質物M、黒鉛質物、及び炭素質物前駆
体を焼成する事により生じる炭素質物の負極材内での割
合は、その全体を100重量%としたとき、それぞれ5
0〜95重量%、4.9〜30重量%、及び0.1〜2
0重量%であると、体積当たりの容量が大きく、サイク
ル寿命に優れ、且つ初回充放電時の不可逆容量が小さい
負極材が作成できるので好ましい。但し前記数値範囲は
焼成後の重量割合であるから、材料混合段階では、焼成
によって起こる重量変化などを考慮する必要がある。
The proportion of the carbonaceous material in the negative electrode material produced by firing the metallic material M, the graphite material, and the carbonaceous material precursor is 5% when the whole is 100% by weight.
0-95 wt%, 4.9-30 wt%, and 0.1-2
When the content is 0% by weight, a negative electrode material having a large capacity per volume, an excellent cycle life, and a small irreversible capacity at the time of initial charge / discharge can be produced, which is preferable. However, since the above numerical range is a weight ratio after firing, it is necessary to consider a change in weight caused by firing in the material mixing stage.

【0030】次に、本発明の負極材を用いて負極体を構
成する方法について説明する。
Next, a method of forming a negative electrode body using the negative electrode material of the present invention will be described.

【0031】負極体は、上記金属質物M、黒鉛質物、及
び炭素質物前駆体から作成される上記負極材を使用する
限り、限定無く従来公知の方法が採用可能であるが、例
えば、まず金属質物Mと黒鉛質物をグラインダーで均質
になるまで混合し、そこに炭素質物前駆体を添加し、ミ
キサーなどで混練する。これを不活性雰囲気下で焼成
し、その後室温付近まで冷却した後取り出し、好ましく
は8〜25μm、更に好ましくは8〜20μm、最も好ま
しくは10〜15μmの範囲に粉砕又は解砕し、粉体状
とする。これに導電剤、結着剤、及び溶媒等を加えて、
スラリー状とし、銅箔、ニッケルメッシュ、又はステン
レスメッシュ等の集電体の基板にスラリーを塗布・乾燥
することで電極とする。該粒子を結着させる集電体とし
ては、限定無く用いることができ、例えば金属円柱、金
属コイル、金属板、金属薄膜、炭素板、炭素円柱などを
用いることができるが、ニッケル箔や銅箔などの金属薄
膜が好ましい。銅箔は更に好ましい。更に、これら集電
体に負極材を付着させた電極材料をそのままロール成
形、圧縮成形等の方法で任意の電極の形状に成形するこ
ともできる。
As the negative electrode body, a conventionally known method can be adopted without any limitation as long as the above-mentioned negative electrode material prepared from the above-mentioned metal substance M, graphite substance and carbonaceous substance precursor can be used. M and the graphite are mixed with a grinder until homogenous, and a carbonaceous material precursor is added thereto and kneaded with a mixer or the like. This is fired under an inert atmosphere, and then cooled to around room temperature, taken out, preferably ground or crushed to a range of 8 to 25 μm, more preferably 8 to 20 μm, and most preferably 10 to 15 μm to obtain a powdery material. And Add conductive agent, binder, solvent, etc. to this,
An electrode is formed by applying a slurry to a current collector substrate such as a copper foil, a nickel mesh, or a stainless steel mesh and drying the slurry. The current collector for binding the particles can be used without limitation, and examples thereof include a metal cylinder, a metal coil, a metal plate, a metal thin film, a carbon plate, and a carbon cylinder. And the like. Copper foil is more preferred. Further, the electrode material in which the negative electrode material is adhered to these current collectors can be directly formed into an arbitrary electrode shape by a method such as roll forming or compression forming.

【0032】上記の目的で使用できる導電剤としては、
その電導度が1S/cm以上の高結晶性の人造黒鉛、天然黒
鉛、これらの高純度精製品、また、例えば銅、ニッケ
ル、ステンレス、鉄などで、その粒子径が25μm以下
の金属微粉、又はこれらのものの混合品が挙げられる。
The conductive agent that can be used for the above purpose includes:
Highly crystalline artificial graphite having a conductivity of 1 S / cm or more, natural graphite, high-purity refined products thereof, and fine metal powder of, for example, copper, nickel, stainless steel, iron, etc., having a particle diameter of 25 μm or less, or Mixtures of these are mentioned.

【0033】上記結着剤としては、溶媒に対して安定
な、ポリエチレン、ポリプロピレン、ポリエチレンテレ
フタレート、芳香族ポリアミド、セルロース等の樹脂系
高分子、スチレン・ブタジエンゴム、イソプレンゴム、
ブタジエンゴム、エチレン・プロピレンゴム等のゴム状
高分子、スチレン・ブタジエン・スチレンブロック共重
合体、その水素添加物、スチレン・エチレン・ブタジエ
ン・スチレン共重合体、スチレン・イソプレン・スチレ
ンブロック共重合体、その水素添加物等の熱可塑性エラ
ストマー状高分子、シンジオタクチック1,2−ポリブ
タジエン、エチレン・酢酸ビニル共重合体、プロピレン
・α−オレフィン(炭素数2〜12)共重合体等の軟質
樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフル
オロエチレン、ポリテトラフルオロエチレン・エチレン
共重合体等のフッ素系高分子、アルカリ金属イオン、特
にリチウムイオンのイオン伝導性を有する高分子組成物
や上記の結着剤の混合物が挙げられる。
Examples of the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, and cellulose, styrene / butadiene rubber, isoprene rubber,
Butadiene rubber, rubbery polymers such as ethylene / propylene rubber, styrene / butadiene / styrene block copolymer, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer, Soft resinous materials such as thermoplastic elastomeric polymers such as hydrogenated products thereof, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, and propylene / α-olefin (2 to 12 carbon atoms) copolymer Fluorinated polymer such as polymer, polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymer, polymer composition having ion conductivity of alkali metal ion, especially lithium ion, and the above-mentioned binding And mixtures of agents.

【0034】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、又はリチウムを主体とする
アルカリ金属塩を複合させた系、或いはこれにプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン等の高い誘電率やイオン−双極子相互作用力を有
する有機化合物を配合した系を用いることができる。
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and the like. Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is combined, or propylene carbonate, ethylene carbonate, high dielectric constant and ions such as γ-butyrolactone -A system containing an organic compound having a dipole interaction force can be used.

【0035】溶媒としては、上記溶媒の他、水、アセト
ン、ジメチルエーテル、或いはメタノール、エタノー
ル、ブタノール、イソプロパノール等のアルコール、N
−メチルピロリジノン、ジメチルホルムアミド、ジメチ
ルアセタミド、ヘキサメチルホスフォルアミド、ジメチ
ルスルフォキシド、ベンゼン、トルエン、キシレン、キ
ノリン、ピリジン、メチルナフタレン、ヘキサン等を用
いることができる。
Examples of the solvent include water, acetone, dimethyl ether, alcohols such as methanol, ethanol, butanol, and isopropanol, and N.
-Methylpyrrolidinone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, dimethylsulfoxide, benzene, toluene, xylene, quinoline, pyridine, methylnaphthalene, hexane and the like can be used.

【0036】本発明に用いる上記負極材粒子及び上記結
着剤との混合形式としては、各種の形態をとることがで
きる。即ち、二種の粒子が混合結着した形態、繊維状の
結着剤が上記発明粒子及び導電剤に絡み合う形で混合し
た形態、又は結着剤の層が粒子表面に付着した形態など
が挙げられる。
The negative electrode material particles and the binder used in the present invention may be mixed in various forms. That is, a form in which two kinds of particles are mixed and bound, a form in which a fibrous binder is mixed in a form entangled with the above-mentioned invention particles and a conductive agent, or a form in which a layer of a binder is attached to the particle surface, and the like. Can be

【0037】上記負極材粒子と導電剤の混合割合は、負
極の構成物質全体を100重量%とした時、負極材を少
なくとも60重量%以上、且つ導電剤を1重量%以上3
0重量%以下とすると好ましい。これ以上の量の導電剤
を添加すると、単位体積あたりに電極が発生できる充放
電容量が小さくなり、これ以下の量では導電剤同士の導
電パスが電極内に形成できないなどの理由で添加効果が
十分に発現されない。
The mixing ratio of the negative electrode material particles and the conductive agent is such that the negative electrode material is at least 60% by weight or more and the conductive agent is 1% by weight or more, when the whole constituent material of the negative electrode is 100% by weight.
The content is preferably 0% by weight or less. If the conductive agent is added in an amount greater than this, the charge / discharge capacity that the electrode can generate per unit volume decreases, and if the amount is less than this, the effect of the addition cannot be formed because conductive paths between the conductive agents cannot be formed in the electrode. Not fully expressed.

【0038】上記結着剤の上記負極材粒子及び導電剤と
の混合割合は、負極材粒子と導電剤の合計の重量に対
し、好ましくは0.1〜30重量%、より好ましくは、
0.5〜5重量%である。これ以上の量の結着剤を添加
すると、電極の内部抵抗が大きくなり、好ましくなく、
これ以下の量では集電体と電極粉体の結着性に劣る。
The mixing ratio of the binder to the negative electrode material particles and the conductive agent is preferably 0.1 to 30% by weight, more preferably 0.1 to 30% by weight, based on the total weight of the negative electrode material particles and the conductive agent.
0.5 to 5% by weight. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable.
If the amount is less than this, the binding property between the current collector and the electrode powder is inferior.

【0039】この負極体を用いて電池を作製する場合を
以下に説明する。電解液、正極板を、その他の電池構成
要素であるセパレータ、ガスケット、集電体、封口板、
セルケース等と組み合わせて二次電池を構成する。作成
可能な電池は筒型、角型、コイン型等特に限定されるも
のではないが、基本的にはセル床板上に集電体と負極体
を乗せ、その上に電解液とセパレータを、更に負極体と
対向するように正極体を乗せ、ガスケット、封口板と共
にかしめて二次電池とする。
A case where a battery is manufactured using this negative electrode body will be described below. Electrolyte, positive electrode plate, other battery components such as separator, gasket, current collector, sealing plate,
A secondary battery is configured by combining with a cell case and the like. The batteries that can be created are not particularly limited, such as a cylindrical type, a square type, a coin type, but basically, a current collector and a negative electrode body are placed on a cell floor plate, and an electrolytic solution and a separator are further placed thereon. The positive electrode body is placed so as to face the negative electrode body, and caulked together with a gasket and a sealing plate to form a secondary battery.

【0040】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、エチルメチ
ルカーボネート、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、スルホラン、1,3−ジオキソラン、ジメ
チルスルフィド、プロピレンサルファイド、エチレンサ
ルファイド、ビニレンカーボネート等の有機溶媒、ポリ
エピクロルヒドリン、ポリフォスファゼン、ポリシロキ
サン、ポリビニルピロリドン、ポリビニリデンカーボネ
ート、ポリアクリロニトリル等の高分子化合物に、リチ
ウム塩、又はリチウムを主体とするアルカリ金属塩を複
合させた系、或いはこれにプロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン等の高い誘電
率やイオン−双極子相互作用力を有する有機化合物の単
独、又は二種類以上を混合したものを用いることができ
る。
Non-aqueous solvents that can be used for the electrolyte include:
Propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3-dioxolan, dimethyl sulfide, propylene sulfide, ethylene sulfide An organic solvent such as vinylene carbonate, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or an alkali metal salt mainly composed of lithium was compounded. System or high dielectric constants such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and ion-dipole Organic compounds having an interaction force can be used alone or in combination of two or more.

【0041】これらの溶媒に0.5〜2.0M程度のL
iClO4、LiPF6、LiBF4、LiCF3SO3
LiAsF6、LiCl、LiBr、Liトリフルオロ
スルフォンイミド、Liビス(テトラフルオロメタンス
ルフォニル)イミド等の電解質を溶解して電解液とす
る。
In these solvents, about 0.5 to 2.0 M of L
iClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 ,
An electrolyte such as LiAsF 6 , LiCl, LiBr, Li trifluorosulfonimide, or Li bis (tetrafluoromethanesulfonyl) imide is dissolved to form an electrolyte.

【0042】また、リチウムイオン等のアルカリ金属カ
チオンの導電体であるポリエチレンオキシド、ポリプロ
ピレンオキシド、ポリ(メタクロイルエチレンオキシ
ド)等のエーテル系高分子固体電解質や、ポリエーテル
化合物の架橋体高分子、またこれらのものの構造末端の
水素基がメチル基、或いはエチル基等のアルキル基に交
換された、ポリエチレンオキシドジメチルエーテル等の
ω−アルキルポリエーテル、ポリアクリロニトリルやけ
ん化度が高いポリビニルアルコールを上記有機溶媒と上
記電解質を混合したゲル電解質を用いることもできる。
Also, ether-based polymer solid electrolytes such as polyethylene oxide, polypropylene oxide, and poly (methacryloyl ethylene oxide), which are conductors of alkali metal cations such as lithium ions, cross-linked polymers of polyether compounds; The hydrogen group at the terminal of the structure is replaced with an alkyl group such as a methyl group or an ethyl group, an ω-alkyl polyether such as polyethylene oxide dimethyl ether, polyacrylonitrile or a polyvinyl alcohol having a high degree of saponification, and the above organic solvent and the above electrolyte. Mixed gel electrolytes can also be used.

【0043】正極材としては、従来から知られているい
ずれも使用でき、特に限定されるものではない。具体的
には、LiFeO2、LiCoO2、LiNiO2、Li
Mn24及びこれらの非定比化合物、MnO2、Ti
2、FeS2、Nb34、Mo34、CoS2、V
25、P25、CrO3、V613、TeO2、GeO2
を用いることができる。
As the positive electrode material, any conventionally known one can be used and is not particularly limited. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , Li
Mn 2 O 4 and their non-stoichiometric compounds, MnO 2 , Ti
S 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V
2 O 5 , P 2 O 5 , CrO 3 , V 6 O 13 , TeO 2 , GeO 2 and the like can be used.

【0044】正極体は、例えば、上記正極材に、アセチ
レンブラック、黒鉛等の導電剤を添加し、テトラフルオ
ロエチレン等を結着剤として混合後、アルミ箔上に塗布
し、成形、乾燥することによって得ることができる。
The positive electrode body is prepared, for example, by adding a conductive agent such as acetylene black or graphite to the above-mentioned positive electrode material, mixing tetrafluoroethylene or the like as a binder, applying the mixture on an aluminum foil, molding and drying. Can be obtained by

【0045】[0045]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【0046】電極材料の評価方法 すべての評価は以下の如く行った。本発明の負極材と結
着剤を用い、銅箔集電体上に塗布、結着した後、ペレッ
ト状に成形した。これをセパレーター、電解液と共に、
対極をリチウム金属とした半電池とし、2016コイン
セル中に組み立てた。充放電容量は充放電試験機を用
い、上述の様なセルで評価したが、正極体とともに組ん
だリチウムイオン電池でも同様な効果が期待できる。
Evaluation Method of Electrode Material All evaluations were performed as follows. The negative electrode material of the present invention and a binder were applied and bound on a copper foil current collector, and then formed into a pellet. This together with the separator and electrolyte,
A half-cell with a lithium metal counter electrode was assembled in 2016 coin cells. The charge / discharge capacity was evaluated using a cell as described above using a charge / discharge tester. Similar effects can be expected with a lithium ion battery assembled with a positive electrode body.

【0047】(実施例1)SiをNiSi2の表面及び
内部に包含する平均粒子径12.5μmの金属質物40
gと、d002が0.336nm、ラマンスペクトルから得
られたR値が0.2である平均粒子径1.6μmの人造
黒鉛4gを、MRK製モルダーグラインダーにて大気中
で2分間均一に混合した。この混合物にH/Cが約1.
0、芳香族性指数faが約0.5のタールピッチ5gを
添加し、更に混合した。これを焼成炉中でアルゴン雰囲
気下、昇温速度8℃/min.で900℃まで昇温させ、1
時間保持した。室温付近まで冷却後、焼成したものを瑪
瑙乳鉢で解砕し、目開き45μmの篩で分級し、平均粒
子径14.1μmに整粒してサンプルとした。焼成時の
収率及び元素分析から得られたこの粒子の金属質物M、
黒鉛質物、及び炭素質物の割合は、粒子全体を100重
量%とした時、90重量%、9重量%、及び1重量%で
あった。また、SEMにより該サンプル粒子を観察した
ところ、金属質物M粒子の表面を、黒鉛と炭素質物の混
合物が被覆した構造が観察された。このサンプル粒子6
gに対し、導電剤としてd002が0.336nmである平
均粒子径1.6μmの人造黒鉛0.7gと、結着剤とし
て前記粒子100重量%に対しカルボキシメチルセルロ
ース(CMC)及びスチレンブタジエンゴム(SBR)
合計2.46重量%と、共に混合し、厚み19μmの銅
箔上に塗布後、80℃で予備乾燥した。更に、直径1
2.5mmの円盤状に打ち抜き110℃で一昼夜加熱減圧
乾燥して電極とした。得られた電極に対し、電解液を含
浸させたポリエチレン製セパレーターを挟み、リチウム
金属電極に対向させたコイン型セルを作成し、充放電試
験を行った。電解液には、エチレンカーボネート(E
C)とエチルメチルカーボネート(EMC)を容量比で
1:3比率で混合した溶媒に、リチウムヘキサフルオロ
フォスフェート(LiPF6)を1.25mol/Lの割合で
溶解させたものを用いた。基準充放電試験は、電流密度
0.32mA/cm2で極間電位差が0Vになるまでドープを
行い、同じ電流密度で1.5Vになるまで脱ドープを行
った。容量値は、コイン型セル3個について各々充放電
試験を行い、第1回目充放電サイクル時の脱ドープ容量
の平均、同サイクルのドープ容量から脱ドープ容量を差
し引いた不可逆容量の平均、及び第20回目の放電容量
を第1回目の放電容量で割った値の百分率(容量維持率
/%)で評価した。
(Example 1) Metallic material 40 having an average particle diameter of 12.5 µm containing Si on the surface and inside of NiSi 2
g and 4 g of artificial graphite having an average particle diameter of 1.6 μm with d 002 of 0.336 nm and an R value of 0.2 obtained from the Raman spectrum were uniformly mixed in the air for 2 minutes in a MRK molder grinder. did. The mixture has an H / C of about 1.
0 and 5 g of tar pitch having an aromaticity index fa of about 0.5 were added and further mixed. This was heated to 900 ° C. at a rate of 8 ° C./min.
Hold for hours. After cooling to around room temperature, the fired product was crushed in an agate mortar, classified with a sieve having openings of 45 μm, and sized to an average particle size of 14.1 μm to obtain a sample. The metallic material M of the particles obtained from the yield at the time of firing and elemental analysis,
The proportions of the graphite substance and the carbonaceous substance were 90% by weight, 9% by weight, and 1% by weight, when the whole particles were 100% by weight. When the sample particles were observed by SEM, a structure in which the surface of the metallic substance M particles was coated with a mixture of graphite and carbonaceous substance was observed. This sample particle 6
g of artificial graphite having an average particle diameter of 1.6 μm having d 002 of 0.336 nm as a conductive agent, and carboxymethyl cellulose (CMC) and styrene butadiene rubber (100% by weight) as a binder. SBR)
A total of 2.46% by weight was mixed together, applied on a copper foil having a thickness of 19 μm, and then pre-dried at 80 ° C. Furthermore, the diameter 1
It was punched out into a 2.5 mm disc and heated and dried under reduced pressure at 110 ° C. for 24 hours to form an electrode. A coin-shaped cell having a polyethylene separator impregnated with an electrolyte interposed between the obtained electrodes and facing a lithium metal electrode was prepared, and a charge / discharge test was performed. Ethylene carbonate (E
C) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 3, and a solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1.25 mol / L was used. In the reference charge / discharge test, doping was performed at a current density of 0.32 mA / cm 2 until the potential difference between the electrodes became 0 V, and undoping was performed at the same current density until the voltage reached 1.5 V. The capacity value was obtained by conducting a charge / discharge test on each of the three coin-type cells, and averaging the undoped capacity in the first charge / discharge cycle, the irreversible capacity obtained by subtracting the undoped capacity from the dope capacity in the same cycle, and Evaluation was made as a percentage (capacity retention /%) of a value obtained by dividing the twentieth discharge capacity by the first discharge capacity.

【0048】[0048]

【数1】 (Equation 1)

【0049】なお、負極材の比重には、リチウムドープ
前の該サンプルの真比重を用いた。
As the specific gravity of the negative electrode material, the true specific gravity of the sample before lithium doping was used.

【0050】(実施例2)実施例1の金属質物M、人造
黒鉛、及びタールピッチをそれぞれ40g、4g、及び
10g使用し、実施例1と同様の方法で混合、焼成し
た。室温付近まで冷却後、瑪瑙乳鉢で解砕し、目開き4
5μmの篩で分級し、平均粒子径14.1μmに整粒して
サンプルとした。焼成時の収率及び元素分析から得られ
たこの粒子の金属質物M、黒鉛質物、及び炭素質物の割
合は、粒子全体を100重量%としたとき、89重量
%、9重量%、及び2重量%であった。また、SEMに
よりサンプル粒子を観察したところ、金属質物M粒子の
表面に炭素質物が被覆した構造が観察された。このサン
プル粒子6gに対し、導電剤として、d002が0.33
6nmである平均粒子径3.7μmの人造黒鉛0.7g
と、結着剤として前記粒子100重量%に対しカルボキ
シメチルセルロース(CMC)及びスチレンブタジエン
ゴム(SBR)合計2.46重量%と、共に混合し、実
施例1と同様に電極を作製し、充放電試験を行った。
(Example 2) Using 40 g, 4 g, and 10 g of the metallic substance M, artificial graphite, and tar pitch of Example 1, respectively, were mixed and fired in the same manner as in Example 1. After cooling to around room temperature, crush it with an agate mortar and
The mixture was classified with a 5 μm sieve and sized to an average particle diameter of 14.1 μm to obtain a sample. The yield of the particles during firing and the ratio of the metallic substance M, the graphite substance, and the carbonaceous substance obtained from the elemental analysis were 89% by weight, 9% by weight, and 2% by weight, assuming that the whole particles were 100% by weight. %Met. When the sample particles were observed by SEM, a structure in which the surface of the metal material M particles was coated with the carbon material was observed. With respect to 6 g of the sample particles, d 002 was 0.33 as a conductive agent.
0.7 g of artificial graphite having an average particle diameter of 3.7 μm, which is 6 nm
And carboxymethylcellulose (CMC) and styrene-butadiene rubber (SBR) in total of 2.46% by weight with respect to 100% by weight of the particles as a binder, and mixed together to prepare an electrode in the same manner as in Example 1, and charge and discharge. The test was performed.

【0051】(実施例3)SiをNiSi2の表面及び
内部に包含する平均粒子径12.5μmの金属質物15
0gと、d002が0.336nm、ラマンスペクトルのR
値が0.2である平均粒子径1.6μmの人造黒鉛28
gを、ホソカワミクロン製メカノフュージョンにて常
温、窒素雰囲気下で15分間処理した。このサンプル4
0gに実施例1で用いたタールピッチ8gを添加し、更
に大気中で混合した。これを実施例1と同様の方法で焼
成、ハンマーミルで解砕し、目開き38μmの篩で分級
し、平均粒子径14.1μmに整粒してサンプルとし
た。焼成時の収率及び元素分析から得られたこの粒子の
金属質物M、黒鉛質物、及び炭素質物の割合は、粒子全
体を100重量%としたとき、83重量%、16重量
%、及び1重量%であった。また、SEMにより該サン
プル粒子を観察したところ、金属質物M粒子の表面を、
黒鉛と炭素質物の混合物が被覆した構造が観察された。
このサンプル粒子に6gに対し、導電剤として、d002
が0.336nmである平均粒子径3.7μmの人造黒鉛
0.2gと、結着剤として前記粒子100重量%に対し
カルボキシメチルセルロース(CMC)及びスチレンブ
タジエンゴム(SBR)合計2.46重量%と、共に混
合し、実施例1と同様に電極を作製し、充放電試験を行
った。
(Example 3) Metallic substance 15 having an average particle diameter of 12.5 μm containing Si on the surface and inside of NiSi 2
0 g, d 002 is 0.336 nm, R of Raman spectrum
Artificial graphite 28 having an average particle size of 1.6 μm having a value of 0.2
g was treated with Mesofusion manufactured by Hosokawa Micron at room temperature under a nitrogen atmosphere for 15 minutes. This sample 4
To 0 g, 8 g of the tar pitch used in Example 1 was added and further mixed in the atmosphere. This was fired in the same manner as in Example 1, crushed with a hammer mill, classified with a sieve having an opening of 38 μm, and sized to an average particle diameter of 14.1 μm to obtain a sample. The yield of the particles during firing and the ratio of the metallic substance M, the graphite substance, and the carbonaceous substance obtained from the elemental analysis were 83% by weight, 16% by weight, and 1% by weight when the whole particles were 100% by weight. %Met. When the sample particles were observed by SEM, the surface of the metallic substance M particles was
A structure coated with a mixture of graphite and carbonaceous material was observed.
For 6 g of the sample particles, d 002 was used as a conductive agent.
0.2 g of artificial graphite having an average particle size of 3.7 μm having a particle size of 0.336 nm, and carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) totaling 2.46% by weight based on 100% by weight of the particles as a binder. Were mixed together to form an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0052】(実施例4)SiをNiSi2の表面及び
内部に包含する平均粒子径12.5μmの金属質物80
gと、d002が0.336nm、ラマンスペクトルのR値
が0.2である平均粒子径1.6μmの人造黒鉛1g
を、奈良機械製ハイブリダイザーにて常温、アルゴン雰
囲気下で3分間処理した。このサンプル40gに実施例
1で用いたタールピッチ7gを添加し、更に大気中で混
合した。これを実施例1と同様な方法で焼成、瑪瑙乳鉢
で解砕し、目開き45μmの篩で分級し、整粒された平
均粒子径14.1μmのサンプルを得た。焼成時の収率
及び元素分析から、得られたこの粒子の金属質物M、黒
鉛質物、及び炭素質物の割合は、粒粒子全体を100重
量%としたとき、97重量%、1重量%、及び2重量%
であった。また、SEMにより該サンプル粒子を観察し
たところ、金属質物M粒子の表面を、黒鉛と炭素質物の
混合物が被覆した構造が観察された。このサンプル粒子
に6gに対し、導電剤としてd002が0.336nmであ
る平均粒子径1.6μmの人造黒鉛1.3gと、結着剤
として前記粒子100重量%に対しカルボキシメチルセ
ルロース(CMC)及びスチレンブタジエンゴム(SB
R)合計2.46重量%と、共に混合し、実施例1と同
様に電極を作製し、充放電試験を行った。
(Example 4) A metallic material 80 containing Si on the surface and inside of NiSi 2 and having an average particle diameter of 12.5 μm
g and, d 002 is 0.336 nm, artificial graphite 1g having an average particle diameter of 1.6 [mu] m R value is 0.2 of the Raman spectra
Was treated at room temperature under an argon atmosphere for 3 minutes using a hybridizer manufactured by Nara Machinery. 7 g of the tar pitch used in Example 1 was added to 40 g of this sample, and further mixed in the air. This was fired in the same manner as in Example 1, crushed with an agate mortar, and classified with a sieve having an opening of 45 μm to obtain a sized sample having an average particle diameter of 14.1 μm. From the yield and the elemental analysis at the time of calcination, the ratios of the metallic substance M, the graphite substance, and the carbonaceous substance of the obtained particles were 97% by weight, 1% by weight, and 100% by weight of the whole particle. 2% by weight
Met. When the sample particles were observed by SEM, a structure in which the surface of the metallic substance M particles was coated with a mixture of graphite and carbonaceous substance was observed. 1.3 g of artificial graphite having an average particle diameter of 1.6 μm having a d 002 of 0.336 nm as a conductive agent, carboxymethylcellulose (CMC) and carboxymethyl cellulose (CMC) as a binder were used for 100 g of the particles. Styrene butadiene rubber (SB
R) A total of 2.46% by weight was mixed together to prepare an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0053】(比較例1)d002が0.336nm、ラマ
ンスペクトルのR値が0.1である平均粒子径3.7μ
mの人造黒鉛を、結着剤であるカルボキシメチルセルロ
ース(CMC)及びスチレンブタジエンゴム(SBR)
を前記黒鉛100重量%に対し合計2.46重量%と共
に混合し、実施例1と同様に電極を作製し、充放電試験
を行った。
(Comparative Example 1) An average particle diameter of 3.7 μm where d 002 is 0.336 nm and R value of Raman spectrum is 0.1
m artificial graphite and carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) as binders
Was mixed together with a total of 2.46% by weight with respect to 100% by weight of the graphite, an electrode was prepared in the same manner as in Example 1, and a charge / discharge test was performed.

【0054】(比較例2)実施例1で用いた金属物質M
を、結着剤であるカルボキシメチルセルロース(CM
C)及びスチレンブタジエンゴム(SBR)を前記金属
100重量%に対し合計2.46重量%と共に混合し、
実施例1と同様に電極を作製し、充放電試験を行った。
(Comparative Example 2) Metal substance M used in Example 1
With carboxymethylcellulose (CM as a binder)
C) and styrene butadiene rubber (SBR) were mixed with a total of 2.46% by weight based on 100% by weight of the metal,
An electrode was prepared in the same manner as in Example 1, and a charge / discharge test was performed.

【0055】(比較例3)実施例1で用いた金属質物M
4.8gに対し、比較例1で用いた人造黒鉛を1.2g
添加し、均一に混合した。この混合物100重量%に対
し、結着剤であるカルボキシメチルセルロース(CM
C)及びスチレンブタジエンゴム(SBR)合計2.4
6重量%を共に混合し、実施例1と同様に電極を作製
し、充放電試験を行った。
(Comparative Example 3) Metallic substance M used in Example 1
1.2 g of the artificial graphite used in Comparative Example 1 with respect to 4.8 g
Add and mix homogeneously. With respect to 100% by weight of this mixture, carboxymethylcellulose (CM
C) and styrene butadiene rubber (SBR) 2.4 in total
6% by weight were mixed together to prepare an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0056】以下、本発明によって作製したリチウム二
次電池を具体的に充放電した実施例1から4及び比較例
1から3との比較検討を示す。表1に実施例1から4及
び比較例1から3のリチウム二次電池の脱ドープ容量、
不可逆容量、容量維持率をまとめた。
Hereinafter, a comparative study with Examples 1 to 4 and Comparative Examples 1 to 3 in which the lithium secondary battery manufactured according to the present invention was specifically charged and discharged will be described. Table 1 shows the undoped capacities of the lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3,
The irreversible capacity and capacity maintenance rate are summarized.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】本発明によれば、高容量で、長期サイク
ルでの容量劣化が小さく、更に初回充電時に発生する不
可逆容量が小さいリチウム二次電池の負極材を製造する
ことができる。
According to the present invention, it is possible to manufacture a negative electrode material for a lithium secondary battery having a high capacity, a small capacity deterioration in a long-term cycle, and a small irreversible capacity generated at the time of initial charging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 秀治 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 西岡 圭子 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 笠松 真治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL01 AL07 AM03 AM04 AM05 BJ13 CJ02 CJ28 DJ12 DJ16 DJ17 HJ01 HJ02 HJ13 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 CB01 DA09 EA09 EA10 EA24 FA18 GA02 GA05 GA27 HA01 HA02 HA05 HA13 HA14 HA20 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideharu Sato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Keiko Nishioka 8-cho, Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture No. 3-1 Mitsubishi Chemical Corporation Tsukuba Research Laboratory (72) Inventor Shinji Kasamatsu 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshiaki Nitta 1006 Odaka Kadoma Kadoma, Osaka Matsushita Electric F-term (reference) in Sangyo Corporation 5H029 AJ03 AJ05 AK03 AL01 AL07 AM03 AM04 AM05 BJ13 CJ02 CJ28 DJ12 DJ16 DJ17 HJ01 HJ02 HJ13 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 CB01 DA09 EA09 EA10 EA24 FA05

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 非水系リチウム二次電池用負極材を製造
する方法であって、金属質物M、黒鉛質物、及び有機物
である炭素質物前駆体を混合、不活性雰囲気下で焼成し
てなることを特徴とし、該金属質物Mが、固相A、Bか
らなり、固相Aからなる核粒子の周囲の一部又は全面は
固相Bによって被覆された構造を持ち、更に該固相Aが
構成元素としてケイ素を少なくとも含み、該固相Bが周
期律表の2族元素、遷移金属元素、12族元素、13族
元素、並びに炭素とケイ素を除く14族元素からなる群
から選ばれた少なくとも一種の元素と、ケイ素との固溶
体又は金属間化合物である方法。
1. A method for producing a negative electrode material for a non-aqueous lithium secondary battery, comprising mixing a metal substance M, a graphite substance, and a carbonaceous precursor which is an organic substance, and firing the mixture under an inert atmosphere. Characterized in that the metallic substance M is composed of solid phases A and B, and has a structure in which a part or the whole of the core particles composed of the solid phase A is covered with the solid phase B. At least silicon as a constituent element, and the solid phase B is at least selected from the group consisting of Group 2 elements, transition metal elements, Group 12 elements, Group 13 elements, and Group 14 elements excluding carbon and silicon in the periodic table. A method which is a solid solution or an intermetallic compound of one kind of element and silicon.
【請求項2】 前記金属質物Mの表面に、予め黒鉛質
物、及び有機物である炭素質物前駆体を被覆し、これを
焼成してなる請求項1記載の方法。
2. The method according to claim 1, wherein the surface of the metal material M is coated in advance with a graphite material and a carbonaceous material precursor which is an organic material, and is calcined.
【請求項3】 前記金属質物M表面を、該金属質物Mと
黒鉛質物を不活性雰囲気下で機械処理することにより被
覆し、更に該処理物質を炭素質物前駆体と接触処理した
後、焼成する請求項1記載の方法。
3. The surface of the metallic substance M is coated by mechanically treating the metallic substance M and the graphite substance under an inert atmosphere, and the treated substance is contact-treated with a carbonaceous substance precursor, and then fired. The method of claim 1.
【請求項4】 機械処理を、不活性雰囲気下、剪断速度
10s-1以上で行う請求項3記載の方法。
4. The method according to claim 3, wherein the mechanical treatment is performed in an inert atmosphere at a shear rate of 10 s −1 or more.
【請求項5】 焼成温度が700〜1500℃である請
求項1乃至4のいずれか1に記載の負極材の製造法。
5. The method for producing a negative electrode material according to claim 1, wherein the firing temperature is 700 to 1500 ° C.
【請求項6】 黒鉛質物の結晶面(002)の面間隔d
002が0.348nm以下、且つ該黒鉛質物の積層層の厚
さLcが10nm以上である請求項1乃至5のいずれか1
に記載の方法。
6. A plane distance d of a crystal plane (002) of a graphite material.
002 is 0.348 nm or less, and the thickness Lc of the graphite layer is 10 nm or more.
The method described in.
【請求項7】 黒鉛質物が、波長514.3nmのアルゴ
ンイオンレーザー光を用いたラマンスペクトル分析に於
いて、1580cm-1〜1620cm-1の範囲に現れるピー
クの強度をIA、1350cm-1〜1370cm-1の範囲に
現れるピークの強度をIBとしたときの、ピーク強度比
R(=IB/IA):0.4以下を有するものである請
求項1乃至6のいずれか1に記載の負極材の製造法。
7. Graphite pledge is, in the Raman spectrum analysis using an argon ion laser beam having a wavelength 514.3Nm, the intensity of the peak appearing in the range of 1580cm -1 ~1620cm -1 IA, 1350cm -1 ~1370cm The negative electrode material according to any one of claims 1 to 6, wherein the negative electrode material has a peak intensity ratio R (= IB / IA): 0.4 or less, where IB is a peak intensity appearing in the range of -1. Manufacturing method.
【請求項8】 黒鉛質物が、平均粒子径が1μm以上1m
m以下である請求項1乃至7にいずれか1に記載の方
法。
8. The graphite material has an average particle diameter of 1 μm or more and 1 m.
The method according to any one of claims 1 to 7, wherein m is equal to or less than m.
【請求項9】 黒鉛質物が、結晶面(002)の面間隔
002が0.348nm以下である、天然黒鉛、人造黒
鉛、これらの高純度精製品、或いは、これらの混合物で
ある請求項1乃至8のいずれか1に記載の方法。
9. The graphite material is natural graphite, artificial graphite, a high-purity purified product thereof, or a mixture thereof, wherein the interplanar spacing d 002 of the crystal plane (002) is 0.348 nm or less. 9. The method according to any one of claims 1 to 8.
【請求項10】 炭素質物前駆体が、コールタールピッ
チ,石炭系重質油、直流系重質油、石油系重質油,芳香
族炭化水素、窒素含有複素環有機化合物、イオウ含有複
素環有機化合物、含窒素性有機高分子、含イオウ性有機
高分子、天然高分子から選ばれた一種以上の炭素化可能
な有機化合物である請求項1乃至5のいずれか1に記載
の方法。
10. The carbonaceous material precursor is coal tar pitch, coal-based heavy oil, DC-based heavy oil, petroleum-based heavy oil, aromatic hydrocarbon, nitrogen-containing heterocyclic organic compound, sulfur-containing heterocyclic organic. The method according to any one of claims 1 to 5, wherein the method is one or more carbonizable organic compounds selected from a compound, a nitrogen-containing organic polymer, a sulfur-containing organic polymer, and a natural polymer.
【請求項11】 炭素質物前駆体が、H/C:0.4以
上1.8以下のものである請求項1乃至5及び10のい
ずれか1に記載の方法。
11. The method according to claim 1, wherein the carbonaceous material precursor has an H / C ratio of 0.4 or more and 1.8 or less.
【請求項12】 負極材全体を100重量%としたと
き、金属質物M、黒鉛質物、及び有機物である炭素質物
前駆体を熱処理した炭素質物の割合が、それぞれ50〜
95重量%、4.9〜30重量%、及び0.1〜20重
量%である請求項1乃至11のいずれか1に記載の方
法。
12. When the total amount of the negative electrode material is 100% by weight, the ratio of the carbonaceous material obtained by heat-treating the metal material M, the graphite material, and the carbonaceous material precursor, which is an organic material, is 50 to 50%, respectively.
The method according to any one of claims 1 to 11, wherein the amount is 95% by weight, 4.9 to 30% by weight, and 0.1 to 20% by weight.
JP2000347569A 1999-11-16 2000-11-15 Manufacturing method of negative electrode material for nonaqueous lithium secondary battery Pending JP2001210329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347569A JP2001210329A (en) 1999-11-16 2000-11-15 Manufacturing method of negative electrode material for nonaqueous lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-325140 1999-11-16
JP32514099 1999-11-16
JP2000347569A JP2001210329A (en) 1999-11-16 2000-11-15 Manufacturing method of negative electrode material for nonaqueous lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001210329A true JP2001210329A (en) 2001-08-03

Family

ID=26571732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347569A Pending JP2001210329A (en) 1999-11-16 2000-11-15 Manufacturing method of negative electrode material for nonaqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001210329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method
JP2007115687A (en) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd Negative electrode active substance, method of manufacturing same, negative electrode and lithium battery adopting same
WO2007148553A1 (en) * 2006-06-20 2007-12-27 Osaka Gas Chemicals Co., Ltd. Negative-electrode active material for lithium ion secondary battery
JP2009514181A (en) * 2005-10-31 2009-04-02 ティ/ジェイ テクノロジーズ インコーポレイテッド High capacity electrodes and methods for their manufacture and use
KR101035361B1 (en) * 2005-01-28 2011-05-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method
KR101035361B1 (en) * 2005-01-28 2011-05-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2007115687A (en) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd Negative electrode active substance, method of manufacturing same, negative electrode and lithium battery adopting same
JP2009514181A (en) * 2005-10-31 2009-04-02 ティ/ジェイ テクノロジーズ インコーポレイテッド High capacity electrodes and methods for their manufacture and use
WO2007148553A1 (en) * 2006-06-20 2007-12-27 Osaka Gas Chemicals Co., Ltd. Negative-electrode active material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP1102339B1 (en) Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
KR101361567B1 (en) Composite graphite particles and use of same
JP4262475B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
WO2017141735A1 (en) Solid electrolytic composition, electrode sheet for full-solid secondary batteries, full-solid secondary battery, and method for manufacturing electrode sheet for full-solid secondary batteries and full-solid secondary battery
KR102102105B1 (en) Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP4530647B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20160008041A (en) Anode active material for lithium secondary battery and manufacturing mehtod of the same
KR101615439B1 (en) Manufacturing mehtod of carbon-silicon composite
EP4024511A1 (en) Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
KR20150001810A (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP4375042B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
KR20160005202A (en) Carbon-silicon composite and manufacturing mehtod of the same
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
KR20160081582A (en) Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
JP2010251126A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
JP4416232B2 (en) Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2003187866A (en) Lithium secondary battery
CN114424368A (en) Negative electrode active material, method of preparing negative electrode active material, negative electrode including the same, and lithium secondary battery including the same
JP2001210329A (en) Manufacturing method of negative electrode material for nonaqueous lithium secondary battery
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
CN114585589A (en) Artificial graphite, method for producing artificial graphite, negative electrode comprising artificial graphite, and lithium secondary battery
CN1225196A (en) Cathode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same
JP2003187865A (en) Lithium secondary battery
CN113488649B (en) Coated negative electrode material, preparation method thereof, negative plate and lithium ion battery
EP4024512A1 (en) Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same