JP2001200125A - Ionically conductive composition - Google Patents

Ionically conductive composition

Info

Publication number
JP2001200125A
JP2001200125A JP2000007268A JP2000007268A JP2001200125A JP 2001200125 A JP2001200125 A JP 2001200125A JP 2000007268 A JP2000007268 A JP 2000007268A JP 2000007268 A JP2000007268 A JP 2000007268A JP 2001200125 A JP2001200125 A JP 2001200125A
Authority
JP
Japan
Prior art keywords
conductive composition
electrolyte
weight
ion
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000007268A
Other languages
Japanese (ja)
Inventor
Yasumasa Toba
泰正 鳥羽
Maki Sugano
真樹 菅野
Norihisa Kobayashi
範久 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2000007268A priority Critical patent/JP2001200125A/en
Publication of JP2001200125A publication Critical patent/JP2001200125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an ionically conductive composition having high ionic conductivity with a solid form maintained even under being impregnated with a large quantity of electrolyte, and excellent in workability and flexibility. SOLUTION: This ionically conductive composition comprises (a) 10-20 wt.% of a polyvinyl acetal >=800 in degree of polymerization, (b) 4-18 wt.% of an electrolyte consisting of at least one compound selected from LiBF4, LiPF6 and (CF3SO2)2NLi, and (c) 63-86 wt.% of an alkyl carbonate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一次電池、二次電
池、電気二重層コンデンサ、エレクトロクロミック表示
素子等の電解質として使用することができるイオン伝導
性組成物に関する。
The present invention relates to an ion conductive composition which can be used as an electrolyte for primary batteries, secondary batteries, electric double layer capacitors, electrochromic display devices and the like.

【0002】[0002]

【従来の技術】近年、電子工業の分野では、電子機器の
高性能・小型化とともに、電子部品の高性能、小型薄形
化はもちろん、部品としての高い信頼性が要求されてい
る。信頼性の高い電子部品としての必要条件に、まず部
品に使用されている材料が固形体、つまり部品の使用条
件下で見掛け上固体状態を呈し、液体のように流れる物
体(以下これを流体と呼称する)の状態ではない物体
(以下これを固形体と呼称する)であることが要求され
る。これは、流体の材料を電子部品に使用した場合、部
品内部から部品外部への液漏れが頻出し、電子部品の性
能劣化を招くとともに、その電子部品の近くにある他の
電子部品に悪影響を及ぼしてしまい、ついには電子機器
を故障に至らしめるという理由による。したがって、イ
オン導電性材料を電子部品に利用する場合、流体より固
形体のイオン導電性材料を使用した電子部品の方が信頼
性が高い。一方、流体のイオン導電性材料を使用して、
高い信頼性の部品を得るために、部品を完全気密にする
手段もあるが、結局高価な電子部品となって実用に供し
得ない場合が多い。
2. Description of the Related Art In recent years, in the field of the electronics industry, not only high performance and miniaturization of electronic devices, but also high performance and miniaturization of electronic components, as well as high reliability as components are required. The requirements for a highly reliable electronic component include the following: First, the material used for the component is a solid, that is, an object that appears to be in a solid state under the conditions of use of the component, and flows like a liquid (hereinafter referred to as a fluid). (Hereinafter referred to as “solid body”). This is because, when a fluid material is used for an electronic component, liquid leaks frequently from the inside of the component to the outside of the component, causing performance degradation of the electronic component and adversely affecting other electronic components near the electronic component. And eventually cause the electronic device to fail. Therefore, when an ion conductive material is used for an electronic component, an electronic component using a solid ion conductive material has higher reliability than a fluid. On the other hand, using a fluid ionic conductive material,
In order to obtain a highly reliable component, there is a means for completely sealing the component. However, in many cases, the component is expensive and cannot be put to practical use.

【0003】固形体のイオン導電性材料としては、セラ
ミック材料または高分子材料が提案されているが、前者
のイオン導電性セラミック材料はもろい性質を有するた
め、任意の形に成形、成膜できず加工性などの機械的性
質に劣る欠点がある。一方、イオン導電性高分子材料は
加工性に優れている利点を持つ。
As the solid ion conductive material, a ceramic material or a polymer material has been proposed. However, the former ion conductive ceramic material has fragile properties and cannot be formed or formed into an arbitrary shape. There is a disadvantage that mechanical properties such as workability are inferior. On the other hand, ionic conductive polymer materials have the advantage of being excellent in workability.

【0004】しかし、高分子をマトリックスとして金属
塩を含有させ固溶させたイオン伝導性高分子材料のイオ
ン伝導度は電解液のイオン伝導度に比較してかなり小さ
いという問題を有している。
However, there is a problem that the ion conductivity of an ion-conductive polymer material containing a polymer as a matrix and containing a metal salt to form a solid solution is considerably smaller than the ion conductivity of an electrolytic solution.

【0005】現在、固形体のイオン導電性材料に電解液
を含有させたゲル型のイオン導電性材料の研究が盛んに
行われている。これは固形体のイオン導電性材料中に含
有される電解液が多いほどイオンの移動度を増大し、伝
導度が増大するためである。しかし、含有する電解液の
量が多いほど、固形体のイオン導電性材料は軟化し、最
終的には流体になってしまう。このため、大量の電解液
を含有させても軟化することがないイオン導電性高分子
材料が要求されている。
[0005] At present, research on gel-type ionic conductive materials in which an electrolyte is contained in a solid ionic conductive material has been actively conducted. This is because the greater the amount of the electrolyte contained in the solid ionic conductive material, the higher the ion mobility and the higher the conductivity. However, as the amount of the contained electrolytic solution increases, the solid ionic conductive material softens and eventually becomes a fluid. For this reason, an ionic conductive polymer material that does not soften even when a large amount of electrolyte is contained is required.

【0006】ポリビニルアセタールを用いた電解質につ
いては、特開昭57−143355号公報および同57
−143356号公報に、ポリビニルブチラールと有機
溶剤とを用いたイオン導電性固形体組成物が記載されて
いる。また、特開平3−43909号公報にはポリビニ
ルアセタールと有機溶剤とを含んだ高分子固体電解質
が、同3−43910号公報には、ポリビニルブチラー
ルと有機溶剤とを含んだ高分子固体電解質が記載されて
いる。さらに、特開平10−50141号公報には、ポ
リビニルアセタールとイオン解離性塩とを含んだ高分子
固体電解質が記載されている。しかし、上記公報記載の
電解質は、いずれも電解液の含有率が低いため、イオン
の移動度が小さく、十分なイオン伝導度が得られない。
An electrolyte using polyvinyl acetal is disclosed in JP-A-57-143355 and JP-A-57-143355.
JP-A-143356 describes an ion-conductive solid composition using polyvinyl butyral and an organic solvent. JP-A-3-43909 describes a polymer solid electrolyte containing polyvinyl acetal and an organic solvent, and JP-A-3-43910 describes a polymer solid electrolyte containing polyvinyl butyral and an organic solvent. Have been. Furthermore, JP-A-10-50141 describes a polymer solid electrolyte containing polyvinyl acetal and an ion dissociable salt. However, all of the electrolytes described in the above publications have a low content of the electrolytic solution, so that the mobility of ions is small and sufficient ion conductivity cannot be obtained.

【0007】また、米国特許第3,985,574号明
細書にはゲル型高分子電解質を用いた電池が記載されて
いる。しかし、上記明細書記載のゲル型高分子電解質
は、電解質として過塩素酸アンモニウムが例示されてい
るが、アンモニウム塩は電解質として電気化学的、熱化
学的安定性および、導電率がリチウム塩と比較して小さ
い点で好ましくない。またこれら電解質を用いたときの
ゲル型高分子電解質の液漏れや機械的強度についても問
題がある。
Further, US Pat. No. 3,985,574 describes a battery using a gel-type polymer electrolyte. However, in the gel-type polymer electrolyte described in the above specification, ammonium perchlorate is exemplified as the electrolyte, but the ammonium salt is compared with the lithium salt in electrochemical, thermochemical stability and conductivity as the electrolyte. It is not preferable because it is small. There are also problems with respect to liquid leakage and mechanical strength of the gel polymer electrolyte when using these electrolytes.

【0008】[0008]

【発明が解決しようとする課題】本発明は、大量の電解
液が含浸した状態においても、固形体を維持し高いイオ
ン伝導度を有し、加工性、柔軟性に優れたイオン伝導性
組成物を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an ion conductive composition which maintains a solid body, has a high ionic conductivity, is excellent in processability and flexibility even in a state where a large amount of electrolyte is impregnated. Is provided.

【0009】[0009]

【課題を解決するための手段】本発明者らは、以上の諸
問題点を考慮し解決すべく鋭意研究を重ねた結果、本発
明に至った。すなわち本発明は以下の通りである。 (1)(a)重合度800以上のポリビニルアセタール10
〜20重量%、(b)LiBF4、LiPF6または(CF3SO2)2NLiの
少なくとも一種からなる電解質4〜18重量%、および
(c)アルキルカーボネート63〜86重量%からなるイ
オン伝導性組成物。 (2)アルキルカーボネートが、プロピレンカーボネー
ト、またはエチレンカーボネートである請求項1記載の
イオン伝導性組成物。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems in consideration of the above problems, and as a result, have reached the present invention. That is, the present invention is as follows. (1) (a) Polyvinyl acetal 10 having a degree of polymerization of 800 or more
20 wt%, (b) LiBF 4, LiPF 6 or (CF 3 SO 2) 2 of at least one consisting of electrolyte NLi 4 to 18 wt%, and
(c) An ion conductive composition comprising 63 to 86% by weight of an alkyl carbonate. (2) The ion conductive composition according to claim 1, wherein the alkyl carbonate is propylene carbonate or ethylene carbonate.

【0010】[0010]

【発明の実施の形態】以下、詳細にわたって本発明を説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0011】本発明のイオン伝導性組成物の(a)成分
であるポリビニルアセタールは、一般式(1)のように
アセタール基、アセチル基、水酸基を有するそれぞれ3
種の繰り返し単位からなる高分子化合物である。 一般式(1)
The polyvinyl acetal which is the component (a) of the ion conductive composition of the present invention has an acetal group, an acetyl group, and a hydroxyl group each having 3 as shown in the general formula (1).
It is a polymer compound composed of various kinds of repeating units. General formula (1)

【0012】[0012]

【化1】 Embedded image

【0013】(ただし、Rはの炭素数1から3アルキル
基を表す。p、q、rは正の整数を表す。) 本発明のイオン伝導性組成物の(a)成分であるポリビ
ニルアセタールは、アセタール基を有する繰り返し単位
の少なくとも1つを含んでいれば良い。アセタール基を
有する繰り返し単位を60〜80mol%、好ましくは6
5〜70 mol%、水酸基を有する繰り返し単位を5〜3
6mol%、好ましくは20〜33mol%を含むポリビニル
アセタールが好ましい。なお、一般式(1)のRは炭素数
が1から3のアルキル基、つまりメチル基、エチル基、
プロピル基、イソプロピル基が挙げられ、特にRがプロ
ピル基の場合が好ましい。
(However, R represents an alkyl group having 1 to 3 carbon atoms. P, q, and r represent positive integers.) The polyvinyl acetal which is the component (a) of the ion conductive composition of the present invention is And at least one repeating unit having an acetal group. The repeating unit having an acetal group has a content of 60 to 80 mol%, preferably 6 to 80 mol%.
5 to 70 mol%, 5 to 3 repeating units having a hydroxyl group
Polyvinyl acetal containing 6 mol%, preferably 20-33 mol%, is preferred. In the general formula (1), R represents an alkyl group having 1 to 3 carbon atoms, that is, a methyl group, an ethyl group,
Examples thereof include a propyl group and an isopropyl group, and a case where R is a propyl group is particularly preferable.

【0014】本発明における(a)成分の組成比は組成
物全体の10〜20重量%である。特に、12〜17重
量%が好ましい。(a)成分が全体の10重量%未満で
は、イオン伝導性組成物が非常にもろいものとなる。ま
た(a)成分の重合度は800以上、特に1700以上の
ものが好ましい。重合度が800より小さいものでは、
イオン伝導性組成物が非常にもろいものとなる。
The composition ratio of the component (a) in the present invention is 10 to 20% by weight of the whole composition. Particularly, 12 to 17% by weight is preferable. When the component (a) is less than 10% by weight of the whole, the ion conductive composition becomes very brittle. The polymerization degree of the component (a) is preferably 800 or more, particularly preferably 1700 or more. If the degree of polymerization is less than 800,
The ion conductive composition becomes very brittle.

【0015】次に本発明の(b)成分である電解質とし
ては、特にリチウム二次電池として使用する場合、広い
電位窓を示す電気化学的に安定なリチウム塩が用いられ
る。この例としてLiBF4、LiPF6、(CF3SO2)2NLiを挙げる
ことができる。本発明における(b)成分の組成比は組
成物全体の4〜18重量%である。特に6〜17重量%
が好ましい。(b)成分が4重量%未満では十分なイオ
ン伝導性が得られない。
Next, as the electrolyte which is the component (b) of the present invention, an electrochemically stable lithium salt showing a wide potential window is used particularly when used as a lithium secondary battery. Examples of this are LiBF 4 , LiPF 6 , and (CF 3 SO 2 ) 2 NLi. The composition ratio of the component (b) in the present invention is 4 to 18% by weight of the whole composition. Especially 6 to 17% by weight
Is preferred. If the component (b) is less than 4% by weight, sufficient ionic conductivity cannot be obtained.

【0016】本発明の(c)成分の組成比は組成物全体
の63〜86重量%である。特に、68〜78重量%が
好ましい。(c)成分が86重量%を越えると、イオン伝
導性組成物が非常にもろいものとなる。また、(c)成分
が63重量%未満では十分なイオン伝導性が得られな
い。
The composition ratio of the component (c) of the present invention is from 63 to 86% by weight of the whole composition. In particular, 68 to 78% by weight is preferable. When component (c) exceeds 86% by weight, the ion conductive composition becomes very brittle. If the component (c) is less than 63% by weight, sufficient ion conductivity cannot be obtained.

【0017】以上、説明した(a)、(b)、(c)成分
を用いてイオン伝導性組成物を製造する場合、様々な製
造方法が考えられるが、主な製造方法として以下の方法
が挙げられる。しかし、なんらこれらに限定されるもの
ではない。
In the case of producing an ion conductive composition using the components (a), (b) and (c) described above, various production methods are conceivable, but the following methods are the main production methods. No. However, it is not limited to these.

【0018】第一の方法は、(a)成分を有機溶剤に溶解
させたものに、(b)、(c)成分を加えた後、有機溶剤を蒸
発させて取り除く方法である。この(a)成分を溶解する
有機溶剤としては、メタノール、エタノール、プロパノ
ール等のアルコール類、アセトン、メチルエチルケト
ン、シクロヘキサノン等のケトン類、N、Nージメチルア
セトアミド、N、Nージメチルホルムアミド等のアミド
類、ジオキサン、テトラヒドロフラン等のエーテル類、
メチレンクロライド、クロロホルム等の塩素化炭化水
素、トルエン、キシレン、スチレン、ピリジン等の芳香
族系溶剤、ジメチルスルホキシド、酢酸等が挙げられる
が、(a)成分を溶解するものであれば、上記の有機溶剤
に限定されるものではない。
The first method is to add the components (b) and (c) to a solution of the component (a) in an organic solvent, and then remove the organic solvent by evaporation. Examples of the organic solvent for dissolving the component (a) include alcohols such as methanol, ethanol, and propanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; and amides such as N, N-dimethylacetamide, N, N-dimethylformamide. , Dioxane, ethers such as tetrahydrofuran,
Chlorinated hydrocarbons such as methylene chloride and chloroform, aromatic solvents such as toluene, xylene, styrene and pyridine, dimethyl sulfoxide, acetic acid and the like can be mentioned. It is not limited to a solvent.

【0019】第二の方法は(a)、(b)、(c)成分の
混合物として、所定形状に成形加工する方法である。こ
こで成形加工する方法としては、(a)、(b)、(c)
成分の混合物を基盤上に塗布してシート上に形成する方
法、加熱溶融状態で成形したのち冷却加工する方法など
が使用可能である。
The second method is a method of forming a mixture of the components (a), (b) and (c) into a predetermined shape. Here, the forming method includes (a), (b), and (c)
A method in which a mixture of the components is applied on a substrate to form a sheet, a method in which the mixture is molded in a heated and molten state and then cooled, and the like can be used.

【0020】第三の方法は(a)成分をキャスト法また
は加熱溶融などの処理により、フィルムを作製し、この
フィルムを(b)、(c)成分から調製した電解質溶液に
含浸する方法である。
The third method is a method of producing a film by subjecting the component (a) to a process such as a casting method or heat melting, and impregnating the film with an electrolyte solution prepared from the components (b) and (c). .

【0021】さらに必要があれば、他のポリマー、セラ
ミック、金属を機械的強度、耐熱性、イオン導電率向上
のため添加させることができる。
If necessary, other polymers, ceramics and metals can be added to improve mechanical strength, heat resistance and ionic conductivity.

【0022】[0022]

【実施例】以下、実施例にて本発明を具体的に説明する
が、本発明は下記の実施例になんら限定されるものでは
ない。 実施例1 LiBF411重量部をプロピレンカーボネート74重量部
に溶解した電解質溶液と一般式(1)のRがプロピル基で
ある重合度が850のポリビニルアセタール15重量部
をテトラヒドロフラン166重量部に溶解した高分子溶
液とを別々に調製した。調製した電解質溶液と高分子溶
液とを混合し、均一になるまで充分攪拌した。次に、あ
らかじめ準備したテフロン製の容器中にこの混合液の全
量を注ぎ込み、50℃で5時間加熱乾燥し、その後真空
乾燥機中で70℃で3時間減圧下加熱乾燥してテトラヒ
ドロフランを取り除き、イオン伝導性組成物を作製し
た。 実施例2〜8,比較例1〜6 表1に示す(a)、(b)、(c)成分とテトラヒドロフランと
を表1に示す組成比で、実施例1と同様の方法によりイ
オン伝導性組成物を作製した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. Example 1 An electrolyte solution obtained by dissolving 11 parts by weight of LiBF 4 in 74 parts by weight of propylene carbonate and 15 parts by weight of polyvinyl acetal having a polymerization degree of 850 in which R is a propyl group in the general formula (1) were dissolved in 166 parts by weight of tetrahydrofuran. And a polymer solution were prepared separately. The prepared electrolyte solution and polymer solution were mixed and sufficiently stirred until they became uniform. Next, the whole amount of the mixed solution was poured into a Teflon container prepared in advance, and dried by heating at 50 ° C. for 5 hours, and then dried by heating under reduced pressure at 70 ° C. for 3 hours in a vacuum dryer to remove tetrahydrofuran. An ion conductive composition was prepared. Examples 2 to 8 and Comparative Examples 1 to 6 The components (a), (b) and (c) shown in Table 1 and tetrahydrofuran were used in the composition ratio shown in Table 1 in the same manner as in Example 1 to obtain an ion conductive material. A composition was made.

【0023】上記の方法により製造したイオン伝導性組
成物について表1に示す。ここで強度とは、イオン伝導
性組成物をテフロン製の容器から剥離する際、イオン伝
導性組成物が破断した場合に機械的強度不十分、破断し
ない場合に機械的強度十分として表す。また液漏れあり
とは、イオン伝導性組成物の表面が湿潤している場合を
表す。表1の結果から明らかなように、ポリビニルアセ
タールの重合度が800より小さい場合(比較例1,
2)、得られる組成物は、非常にもろく機械的強度が十
分でなかった。また、LiBF4、LiPF6、(CF3SO2)2NLi以外
の電解質を用いた場合(比較例3〜6)、得られる組成物
は非常にもろく機械的強度が十分でなかった。
Table 1 shows the ion conductive composition produced by the above method. Here, the strength is expressed as insufficient mechanical strength when the ion conductive composition breaks when peeling the ion conductive composition from the Teflon-made container, and sufficient mechanical strength when the ion conductive composition does not break. In addition, the presence of liquid leakage indicates a case where the surface of the ion conductive composition is wet. As is clear from the results in Table 1, when the degree of polymerization of polyvinyl acetal is less than 800 (Comparative Example 1,
2) The composition obtained was very brittle and had insufficient mechanical strength. When an electrolyte other than LiBF 4 , LiPF 6 , and (CF 3 SO 2 ) 2 NLi was used (Comparative Examples 3 to 6), the resulting composition was very brittle and had insufficient mechanical strength.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例9〜16、比較例7 表2に示す(a)、(b)、(c)成分とテトラヒドロフランと
を表2に示す組成比で、実施例1と同様の方法により作
製したイオン伝導性組成物についてイオン伝導度の測定
を行った。
Examples 9 to 16 and Comparative Example 7 Components (a), (b) and (c) shown in Table 2 and tetrahydrofuran were prepared by the same method as in Example 1 at a composition ratio shown in Table 2. The ion conductivity of the ion conductive composition was measured.

【0026】イオン伝導性組成物の入ったテフロン容器
をアルゴンガスで充満させたグローブボックス内に移し
入れ、イオン伝導性組成物をテフロン容器から剥離した
のち直径1cmの円状に切断し測定用試料片を得た。この
測定用試料片をステンレス電極に挟みこみセルを作製し
た。このセルをリード線でインピーダンスアナライザー
につなぎ、交流インピーダンス法により20℃にて試料
の抵抗値を測定した。測定は、アルゴン雰囲気中で行
い、測定用試料片の抵抗値、厚み(100〜300μm)
および、ステンレス電極の面積からイオン伝導性組成物
の導電率σを算出した。上記の方法で測定したイオン伝
導性組成物のイオン導電率σの測定結果を表2に示し
た。表2の結果から明らかなように、アルキルカーボネ
ートが組成物全体の65重量%よりも少ない場合(比較
例3)、十分なイオン導電率は得られないことがわかっ
た。
The Teflon container containing the ion-conductive composition was transferred into a glove box filled with argon gas, and the ion-conductive composition was peeled off from the Teflon container and cut into a circle having a diameter of 1 cm. I got a piece. This measurement sample piece was sandwiched between stainless steel electrodes to produce a cell. This cell was connected to an impedance analyzer with a lead wire, and the resistance value of the sample was measured at 20 ° C. by the AC impedance method. The measurement is performed in an argon atmosphere, and the resistance and thickness (100 to 300 μm) of the measurement sample piece are measured.
In addition, the conductivity σ of the ion-conductive composition was calculated from the area of the stainless steel electrode. Table 2 shows the measurement results of the ionic conductivity σ of the ionic conductive composition measured by the above method. As is clear from the results in Table 2, it was found that when the amount of the alkyl carbonate was less than 65% by weight of the whole composition (Comparative Example 3), sufficient ionic conductivity could not be obtained.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例17 一般式(1)のRがプロピル基である重合度が850のポ
リビニルアセタール20重量部と、LiBF411重量部、
プロピレンカーボネート69重量部からなる混合物をテ
フロン製の容器に注ぎ込み、60℃で2日間加熱溶融
し、その後冷却加工してイオン伝導性組成物を作製し
た。実施例9〜16と同様の方法でイオン導電率を測定
したところ、1.00×10-4Scm-1であった。このこ
とから、実施例9と同様のイオン導電性組成物が製造で
きた。 実施例18 一般式(1)のRがプロピル基である重合度が850のポ
リビニルアセタール20重量部をテトラヒドロフラン1
66重量部に溶解した高分子溶液をテフロン製の容器に
注ぎ込み、50℃で5時間加熱乾燥し、その後真空乾燥
機中で70℃で3時間減圧下加熱乾燥することでテトラ
ヒドロフランを取り除き、ポリマーフィルムを作製し
た。このポリマーフィルムをLiBF411重量部、プロピ
レンカーボネート69重量部からなる電解質溶液に12
時間浸し、イオン伝導性組成物を作製した。実施例9〜
16と同様の方法でイオン導電率を測定したところ、
0.99×10-4Scm-1であった。このことから、実施
例9と同様のイオン導電性組成物が製造できた。
Example 17 20 parts by weight of a polyvinyl acetal having a degree of polymerization of 850 in which R in the general formula (1) is a propyl group, 11 parts by weight of LiBF 4 ,
A mixture consisting of 69 parts by weight of propylene carbonate was poured into a Teflon container, heated and melted at 60 ° C. for 2 days, and then cooled to prepare an ion conductive composition. When the ionic conductivity was measured in the same manner as in Examples 9 to 16, it was 1.00 × 10 −4 Scm −1 . From this, the same ionic conductive composition as in Example 9 could be produced. Example 18 20 parts by weight of a polyvinyl acetal having a polymerization degree of 850 in which R in the general formula (1) is a propyl group was added to tetrahydrofuran 1
The polymer solution dissolved in 66 parts by weight was poured into a Teflon container, dried by heating at 50 ° C. for 5 hours, and then dried by heating under reduced pressure at 70 ° C. for 3 hours in a vacuum dryer to remove tetrahydrofuran. Was prepared. This polymer film was added to an electrolyte solution comprising 11 parts by weight of LiBF 4 and 69 parts by weight of propylene carbonate.
It was soaked for a time to prepare an ion conductive composition. Example 9 ~
When the ionic conductivity was measured by the same method as in 16,
0.99 × 10 −4 Scm −1 . From this, the same ionic conductive composition as in Example 9 could be produced.

【0029】[0029]

【発明の効果】上述した如く、本発明はイオン伝導性が
高く、かつ柔軟性、加工性に優れたイオン伝導性組成物
であることから、一次電池、二次電池、電気二重層コン
デンサ、エレクトロクロミック表示素子等の電解質とし
ての利用は充分実用に供し得ることが可能である。
As described above, the present invention is an ion conductive composition having high ion conductivity, excellent flexibility, and excellent workability. Therefore, primary batteries, secondary batteries, electric double layer capacitors, The use as an electrolyte of a chromic display element or the like can be sufficiently practical.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/06 H01B 1/06 A H01G 9/038 H01M 10/40 B H01M 10/40 6/18 E // H01M 6/18 H01G 9/00 301D Fターム(参考) 4J002 BE061 DK006 EL107 GQ02 5G301 CA16 CA30 CD01 5H024 FF23 5H029 AM03 AM07 AM12 HJ01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/06 H01B 1/06 A H01G 9/038 H01M 10/40 B H01M 10/40 6/18 E / / H01M 6/18 H01G 9/00 301D F term (reference) 4J002 BE061 DK006 EL107 GQ02 5G301 CA16 CA30 CD01 5H024 FF23 5H029 AM03 AM07 AM12 HJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)重合度800以上のポリビニルアセタ
ール10〜20重量%、(b)LiBF4、LiPF6または(CF3S
O2)2NLiの少なくとも一種からなる電解質4〜18重量
%、および(c)アルキルカーボネート63〜86重量%
からなるイオン伝導性組成物。
(1) 10-20% by weight of (a) polyvinyl acetal having a degree of polymerization of 800 or more, (b) LiBF 4 , LiPF 6 or (CF 3 S
4 to 18% by weight of an electrolyte comprising at least one of O 2 ) 2 NLi, and (c) 63 to 86% by weight of an alkyl carbonate
An ion conductive composition comprising:
【請求項2】アルキルカーボネートが、プロピレンカー
ボネート、またはエチレンカーボネートである請求項1
記載のイオン伝導性組成物。
2. The method according to claim 1, wherein the alkyl carbonate is propylene carbonate or ethylene carbonate.
The ion-conductive composition according to the above.
JP2000007268A 2000-01-17 2000-01-17 Ionically conductive composition Pending JP2001200125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007268A JP2001200125A (en) 2000-01-17 2000-01-17 Ionically conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007268A JP2001200125A (en) 2000-01-17 2000-01-17 Ionically conductive composition

Publications (1)

Publication Number Publication Date
JP2001200125A true JP2001200125A (en) 2001-07-24

Family

ID=18535665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007268A Pending JP2001200125A (en) 2000-01-17 2000-01-17 Ionically conductive composition

Country Status (1)

Country Link
JP (1) JP2001200125A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050808A (en) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc Nonaqueous electrolyte, electrochemical element and its manufacturing method
WO2006075392A1 (en) * 2005-01-14 2006-07-20 Mitsui Chemicals, Inc. Polyvinyl acetal resin varnish, gelling agent, nonaqueous electrolyte and electrochemical element
JP2006253088A (en) * 2005-03-14 2006-09-21 Sony Corp Polymer electrolyte and battery using it
WO2006098240A1 (en) * 2005-03-14 2006-09-21 Sony Corporation Polymer electrolyte and battery
KR100856955B1 (en) * 2007-07-26 2008-09-04 미쓰이 가가쿠 가부시키가이샤 Polyvinyl acetal resin varnish, gelling agent, nonaqueous electrolyte solution, and electrochemical device
JP2010267630A (en) * 2010-07-27 2010-11-25 Sony Corp Method of manufacturing battery
EP1619743A3 (en) * 2004-07-21 2011-03-02 Sony Corporation Electrolyte for battery
JP2014192074A (en) * 2013-03-28 2014-10-06 Kuraray Co Ltd Polymer electrolyte gel composition for secondary battery use, and method for manufacturing the same
US11018378B2 (en) 2017-09-19 2021-05-25 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050808A (en) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc Nonaqueous electrolyte, electrochemical element and its manufacturing method
JP4647948B2 (en) * 2003-07-16 2011-03-09 三井化学株式会社 Electrochemical element and method for producing the same
EP1619743A3 (en) * 2004-07-21 2011-03-02 Sony Corporation Electrolyte for battery
US8124272B2 (en) 2005-01-14 2012-02-28 Mitsui Chemicals, Inc. Polyvinyl acetal resin varnish gelling agent, nonaqueous electrolyte solution, and electrochemical device
JP4878290B2 (en) * 2005-01-14 2012-02-15 三井化学株式会社 Polyvinyl acetal resin varnish, gelling agent, non-aqueous electrolyte and electrochemical device
JPWO2006075392A1 (en) * 2005-01-14 2008-06-12 三井化学株式会社 Polyvinyl acetal resin varnish, gelling agent, non-aqueous electrolyte and electrochemical device
WO2006075392A1 (en) * 2005-01-14 2006-07-20 Mitsui Chemicals, Inc. Polyvinyl acetal resin varnish, gelling agent, nonaqueous electrolyte and electrochemical element
US8216724B2 (en) 2005-03-14 2012-07-10 Sony Corporation Polymer electrolyte and battery
JP4609707B2 (en) * 2005-03-14 2011-01-12 ソニー株式会社 battery
WO2006098240A1 (en) * 2005-03-14 2006-09-21 Sony Corporation Polymer electrolyte and battery
JP2006253088A (en) * 2005-03-14 2006-09-21 Sony Corp Polymer electrolyte and battery using it
EP1860723A4 (en) * 2005-03-14 2009-04-08 Sony Corp Polymer electrolyte and battery
KR101486577B1 (en) 2005-03-14 2015-01-26 소니 주식회사 Polymer Electrolyte and Battery
KR100856955B1 (en) * 2007-07-26 2008-09-04 미쓰이 가가쿠 가부시키가이샤 Polyvinyl acetal resin varnish, gelling agent, nonaqueous electrolyte solution, and electrochemical device
JP2010267630A (en) * 2010-07-27 2010-11-25 Sony Corp Method of manufacturing battery
JP2014192074A (en) * 2013-03-28 2014-10-06 Kuraray Co Ltd Polymer electrolyte gel composition for secondary battery use, and method for manufacturing the same
US11018378B2 (en) 2017-09-19 2021-05-25 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
Chen et al. Intercalated electrolyte with high transference number for dendrite‐free solid‐state lithium batteries
US6949318B2 (en) Polymeric gel electrolyte and lithium battery employing the same
Wei et al. Enabling All‐Solid‐State Li Metal Batteries Operated at 30° C by Molecular Regulation of Polymer Electrolyte
US11069940B2 (en) Ionically conductive material for electrochemical generator and production methods
KR100404883B1 (en) Polymer electrolytes for electrochemical device
Yang et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries
JP2003508886A (en) Solid polymer electrolyte
CN105733260A (en) Graphene/conducive macromolecular polymer aerogel and preparation method thereof
CA2175950C (en) Polymer solid electrolyte
Hu et al. Synthesis and optimization of new polymeric ionic liquid poly (diallydimethylammonium) bis (trifluoromethane sulfonyl) imde based gel electrolyte films
Rajendran et al. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes
JP2001200125A (en) Ionically conductive composition
JP3623050B2 (en) Polymer electrolytes and electrochemical devices
Du et al. Lithium propanesulfonyl (trifluoromethylsulfonyl) imide grafted polybenzimidazole as a self-supporting single ion conducting polymer electrolyte membrane for lithium metal secondary batteries
Singh et al. Performance of ionic liquid–based quasi‐solid‐state hybrid battery supercapacitor fabricated with porous carbon capacitive cathode and proton battery anode
KR100273506B1 (en) Polymer gel and manufacturing method for secondary battery
Cyriac et al. Modification in the microstructure of sodium carboxymethylcellulose/polyvinyl alcohol polyblend films through the incorporation of NaNO3 for energy storage applications
Sehrawat et al. High‐performance sodium ion conducting gel polymer electrolyte based on a biodegradable polymer polycaprolactone
JP2001200126A (en) Ionically conductive composition
Lorenzo et al. Durable flexible supercapacitors utilizing the multifunctional role of ionic liquids
Swiderska-Mocek et al. Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium bis (trifluoromethanesulphonyl) imide ionic liquid with LiMn2O4 cathode in Li-ion batteries
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
JP2008222957A (en) Porous membrane comprising alkyleneoxide polymer and polymer solid electrolyte using the same as base material
Yuan et al. Bacteria cellulose framework-supported solid composite polymer electrolytes for ambient-temperature lithium metal batteries