JP2001180951A - Continuous manufacturing method improved in support moving method for sheet glass - Google Patents

Continuous manufacturing method improved in support moving method for sheet glass

Info

Publication number
JP2001180951A
JP2001180951A JP37420099A JP37420099A JP2001180951A JP 2001180951 A JP2001180951 A JP 2001180951A JP 37420099 A JP37420099 A JP 37420099A JP 37420099 A JP37420099 A JP 37420099A JP 2001180951 A JP2001180951 A JP 2001180951A
Authority
JP
Japan
Prior art keywords
glass
support
vapor film
glass ribbon
sheet glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37420099A
Other languages
Japanese (ja)
Inventor
Gen Kojima
弦 小島
Tsutomu Koyama
勉 小山
Isamu Kaneko
勇 金子
Haruo Aizawa
治夫 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP37420099A priority Critical patent/JP2001180951A/en
Publication of JP2001180951A publication Critical patent/JP2001180951A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • C03B35/246Transporting continuous glass ribbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sheet glass with particular surface smoothness in a high productivity. SOLUTION: A method for molding a sheet glass from glass ribbon GL by sliding glass ribbon GL over a support 12 being separated by a thin layer of vapor film 18, is characterized by moving the support 12 in a parallel plane to a plane of glass ribbon GL.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は板硝子連続製造法に
係り、特に硝子リボンを蒸気膜の薄層を介して摺動させ
る支持体稼働方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous production method of a glass sheet, and more particularly to an improvement of a method of operating a support for sliding a glass ribbon through a thin layer of a vapor film.

【0002】[0002]

【従来の技術】板硝子の成形法としては、引き上げ法、
ダウンドロー法、ロールアウト法、フュージョン法、ス
ズフロート法等が知られているが、現在最も普及してい
る板硝子の成形方法はスズフロート法である。この方法
は、溶解窯の中で所定原料を溶解した溶融硝子を、還元
性雰囲気下に溶融した金属スズ浴上に導入し、機械的な
外力を用いて縦横方向に延展、移動せしめ、ガラス転移
点温度付近まで徐々に冷却して平滑な表面を有する平面
状の硝子板を成形するもので、それまでの引き上げ法等
に比べ、製品の平滑度が格段に向上するため、磨き工程
を不要とした。
2. Description of the Related Art As a method of forming a sheet glass, a lifting method,
A downdraw method, a rollout method, a fusion method, a tin float method, and the like are known, and a tin glass method which is most widely used at present is a sheet glass forming method. In this method, a molten glass in which a predetermined raw material is melted in a melting furnace is introduced into a molten tin bath in a reducing atmosphere, and is spread and moved in the vertical and horizontal directions using a mechanical external force. It gradually cools to near the point temperature to form a flat glass plate with a smooth surface.Since the smoothness of the product is significantly improved compared to the conventional pulling method, the polishing process is unnecessary. did.

【0003】しかし、スズフロート法は、スズ資源の枯
渇が懸念されること、金属スズを酸化させないために水
素ガスを用いて還元性の雰囲気に保つ必要があること、
スズと接触した面から硝子内部にスズが浸透し製品の品
質に悪影響を及ぼすこと、地震等の揺れに弱くまた地震
後の生産回復に時間がかかること、硝子の加熱保温に大
量のエネルギーを費やすこと等の問題がある。
[0003] However, the tin float method is concerned with the depletion of tin resources, the need to maintain a reducing atmosphere using hydrogen gas in order to prevent oxidation of metallic tin,
Tin penetrates into the glass from the surface in contact with tin and adversely affects the quality of the product, is vulnerable to shaking such as earthquakes, takes time to recover production after an earthquake, and consumes a large amount of energy for heating and keeping the glass Problems.

【0004】また、ロールアウト法やスズフロート法に
よる板硝子の成形は、高温の溶融硝子が熱伝導性の高い
基材(金属ロール)や媒体(スズ)と接触するため、溶
融硝子との間の熱流束が大きく、溶融硝子は基材や媒体
の温度の影響を大きく受ける。従って、基材や媒体の温
度制御が非常に重要であり、また困難を伴うという問題
を有している。
[0004] In addition, in forming a sheet glass by a roll-out method or a tin float method, since a high-temperature molten glass comes into contact with a base material (metal roll) or a medium (tin) having high thermal conductivity, the heat flow between the molten glass and the molten glass is high. The bundle is large and the molten glass is greatly affected by the temperature of the substrate and the medium. Therefore, there is a problem that the temperature control of the substrate and the medium is very important and difficult.

【0005】更に、ロールアウト法では金属ロールとの
接触により硝子面が急激に冷却されるために、成形され
た板硝子面にロールとの接触跡、皺や凸凹状態が残るこ
とが避けがたく、製品の品質が悪くなる。一方、スズフ
ロート法では、冷却中における硝子表面や内部の温度分
布が発生しないようにスズ浴の温度を硝子の温度に近づ
けて徐々に冷却する緩慢冷却を行なわざるを得ず、成形
時間が長くかかるので、生産効率の点で問題がある。
Further, in the roll-out method, since the glass surface is rapidly cooled by contact with the metal roll, it is unavoidable that contact marks with the roll, wrinkles and irregularities remain on the formed sheet glass surface. The quality of the product deteriorates. On the other hand, in the tin float method, it is necessary to perform slow cooling in which the temperature of the tin bath is gradually brought close to the temperature of the glass so as not to generate a temperature distribution on the surface or inside of the glass during cooling, and the molding time is long. Therefore, there is a problem in terms of production efficiency.

【0006】また、引き上げ法、ダウンドロー法、フュ
ージョン法は、溶融硝子の両面が硝子よりも熱伝導性の
小さな媒体である空気に接触されるが、垂直方向の成形
のために重力に起因する溶融硝子への張力の制御が困難
で、何れの方法の場合にも最上部に最も大きな応力が働
き、板硝子の肉厚の制御が困難となり、それを軽減する
ための媒体の温度制御が煩雑になるという問題がある。
In the pulling method, the downdraw method, and the fusion method, both surfaces of the molten glass are brought into contact with air, which is a medium having smaller thermal conductivity than glass, but are caused by gravity due to vertical molding. It is difficult to control the tension on the molten glass, and in any case, the largest stress acts on the uppermost part, making it difficult to control the thickness of the sheet glass and complicating the temperature control of the medium to reduce it. Problem.

【0007】また、別の製法として、支持体表面の細孔
から空気等の気体を供給し、その上に溶融硝子を延展し
て硝子板の成形を行なう提案(特公昭50─36445
号公報)があるが、このように気体を直接連続的に供給
し、溶融又は流動性のある高温の硝子を安定に保持する
のは至難の技である。
Further, as another manufacturing method, a proposal has been made in which a gas such as air is supplied from pores on the surface of a support, and molten glass is spread thereon to form a glass plate (Japanese Patent Publication No. Sho 50-36445).
However, it is extremely difficult to directly and continuously supply a gas and stably maintain a molten or fluid high-temperature glass.

【0008】このように、従来の板硝子の製法は、それ
らの各製法によって、使用する基材や媒体の問題、板硝
子の均質性、均厚性、表面平滑性等の品質的な問題、成
形時の温度制御、成形時間等の生産的な問題等を有して
おり、いずれの製法も満足できるものではなかった。
[0008] As described above, the conventional sheet glass manufacturing methods involve problems of the base material and medium to be used, quality problems such as homogeneity, thickness uniformity, and surface smoothness of the sheet glass, and problems in forming. However, none of the production methods was satisfactory.

【0009】このような背景から、本出願人は、溶融硝
子を蒸気膜形成剤を気化した蒸気膜の薄層を用いて板状
に成形する板硝子の成形方法に関する基本技術を提案し
た(特開平9─295819号公報)。この板硝子の製
法によれば、省資源、省エネルギー化、板硝子の高品質
化、設備及び運転コストの低減、ジョブチェンジの容易
化、小規模生産から大規模生産までの多様な対応等の効
果を奏することができる。
[0009] From such a background, the present applicant has proposed a basic technique relating to a sheet glass forming method in which molten glass is formed into a plate shape by using a thin layer of a vapor film obtained by vaporizing a vapor film forming agent (Japanese Patent Laid-Open No. Hei 10 (1994)). 9-295819). According to the manufacturing method of the sheet glass, effects such as resource saving, energy saving, high quality of the sheet glass, reduction of equipment and operation cost, easy job change, various correspondences from small-scale production to large-scale production, and the like are exhibited. be able to.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、溶融硝
子を蒸気膜形成剤を気化させた蒸気膜の薄層を用いて板
状に成形する方法は、従来の発想の枠を越えた斬新な成
形法であり、成形の際の最適条件の検討により、品質並
びにプロセス上の改良を図る必要がある。特に、溶融硝
子を蒸気膜の薄層を介して摺動する支持体の移動方法の
最適化は、高い品質の板硝子を高い生産性で得る上で重
要である。
However, a method of forming a molten glass into a plate using a thin layer of a vapor film obtained by vaporizing a vapor film forming agent is a novel molding method that goes beyond the conventional idea. Therefore, it is necessary to improve the quality and process by examining the optimum conditions at the time of molding. In particular, optimization of the method of moving the support, which slides the molten glass through the thin layer of the vapor film, is important for obtaining high quality sheet glass with high productivity.

【0011】本発明は、このような事情に鑑みてなされ
たもので、溶融硝子を蒸気膜形成剤の薄層を用いて板状
に成形する際に、支持体の移動方法の最適化を図ること
により、高い品質、特に平坦性に優れた板硝子を高い生
産性で得ることのできる支持体稼働方法の改良された板
硝子連続製造法を提供することを目的とする。
The present invention has been made in view of such circumstances, and aims to optimize a method of moving a support when a molten glass is formed into a plate shape using a thin layer of a vapor film forming agent. Accordingly, it is an object of the present invention to provide a continuous production method of a sheet glass having an improved method of operating a support capable of obtaining a sheet glass having high quality, particularly excellent flatness, with high productivity.

【0012】[0012]

【課題を解決するための手段】本発明は前記目的を達成
するために、支持体上に供給された溶融状態の硝子リボ
ンを板硝子に連続的に成形する製法であって、液体を内
部に包含しうる材質または構造からなる前記支持体中
に、少なくとも常温付近では気体ではなく、該硝子のガ
ラス転移点以上で気体である蒸気膜形成剤を液体状態で
導入する工程と、該支持体とガラス転移点以上の温度に
ある硝子とを、前記蒸気膜形成剤を気化した蒸気膜の薄
層を介して互いに摺動させる工程と、を含む板硝子の製
法において、前記支持体を前記硝子リボンの面と平行な
平面内で移動させることを特徴とする。
In order to achieve the above object, the present invention provides a method for continuously forming a molten glass ribbon supplied on a support into sheet glass, wherein a liquid is contained inside. Introducing a vapor film forming agent, which is not a gas at least around normal temperature but a gas at or above the glass transition point of the glass, in a liquid state into the support made of a material or a structure which can be used. Sliding the glass at a temperature equal to or higher than the transition point through a thin layer of a vapor film formed by vaporizing the vapor film forming agent, wherein the support is provided on the surface of the glass ribbon. It is characterized in that it is moved in a plane parallel to.

【0013】前記平面内の移動は、前記支持体が前記平
面内で回転循環する回転循環移動であることを特徴とす
る。
The movement in the plane is a rotational circulating movement in which the support rotates and circulates in the plane.

【0014】また、前記平面内の移動は、前記支持体が
前記平面内で前記硝子リボンの移動方向に対して直交す
る方向に移動する往復移動であることを特徴とする。
Further, the movement in the plane is a reciprocating movement in which the support moves in a direction perpendicular to the moving direction of the glass ribbon in the plane.

【0015】[0015]

【発明の実施の形態】以下添付図面に従って、本発明の
好ましい実施の形態について詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】図1は、本発明の第1の実施の形態を実施
するための板硝子の成形装置を模式的に示した平面図で
あり、図2は側面図である。
FIG. 1 is a plan view schematically showing a sheet glass forming apparatus for carrying out the first embodiment of the present invention, and FIG. 2 is a side view.

【0017】成形装置10は、主として、蒸気膜形成剤
を内部に包含可能に形成された支持体12、12…と、
蒸気膜形成剤を支持体12に給液する給液装置(図示せ
ず)と、支持体12を硝子リボンGLと平行な平面内で
回転循環移動させて支持体12と硝子リボンGLとを蒸
気膜形成剤を気化した蒸気膜の薄層18(図2参照)を
介して相対的に摺動させる回転循環コンベア装置20
と、硝子リボンGLに張力を付与する張力付与装置22
とで構成される。また、成形装置10の前段側には、硝
子原料を溶解した硝子メルトG(図2参照)を支持体1
2上に供給する硝子溶解炉14が配設され、硝子メルト
Gは成形装置10に供給された後、硝子リボンGLとし
て成形される。
The molding apparatus 10 mainly comprises supports 12, 12,... Formed so as to be able to contain a vapor film forming agent therein.
A liquid supply device (not shown) for supplying a vapor film forming agent to the support 12, and the support 12 is rotated and circulated in a plane parallel to the glass ribbon GL to vaporize the support 12 and the glass ribbon GL. A rotary circulating conveyor device 20 that relatively slides through a thin layer 18 (see FIG. 2) of a vapor film in which a film forming agent is vaporized.
And a tension applying device 22 for applying tension to the glass ribbon GL
It is composed of A glass melt G (see FIG. 2) in which a glass raw material is dissolved is placed on the support 1 in front of the molding apparatus 10.
A glass melting furnace 14 for supplying the glass melt 2 on the glass melt 2 is provided, and the glass melt G is supplied to the molding device 10 and then molded as a glass ribbon GL.

【0018】硝子溶解炉14は、板硝子となる所定原料
を溶解するとともに溶解温度を制御して成形に好適な粘
度範囲と温度範囲の硝子メルトGを調製する。硝子メル
トGの粘度は温度に支配されるので、粘度は温度の管理
をすることにより同時に管理される。板硝子を成形する
場合、溶解は硝子組成によるが、通常、1000〜16
00°C程度の温度範囲で硝子の泡欠点、組成のバラツ
キ、その他の欠点が解消されるよう充分な時間をかけて
行なわれる。
The glass melting furnace 14 melts a predetermined raw material to be a sheet glass and controls a melting temperature to prepare a glass melt G having a viscosity range and a temperature range suitable for molding. Since the viscosity of the glass melt G is controlled by the temperature, the viscosity is simultaneously controlled by controlling the temperature. In the case of molding a sheet glass, the dissolution depends on the glass composition.
In a temperature range of about 00 ° C., the reaction is carried out for a sufficient time so as to eliminate the glass bubble defect, the composition variation, and other defects.

【0019】硝子溶解炉14により温度及び粘度の調整
された硝子メルトGは、硝子溶解炉14の出口孔14A
からリボン状の流れとなって支持体12上に供給され
る。硝子溶解炉14からの硝子メルトGの供給は、その
粘度や温度において過度の分布が生じない状態で供給可
能であれば、如何なる方式で供給されてもよい。即ち、
硝子溶解炉14のオレフィス、リップ、スリットから支
持体12上に直接供給してもよく、また、過度の冷却を
防止できるのであればロール等(図示せず)による予備
成形を行なってもよい。
The glass melt G whose temperature and viscosity have been adjusted by the glass melting furnace 14 is supplied to the outlet hole 14A of the glass melting furnace 14.
Is supplied onto the support 12 in the form of a ribbon. The glass melt G can be supplied from the glass melting furnace 14 by any method as long as the glass melt G can be supplied without excessive distribution in viscosity and temperature. That is,
It may be supplied directly from the orifice, lip, or slit of the glass melting furnace 14 onto the support 12, or may be preformed by a roll (not shown) if excessive cooling can be prevented.

【0020】支持体12は、液体を内部に包含しうる材
質又は液体を内部に包含しうる構造であることが必要で
あり、例えば多孔質体や繊維質体のものが使用される。
多孔質体の場合には連通孔であることが好ましい。ま
た、多孔質体の表面は、好ましくは5mm以下、より好
ましくは1mm以下、更に好ましくは100μm以下の
孔径の微細な孔を有している。また、蒸気膜形成剤と親
和性の高い材質であることが好ましい。
The support 12 is required to have a material capable of containing a liquid therein or a structure capable of containing a liquid therein. For example, a porous or fibrous material is used.
In the case of a porous body, it is preferably a communication hole. The surface of the porous body has fine pores having a pore diameter of preferably 5 mm or less, more preferably 1 mm or less, and still more preferably 100 μm or less. Further, it is preferable that the material has high affinity with the vapor film forming agent.

【0021】支持体12の基本となる材料としては、多
孔質親水性カーボンが特に好適であるが、その他の例え
ば、セルロース、紙、木、竹等の天然物由来の高分子材
料、熱可塑性樹脂、熱硬化性樹脂、ゴム等の合成高分子
系材料、炭素系材料等が好適に使用できる。また、鉄、
ステンレス鋼、白金等の金属材料、酸化アルミニウム、
酸化ジルコニウム、炭化ケイ素、窒化ケイ素等の金属酸
化物、金属炭化物、金属窒化物を主成分とするセラミッ
クス材料等も使用できる。なお、支持体12の成形面
は、微細な孔や繊維状の凸凹以外は非常に平滑であって
もよく、逆に一定の凸凹があってもよい。
As a basic material of the support 12, porous hydrophilic carbon is particularly preferred, but other materials such as cellulose, paper, wood, bamboo and other natural materials, thermoplastic resin In addition, synthetic polymer materials such as thermosetting resins and rubbers, and carbon materials can be suitably used. Also iron,
Metal materials such as stainless steel and platinum, aluminum oxide,
Ceramic materials mainly containing metal oxides such as zirconium oxide, silicon carbide and silicon nitride, metal carbides and metal nitrides can also be used. Note that the molding surface of the support 12 may be very smooth except for fine holes or fibrous irregularities, or may have certain irregularities.

【0022】回転循環コンベア装置20の支持体12
は、全体形状が図1に示すように楕円状に形成される。
また、支持体12は、支持体12を載せているパネル1
3上を、図示しない回転駆動部により回転駆動されて正
方向(図1の実線矢印26)又は逆方向(図1の破線矢
印28)に回転循環しながら硝子リボンGLの面に平行
な平行面内で移動を行なう。そして、硝子溶解炉14か
ら支持体12に供給された硝子リボンGLは、回転循環
する支持体12の直線部を利用して板硝子に成形され
る。即ち、支持体12の直線部の移動方向上流側に硝子
溶解炉14が配設される。この硝子リボンGLの成形に
おいて、支持体12の移動速度や移動方向は、支持体1
2と硝子リボンGLとが蒸気膜の薄層18を介して相対
的に摺動運動するように設定される。また、図2に示す
ように、支持体12の表面(硝子リボンGL側)には、
硝子リボンGLの移動方向25に平行でない溝12Bが
形成される。この溝12Bは、支持体12と蒸気膜の薄
層18との界面から余分な蒸気を効率的に逃がすのに有
効である。
The support 12 of the rotary circulating conveyor device 20
Is formed in an elliptical shape as shown in FIG.
The support 12 is a panel 1 on which the support 12 is mounted.
3 is rotated by a rotation drive unit (not shown) to rotate and circulate in a forward direction (solid arrow 26 in FIG. 1) or in a reverse direction (dashed arrow 28 in FIG. 1) and a parallel surface parallel to the surface of the glass ribbon GL. Move within. Then, the glass ribbon GL supplied from the glass melting furnace 14 to the support 12 is formed into a sheet glass using the linear portion of the support 12 that rotates and circulates. That is, the glass melting furnace 14 is disposed on the upstream side in the moving direction of the linear portion of the support 12. In the molding of the glass ribbon GL, the moving speed and the moving direction of the support 12 are controlled by the support 1
2 and the glass ribbon GL are set so as to relatively slide through the thin layer 18 of the vapor film. Further, as shown in FIG. 2, the surface of the support 12 (the glass ribbon GL side)
A groove 12B that is not parallel to the moving direction 25 of the glass ribbon GL is formed. This groove 12B is effective for efficiently releasing excess vapor from the interface between the support 12 and the thin layer 18 of the vapor film.

【0023】支持体12には、給液装置から蒸気膜形成
剤が供給され、この蒸気膜形成剤を硝子リボンGLの高
熱で瞬間的に気化させることにより、支持体12、12
…と硝子リボンGLの間に蒸気膜の薄層18を形成す
る。蒸気膜の薄層18の厚みとしては、10μm以上5
00μm以下であることが望ましい。これは蒸気膜の薄
層18の厚みが10μm未満では、支持体12と硝子リ
ボンGLが直接接触し易くなる一方、500μmを越え
ると蒸気膜の薄層18が不安定になり、薄層18上に硝
子リボンGLを安定して保持することができなくなるた
めである。
A vapor film forming agent is supplied to the support 12 from a liquid supply device, and the vapor film forming agent is instantaneously vaporized by the high heat of the glass ribbon GL, whereby the supports 12, 12 are formed.
... and a thin layer 18 of a vapor film is formed between the glass ribbons GL. The thickness of the thin layer 18 of the vapor film is 10 μm or more and 5
It is desirable that the thickness be not more than 00 μm. This is because if the thickness of the vapor film thin layer 18 is less than 10 μm, the support 12 and the glass ribbon GL are likely to come into direct contact, while if it exceeds 500 μm, the vapor film thin layer 18 becomes unstable and This is because it becomes impossible to stably hold the glass ribbon GL.

【0024】蒸気膜形成剤としては、常温において液体
で、且つガラス転移点以上では気体である有機物、無機
物の各種の物質を使用することができる。また、支持体
12への供給の操作性の点から、融点が40°C以下
で、大気圧下における沸点が50〜500°C、更に好
ましくは300°C以下のものがよい。更に、蒸気膜形
成剤が気化した蒸気が硝子に悪影響を与えない程に化学
的に反応せず、毒性が低く、使用される温度で不燃性で
あることが好ましく、代表的なものとして水を使用する
ことができる。このように、蒸気膜形成剤としては、硝
子リボンGLが高熱によって瞬間的に気化し、安定な蒸
気膜を形成することのできる液体を適切に選択すること
が必要である。高熱で瞬間的に気化することにより形成
された蒸気膜の薄層18の熱伝導性は、液体や固体の熱
伝導性に比べて著しく小さいため、硝子リボンGLに対
して断熱的な環境を形成することができる。
As the vapor film forming agent, various organic and inorganic substances which are liquid at ordinary temperature and gas at or above the glass transition point can be used. From the viewpoint of the operability of supply to the support 12, it is preferable that the melting point is 40 ° C or less and the boiling point under atmospheric pressure is 50 to 500 ° C, more preferably 300 ° C or less. Further, it is preferable that the vaporized vapor film forming agent does not chemically react so as not to adversely affect the glass, has low toxicity, and is nonflammable at the temperature used. Can be used. As described above, it is necessary to appropriately select a liquid capable of forming a stable vapor film by instantaneously vaporizing the glass ribbon GL due to high heat as the vapor film forming agent. Since the thermal conductivity of the thin layer 18 of the vapor film formed by instantaneous vaporization with high heat is significantly smaller than the thermal conductivity of a liquid or a solid, it forms an adiabatic environment for the glass ribbon GL. can do.

【0025】蒸気膜形成剤を支持体12に供給する給液
装置としては、例えば、回転循環移動する支持体12が
硝子リボンGLに面していない支持体12の表面に噴霧
や滴下するようにしてもよく、浴槽内の蒸気膜形成剤に
支持体12を直接接触させる方式のもや、湿潤ロール
(図示せず)を介して間接的に接触させるものでもよ
い。
As the liquid supply device for supplying the vapor film forming agent to the support 12, for example, the support 12 that rotates and circulates is sprayed or dropped onto the surface of the support 12 that does not face the glass ribbon GL. Alternatively, a method in which the support 12 is brought into direct contact with the vapor film forming agent in the bath tub, or a method in which the support 12 is brought into indirect contact with a wet roll (not shown) may be used.

【0026】張力付与装置22は、一対のピンチローラ
で構成され、硝子リボンGLを引っ張る方向に挟持回転
することにより、硝子リボンGLを延伸させるための張
力を付与する。ピンチローラは、駆動用ピンチローラ2
2Aと従動用ピンチローラ22B(図1の裏面側)とで
構成され、駆動用ピンチローラ22Aの回転数を可変で
きるようになっている。これにより、硝子リボンGLに
付与する張力を可変することにより、成形される板硝子
の板厚、品質の調整や蒸気膜の薄層18に接触している
硝子リボンGLの接触時間等の制御により冷却時間の調
整を行なう。
The tension applying device 22 is constituted by a pair of pinch rollers, and applies a tension for stretching the glass ribbon GL by pinching and rotating the glass ribbon GL in a pulling direction. The pinch roller is a driving pinch roller 2
2A and the driven pinch roller 22B (the back side in FIG. 1), so that the rotation speed of the driving pinch roller 22A can be changed. Thus, by changing the tension applied to the glass ribbon GL, cooling is performed by adjusting the thickness and quality of the formed glass sheet and controlling the contact time of the glass ribbon GL in contact with the thin layer 18 of the vapor film. Adjust the time.

【0027】上記の如く構成された板硝子の成形装置1
0を使用して本発明の第1の実施の形態を説明する。蒸
気膜形成材として水の例で説明する。
Sheet glass forming apparatus 1 constructed as described above
The first embodiment of the present invention will be described using 0. An example of water will be described as a vapor film forming material.

【0028】硝子溶解炉14から硝子メルトGがリボン
状となって支持体12上に供給されると、支持体12に
保持された水は、硝子リボンGLの高熱により瞬間的に
気化する。これにより、硝子リボンGLと支持体12の
界面で水蒸気が連続的に発生し、硝子リボンGLと支持
体12との間には蒸気膜の薄層18が形成される。一
方、硝子リボンGLの上側は大気が存在している。従っ
て、硝子リボンGLは蒸気膜の薄層18と空気とに挟ま
れて断熱的環境が形成される。ここで、断熱的環境と
は、硝子リボンGLが硝子より顕著に熱伝導性の低い媒
体(蒸気膜の薄層、気体)に覆われ、また硝子リボンG
Lの冷却が妨げられる程には当該媒体を通して加熱を受
けない環境を言い、板硝子の成形過程における硝子リボ
ンGLの厚み方向及び硝子リボンGL面に平行な方向の
温度分布を小さくできるという利点がある。そして、硝
子リボンGLは、蒸気膜の薄層18上で流延展開すると
共に、張力付与装置22により引っ張り張力が付与され
て延伸され、板状の硝子に成形される。
When the glass melt G is supplied from the glass melting furnace 14 to the support 12 in the form of a ribbon, the water held by the support 12 is instantaneously vaporized by the high heat of the glass ribbon GL. Thereby, water vapor is continuously generated at the interface between the glass ribbon GL and the support 12, and a thin layer 18 of a vapor film is formed between the glass ribbon GL and the support 12. On the other hand, the atmosphere exists above the glass ribbon GL. Therefore, the glass ribbon GL is sandwiched between the thin layer 18 of the vapor film and the air to form an adiabatic environment. Here, the adiabatic environment means that the glass ribbon GL is covered with a medium (a thin layer of a vapor film, a gas) having a significantly lower thermal conductivity than glass.
An environment in which heating through the medium is not received so much that cooling of L is hindered, and there is an advantage that the temperature distribution in the thickness direction of the glass ribbon GL and the direction parallel to the glass ribbon GL surface in the forming process of the sheet glass can be reduced. . Then, the glass ribbon GL is cast and developed on the thin layer 18 of the vapor film, and is stretched by applying a tensile force by the tension applying device 22 to be formed into a plate-like glass.

【0029】かかる硝子リボンGLの成形において望ま
しいことは、支持体12の表面が常に硝子リボンGLと
平行な面内におかれることであり、本発明では、支持体
12が硝子リボンGLと平行な平面内で回転循環移動す
るようにした。この回転循環移動は、支持体12の表面
が常に硝子リボンGLと平行な面になることを可能と
し、それだけ安定した支持体12表面を実現する。従っ
て、支持体12と硝子リボンGLとの間には、均厚な蒸
気膜の薄層18が安定形成されるので、硝子リボンGL
は蒸気膜の薄層18からの圧力を均等に受ける。これに
より、特に平坦性において優れた板硝子を安定的に成形
することができる。
In the molding of the glass ribbon GL, it is desirable that the surface of the support 12 is always in a plane parallel to the glass ribbon GL. In the present invention, the support 12 is parallel to the glass ribbon GL. It is made to rotate and circulate in a plane. This rotational circulating movement enables the surface of the support 12 to be always parallel to the glass ribbon GL, and realizes a stable surface of the support 12 accordingly. Therefore, a thin layer 18 of a uniform vapor film is stably formed between the support 12 and the glass ribbon GL.
Is evenly pressured by the thin layer 18 of vapor film. This makes it possible to stably form a sheet glass having particularly excellent flatness.

【0030】更に、本発明の第1の実施の形態のよう
に、支持体12を平面内で回転循環移動させるように構
成することで、硝子リボンGLに面していない支持体1
2の表面に蒸気膜形成剤を直接添加したり供給したりで
きる。これにより、蒸気膜形成剤を支持体12に添加や
供給し易くなるという利点もある。
Further, as in the first embodiment of the present invention, by supporting the support 12 so as to rotate and circulate in a plane, the support 1 not facing the glass ribbon GL can be used.
2 can be directly added or supplied with a vapor film forming agent. This also has the advantage that the vapor film forming agent can be easily added or supplied to the support 12.

【0031】次に、本発明の第2の実施の形態を説明す
る。
Next, a second embodiment of the present invention will be described.

【0032】図3は、本発明の第2の実施の形態を実施
するための板硝子の成形装置10を模式的に示した平面
図であり、第1の実施の形態と同じ部材については同符
号を付して詳細な説明は省略する。
FIG. 3 is a plan view schematically showing a sheet glass forming apparatus 10 for carrying out the second embodiment of the present invention, and the same members as those in the first embodiment have the same reference numerals. And the detailed description is omitted.

【0033】隣接配置された多数の矩形状の支持体12
が、矢印31方向にスライド自在に基台26上に支持さ
れる。また、各支持体12はシリンダ装置28に連結さ
れると共に各シリンダ装置28は信号ケーブルを介して
コントローラ32に接続される。コントローラ32は、
各支持体12を全て同じ方向に往復移動してもよく、或
いは各支持体12の往復移動が1つおきに逆向きになる
ようにしてもよく、要は支持体12が硝子リボンGLに
対して相対的に摺動すればよい。この場合、支持体12
が硝子リボンGLの幅方向にスライドする関係上、支持
体12の幅D1は硝子リボンGLの幅D2 の2倍以上あ
ることが好ましい。
A large number of rectangular supports 12 arranged adjacent to each other
Are slidably supported in the direction of arrow 31 on the base 26. Each support 12 is connected to a cylinder device 28, and each cylinder device 28 is connected to a controller 32 via a signal cable. The controller 32
All the supports 12 may be reciprocated in the same direction, or the reciprocal movement of each support 12 may be reversed every other direction. In short, the support 12 moves relative to the glass ribbon GL. It is only necessary to slide relatively. In this case, the support 12
Since the substrate slides in the width direction of the glass ribbon GL, the width D 1 of the support 12 is preferably at least twice the width D 2 of the glass ribbon GL.

【0034】支持体12に蒸気膜形成剤を供給する給液
装置としては、図示しないが、例えば、基台26を多数
の孔を有する多孔板として、多孔板の孔を介して蒸気膜
形成剤を支持体12に導入するようにしてもよく、基台
26の下方に蒸気膜形成剤を貯留する浴槽を設けて、支
持体12の下面が蒸気膜形成剤に浸るようにしてもよ
い。更に、支持体12同士が隣接する間には、蒸気膜の
薄層18の余分な蒸気を逃がすための溝12Bが硝子リ
ボンGLの移動方向25に対して平行でない向きに形成
される。
A liquid supply device for supplying the vapor film forming agent to the support 12 is not shown. May be introduced into the support 12, or a bath for storing the vapor film forming agent may be provided below the base 26 so that the lower surface of the support 12 is immersed in the vapor film forming agent. Furthermore, while the supports 12 are adjacent to each other, a groove 12B for allowing excess vapor of the thin layer 18 of the vapor film to escape is formed in a direction that is not parallel to the moving direction 25 of the glass ribbon GL.

【0035】このように構成された第2の実施の形態に
よれば、第1の実施の形態と同様に、支持体12の表面
が常に硝子リボンGLと平行な面になることを可能とす
るので、特に平坦性において優れた板硝子を成形するこ
とができる。
According to the second embodiment configured as described above, the surface of the support 12 can always be a plane parallel to the glass ribbon GL, as in the first embodiment. Therefore, it is possible to form a sheet glass having particularly excellent flatness.

【0036】また、第2の実施の形態のように、支持体
12を往復移動させることで硝子リボンGLと支持体1
2とを相対的に摺動させる場合には、支持体12を硝子
リボンGLの移動方向に動かさなくてもよい。従って、
硝子リボンGLの移動方向が、最初に上向きに移動し
て、その後に水平に移動する場合でも、傾斜部と水平部
を有する基台26上に支持体12を配置するだけで、硝
子リボンGLの移動に合わせて支持体12に簡単に角度
を付けることができる。
Further, as in the second embodiment, the glass ribbon GL and the support 1 are moved by reciprocating the support 12.
When the support 2 is relatively slid, the support 12 does not have to be moved in the moving direction of the glass ribbon GL. Therefore,
Even if the moving direction of the glass ribbon GL first moves upward and then moves horizontally, simply by disposing the support 12 on the base 26 having the inclined portion and the horizontal portion, the glass ribbon GL The support 12 can be easily angled in accordance with the movement.

【0037】また、本発明は、蒸気膜の薄層の厚み、冷
却速度、支持体12と硝子リボンGLとの相対的な摺動
等の成形要因が、有機的に関連しあって高品質な板硝子
を製法するものであり、これらの成形要因の制御をコン
ピュータ制御により行なうことが望ましい。
In the present invention, the quality of the thin film of the vapor film, the cooling rate, and the molding factors such as the relative sliding between the support 12 and the glass ribbon GL are organically related to each other, and high quality is obtained. It is a method of manufacturing a sheet glass, and it is desirable to control these forming factors by computer control.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
特に平坦性に優れた板硝子を高い生産性で得ることがで
きる。
As described above, according to the present invention,
In particular, a sheet glass excellent in flatness can be obtained with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を実施するための板
硝子の成形装置を模式的に示した平面図
FIG. 1 is a plan view schematically showing a sheet glass forming apparatus for carrying out a first embodiment of the present invention.

【図2】本発明の第1の実施の形態を実施するための板
硝子の成形装置を模式的に示した側面図
FIG. 2 is a side view schematically showing a sheet glass forming apparatus for carrying out the first embodiment of the present invention.

【図3】本発明の第2の実施の形態を実施するための板
硝子の成形装置を模式的に示した平面図
FIG. 3 is a plan view schematically showing a sheet glass forming apparatus for carrying out a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…板硝子の成形装置、12…支持体、14…硝子溶
解炉、18…蒸気膜の薄層、22…張力付与装置、28
…シリンダ装置、32…コントローラ
DESCRIPTION OF SYMBOLS 10 ... Sheet glass shaping | molding apparatus, 12 ... Support body, 14 ... Glass melting furnace, 18 ... Thin layer of a vapor film, 22 ... Tension giving apparatus, 28
... Cylinder device, 32 ... Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 勇 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 相沢 治夫 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Isamu Kaneko Inside Asahi Glass Co., Ltd. 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Haruo Aizawa 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】支持体上に供給された溶融状態の硝子リボ
ンを板硝子に連続的に成形する製法であって、液体を内
部に包含しうる材質または構造からなる前記支持体中
に、少なくとも常温付近では気体ではなく、該硝子のガ
ラス転移点以上で気体である蒸気膜形成剤を液体状態で
導入する工程と、該支持体とガラス転移点以上の温度に
ある硝子とを、前記蒸気膜形成剤を気化した蒸気膜の薄
層を介して互いに摺動させる工程と、を含む板硝子の製
法において、 前記支持体を前記硝子リボンの面と平行な平面内で移動
させることを特徴とする支持体稼働方法の改良された板
硝子連続製造法。
1. A method for continuously forming a molten glass ribbon supplied on a support into a sheet glass, wherein the support is made of a material or a structure capable of containing a liquid therein. A step of introducing a vapor film forming agent which is not a gas in the vicinity but a gas at or above the glass transition point of the glass in a liquid state; and And a step of sliding each other through a thin layer of a vapor film in which the agent is vaporized, wherein the support is moved in a plane parallel to the surface of the glass ribbon. Continuous production method of sheet glass with improved operation method.
【請求項2】前記蒸気膜形成剤は水であることを特徴と
する請求項1の支持体稼働方法の改良された板硝子連続
製造法。
2. The method of claim 1, wherein said vapor film forming agent is water.
【請求項3】前記平面内の移動は、前記支持体が前記平
面内で回転循環する回転循環移動であることを特徴とす
る請求項1又は2の支持体稼働方法の改良された板硝子
連続製造法。
3. The improved continuous glass production method for a support operating method according to claim 1, wherein the movement in the plane is a rotational circulating movement in which the support rotates and circulates in the plane. Law.
【請求項4】前記平面内の移動は、前記支持体が前記平
面内で前記硝子リボンの移動方向に対して直交する方向
に移動する往復移動であることを特徴とする請求項1又
は2の支持体稼働方法の改良された板硝子連続製造法。
4. The method according to claim 1, wherein the movement in the plane is a reciprocating movement in which the support moves in a direction perpendicular to a moving direction of the glass ribbon in the plane. A continuous production method of a sheet glass with an improved method of operating a support.
JP37420099A 1999-12-28 1999-12-28 Continuous manufacturing method improved in support moving method for sheet glass Pending JP2001180951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37420099A JP2001180951A (en) 1999-12-28 1999-12-28 Continuous manufacturing method improved in support moving method for sheet glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37420099A JP2001180951A (en) 1999-12-28 1999-12-28 Continuous manufacturing method improved in support moving method for sheet glass

Publications (1)

Publication Number Publication Date
JP2001180951A true JP2001180951A (en) 2001-07-03

Family

ID=18503437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37420099A Pending JP2001180951A (en) 1999-12-28 1999-12-28 Continuous manufacturing method improved in support moving method for sheet glass

Country Status (1)

Country Link
JP (1) JP2001180951A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7213414B2 (en) 2002-06-24 2007-05-08 Asahi Glass Company, Limited Process for producing flat glass
US7337633B2 (en) 2002-06-24 2008-03-04 Asahi Glass Company, Limited Process for producing flat glass
WO2011120673A1 (en) * 2010-04-01 2011-10-06 Uwe Geib Melting process having sheathing that can be pushed through
US20150259233A1 (en) * 2008-10-08 2015-09-17 Uwe Geib Melting furnace having infinite furnace campaign

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7213414B2 (en) 2002-06-24 2007-05-08 Asahi Glass Company, Limited Process for producing flat glass
US7337633B2 (en) 2002-06-24 2008-03-04 Asahi Glass Company, Limited Process for producing flat glass
US7913517B2 (en) 2002-06-24 2011-03-29 Asahi Glass Company, Limited Process and apparatus for producing flat glass
US20150259233A1 (en) * 2008-10-08 2015-09-17 Uwe Geib Melting furnace having infinite furnace campaign
US10233106B2 (en) * 2008-10-08 2019-03-19 Uwe Geib Melting furnace having infinite furnace campaign
WO2011120673A1 (en) * 2010-04-01 2011-10-06 Uwe Geib Melting process having sheathing that can be pushed through
CN103038178A (en) * 2010-04-01 2013-04-10 吴韦·盖布 Melting process having sheathing that can be pushed through
JP2013523576A (en) * 2010-04-01 2013-06-17 ウーヴェ ガイブ Melting process with screen that can be pushed in
US20150253081A1 (en) * 2010-04-01 2015-09-10 Uwe Geib Melting process having sheathing that can be pushed through
EA026566B1 (en) * 2010-04-01 2017-04-28 Уве Гайб Melting process with a screen that can be pushed through
US10161681B2 (en) * 2010-04-01 2018-12-25 Uwe Geib Melting process having sheathing that can be pushed through

Similar Documents

Publication Publication Date Title
JP4218263B2 (en) Sheet glass manufacturing method
US7913517B2 (en) Process and apparatus for producing flat glass
EP0884283B1 (en) Process for forming flat glass
US7934392B2 (en) Method of continuously producing flat glass by rolling
US20050178159A1 (en) Apparatus for manufacturing sheet glass
US20120159989A1 (en) Plate glass manufacturing device and plate glass manufacturing method
JP2001180949A (en) Roll-molding method for sheet glass product
WO2004005204A1 (en) Device for manufacturing sheet glass
JP3948044B2 (en) Glass plate forming method
JP2001180951A (en) Continuous manufacturing method improved in support moving method for sheet glass
US20090205373A1 (en) Roll forming manufacturing method and apparatus of plate glass and product thereof
JP2001192217A (en) Method for rapid and continuous manufacture of sheet glass
JP4506919B2 (en) Wide plate glass manufacturing method
JP2001247320A (en) Improved method for continuously producing wide plate glass
JP2001180950A (en) Improved manufacturing method for continuous thin sheet glass
JP2001192221A (en) Improvement of method for continuous production of sheet glass
JP2002193630A (en) Improvement in method of producing wide sheet glass
JP2002047019A (en) Roll-out forming method of plate glass product and its device
JP2001192220A (en) Method for stable manufacture of continuous sheet glass
JP2001192218A (en) Method for simple manufacture of continuous thin sheet glass
JP2001192219A (en) Method for continuous manufacture of thin sheet glass
JP4560909B2 (en) Continuous production of wide sheet glass
US20090235693A1 (en) Manufacturing Method of Plate Glass
JP2002047018A (en) New method of manufacturing wide plate glass and its device
JP2002037635A (en) Method for manufacture of wide sheet glass