JP4560909B2 - Continuous production of wide sheet glass - Google Patents

Continuous production of wide sheet glass Download PDF

Info

Publication number
JP4560909B2
JP4560909B2 JP2000229077A JP2000229077A JP4560909B2 JP 4560909 B2 JP4560909 B2 JP 4560909B2 JP 2000229077 A JP2000229077 A JP 2000229077A JP 2000229077 A JP2000229077 A JP 2000229077A JP 4560909 B2 JP4560909 B2 JP 4560909B2
Authority
JP
Japan
Prior art keywords
glass
support
glass ribbon
vapor film
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000229077A
Other languages
Japanese (ja)
Other versions
JP2002047020A (en
Inventor
弦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000229077A priority Critical patent/JP4560909B2/en
Publication of JP2002047020A publication Critical patent/JP2002047020A/en
Application granted granted Critical
Publication of JP4560909B2 publication Critical patent/JP4560909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は幅広板硝子の連続製法に係り、特に溶融硝子を連続的に幅広板硝子に成形する幅広板硝子の連続製法に関する。
【0002】
【従来の技術】
板硝子の製法としては、溶融スズを用いるフロート法、引き上げ法、ダウンドロー法、フュージョン法等が知られている。
【0003】
しかしながら、上記フロート法は、熱伝導性が硝子よりも高い媒体上(溶融スズのフロートバス上)に硝子リボンを浮上させて成形するために、媒体との熱の授受が大きく、媒体の温度の影響を大きく受けるので、媒体の温度制御が非常に重要であり、また、冷却中における硝子リボン表面と内部の温度差が少なくなるように媒体の温度を硝子の温度に近づけて厳密な制御のもとに徐々に冷却することが必要となるため、冷却がゆっくりとならざるを得ず、十分に長いフロートバスが必要となり、成形時間が長くなる。また、品質的にもスズに由来する各種欠点を生じることが多い。更に、スズ資源の枯渇も懸念されている。
【0004】
一方、引き上げ法、ダウンドロー法、フュージョン法では、垂直方向の成形のために重力に起因する硝子リボンへの力の制御が困難で、硝子肉厚の制御が困難となり、それを軽減するための媒体の温度制御が複雑になるという問題があった。
【0005】
このような背景から、本願出願人は、蒸気膜形成剤を含む基材を用いて蒸気膜の薄層を介して溶融硝子リボンを板状に成形する板硝子の成形方法に関する技術を提案している(特開平9─295819号公報)。この板硝子の製法によれば、省資源、省エネルギー化、板硝子の高品質化、設備及び運転コストの低減、ジョブチェンジの容易化、小規模生産から大規模生産までの多様な対応が可能等の効果を奏する。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平9─295819号公報に開示された前記従来の製法は、成形時に硝子リボンに働く力によって以下に述べる問題が生じ易い。即ち、硝子リボンの搬送方向(長手方向)では、成形装置の下流側に配設された搬送ローラやピンチローラにより硝子リボンに実質的に引張応力が与えられるが、硝子リボンの幅方向(短手方向)では、引張応力が与えられ難いので、一般的には硝子リボンの幅が収縮するという現象(アテニュエーション)が生じる。この現象によって、所望の幅の硝子リボンが得られず、また、成形された板硝子の表面に皺が発生したり、表面平滑性・平坦性及び均厚性が悪化し易いという欠点があった。
【0007】
本発明は、このような事情に鑑みてなされたもので、溶融硝子を蒸気膜形成剤を含む基材を用いて板硝子に成形する製法において、溶融硝子の幅方向の収縮を防止することにより、所定の幅広の硝子リボンを得るとともに、表面平滑性及び均厚性に優れた高品質な板硝子を製造することができる幅広板硝子の連続製法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は前記目的を達成するために、支持体上に供給された溶融状態の硝子リボンを板硝子に連続的に成形する製法であって、液体を内部に包含しうる材質又は構造からなる前記支持体中に、常温付近では気体ではなく、少なくとも該硝子のガラス転移点以上で気体である蒸気膜形成剤を液体状態で導入する工程と、該支持体とガラス転移点以上の温度にある硝子とを、前記蒸気膜形成剤が気化した蒸気膜の薄層を介して互いに摺動させる工程と、を含む板硝子の連続製法において、前記硝子リボンの幅方向の両端付近部を下方に折曲した形状に保持することにより、前記硝子リボンの幅の収縮を制御するとともに、冷却エアーを噴射して前記両端付近部を硬化させることを特徴とする。
【0009】
【発明の実施の形態】
以下添付図面に従って本発明の好ましい実施の形態について詳説する。
【0010】
図1、図2は、本発明を実施するための幅広板硝子の連続成形装置を模式的に示した図である。
【0011】
成形装置10は、主として、蒸気膜形成剤を内部に包含可能に形成された支持体12、12…と、蒸気膜形成剤を支持体12に給液する給液装置16と、支持体12を周回させるベルトコンベア20と、成形された硝子リボン13を搬送するローラ23と、硝子リボン13に搬送方向の力を付与する張力付与装置22と、成形過程にある硝子リボン13の両端を冷却するためのエア吹き出しノズル32が形成された冷却装置30とで構成される。また、成形装置10の前段側には、硝子原料を溶解する硝子溶融炉14が配設されており、この硝子溶融炉14から溶融状態の硝子Gが支持体12上に供給される。溶融硝子Gは成形装置10に供給され、ここで支持体12から蒸気膜形成剤が気化した蒸気膜の薄層18を介して搬送されることにより、支持体12上で板状硝子リボン13に成形される。
【0012】
硝子溶融炉14は、板硝子となる所定原料を溶解するとともに溶解温度を制御して成形に好適な粘度範囲と温度範囲の溶融硝子Gを調製する。このような硝子の成形を行うためには、成形初期の溶融硝子Gの温度が所定の範囲にあり、成形に適した溶融硝子Gの粘度であることが重要である。即ち、溶融硝子Gの粘度が100〜100万ポイズの範囲にあり、好適には500〜10万ポイズの間であるような温度領域で処理されることが好ましい。
【0013】
硝子溶融炉14により温度及び粘度の調整された溶融硝子Gは、硝子溶融炉14の出口スリット14Aからリボン状の流れとなって支持体12上に供給される。硝子溶融炉14からの溶融硝子Gの供給は、その粘度や温度において所定の硝子リボンが得られるものであれば、如何なる方式で供給してもよい。即ち、オレフィス、リップ、スリット、孔から支持体12上に直接供給してもよく、また、過度の冷却を防止できるのであればロール等(図示せず)による予備成形を行なってもよい。
【0014】
支持体12は、単位ユニットを連続させたものや所定長の単位ユニットを組み合わせたものでもよく、更にはベルト状に加工したもの、単位ロールを連続的に配列させたもの等を使用することができる。本実施の形態では、複数の矩形の支持体12、12…がベルトコンベア20の無端状ベルト20Aの表面に一定の間隔をもって長手方向に配列固定された例で説明する。このように支持体12同士を若干の間隔をもって配列すると、支持体12同士の間には硝子リボン13の移動方向に対し直交する溝12Bが形成される。
【0015】
無端状ベルト20Aは、駆動ロール20C及び従動ロール20Dからなる一対のロールの間に張設され、駆動ロール20Cの図1上時計回り方向の回転によって駆動される。これにより、無端状ベルト20Aは、図1の矢印26方向に周回移動することができる。更に、無端状ベルト20Aの移動速度は、支持体12上の硝子リボン13の進行速度と異なるように設定される。これにより、支持体12と硝子リボン13とは蒸気膜の薄層18を介して摺動運動する。また、ベルトコンベア20には、無端状ベルト20Aの上側移動経路をガイドするガイド板21が設けられ、無端状ベルト20Aの上面の移動はこのガイド板21にガイドされて安定して移動する。
【0016】
支持体12は、液体を内部に包含しうる材質又は液体を内部に包含しうる構造であることが必要であり、例えば多孔質体又は繊維質体のものが好適に使用される。多孔質体の場合には、連通孔であることが好ましい。また、多孔質体の表面は、好ましくは5mm以下、より好ましくは1mm以下、更に好ましくは100μm以下の孔径の微細な孔を有している。また、蒸気膜形成剤と親和性の高い材質であることが好ましい。
【0017】
支持体12の基本となる材料としては、連通孔を有する多孔質親水性カーボンが好適に使用し得るが、その他の例えば、セルロース、紙、木、竹等の天然物由来の高分子材料、炭素系材料等も使用できる。また、鉄、ステンレス鋼、ニッケル、アルミニウム、白金、チタン等の金属材料、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素等の金属酸化物、金属炭化物、金属窒化物を主成分とするセラミックス材料等も使用できる。なお、支持体12の成形面は、微細な孔や繊維状の凸凹以外は非常に平滑であってもよく、逆に一定の凸凹があってもよい。
【0018】
支持体12には、給液装置16から蒸気膜形成剤が供給され、この蒸気膜形成剤を硝子リボン13の高熱で瞬間的に気化させることにより、配列された複数の支持体12、12…と硝子リボン13の間に蒸気膜の薄層18を形成する。
【0019】
蒸気膜形成剤としては、常温において液体で、且つ少なくともガラス転移点以上では気体である有機物、無機物の各種の物質を使用することができる。また、支持体12への供給の操作性の点から、融点が40°C以下で、大気圧下における沸点が50〜500°C、更に好ましくは300°C以下のものがよい。更に、蒸気膜形成剤が気化した蒸気が硝子及び支持体12に悪影響を与える程に化学的に反応せず、毒性が低く、使用される温度で不燃性であることが好ましく、代表的なものとして水を使用することができる。このように、蒸気膜形成剤としては、硝子リボン13の高熱によって瞬間的に気化し、安定な蒸気膜を形成することのできる液体を適切に選択することが必要である。高熱で瞬間的に気化することにより形成された蒸気膜の薄層18の熱伝導性は、液体や固体の熱伝導性に比べて著しく小さいため、硝子リボン13に対して断熱的な環境を効果的に形成することができる。
【0020】
蒸気膜形成剤を支持体12に供給する給液装置16は、主として、ベルトコンベア20の下方に設けられた浴槽29で構成され、無端状ベルト20Aが周回移動して一対のロール20C、20D間の下側にきたときに、無端状ベルト20Aに支持された支持体12が浴槽29内の蒸気膜形成剤の液体中を潜るように形成される。これにより、給液装置16から支持体12に蒸気膜形成剤が供給される。なお、給液装置16としては、浴槽式のものに限定されるものではなく、例えば、支持体12に蒸気膜形成剤を噴霧する方式のものでもよく、或いは浴槽の液体を湿潤ロール(図示せず)に一旦含ませてから湿潤ロールを支持体12に接触させて蒸気膜形成剤を給液する方式のものでもよい。また、スプレー方式のものでもよい。
【0021】
張力付与装置22は、ベルトコンベア20の終端部側(駆動ロール20C側)の搬送ロール23の後部に設けられた一対のピンチローラ22A、22Bで構成され、硝子リボン13を搬送方向に引っ張る方向に挟持回転することにより、硝子リボン13を搬送ならびに延伸させるための力を付与する。ピンチローラ22A、22Bは、その回転数を可変できるようになっている。これにより、硝子リボン13の搬送方向に付与する力を可変することにより、成形される板硝子の板厚、品質の調整を制御するとともに、蒸気膜の薄層18に接触している硝子リボン13の接触時間等を可変して冷却時間等の制御を行なう。
【0022】
ところで、このような成形装置10では、所定幅の硝子リボン13を得るために幅方向の収縮を防止することが必要である。そこで、成形装置10では、図2、図3の如く硝子リボン13の幅方向の両端付近部13A、13Aを、幅方向に収縮し難くするような形状に保持しつつ板硝子に成形している。
【0023】
硝子リボン13が幅方向に収縮し難くするような形状、即ち幅を固定するための形状としては種々考えられる。例えば、図2、図3の如く支持体12の両端部を下方に段差が付くような折曲形状にすることが有効な形状の一つである。この例は、支持体12の両端部に段差部12A、12Aを設けた例である。この支持体12において、硝子リボン13の両端付近部13A、13Aは、支持体12の段差部12A、12Aに向けて重力により折れ曲がるので、硝子リボン13の平坦部が収縮するのを形状的に防げる。また、前記折れ曲がった両端付近部13A、13Aの重量がかかり、この重量は硝子リボン13に幅方向の引張力として働くので、硝子リボン13の幅方向の収縮が防止される。よって、所定幅で所定板厚の皺のない高品質の板硝子を成形できる。なお、折れ曲がった両端付近部13A、13Aに、冷却エアーを噴射する冷却装置30を設けることも好ましい。この冷却装置30のノズル32から噴射される冷却エアーによって、両端付近部13A、13Aが支持体12の段差部12A、12Aに接触(落下)する前に、両端付近部13A、13Aを硬化させることができるからである。折れ曲がった両端付近部13A、13Aは、所謂耳部と称され、製品出荷前に切断されるものなので、製品板硝子の品質には悪影響を与えない。また、搬送ロール23やピンチローラ22A、22Bは、前記両端付近部13A、13Aを逃がすような形状に予め形成されている。
【0024】
一方、図4の如く凹部12Cがあるような形状となっている支持体12も有効である。この凹部12Cが搬送方向に沿って連続することにより、ベルトコンベア20全体としては、硝子の搬送方向と平行に溝を形成する構造となる。この凹部12Cに硝子リボン13の両端付近部13A、13Aが膨らんで没入する。
【0025】
上記の如く構成された成形装置10を使用して板硝子を成形する方法を説明する。蒸気膜形成剤として水の例で説明する。
【0026】
硝子溶融炉14から溶融硝子Gがリボン状となって支持体12上に連続的に供給されると、支持体12に保持された水は、硝子リボン13の高熱により瞬間的に気化する。これにより、硝子リボン13と支持体12の界面で水蒸気が連続的に発生し、硝子リボン13と支持体12との間には蒸気膜の薄層18が形成される。この場合、通常、硝子溶融炉14から供給される溶融硝子Gは、通常のソーダライムガラスの場合、成形に好適な950〜1300°C程度で支持体12に供給されるが、余りに高温になると支持体12からの蒸気発生が激しすぎて安定した供給操作が阻害されるとともに、支持体12をはじめとする各種の部材や装置の耐久性にも悪影響がある。したがって、硝子の組成にもよるが、一般的には、硝子リボン13が1400°Cを越えない温度で支持体12へ流下させることが好ましい。そして、硝子リボン13は、蒸気膜の薄層18上で硝子溶融炉14の下流側から徐冷炉(図示せず)に向かって流延するとともに、張力付与装置22による搬送方向の引っ張り力が付与されて搬送方向に延伸され、且つ図3、又は図4のように硝子リボン13の両端付近部13A、13Aに対応する部分に、段差部12A、12A又はその長さ方向に凹部12Cが形成された支持体12によって幅方向の収縮が制御されて板状の硝子が成形される。
【0027】
したがって、成形装置10では、硝子リボン13に搬送方向及び幅方向の力を付与することができるので、均厚性及び表面平滑性を満足する高品質な幅広板硝子を得ることができる。
【0028】
【発明の効果】
以上説明したように本発明によれば、硝子リボンの幅方向の両端付近を幅方向に収縮しないような形状に保持しつつ板硝子を成形するので、表面平滑性及び均厚性に優れた高品質な幅広板硝子を生産できる。
【図面の簡単な説明】
【図1】本発明を実施するための幅広板硝子の連続成形装置を模式的に示した側面図
【図2】図1に示した幅広板硝子の連続成形装置の要部平面図
【図3】図2上3−3線から見た幅広板硝子の連続成形装置の断面図
【図4】支持体の別実施例を示す断面図
【符号の説明】
10…板硝子の成形装置、12…支持体、12A…段差部、12C…凹部、14…硝子溶融炉、16…給液装置、18…蒸気膜の薄層、20…ベルトコンベア、22…張力付与装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous production method of wide plate glass, and more particularly to a continuous production method of wide plate glass in which molten glass is continuously formed into a wide plate glass.
[0002]
[Prior art]
As a method for producing plate glass, a float method using molten tin, a pulling method, a downdraw method, a fusion method, and the like are known.
[0003]
However, in the above float method, since the glass ribbon is floated and formed on a medium having a higher thermal conductivity than that of glass (on a molten tin float bath), heat transfer with the medium is large, and the temperature of the medium is low. The temperature control of the medium is very important because it is greatly affected, and the temperature of the medium is brought close to the glass temperature so that the temperature difference between the glass ribbon surface and the inside during cooling is reduced. In this case, it is necessary to cool gradually, so that cooling must be slow, and a sufficiently long float bath is required, resulting in a long molding time. Moreover, various defects derived from tin are often produced in terms of quality. Furthermore, there are concerns about the depletion of tin resources.
[0004]
On the other hand, in the pulling method, downdraw method, and fusion method, it is difficult to control the force on the glass ribbon due to gravity due to vertical molding, and it becomes difficult to control the glass wall thickness. There is a problem that the temperature control of the medium becomes complicated.
[0005]
From such a background, the applicant of the present application has proposed a technique relating to a method for forming a plate glass, in which a molten glass ribbon is formed into a plate shape through a thin layer of a vapor film using a substrate containing a vapor film forming agent. (Japanese Patent Laid-Open No. 9-295819). According to this plate glass manufacturing method, it is possible to save resources, save energy, improve the quality of plate glass, reduce equipment and operating costs, facilitate job changes, and enable various responses from small-scale production to large-scale production. Play.
[0006]
[Problems to be solved by the invention]
However, the conventional manufacturing method disclosed in Japanese Patent Application Laid-Open No. 9-295819 is liable to cause the following problems due to the force acting on the glass ribbon during molding. That is, in the glass ribbon conveyance direction (longitudinal direction), a tensile stress is applied to the glass ribbon substantially by the conveyance roller and the pinch roller disposed on the downstream side of the molding apparatus. (Direction), it is difficult to give a tensile stress, so that generally a phenomenon (attenuation) occurs in which the width of the glass ribbon contracts. Due to this phenomenon, a glass ribbon having a desired width cannot be obtained, and there is a drawback that wrinkles are generated on the surface of the formed plate glass, and the surface smoothness / flatness and thickness uniformity are liable to deteriorate.
[0007]
The present invention has been made in view of such circumstances, in the manufacturing method of forming molten glass into plate glass using a substrate containing a vapor film forming agent, by preventing shrinkage in the width direction of the molten glass, It is an object of the present invention to provide a continuous production method of a wide plate glass capable of producing a glass ribbon having a predetermined wide width and capable of producing a high quality plate glass excellent in surface smoothness and thickness uniformity.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a method for continuously forming a molten glass ribbon supplied on a support into a plate glass, wherein the support is made of a material or structure capable of containing a liquid inside. In the body, a step of introducing a vapor film forming agent which is not a gas near normal temperature but is a gas at least above the glass transition point of the glass in a liquid state; and a glass at a temperature above the support and the glass transition point And a step of sliding each other through a thin layer of vapor film vaporized by the vapor film-forming agent, and in the continuous manufacturing method of plate glass , the shape near the both ends in the width direction of the glass ribbon is bent downward the by holding controls the contraction of the width of the glass ribbon, wherein isosamples injecting cooling air to cure the near both ends portions.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0010]
FIG. 1 and FIG. 2 are diagrams schematically showing a continuous forming apparatus for wide plate glass for carrying out the present invention.
[0011]
The molding apparatus 10 mainly includes supports 12, 12,... Formed so as to be able to contain a vapor film forming agent therein, a liquid supply device 16 for supplying the vapor film forming agent to the support 12, and a support 12. In order to cool both ends of the belt conveyor 20 that rotates, a roller 23 that conveys the formed glass ribbon 13, a tension applying device 22 that applies force in the conveying direction to the glass ribbon 13, and the glass ribbon 13 that is in the forming process. And a cooling device 30 in which an air blowing nozzle 32 is formed. A glass melting furnace 14 for melting the glass raw material is disposed on the front side of the molding apparatus 10, and molten glass G is supplied onto the support 12 from the glass melting furnace 14. The molten glass G is supplied to the molding apparatus 10 where the vapor film forming agent is conveyed from the support 12 through the vaporized thin layer 18 of the vapor film, so that the glass glass ribbon 13 is formed on the support 12. Molded.
[0012]
The glass melting furnace 14 melts a predetermined raw material to be a plate glass and controls the melting temperature to prepare a molten glass G having a viscosity range and a temperature range suitable for molding. In order to perform such glass molding, it is important that the temperature of the molten glass G at the initial stage of molding is in a predetermined range and the viscosity of the molten glass G is suitable for molding. That is, it is preferable that the molten glass G is processed in a temperature range in which the viscosity of the molten glass G is in the range of 1 to 1,000,000 poise, and preferably between 500 and 100,000 poise.
[0013]
The molten glass G whose temperature and viscosity have been adjusted by the glass melting furnace 14 is supplied onto the support 12 from the outlet slit 14A of the glass melting furnace 14 as a ribbon-like flow. The molten glass G from the glass melting furnace 14 may be supplied by any method as long as a predetermined glass ribbon can be obtained at the viscosity and temperature. That is, it may be directly supplied onto the support 12 from the orifice, lip, slit, or hole, and may be preformed by a roll or the like (not shown) if excessive cooling can be prevented.
[0014]
The support 12 may be a unit in which unit units are continuous or a combination of unit units of a predetermined length. Further, a support processed in a belt shape, a unit in which unit rolls are continuously arranged, or the like may be used. it can. In the present embodiment, an example will be described in which a plurality of rectangular supports 12, 12... Are arranged and fixed in the longitudinal direction on the surface of the endless belt 20 </ b> A of the belt conveyor 20 with a certain interval. When the supports 12 are arranged with a slight gap in this way, a groove 12B perpendicular to the moving direction of the glass ribbon 13 is formed between the supports 12.
[0015]
The endless belt 20A is stretched between a pair of rolls composed of a drive roll 20C and a driven roll 20D, and is driven by the clockwise rotation of the drive roll 20C in FIG. As a result, the endless belt 20A can move around in the direction of the arrow 26 in FIG. Furthermore, the moving speed of the endless belt 20 </ b> A is set to be different from the moving speed of the glass ribbon 13 on the support 12. Thereby, the support 12 and the glass ribbon 13 slide through the thin layer 18 of the vapor film. The belt conveyor 20 is provided with a guide plate 21 that guides the upper movement path of the endless belt 20A, and the movement of the upper surface of the endless belt 20A is guided by the guide plate 21 and moves stably.
[0016]
The support 12 needs to be a material that can contain a liquid inside or a structure that can contain a liquid inside. For example, a porous body or a fibrous body is preferably used. In the case of a porous body, a communication hole is preferable. The surface of the porous body preferably has fine pores having a pore diameter of 5 mm or less, more preferably 1 mm or less, and still more preferably 100 μm or less. Moreover, it is preferable that it is a material with high affinity with a vapor | steam film formation agent.
[0017]
As the basic material of the support 12, porous hydrophilic carbon having communication holes can be suitably used, but other materials such as polymer materials derived from natural products such as cellulose, paper, wood, bamboo, carbon, etc. System materials can also be used. In addition, metal materials such as iron, stainless steel, nickel, aluminum, platinum and titanium, metal oxides such as aluminum oxide, zirconium oxide, silicon carbide, and silicon nitride, metal carbide, ceramic materials mainly composed of metal nitride, etc. Can also be used. The molding surface of the support 12 may be very smooth except for fine holes and fibrous irregularities, and may have a certain irregularity.
[0018]
A vapor film forming agent is supplied to the support 12 from the liquid supply device 16, and the vapor film forming agent is instantaneously vaporized by the high heat of the glass ribbon 13, thereby arranging a plurality of arranged supports 12, 12. A thin layer 18 of vapor film is formed between the glass ribbon 13 and the glass ribbon 13.
[0019]
As the vapor film forming agent, various substances such as organic substances and inorganic substances which are liquid at room temperature and are gaseous at least above the glass transition point can be used. Further, from the viewpoint of operability of supply to the support 12, those having a melting point of 40 ° C. or less and a boiling point of 50 to 500 ° C., more preferably 300 ° C. or less under atmospheric pressure are preferable. Further, it is preferable that the vaporized vapor film forming agent does not react chemically enough to adversely affect the glass and the support 12, has low toxicity, and is preferably nonflammable at the temperature used. As water can be used. Thus, as the vapor film forming agent, it is necessary to appropriately select a liquid that can be vaporized instantaneously by the high heat of the glass ribbon 13 to form a stable vapor film. The thermal conductivity of the thin layer 18 of the vapor film formed by instantaneous vaporization with high heat is remarkably smaller than the thermal conductivity of liquid or solid, so that an adiabatic environment is effective for the glass ribbon 13. Can be formed.
[0020]
The liquid supply device 16 for supplying the vapor film forming agent to the support 12 is mainly composed of a bathtub 29 provided below the belt conveyor 20, and the endless belt 20 </ b> A moves around to move between the pair of rolls 20 </ b> C and 20 </ b> D. When it comes to the lower side, the support 12 supported by the endless belt 20 </ b> A is formed so as to dive in the liquid of the vapor film forming agent in the bathtub 29. Thereby, the vapor film forming agent is supplied from the liquid supply device 16 to the support 12. The liquid supply device 16 is not limited to a bathtub type, and may be, for example, a system in which a vapor film forming agent is sprayed on the support 12 or the liquid in the bathtub is wet roll (not shown). 1), a wet roll is brought into contact with the support 12, and the vapor film forming agent is supplied. Moreover, the thing of a spray system may be used.
[0021]
The tension applying device 22 includes a pair of pinch rollers 22A and 22B provided at the rear portion of the conveying roll 23 on the terminal end side (driving roll 20C side) of the belt conveyor 20, and pulls the glass ribbon 13 in the conveying direction. By sandwiching and rotating, a force for conveying and stretching the glass ribbon 13 is applied. The pinch rollers 22A and 22B can change the rotation speed. Thereby, by adjusting the force applied in the conveying direction of the glass ribbon 13, the adjustment of the plate thickness and quality of the plate glass to be formed is controlled, and the glass ribbon 13 in contact with the thin layer 18 of the vapor film is controlled. Control the cooling time etc. by changing the contact time etc.
[0022]
By the way, in such a shaping | molding apparatus 10, in order to obtain the glass ribbon 13 of a predetermined width, it is necessary to prevent the shrinkage | contraction of the width direction. Therefore, in the forming apparatus 10, as shown in FIG. 2 and FIG. 3, the glass ribbon 13 is formed into a plate glass while holding both ends 13A and 13A in the width direction so as not to easily shrink in the width direction.
[0023]
Various shapes are conceivable for the glass ribbon 13 to make it difficult to shrink in the width direction, that is, to fix the width. For example, as shown in FIGS. 2 and 3, it is one of effective shapes to make the both ends of the support 12 be bent so that a step is formed downward. This example is an example in which stepped portions 12 </ b> A and 12 </ b> A are provided at both ends of the support 12. In this support 12, both end portions 13 </ b> A and 13 </ b> A of the glass ribbon 13 are bent by gravity toward the stepped portions 12 </ b> A and 12 </ b> A of the support 12, thereby preventing the flat portion of the glass ribbon 13 from contracting in shape. . Further, the bent end portions 13A and 13A are weighted, and this weight acts as a tensile force in the width direction on the glass ribbon 13, so that the shrinkage in the width direction of the glass ribbon 13 is prevented. Therefore, a high-quality plate glass having a predetermined width and a predetermined plate thickness can be formed. In addition, it is also preferable to provide a cooling device 30 for injecting cooling air at the bent end portions 13A and 13A. By cooling air sprayed from the nozzle 32 of the cooling device 30, both end portions 13A and 13A are cured before both end portions 13A and 13A contact (drop) the stepped portions 12A and 12A of the support 12. Because you can. The bent end portions 13A and 13A are called so-called ears and are cut before product shipment, and therefore do not adversely affect the quality of the product plate glass. Further, the transport roll 23 and the pinch rollers 22A and 22B are formed in advance so as to allow the end portions 13A and 13A near the both ends to escape.
[0024]
On the other hand, the support 12 having a shape with the recess 12C as shown in FIG. 4 is also effective. When the recess 12C continues along the transport direction, the entire belt conveyor 20 has a structure in which grooves are formed in parallel with the glass transport direction. Near-end portions 13A and 13A of the glass ribbon 13 swell and immerse into the recess 12C.
[0025]
A method of forming a sheet glass using the forming apparatus 10 configured as described above will be described. An example of water as a vapor film forming agent will be described.
[0026]
When the molten glass G is continuously supplied on the support 12 from the glass melting furnace 14 in the form of a ribbon, the water held on the support 12 is instantaneously vaporized by the high heat of the glass ribbon 13. Thereby, water vapor is continuously generated at the interface between the glass ribbon 13 and the support 12, and a thin layer 18 of a vapor film is formed between the glass ribbon 13 and the support 12. In this case, normally, the molten glass G supplied from the glass melting furnace 14 is supplied to the support 12 at about 950 to 1300 ° C. suitable for molding in the case of normal soda lime glass, but if it becomes too high temperature Vapor generation from the support 12 is too intense and a stable supply operation is hindered, and the durability of various members and devices including the support 12 is also adversely affected. Therefore, although it depends on the composition of the glass, it is generally preferable that the glass ribbon 13 flow down to the support 12 at a temperature not exceeding 1400 ° C. The glass ribbon 13 is cast on the thin layer 18 of the vapor film from the downstream side of the glass melting furnace 14 toward the slow cooling furnace (not shown), and a tensile force in the conveying direction by the tension applying device 22 is applied. Steps 12A, 12A or recesses 12C in the length direction are formed in portions corresponding to both ends 13A, 13A of glass ribbon 13 as shown in FIG. 3 or FIG. Shrinkage in the width direction is controlled by the support 12 to form a plate-like glass.
[0027]
Therefore, in the molding apparatus 10, since the force in the conveying direction and the width direction can be applied to the glass ribbon 13, a high-quality wide plate glass satisfying the thickness uniformity and the surface smoothness can be obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, the glass sheet is formed while holding the vicinity of both ends of the glass ribbon in the width direction so as not to shrink in the width direction, so that the high quality excellent in surface smoothness and thickness uniformity is obtained. Can produce a wide sheet glass.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a wide plate glass continuous forming apparatus for carrying out the present invention. FIG. 2 is a plan view of a main part of the wide plate glass continuous forming apparatus shown in FIG. 2 is a cross-sectional view of a wide sheet glass continuous forming apparatus as seen from line 3-3 on the top. FIG. 4 is a cross-sectional view showing another embodiment of the support.
DESCRIPTION OF SYMBOLS 10 ... Plate glass shaping | molding apparatus, 12 ... Support body, 12A ... Step part, 12C ... Recessed part, 14 ... Glass melting furnace, 16 ... Liquid supply apparatus, 18 ... Thin layer of vapor film, 20 ... Belt conveyor, 22 ... Giving tension apparatus

Claims (1)

支持体上に供給された溶融状態の硝子リボンを板硝子に連続的に成形する製法であって、液体を内部に包含しうる材質又は構造からなる前記支持体中に、常温付近では気体ではなく、少なくとも該硝子のガラス転移点以上で気体である蒸気膜形成剤を液体状態で導入する工程と、該支持体とガラス転移点以上の温度にある硝子とを、前記蒸気膜形成剤が気化した蒸気膜の薄層を介して互いに摺動させる工程と、を含む板硝子の連続製法において、
前記硝子リボンの幅方向の両端付近部を下方に折曲した形状に保持することにより、前記硝子リボンの幅の収縮を制御するとともに、冷却エアーを噴射して前記両端付近部を硬化させることを特徴とする幅広板硝子の連続製法。
A method of continuously forming a glass ribbon in a molten state supplied on a support into a sheet glass, and in the support made of a material or structure that can contain a liquid inside, it is not a gas near normal temperature, A vapor obtained by vaporizing the vapor film-forming agent, the step of introducing in a liquid state a vapor film-forming agent that is gaseous at least above the glass transition point of the glass, and the glass at a temperature above the glass transition point; In a continuous manufacturing method of sheet glass including the step of sliding each other through a thin layer of a film,
Wherein by holding the vicinities of both ends in the width direction of the glass ribbon bent shape downwardly, and controls the shrinking of the width of the glass ribbon, by injecting cooling air to cure the near both ends portions Rukoto A continuous production method for wide glass sheets.
JP2000229077A 2000-07-28 2000-07-28 Continuous production of wide sheet glass Expired - Fee Related JP4560909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229077A JP4560909B2 (en) 2000-07-28 2000-07-28 Continuous production of wide sheet glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229077A JP4560909B2 (en) 2000-07-28 2000-07-28 Continuous production of wide sheet glass

Publications (2)

Publication Number Publication Date
JP2002047020A JP2002047020A (en) 2002-02-12
JP4560909B2 true JP4560909B2 (en) 2010-10-13

Family

ID=18722259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229077A Expired - Fee Related JP4560909B2 (en) 2000-07-28 2000-07-28 Continuous production of wide sheet glass

Country Status (1)

Country Link
JP (1) JP4560909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004876A1 (en) 2009-07-09 2011-01-13 旭硝子株式会社 Plate glass manufacturing device and plate glass manufacturing method
WO2019089518A1 (en) 2017-10-30 2019-05-09 Corning Incorporated Systems and methods for processing thin glass ribbons
CN114195377B (en) * 2021-12-28 2023-08-29 安徽燕龙基新能源科技有限公司 Multistage transmission production line used for photovoltaic glass production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784680A (en) * 1986-07-03 1988-11-15 Asahi Glass Company Ltd. Method of and apparatus for manufacturing float glass
JPH05124827A (en) * 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate and production of glass plate
JPH11268922A (en) * 1998-03-19 1999-10-05 Asahi Glass Co Ltd Forming of glass plate

Also Published As

Publication number Publication date
JP2002047020A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP4218263B2 (en) Sheet glass manufacturing method
US7913517B2 (en) Process and apparatus for producing flat glass
US7934392B2 (en) Method of continuously producing flat glass by rolling
US6101845A (en) Process for forming a glass sheet
US20050178159A1 (en) Apparatus for manufacturing sheet glass
KR101737143B1 (en) Plate glass manufacturing device and plate glass manufacturing method
JP4178444B2 (en) Thin glass manufacturing apparatus and manufacturing method
KR20030041800A (en) Device supporting a ribbon of glass
JP2001180949A (en) Roll-molding method for sheet glass product
JP4560909B2 (en) Continuous production of wide sheet glass
JP3948044B2 (en) Glass plate forming method
JP4506919B2 (en) Wide plate glass manufacturing method
JP2002193630A (en) Improvement in method of producing wide sheet glass
JP2001180950A (en) Improved manufacturing method for continuous thin sheet glass
JP2002047018A (en) New method of manufacturing wide plate glass and its device
JP2010235355A (en) Method for forming flat glass
JP2002037635A (en) Method for manufacture of wide sheet glass
JP2001192219A (en) Method for continuous manufacture of thin sheet glass
JP2001192217A (en) Method for rapid and continuous manufacture of sheet glass
JP2001247320A (en) Improved method for continuously producing wide plate glass
JP4556155B2 (en) Manufacturing method of glass with wire
JP2001192221A (en) Improvement of method for continuous production of sheet glass
JP2001192218A (en) Method for simple manufacture of continuous thin sheet glass
JP2002249329A (en) Method for producing patterned plate glass
JP2001192220A (en) Method for stable manufacture of continuous sheet glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees