JP2001168140A - Method for mounting semiconductor element and semiconductor device - Google Patents

Method for mounting semiconductor element and semiconductor device

Info

Publication number
JP2001168140A
JP2001168140A JP35179699A JP35179699A JP2001168140A JP 2001168140 A JP2001168140 A JP 2001168140A JP 35179699 A JP35179699 A JP 35179699A JP 35179699 A JP35179699 A JP 35179699A JP 2001168140 A JP2001168140 A JP 2001168140A
Authority
JP
Japan
Prior art keywords
metal
semiconductor element
metal paste
circuit board
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35179699A
Other languages
Japanese (ja)
Other versions
JP3638486B2 (en
Inventor
Akira Fukunaga
明 福永
Hiroshi Nagasawa
浩 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18419673&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2001168140(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP35179699A priority Critical patent/JP3638486B2/en
Priority to TW089126168A priority patent/TW511122B/en
Priority to US09/731,898 priority patent/US6519842B2/en
Priority to KR1020000074899A priority patent/KR100737498B1/en
Priority to EP00127089A priority patent/EP1107305A3/en
Publication of JP2001168140A publication Critical patent/JP2001168140A/en
Priority to US10/315,172 priority patent/US20030079680A1/en
Publication of JP3638486B2 publication Critical patent/JP3638486B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Abstract

PROBLEM TO BE SOLVED: To provide a mounting method of a semiconductor element with which highly reliable electrical connection can be realized stably at low cost with no risk of short-circuiting with an adjacent electrode even in the case of connection to an electrode of fine pitch, and a semiconductor device manufactured by that method. SOLUTION: The mounting method of a semiconductor element comprises a step for conditioning metal paste by dispersing ultrafine composite metal particles comprising a core part of substantially metallic component and a coating layer of an organic matter bonded chemically to the core part into a solvent, a step for forming a metal paste ball 24 of the ultrafine composite metal particles by applying the metal paste onto the terminal electrode 22 of a circuit board 20, a step for connecting the electrode of a semiconductor element 30 onto the metal paste ball 24 by face down bonding, and a step for connecting the semiconductor element 30 electrically with the circuit board 20 by low temperature firing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子(チッ
プ、ペレットまたはダイ等)の電極と、回路基板上の端
子電極とを電気的に接続する方法に係り、特に接合用金
属ペーストを用いたフェースダウンボンディング法によ
る半導体素子の実装方法およびその方法で作製した半導
体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrically connecting electrodes of a semiconductor element (chip, pellet, die, etc.) to terminal electrodes on a circuit board, and more particularly to a method using a metal paste for bonding. The present invention relates to a method for mounting a semiconductor element by a face-down bonding method and a semiconductor device manufactured by the method.

【0002】[0002]

【従来の技術】従来、電子部品の接続端子と回路基板上
の回路パターン端子との電気的接続には、はんだ付けが
一般に利用されてきたが、近年、例えばICフラットパ
ッケージ等の小型化と、接続端子の増加等により、接続
端子間のいわゆるピッチ間隔が次第に狭くなり、従来の
はんだ付け技術では対処することが次第に難しくなって
きている。
2. Description of the Related Art Conventionally, soldering has been generally used for electrical connection between connection terminals of electronic components and circuit pattern terminals on a circuit board. As the number of connection terminals increases, the so-called pitch interval between the connection terminals gradually narrows, and it is becoming increasingly difficult to cope with the conventional soldering technology.

【0003】そこで、最近では、例えば、裸の素子と呼
ばれている外装されていない能動、受動素子であるチッ
プ(chip)、ペレット(pellet)、ダイ(die)等の半
導体素子を回路基板上に電気的に接続しつつ実装する場
合には、半導体素子の電極パッド上に予めはんだバンプ
を形成し、このはんだバンプを回路基板の端子電極に対
向して下向きに配置し、高温に加熱して融着する、いわ
ゆるフェイスダウンボンディング法が広く採用されてい
る。このはんだバンプは、例えばCr(クロム)、Cu
(銅)およびAu(金)からなる3層の金属薄膜(Unde
r Bump Metals)の上に、レジストを用いて、はんだや
めっき或いは蒸着によって一般に形成される。
[0003] Recently, for example, semiconductor elements such as chips, pellets, dies and the like, which are unpackaged active and passive elements called bare elements, are mounted on a circuit board. When mounting while electrically connecting to the semiconductor device, solder bumps are formed in advance on the electrode pads of the semiconductor element, and the solder bumps are arranged downward facing the terminal electrodes of the circuit board, and heated to a high temperature. A so-called face-down bonding method for fusing is widely used. This solder bump is made of, for example, Cr (chrome), Cu
(Copper) and Au (Gold)
r Bump Metals), generally formed by soldering, plating or vapor deposition using a resist.

【0004】この実装方法は、接続後の機械的強度が強
く、かつ半導体素子の電極と回路基板の端子電極との電
気的接続を一括して行えることから有効な半導体素子の
実装方法とされていた。
[0004] This mounting method is considered to be an effective method for mounting a semiconductor element because the mechanical strength after connection is strong and the electrical connection between the electrode of the semiconductor element and the terminal electrode of the circuit board can be performed collectively. Was.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来のはんだバンプを用いた半導体素子の実装方法に
おいては、加熱溶融の際にはんだが広がって、互いに隣
接するはんだバンプ(電極)同士がショートする危険性
があり、微細化に対応しきれない場合があるといった問
題があった。
However, in the above-described conventional method of mounting a semiconductor element using solder bumps, the solder spreads during heating and melting, and short-circuits between adjacent solder bumps (electrodes). There is a problem that there is a danger, and it may not be possible to cope with miniaturization.

【0006】なお、金属超微粒子を有する金属ペースト
でボールを形成し、このボールを前記はんだバンプの代
わりに使用する方法も提案されている(特開平9−32
6416号公報等参照)。しかし、ここで使用されてい
る金属超微粒子は、例えば、金属を真空中、若干のガス
の存在下で蒸発させることによって気相中から金属のみ
から成る超微粒子を凝結させて、超微細な金属微粒子を
得る方法で作製された金属単体の超微粒子であると考え
られ、安定性、物性及びコストの面で問題があると考え
られる。
A method of forming a ball with a metal paste having ultrafine metal particles and using the ball in place of the solder bump has been proposed (Japanese Patent Laid-Open No. 9-32).
No. 6416). However, the metal ultrafine particles used here are, for example, the metal is evaporated in a vacuum in the presence of a small amount of gas to condense the ultrafine particles consisting of only the metal from the gas phase, thereby forming an ultrafine metal. It is considered to be ultrafine particles of a simple metal produced by a method for obtaining fine particles, and is considered to have problems in stability, physical properties and cost.

【0007】本発明は上記事情に鑑みて為されたもの
で、微細ピッチの電極への接続であっても隣の電極とシ
ョートする危険性がなく、安定性が高く、低コストで信
頼性の高い電気接続を実現できる半導体素子の実装方法
およびその方法で作製した半導体装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and there is no danger of short-circuiting with an adjacent electrode even when connecting to an electrode having a fine pitch. It is an object of the present invention to provide a method for mounting a semiconductor element capable of realizing high electrical connection and a semiconductor device manufactured by the method.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、実質的に金属成分からなるコア部と、該コア部に化
学的に結合した有機物からなる被覆層とからなる複合金
属超微粒子を溶媒に分散させて金属ペーストを調整する
工程と、該金属ペーストを回路基板の端子電極上に付着
させて主に複合金属超微粒子からなる金属ペーストボー
ルを形成する工程と、該金属ペーストボール上にフェイ
スダウン法を用いて半導体素子の電極を接続する工程
と、低温焼成により半導体素子と回路基板とを電気的に
接続する工程とを有することを特徴とする半導体素子の
実装方法である。
According to a first aspect of the present invention, there is provided a composite metal ultrafine particle comprising a core substantially composed of a metal component and a coating layer composed of an organic substance chemically bonded to the core. Dispersing the metal paste in a solvent to prepare a metal paste, depositing the metal paste on a terminal electrode of a circuit board to form a metal paste ball mainly composed of composite metal ultrafine particles, and And a step of electrically connecting the semiconductor element and the circuit board by low-temperature sintering.

【0009】この方法によれば、複合金属超微粒子は、
液相中での化学的なプロセスにおいて作製することがで
きるので、大がかりな真空装置を用いることなく、簡単
な装置を用いて通常の大気雰囲気下において大量生産が
可能であり、コストが安価である。しかも、周囲を有機
化合物で被覆されているので、溶媒中における凝集性が
小さいばかりでなく、安定していてハンドリングがしや
すく、従って、複合金属超微粒子が均一に分散した金属
ペーストを調整できるばかりでなく、工程管理が容易で
ある。更に、粒径が均一であるので、低温焼成の際に、
一定温度で全ての複合金属超粒子どうしが融着する。
According to this method, the ultrafine composite metal particles are
Since it can be produced by a chemical process in the liquid phase, mass production is possible under ordinary atmospheric atmosphere using a simple device without using a large-scale vacuum device, and the cost is low. . In addition, since the surroundings are coated with an organic compound, not only the cohesion in the solvent is small, but also the handling is stable and easy to handle, and therefore, the metal paste in which the ultrafine composite metal particles are uniformly dispersed can be adjusted. In addition, process control is easy. Furthermore, since the particle size is uniform, when firing at low temperature,
At a constant temperature, all composite metal superparticles fuse together.

【0010】請求項2に記載の発明は、前記コア部は、
平均粒径が1〜10nmの正に帯電したAg,Auまた
はPb金属超微粒子で、前記被覆層は、炭素数5以上の
有機性陰イオンであることを特徴とする請求項1記載の
半導体素子の実装方法である。
[0010] According to a second aspect of the present invention, the core portion includes:
2. The semiconductor device according to claim 1, wherein the coating layer is an organic anion having 5 or more carbon atoms, which is a positively charged Ag, Au or Pb metal ultrafine particle having an average particle diameter of 1 to 10 nm. This is the implementation method.

【0011】金属粒子の融点は粒径が小さくなると低下
することが知られているが、その効果が現れはじめるの
は20nm以下であり、10nm以下になるとその効果
が顕著となる。従って、平均粒径が1〜10nmの実質
的に金属成分からなるコア部は、該金属が持つ融点より
かなり低い温度で互いに溶融結合し、これによって、低
温焼成が可能となる。また、コア金属と該コア金属を保
護する保護皮膜としての役割を果たす被覆層とを強固に
イオン結合させて、溶媒中における分散安定性を向上さ
せ、しかも粒子としての性状安定性を高めることができ
る。
It is known that the melting point of metal particles decreases as the particle size decreases, but the effect starts to appear at 20 nm or less, and the effect becomes remarkable at 10 nm or less. Therefore, the core portions substantially composed of a metal component having an average particle diameter of 1 to 10 nm are melt-bonded to each other at a temperature considerably lower than the melting point of the metal, thereby enabling low-temperature firing. Further, it is possible to strongly ion-bond a core metal and a coating layer serving as a protective film for protecting the core metal, thereby improving dispersion stability in a solvent and improving property stability as particles. it can.

【0012】請求項3に記載の発明は、前記金属ペース
トには、0.1〜1μm程度の導電率が高い金属と樹脂
分とが添加されていることを特徴とする請求項1または
2記載の半導体素子の実装方法である。この導電率が高
い金属としては、Ag,Au,PdまたはAl等が挙げ
られる。これにより、金属を介して高い導電率を確保し
て半導体素子実装の信頼性を高めることができる。
The invention according to claim 3 is characterized in that a metal having a high conductivity of about 0.1 to 1 μm and a resin component are added to the metal paste. This is a method for mounting a semiconductor element. Ag, Au, Pd, Al, etc. are mentioned as a metal with this high conductivity. Thereby, high conductivity can be ensured via the metal, and the reliability of semiconductor element mounting can be improved.

【0013】請求項4に記載の発明は、前記低温焼成を
200〜250℃の温度範囲で行うことを特徴とする請
求項1乃至3のいずれかに記載の半導体素子の実装方法
である。請求項5に記載の発明は、請求項1乃至4のい
ずれかに記載の半導体素子の実装方法を用いて、半導体
素子を回路基板に電気的に接続してなることを特徴とす
る半導体装置である。
According to a fourth aspect of the present invention, there is provided the semiconductor device mounting method according to any one of the first to third aspects, wherein the low-temperature baking is performed in a temperature range of 200 to 250 ° C. According to a fifth aspect of the present invention, there is provided a semiconductor device wherein a semiconductor element is electrically connected to a circuit board by using the semiconductor element mounting method according to any one of the first to fourth aspects. is there.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。先ず、図1に示すように、実質的
に金属成分からなるコア部10と、有機化合物からなる
被覆層12とからなる複合金属超微粒子14を作製す
る。このような複合金属超微粒子14は、有機化合物か
らなる被覆層12により覆われているので安定であり、
しかも溶媒中において凝集する傾向が小さい。
Embodiments of the present invention will be described below with reference to the drawings. First, as shown in FIG. 1, composite metal ultrafine particles 14 composed of a core portion 10 substantially composed of a metal component and a coating layer 12 composed of an organic compound are prepared. Such composite metal ultrafine particles 14 are stable because they are covered by the coating layer 12 made of an organic compound.
Moreover, there is little tendency to aggregate in the solvent.

【0015】この複合金属超微粒子14は、有機化合物
と出発物質である金属塩、例えば炭酸塩・蟻酸塩・酢酸
塩由来の金属成分から構成されており、その中心部が金
属成分からなり、その周りをイオン性有機化合物が取り
囲んでいる。この時、有機化合物と金属成分とは、その
一部又は全部が化学的に結合した状態で一体化して存在
しており、界面活性剤によりコーティングされることに
より安定化された従来の超微粒子と異なり、安定性が高
いとともに、より高い金属濃度においても安定である。
The ultrafine composite metal particles 14 are composed of an organic compound and a metal component as a starting material, for example, a metal component derived from a carbonate, formate, or acetate salt. It is surrounded by ionic organic compounds. At this time, the organic compound and the metal component are present integrally and partially or entirely in a state of being chemically bonded to the conventional ultrafine particles stabilized by being coated with a surfactant. Differently, it is more stable and stable at higher metal concentrations.

【0016】複合金属超微粒子14のコア部10の平均
粒径は1〜10nmとする。このように構成することに
より、コア部10を構成する金属が持つ融点よりもかな
り低い温度でコア部10を溶融させることができ、これ
によって、低温焼成が可能となる。
The average particle size of the core portion 10 of the ultrafine composite metal particles 14 is 1 to 10 nm. With this configuration, the core portion 10 can be melted at a temperature considerably lower than the melting point of the metal constituting the core portion 10, thereby enabling low-temperature firing.

【0017】この複合金属超微粒子14は、例えば非水
系溶媒中で且つイオン性有機物の存在下で金属塩、例え
ば炭酸塩・蟻酸塩・酢酸塩をその分解還元温度以上でか
つイオン性有機物の分解温度以下で加熱することによっ
て製造することができる。金属成分としては、Ag,A
uまたはPbが用いられ、イオン性の有機物としては炭
素数5以上の脂肪酸およびアルキルベンゼンスルフォン
酸、アルキルスルフォン酸が用いられる。
The ultrafine composite metal particles 14 are used to decompose metal salts, for example, carbonates, formates, and acetates, in a non-aqueous solvent and in the presence of an ionic organic substance at a temperature not lower than the decomposition and reduction temperature and decompose ionic organic substances. It can be produced by heating below the temperature. Ag, A as the metal component
u or Pb is used, and fatty acids having 5 or more carbon atoms, alkylbenzenesulfonic acid, and alkylsulfonic acid are used as ionic organic substances.

【0018】加熱温度は、金属塩、例えば炭酸塩・蟻酸
塩・酢酸塩の分解還元温度以上でかつイオン性有機物の
分解温度以下であり、例えば酢酸銀の場合、分解開始温
度が200℃あるので、200℃以上かつ上記のイオン
性有機物が分解しない温度に保持すればよい。この場
合、イオン性有機物が分解しにくいようにするために、
加熱雰囲気は、不活性ガス雰囲気であることが好ましい
が、非水溶剤の選択により、大気下においても加熱可能
である。
The heating temperature is not lower than the decomposition and reduction temperature of metal salts such as carbonate, formate and acetate and not higher than the decomposition temperature of ionic organic substances. For example, in the case of silver acetate, the decomposition starting temperature is 200 ° C. , 200 ° C. or higher and a temperature at which the ionic organic substance does not decompose. In this case, in order to make it difficult for ionic organic substances to decompose,
The heating atmosphere is preferably an inert gas atmosphere, but heating can also be performed under air by selecting a non-aqueous solvent.

【0019】また、加熱するに際し、各種アルコール類
を添加することもでき、反応を促進することが可能にな
る。アルコール類は、上記効果が得られる限り特に制限
されず、例えばラウリルアルコール、グリセリン、エチ
レングリコール等が挙げられる。アルコール類の添加量
は、用いるアルコールの種類等に応じて適宜定めること
ができるが、通常は重量部として金属塩100に対して
5〜20程度、好ましくは5〜10とすれば良い。
In heating, various alcohols can be added, and the reaction can be promoted. The alcohol is not particularly limited as long as the above effects are obtained, and examples thereof include lauryl alcohol, glycerin, and ethylene glycol. The amount of the alcohol to be added can be appropriately determined according to the kind of the alcohol to be used and the like, but it is usually 5 to 20 parts by weight, preferably 5 to 10 relative to 100 parts by weight of the metal salt.

【0020】加熱が終了した後、公知の精製法により精
製を行う。精製法は例えば遠心分離、膜精製、溶媒抽出
等により行えば良い。
After the heating is completed, purification is performed by a known purification method. The purification may be performed by, for example, centrifugation, membrane purification, solvent extraction, or the like.

【0021】例えば、有機アニオン性物質としてオレイ
ン酸を、金属源として酢酸銀をそれぞれ用い、これらを
留点250℃のナフテン系高沸点溶媒の中に入れ、24
0℃にて3時間加熱し、更にアセトンを加えて沈殿精製
を行うことで、平均粒径が約10nmのクラスター状の
正に帯電したAg金属超微粒子(コア金属)の周囲を有
機性陰イオン(被覆層)で被覆した複合金属超微粒子を
作製することができる。
For example, oleic acid is used as an organic anionic substance and silver acetate is used as a metal source, and these are put into a naphthenic high boiling point solvent having a boiling point of 250 ° C.
By heating at 0 ° C. for 3 hours and further adding acetone to carry out precipitation purification, an organic anion is formed around cluster-like positively charged Ag metal ultrafine particles (core metal) having an average particle diameter of about 10 nm. Ultrafine composite metal particles coated with the (coating layer) can be produced.

【0022】そして、複合金属超微粒子14をトルエン
等の所定の溶媒に分散させ、必要に応じて、0.1〜1
μm程度の、例えばAg,Au,PdまたはAl等の導
電率が高い金属と樹脂分とを添加した金属ペーストを調
整し、図2(a)に示すように、この金属ペーストを回
路基板20の端子電極22の所定の位置に滴下して、主
に複合金属超微粒子14からなる高さ約2μmの金属ペ
ーストボール24を形成する。
The ultrafine composite metal particles 14 are dispersed in a predetermined solvent such as toluene, and if necessary, 0.1 to 1
A metal paste having a high conductivity of about μm, for example, a metal such as Ag, Au, Pd, or Al and a resin component added thereto was adjusted, and as shown in FIG. A metal paste ball 24 having a height of about 2 μm mainly composed of the ultrafine composite metal particles 14 is formed by dripping at a predetermined position on the terminal electrode 22.

【0023】このような金属ペーストは、分散粒子であ
る複合金属超微粒子14が非常に細かいので、複合金属
超微粒子14を混合して攪拌した状態ではほぼ透明であ
るが、溶媒の種類、複合金属超微粒子濃度、温度等を適
宜に選択することにより、表面張力、粘性等の物性値を
調整することができる。
Such a metal paste is very transparent when the mixed ultrafine metal particles 14 are mixed and stirred because the ultrafine composite metal particles 14 as dispersed particles are very fine. By appropriately selecting the ultrafine particle concentration, the temperature, and the like, physical properties such as surface tension and viscosity can be adjusted.

【0024】次に、図2(b)に示すように、半導体素
子30を下向きにしたフェイスダウン法を用い、半導体
素子30に設けた電極パッド部と前記金属ペーストボー
ル24との位置合わせを行う、いわゆるフリップチップ
方式で、金属ペーストボール24上に半導体素子30の
電極パッド部を接続し、必要に応じて、半導体素子30
の重量によるレベリングを行う。
Next, as shown in FIG. 2 (b), the electrode pad portion provided on the semiconductor element 30 and the metal paste ball 24 are aligned using a face-down method with the semiconductor element 30 facing downward. An electrode pad portion of the semiconductor element 30 is connected to the metal paste ball 24 by a so-called flip chip method, and the semiconductor element 30
Leveling by weight.

【0025】この状態で、例えば200〜250℃で3
0分間の熱風炉により低温焼成を行うことにより、半導
体素子30と回路基板20とを電気的に接続する。つま
り、金属ペーストボール24に含まれるトルエン等の溶
媒を蒸発させ、更に金属ペーストボール24の主成分で
ある複合金属超微粒子14をこの被覆層(有機化合物)
12(図1参照)のコア部10からの離脱或いは被覆層
12自体の分解温度以上に加熱することで、コア部10
から被覆層12を離脱或いは被覆層12を分解して消滅
させ、同時にコア部10を溶融結合させる。
In this state, for example, at 200 to 250 ° C.
The semiconductor element 30 and the circuit board 20 are electrically connected by performing low-temperature baking in a hot-blast furnace for 0 minutes. That is, the solvent such as toluene contained in the metal paste ball 24 is evaporated, and the ultrafine composite metal particles 14 as the main component of the metal paste ball 24 are further coated with this coating layer (organic compound).
12 (see FIG. 1) from the core portion 10 or by heating the coating layer 12 itself to a decomposition temperature or higher.
The core layer 10 is melt-bonded at the same time as the coating layer 12 is removed from the substrate or the coating layer 12 is decomposed to disappear.

【0026】このように、例えば200〜250℃の温
度範囲で低温焼成して半導体素子と回路基板とを電気的
に接続することで、熱歪みを起こり難くし、しかもはん
だを用いないため、はんだの流れによるショートを回避
して、より微細なピッチでの接続が可能となる。
As described above, the semiconductor element and the circuit board are electrically connected to each other by baking at a low temperature in a temperature range of, for example, 200 to 250 ° C., so that thermal distortion is less likely to occur. The connection at a finer pitch can be achieved by avoiding a short circuit caused by the flow of the air.

【0027】この時、前述のように、導電率が高い金属
を添加した金属ペーストを使用することで、該金属を介
して高い導電率を確保して半導体素子実装の信頼性を高
めることもできる。
At this time, as described above, by using a metal paste to which a metal having a high conductivity is added, a high conductivity can be ensured via the metal and the reliability of the semiconductor element mounting can be improved. .

【0028】[0028]

【発明の効果】以上説明したように、この発明によれ
ば、微細ピッチの電極への接続であっても隣の電極とシ
ョートする危険性がなく、安定性が高く、低コストで信
頼性の高い電気接続を実現して、半導体素子を回路基板
に実装できる。
As described above, according to the present invention, there is no danger of short-circuiting with an adjacent electrode even if the electrode is connected to a fine-pitch electrode. A semiconductor element can be mounted on a circuit board by realizing high electrical connection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複合金属超微粒子の構造を模式的に示す図であ
る。
FIG. 1 is a diagram schematically showing the structure of a composite metal ultrafine particle.

【図2】本発明の実施の形態の半導体素子の実装方法を
工程順に示す図である。
FIG. 2 is a diagram illustrating a method of mounting a semiconductor device according to an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

10 コア部 12 被覆層 14 複合金属超微粒子 20 回路基板 22 端子電極 24 金属ペーストボール 30 半導体素子 DESCRIPTION OF SYMBOLS 10 Core part 12 Coating layer 14 Composite metal ultrafine particle 20 Circuit board 22 Terminal electrode 24 Metal paste ball 30 Semiconductor element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実質的に金属成分からなるコア部と、該
コア部に化学的に結合した有機物からなる被覆層とから
なる複合金属超微粒子を溶媒に分散させて金属ペースト
を調整する工程と、 該金属ペーストを回路基板の端子電極上に付着させて主
に複合金属超微粒子からなる金属ペーストボールを形成
する工程と、 該金属ペーストボール上にフェイスダウン法を用いて半
導体素子の電極を接続する工程と、 低温焼成により半導体素子と回路基板とを電気的に接続
する工程とを有することを特徴とする半導体素子の実装
方法。
A step of preparing a metal paste by dispersing composite metal ultrafine particles comprising a core part substantially composed of a metal component and a coating layer composed of an organic substance chemically bonded to the core part in a solvent. Depositing the metal paste on a terminal electrode of a circuit board to form a metal paste ball mainly composed of composite ultrafine metal particles, and connecting a semiconductor element electrode on the metal paste ball using a face-down method. And a step of electrically connecting the semiconductor element and the circuit board by low-temperature sintering.
【請求項2】 前記コア部は、平均粒径が1〜10nm
の正に帯電したAg,AuまたはPb金属超微粒子で、
前記被覆層は、炭素数5以上の有機性陰イオンであるこ
とを特徴とする請求項1記載の半導体素子の実装方法。
2. The core part has an average particle size of 1 to 10 nm.
Ag, Au or Pb metal ultrafine particles
The method according to claim 1, wherein the coating layer is an organic anion having 5 or more carbon atoms.
【請求項3】 前記金属ペーストには、0.1〜1μm
程度の導電率が高い金属と樹脂分とが添加されているこ
とを特徴とする請求項1または2記載の半導体素子の実
装方法。
3. The metal paste has a thickness of 0.1 to 1 μm.
3. The method according to claim 1, wherein a metal having a high degree of conductivity and a resin component are added.
【請求項4】 前記低温焼成を200〜250℃の温度
範囲で行うことを特徴とする請求項1乃至3のいずれか
に記載の半導体素子の実装方法。
4. The method according to claim 1, wherein the low-temperature baking is performed in a temperature range of 200 to 250 ° C.
【請求項5】 請求項1乃至4のいずれかに記載の半導
体素子の実装方法を用いて、半導体素子を回路基板に電
気的に接続してなることを特徴とする半導体装置。
5. A semiconductor device, wherein a semiconductor element is electrically connected to a circuit board by using the method for mounting a semiconductor element according to claim 1.
JP35179699A 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste Expired - Lifetime JP3638486B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP35179699A JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste
TW089126168A TW511122B (en) 1999-12-10 2000-12-08 Method for mounting semiconductor device and structure thereof
US09/731,898 US6519842B2 (en) 1999-12-10 2000-12-08 Method for mounting semiconductor device
KR1020000074899A KR100737498B1 (en) 1999-12-10 2000-12-09 Method for mounting semiconductor device and structure thereof
EP00127089A EP1107305A3 (en) 1999-12-10 2000-12-11 Method for mounting a semiconductor device
US10/315,172 US20030079680A1 (en) 1999-12-10 2002-12-10 Method for mounting a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35179699A JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste

Publications (2)

Publication Number Publication Date
JP2001168140A true JP2001168140A (en) 2001-06-22
JP3638486B2 JP3638486B2 (en) 2005-04-13

Family

ID=18419673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35179699A Expired - Lifetime JP3638486B2 (en) 1999-12-10 1999-12-10 Semiconductor element mounting method and metal paste

Country Status (1)

Country Link
JP (1) JP3638486B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method
JP2004146695A (en) * 2002-10-25 2004-05-20 Ebara Corp Metallization device
JP2005205696A (en) * 2004-01-21 2005-08-04 Ebara Corp Joining article
JP2007229801A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Joining member, joining member manufacturing method, and joining method
JP2008545257A (en) * 2005-06-30 2008-12-11 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
WO2009090849A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Method of wire bonding and structure including mounted electronic part
WO2009116136A1 (en) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 Composite silver nanopaste, process for producing the composite silver nanopaste, and method for bonding the nanopaste
JP2011080147A (en) * 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same
WO2015182576A1 (en) * 2014-05-27 2015-12-03 電気化学工業株式会社 Semiconductor package and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107728A (en) * 2002-09-18 2004-04-08 Ebara Corp Joining material and joining method
JP2004146695A (en) * 2002-10-25 2004-05-20 Ebara Corp Metallization device
JP2005205696A (en) * 2004-01-21 2005-08-04 Ebara Corp Joining article
JP2008545257A (en) * 2005-06-30 2008-12-11 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
JP4918088B2 (en) * 2005-06-30 2012-04-18 インテル・コーポレーション Electromigration resistant and flexible wire interconnects, nano-sized solder compositions, systems for forming them, and methods for assembling soldered packages
JP2007229801A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Joining member, joining member manufacturing method, and joining method
WO2009090849A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Method of wire bonding and structure including mounted electronic part
WO2009116136A1 (en) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 Composite silver nanopaste, process for producing the composite silver nanopaste, and method for bonding the nanopaste
JP5256281B2 (en) * 2008-03-18 2013-08-07 株式会社応用ナノ粒子研究所 Composite silver nanopaste, its production method and nanopaste bonding method
JP2011080147A (en) * 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same
WO2015182576A1 (en) * 2014-05-27 2015-12-03 電気化学工業株式会社 Semiconductor package and method for manufacturing same
JPWO2015182576A1 (en) * 2014-05-27 2017-04-20 デンカ株式会社 Semiconductor package and manufacturing method thereof

Also Published As

Publication number Publication date
JP3638486B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US6519842B2 (en) Method for mounting semiconductor device
JP2994375B2 (en) Interconnect structure and process for module assembly and rework
US7799607B2 (en) Process for forming bumps and solder bump
KR101940237B1 (en) Method for Manufacturing Solder on Pad on Fine Pitch PCB Substrate and Flip Chip Bonding Method of Semiconductor Using The Same
US20120042515A1 (en) Method of producing circuit board
JPH077038A (en) Electronic package
KR102007544B1 (en) Bump electrode, board which has bump electrodes and method for manufacturing the board
WO2006098196A1 (en) Package equipped with semiconductor chip and method for producing same
CN101958298A (en) Semiconductor device and manufacture method thereof
JP3638486B2 (en) Semiconductor element mounting method and metal paste
US8701281B2 (en) Substrate metallization and ball attach metallurgy with a novel dopant element
JPH04263433A (en) Formation of electric connection contact and manufacture of mounted substrate
JPH09326416A (en) Packaging of semiconductor device and product thereof
US20100167466A1 (en) Semiconductor package substrate with metal bumps
JP2004146731A (en) Manufacturing method of multilayer wiring substrate
KR100744149B1 (en) Semiconductor package having silver bump and method for fabricating the same
JP3638487B2 (en) Mounting method of semiconductor element
JPH04263434A (en) Formation of electric connection contact and manufacture of mounting board
KR101054294B1 (en) A flip chip package having a bump / pad connection locally enclosed by an adhesive and a method of manufacturing the same
JPH07235763A (en) Manufacture of electronic circuit
Li et al. Isotropically conductive adhesives (ICAs)
JP2009194357A (en) Semiconductor device and method of manufacturing the same
JP2002224884A (en) Soldering flux and method for forming solder bump using the flux
JP2003258161A (en) Printed wiring board for mounting electronic component
JP2771616B2 (en) Conductive paste for bump formation and bump formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6