JP2001167431A - High density magnetic recording medium and its manufacturing method - Google Patents

High density magnetic recording medium and its manufacturing method

Info

Publication number
JP2001167431A
JP2001167431A JP34840399A JP34840399A JP2001167431A JP 2001167431 A JP2001167431 A JP 2001167431A JP 34840399 A JP34840399 A JP 34840399A JP 34840399 A JP34840399 A JP 34840399A JP 2001167431 A JP2001167431 A JP 2001167431A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
particles
spin coating
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34840399A
Other languages
Japanese (ja)
Inventor
Tatsuya Miyake
竜也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34840399A priority Critical patent/JP2001167431A/en
Publication of JP2001167431A publication Critical patent/JP2001167431A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a magnetic continuous recording medium having controlled crystal orientation and a high density magnetic recording medium having recording bits formed by isolating magnetic fine particles from one another. SOLUTION: The high density magnetic recording medium is formed by using an organic solution containing metallic fine particles of a magnetic material having uniform particle size by a rotary coating method to apply a magnetic field from the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高密度磁気記録媒体
およびその作製方法ならびにその作製装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density magnetic recording medium, a method for manufacturing the same, and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】高度情報化社会の要求に従い、磁気ディ
スクなど記録メディアの高密度化が進んでいる。それに
伴い、情報を書き込む単位であるビットの微小化が要求
されている。磁気記録における従来技術では、連続磁気
記録媒体中の磁性粒子に情報をビットとして書き込んで
いくため、ビットを微小化、高密度化した場合、磁性粒
子間の相互作用に起因する媒体ノイズが増大し、情報を
正確に読めなくなる可能性が大きい。また、磁気記録媒
体の作製は真空中での蒸着法やメッキ法により行われて
いるが、より大量かつ安価に記録媒体を作製する技術が
要求されるようになってきている。
2. Description of the Related Art In accordance with the demands of the advanced information society, the density of recording media such as magnetic disks has been increasing. Accordingly, miniaturization of bits, which are units for writing information, is required. In the conventional technology for magnetic recording, information is written as bits on magnetic particles in a continuous magnetic recording medium.When bits are miniaturized and densified, medium noise due to interaction between magnetic particles increases. There is a great possibility that information cannot be read accurately. Further, magnetic recording media are manufactured by a vapor deposition method or a plating method in a vacuum, and a technique for manufacturing a larger amount of the recording medium at a lower cost has been required.

【0003】[0003]

【発明が解決しようとする課題】これらの問題を解決す
るため、結晶配向を制御した連続磁気記録媒体や磁性粒
子を孤立化させた記録ビットをもつ磁気記録媒体が提案
されている。磁性粒子が孤立した構造の磁気記録媒体の
作製方法としては、半導体素子作製技術の応用が考えら
れる。しかし、一般的な光リソグラフィー法や電子線描
画法で作製したマスクを利用し、絶縁体をエッチングし
て記録ビットの孔を形成し、それに磁性体を埋め込むや
り方では、エッチングや埋め込みの特性により、高密度
化された磁性粒子を作製するのが困難である。
In order to solve these problems, there have been proposed continuous magnetic recording media in which crystal orientation is controlled and magnetic recording media having recording bits in which magnetic particles are isolated. As a method for manufacturing a magnetic recording medium having a structure in which magnetic particles are isolated, application of a semiconductor element manufacturing technique can be considered. However, using a mask made by general photolithography or electron beam lithography, etching the insulator to form holes for the recording bits, and embedding the magnetic material in it, the characteristics of the etching and embedding, It is difficult to produce high-density magnetic particles.

【0004】本発明の目的は結晶配向を制御した連続磁
気記録媒体や磁性微粒子を孤立化させた記録ビットを持
つ高密度磁気記録媒体およびそれを容易に作製する方法
を提供することにある。
An object of the present invention is to provide a continuous magnetic recording medium in which crystal orientation is controlled, a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated, and a method for easily manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するため
に本発明では、磁性体金属微粒子を有機溶媒に分散させ
た溶液を、外部磁場を印加しながら回転塗布することで
上記磁性体金属微粒子の結晶配向を制御した連続磁気記
録媒体あるいは磁性微粒子を孤立化させた記録ビットを
持つ高密度磁気記録媒体を作製することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a method of spin-coating a solution in which magnetic metal fine particles are dispersed in an organic solvent while applying an external magnetic field. The present invention is characterized in that a continuous magnetic recording medium in which the crystal orientation is controlled or a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated are produced.

【0006】[0006]

【発明の実施の形態】図1を用いて本発明の磁気記録媒
体形成方法の原理を説明する。図1(a)、(b)は、
結晶配向を制御した連続磁気記録媒体の作製方法を示し
た断面図である。また、図1(c)、(d)は磁性微粒
子を孤立化させた記録ビットを持つ高密度磁気記録媒体
の作製方法を示した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of a magnetic recording medium forming method according to the present invention will be described with reference to FIG. 1 (a) and (b)
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a continuous magnetic recording medium in which the crystal orientation is controlled. FIGS. 1C and 1D are cross-sectional views showing a method for manufacturing a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated.

【0007】最初に磁性体金属微粒子を有機溶媒に分散
させた溶液の作製方法を説明する。アセトン等の有機溶
媒に簡単に溶解するプラスチックに、コバルト等の磁性
体金属をガス中蒸発装置内で低温蒸着し、そのプラスチ
ックごと有機溶媒に溶かすことにより、高純度の磁性体
金属微粒子を均一に分散させ有機溶液を得る。
First, a method for preparing a solution in which magnetic metal fine particles are dispersed in an organic solvent will be described. A magnetic metal such as cobalt is vapor-deposited at low temperature in a gas evaporator on a plastic that easily dissolves in an organic solvent such as acetone, and the plastic is dissolved together with the organic solvent to uniformly disperse high-purity magnetic metal particles. Disperse to obtain an organic solution.

【0008】上記ガス中蒸発の条件により、数ナノメー
トルから数百ナノメートルのサイズの磁性体金属微粒子
が得られ、溶かし込む有機溶剤の量を調整することによ
り濃度を調整できる。磁性体金属微粒子は、コバルトの
他、ニッケル、鉄、クロムやそれらの合金分子でも作製
できる。
[0008] Under the above conditions of gas evaporation, magnetic metal fine particles having a size of several nanometers to several hundred nanometers can be obtained, and the concentration can be adjusted by adjusting the amount of the organic solvent to be dissolved. The magnetic metal fine particles can be made of not only cobalt but also nickel, iron, chromium, and alloy molecules thereof.

【0009】図1(a)は、基板1に磁性体金属微粒子
の分散溶液を回転塗布(スピンコート)した記録媒体の
断面の模式図である。回転塗布の回転速度は毎分数百〜
数千回転で、分散溶液の濃度とその回転速度により、有
機溶剤を含んだ磁性体金属薄膜2の膜厚を制御できる。
FIG. 1A is a schematic cross-sectional view of a recording medium in which a dispersion solution of magnetic metal fine particles is spin-coated (spin-coated) on a substrate 1. Rotation speed of spin coating is several hundreds per minute
With several thousand rotations, the thickness of the magnetic metal thin film 2 containing an organic solvent can be controlled by the concentration of the dispersion solution and its rotation speed.

【0010】有機溶剤を含んだ磁性体金属薄膜2は、数
分間の加熱処理(アニール)により、有機溶剤を除去で
きる。その際、膜厚は小さくなるため、厚い膜が必要な
場合は、回転塗布と加熱処理を繰り返すことにより、所
望の膜厚を得る。回転塗布と加熱処理中、外部磁場3を
印加することにより、磁性体金属薄膜4の金属微粒子の
磁化方向を制御できる(図1(b))。
The organic solvent can be removed from the magnetic metal thin film 2 containing an organic solvent by a heat treatment (annealing) for several minutes. At this time, since the film thickness is small, if a thick film is required, a desired film thickness is obtained by repeating spin coating and heat treatment. By applying an external magnetic field 3 during spin coating and heat treatment, the magnetization direction of the metal fine particles of the magnetic metal thin film 4 can be controlled (FIG. 1B).

【0011】図1(b)では、基板に対して垂直方向に
外部磁場3を印加しているので、垂直方向に磁化容易軸
を持つ磁性体金属薄膜4がえられた。外部磁場3の強
度、印加方向を制御することにより、磁性体金属薄膜4
の結晶方向や磁気特性が制御可能となる。
In FIG. 1B, since an external magnetic field 3 is applied in a direction perpendicular to the substrate, a magnetic metal thin film 4 having an easy axis of magnetization in the direction perpendicular to the substrate is obtained. By controlling the strength of the external magnetic field 3 and the direction of application, the magnetic metal thin film 4
The crystal direction and the magnetic characteristics of can be controlled.

【0012】本発明の方法は、従来の真空蒸着法と比較
し、大気中で簡便に作製できる利点がある。また、メッ
キ法では電極やメッキ溶液の濃度管理が必要であった
が、本発明の方法ではそれらが不要で、容易に作製でき
る利点がある。
The method of the present invention has an advantage that it can be easily manufactured in the air as compared with the conventional vacuum evaporation method. In addition, the plating method requires concentration control of the electrodes and the plating solution, but the method of the present invention does not require them, and has an advantage that it can be easily manufactured.

【0013】回転塗布法を用いた磁性微粒子を孤立化さ
せた記録ビットを持つ高密度磁気記録媒体として作製す
る方法を図1(c)〜(d)の断面図を用いて説明す
る。図1(c)は、基板1に絶縁体、あるいは、非磁性
体を蒸着し、それに半導体リソグラフィー技術を用いて
記録ビットの孔5を形成し、磁性金属微粒子の分散溶液
を回転塗布した記録媒体の断面模式図である。これを加
熱処理し、記録ビットの孔5に磁性体金属を埋め込むこ
とにより、磁性粒子6を形成できる。
A method for producing a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated using a spin coating method will be described with reference to the cross-sectional views of FIGS. FIG. 1C shows a recording medium in which an insulator or a non-magnetic material is vapor-deposited on a substrate 1, holes 5 for recording bits are formed thereon using a semiconductor lithography technique, and a dispersion solution of magnetic metal fine particles is spin-coated. FIG. This is subjected to a heat treatment, and magnetic particles 6 can be formed by embedding a magnetic metal in the holes 5 of the recording bits.

【0014】さらに本発明では、回転塗布と加熱処理
中、外部磁場3を印加することにより、記録ビットの孔
5に埋め込まれる磁性粒子の磁化方向を制御できる。記
録ビットの孔5の直径に対して深さが大きい場合は回転
塗布と加熱処理を繰り返すことにより埋め込みできる
が、絶縁体上部にも磁性体金属が形成されてしまう。こ
れらは半導体素子の平坦化技術に使われている化学機械
研磨法により除去でき、その表面は図1(d)に示すよ
うに平坦化できる。これにより、孤立した磁性粒子の記
録ビットを持つ高密度磁気記録媒体を作製できる。
Further, in the present invention, the magnetization direction of the magnetic particles embedded in the hole 5 of the recording bit can be controlled by applying the external magnetic field 3 during the spin coating and the heat treatment. When the depth is larger than the diameter of the hole 5 of the recording bit, the filling can be performed by repeating the spin coating and the heat treatment, but the magnetic metal is also formed on the upper part of the insulator. These can be removed by a chemical mechanical polishing method used in a semiconductor element flattening technique, and the surface thereof can be flattened as shown in FIG. Thereby, a high-density magnetic recording medium having recording bits of isolated magnetic particles can be manufactured.

【0015】さらに、この構造によれば、磁気ヘッドと
記録媒体間の距離を近付けることが可能となり、記録ノ
イズを著しく減少させることができる。また、垂直方向
外部磁場を印加して形成させ、さらに磁性粒子6が垂直
方向に長い形状のものを用いると、形状磁気異方性の効
果により、非常に特性の優れた高密度垂直磁気記録媒体
を得ることができる。
Furthermore, according to this structure, the distance between the magnetic head and the recording medium can be reduced, and the recording noise can be significantly reduced. When a magnetic particle 6 is formed by applying a vertical external magnetic field and the magnetic particles 6 have a shape elongated in the vertical direction, a high density perpendicular magnetic recording medium having extremely excellent characteristics is obtained due to the effect of shape magnetic anisotropy. Can be obtained.

【0016】基板1の上に垂直磁気記録用の磁性体金属
薄膜を作製する場合、磁性体金属薄膜を垂直の磁化方向
になるように基板1と磁性体金属薄膜の間にc軸配向性
の強いチタン、ルテニウムや白金等の金属薄膜のバッフ
ァー層を入れる必要がある。しかし、本発明では、外部
磁場3により、磁性体金属薄膜の結晶構造を制御できる
ため、上記バッファー層を挿入するプロセスを省略でき
る。
When a magnetic metal thin film for perpendicular magnetic recording is manufactured on the substrate 1, the c-axis orientation between the substrate 1 and the magnetic metal thin film is adjusted so that the magnetic metal thin film has a perpendicular magnetization direction. It is necessary to insert a buffer layer of a thin metal film of strong titanium, ruthenium, platinum or the like. However, in the present invention, since the crystal structure of the magnetic metal thin film can be controlled by the external magnetic field 3, the process of inserting the buffer layer can be omitted.

【0017】(実施例1)本発明の一実施例の高密度磁
気記録媒体の作製工程を図2の断面図を用いて説明す
る。直径4インチのアルミニウム基板7を陽極酸化した
表面に、高透磁率層8としてパーマロイ金属を真空蒸着
により50ナノメートル積層した。その表面に、直径5
ナノメートルサイズのコバルト微粒子を濃度20パーセ
ントで分散させたアセトン溶液10をタンク9から1ミ
リリットル供給し、毎分1500回転の速度で30秒
間、回転塗布した。図2(a)に回転塗布の構成図を示
す。
(Embodiment 1) A manufacturing process of a high-density magnetic recording medium according to an embodiment of the present invention will be described with reference to the sectional view of FIG. Permalloy metal was laminated as a high magnetic permeability layer 8 to a thickness of 50 nm by vacuum evaporation on the surface of an anodized aluminum substrate 7 having a diameter of 4 inches. The surface has a diameter of 5
An acetone solution 10 in which nanometer-sized cobalt fine particles were dispersed at a concentration of 20% was supplied from a tank 9 in an amount of 1 ml, and spin-coated at a speed of 1500 revolutions per minute for 30 seconds. FIG. 2A shows a configuration diagram of spin coating.

【0018】回転塗布後のコバルト薄膜11の厚さは約
150ナノメートルで、その媒体断面を図2(b)に示
す。その後、300℃で2分間の加熱処理を行い、コバ
ルト薄膜中の有機溶剤を除去し、膜厚約90ナノメート
ルのコバルト薄膜12を形成した。外部磁場3は基板7
に垂直方向に印加し、回転塗布および加熱処理を行った
結果、図2(c)に示す膜厚約90ナノメートルの平坦
性に優れた連続垂直磁気記録媒体を得ることができた。
The thickness of the cobalt thin film 11 after spin coating is about 150 nanometers, and the cross section of the medium is shown in FIG. Thereafter, a heat treatment was performed at 300 ° C. for 2 minutes to remove the organic solvent in the cobalt thin film, thereby forming a cobalt thin film 12 having a thickness of about 90 nm. The external magnetic field 3 is the substrate 7
As a result of spin coating and heat treatment, a continuous perpendicular magnetic recording medium having a film thickness of about 90 nanometers and excellent flatness as shown in FIG. 2C was obtained.

【0019】さらに上記方法の回転塗布および加熱処理
を繰り返すごとに、記録媒体の膜厚は約90ナノメート
ルずつ増加させることができた。また、膜厚は分散溶液
の濃度に比例し、回転数に逆比例するので、濃度と回転
数の調整により任意の膜厚のものを得ることができた。
Further, each time the spin coating and the heat treatment of the above method were repeated, the film thickness of the recording medium could be increased by about 90 nanometers. Further, since the film thickness is proportional to the concentration of the dispersion solution and inversely proportional to the number of rotations, an arbitrary film thickness can be obtained by adjusting the concentration and the number of rotations.

【0020】基板7はアルミニウムの他にシリコン、酸
化シリコン、ポリカーボネート、ポリメチルメタクリレ
ート、ポリスチレン、スチレンアクリロニトリル等でも
よい。また、高透磁率層はニッケル−鉄(パーマロイ)
以外に、他の高透磁率金属でもよい。金属微粒子は、コ
バルトの他、鉄、ニッケル、鉄−ニッケル−コバルト合
金、テルビウム−鉄−コバルト合金、コバルト−クロム
−タンタル合金または白金−コバルト合金でもよい。
The substrate 7 may be made of silicon, silicon oxide, polycarbonate, polymethyl methacrylate, polystyrene, styrene acrylonitrile or the like in addition to aluminum. The high magnetic permeability layer is made of nickel-iron (permalloy).
Besides, other high permeability metals may be used. The metal fine particles may be cobalt, iron, nickel, an iron-nickel-cobalt alloy, a terbium-iron-cobalt alloy, a cobalt-chromium-tantalum alloy, or a platinum-cobalt alloy.

【0021】(実施例2)図3を用いて、磁性微粒子を
孤立化させた記録ビットを持つ高密度磁気記録媒体の作
製法を説明する。直径4インチのアルミニウム基板7を
陽極酸化した表面に垂直磁気記録時の磁気抵抗を減少さ
せるための高透磁率層8として、パーマロイ金属を真空
蒸着により50ナノメートル積層し、その上に酸化シリ
コンの絶縁層を100ナノメートルの厚さにスパッタ蒸
着した。この表面にレジスト材を塗布し半導体製造方法
のリソグラフィー技術を用いて、直径50ナノメートル
のドットパターン13を周期100ナノメートルで形成
した。この一部の断面図を図3(a)に示す。
(Embodiment 2) A method of manufacturing a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated will be described with reference to FIG. Permalloy metal is laminated by vacuum deposition to a thickness of 50 nanometers as a high magnetic permeability layer 8 for reducing the magnetic resistance during perpendicular magnetic recording on a surface obtained by anodizing an aluminum substrate 7 having a diameter of 4 inches. An insulating layer was sputter deposited to a thickness of 100 nanometers. A resist material was applied to this surface, and a dot pattern 13 having a diameter of 50 nanometers was formed at a period of 100 nanometers by using a lithography technique of a semiconductor manufacturing method. FIG. 3A shows a partial cross-sectional view of this.

【0022】上記基板の表面に、直径5ナノメートルサ
イズのコバルト微粒子を濃度30パーセントで分散させ
たアセトン溶液10を、磁性微粒子分散溶液タンク9か
ら2ミリリットル供給し、毎分1000回転の速度で3
0秒間、回転塗布した。回転塗布後のコバルト薄膜11
の厚さは約300ナノメートルで、その媒体断面を図2
(b)に示す。このとき、直径50ナノメートルの孔は
完全に埋め込まれていた。その後、300℃で3分間加
熱処理を行い、コバルト薄膜中の有機溶剤を除去した。
これにより、膜厚約140ナノメートルのコバルト薄膜
14が形成でき、直径50ナノメートルの孔は完全にコ
バルト微粒子で埋め込むことができた(図3(c))。
An acetone solution 10 in which cobalt particles having a diameter of 5 nanometers are dispersed at a concentration of 30% is supplied to the surface of the substrate from a magnetic particle dispersion solution tank 2 at a speed of 1,000 revolutions per minute.
Spin coating was performed for 0 seconds. Cobalt thin film 11 after spin coating
Is about 300 nanometers thick and its media cross section is shown in FIG.
(B). At this time, the pores having a diameter of 50 nanometers were completely buried. Thereafter, a heat treatment was performed at 300 ° C. for 3 minutes to remove the organic solvent in the cobalt thin film.
As a result, a cobalt thin film 14 having a thickness of about 140 nm could be formed, and the pores having a diameter of 50 nm could be completely filled with cobalt fine particles (FIG. 3C).

【0023】その後、半導体素子の平坦化技術に使われ
ている化学機械研磨法により約40ナノメートル研磨
し、図3(d)に示すように平坦化された高密度記録媒
体を作製することができた。この磁性粒子の孤立化した
記録ドット15は、直径が50ナノメートル、長さが1
00ナノメートルになる円柱状で、基板7に対して垂直
方向に長い微細な構造のため、長手方向に磁化容易軸を
持っている。これは、外部磁場3を印加しなくても高密
度の垂直磁気記録媒体を得ることができた。
Thereafter, polishing is performed for about 40 nanometers by a chemical mechanical polishing method used for a flattening technique of a semiconductor element, thereby producing a flattened high-density recording medium as shown in FIG. did it. The isolated recording dots 15 of the magnetic particles have a diameter of 50 nm and a length of 1 nm.
It has a columnar shape of 00 nanometers and a fine structure that is long in the direction perpendicular to the substrate 7 and thus has an easy axis of magnetization in the longitudinal direction. As a result, a high-density perpendicular magnetic recording medium could be obtained without applying an external magnetic field 3.

【0024】また、記録ドットの形状が上記の形状異方
性による垂直磁化にならない場合は、図3に示すように
外部磁場3を基板7に垂直方向に印加し、回転塗布およ
び加熱処理を行った結果、磁性粒子の孤立化した記録ド
ットは垂直方向により強い磁化容易軸をもつ優れた記録
媒体を得ることができた。
If the shape of the recording dot does not become perpendicular magnetization due to the above-mentioned shape anisotropy, an external magnetic field 3 is applied to the substrate 7 in the vertical direction as shown in FIG. As a result, it was possible to obtain an excellent recording medium in which the recording dots in which the magnetic particles were isolated had a stronger axis of easy magnetization in the perpendicular direction.

【0025】なお、基板7はアルミニウムの他にシリコ
ン、酸化シリコン、ポリカーボネート、ポリメチルメタ
クリレート、ポリスチレン、スチレンアクリロニトリル
等でもよい。絶縁体は、酸化シリコンの他の非磁性体で
もよい。また、高透磁率層はニッケル−鉄(パーマロ
イ)以外に、他の高透磁率金属でもよい。金属微粒子
は、コバルトの他、鉄、ニッケル、鉄−ニッケル−コバ
ルト合金、テルビウム−鉄−コバルト合金、コバルト−
クロム−タンタル合金または白金−コバルト合金でもよ
い。
The substrate 7 may be made of silicon, silicon oxide, polycarbonate, polymethyl methacrylate, polystyrene, styrene acrylonitrile or the like in addition to aluminum. The insulator may be another non-magnetic material other than silicon oxide. Further, the high magnetic permeability layer may be made of other high magnetic permeability metal other than nickel-iron (permalloy). The metal fine particles are, in addition to cobalt, iron, nickel, iron-nickel-cobalt alloy, terbium-iron-cobalt alloy, cobalt-
It may be a chromium-tantalum alloy or a platinum-cobalt alloy.

【0026】本実施例においては、高透磁率層8は垂直
磁気記録時の磁気抵抗を下げるためのものである。しか
し、高透磁率層8は磁気記録媒体を使用する場合の放電
用電極として有用である。
In this embodiment, the high magnetic permeability layer 8 is for lowering the magnetic resistance during perpendicular magnetic recording. However, the high magnetic permeability layer 8 is useful as a discharge electrode when a magnetic recording medium is used.

【0027】すなわち、本実施例によって作製されるよ
うな磁気記録媒体はc軸配向性が強く形状磁気異方性が
大きいため、記録が安定である。しかし、書き込み時に
記録ビットに対応する位置を加熱するため、電子線等を
照射したとき記録媒体が帯電する可能性がある。そこ
で、この高透磁率層8をアースに接地して記録媒体の帯
電防止に利用できる。
That is, the magnetic recording medium manufactured by this embodiment has a strong c-axis orientation and a large shape magnetic anisotropy, so that recording is stable. However, since the position corresponding to the recording bit is heated at the time of writing, the recording medium may be charged when irradiated with an electron beam or the like. Therefore, the high magnetic permeability layer 8 can be grounded to ground and used to prevent the recording medium from being charged.

【0028】(実施例3)本実施例の磁性微粒子を孤立
化させた記録ビットを持つ高密度磁気記録媒体の作製装
置の一例を図4を用いて説明する。
(Embodiment 3) An example of an apparatus for manufacturing a high-density magnetic recording medium having recording bits in which magnetic fine particles are isolated according to this embodiment will be described with reference to FIG.

【0029】基板21は、回転塗布装置の試料保持機構
20に真空吸着で固定される。回転塗布時の回転運動は
試料回転機構23により毎分数数十〜数万回転まで制御
でき、回転時間等のプログラムを組むことが可能となっ
ている。試料保持機構20は、試料温度制御装置24と
組み合わされ、試料を保持した状態で、試料の温度を室
温から500度Cの範囲で制御できるようになってい
る。
The substrate 21 is fixed to the sample holding mechanism 20 of the spin coating device by vacuum suction. Rotational movement during spin coating can be controlled from several tens to several tens of thousands rotations per minute by the sample rotation mechanism 23, and a program such as rotation time can be set. The sample holding mechanism 20 is combined with a sample temperature control device 24 so that the temperature of the sample can be controlled in a range from room temperature to 500 ° C. while holding the sample.

【0030】回転塗布や試料加熱処理時に外部磁場を印
加できるように、試料保持機構の上下に磁場印加用コイ
ル18、19が設置され、それらのコイルは外部磁場発
生装置25から制御されている。磁性体金属微粒子の分
散溶液タンク9から磁性体金属微粒子の分散させた有機
溶液10は、溶液量制御装置16を経由してノズル17
から基板21上に供給され、磁性体金属薄膜22を作製
できるようになっている。
Magnetic field applying coils 18 and 19 are provided above and below the sample holding mechanism so that an external magnetic field can be applied during spin coating and sample heating processing. These coils are controlled by an external magnetic field generator 25. The organic solution 10 in which the magnetic metal fine particles are dispersed is supplied from the magnetic metal fine particle dispersion solution tank 9 to the nozzle 17 through the solution amount control device 16.
From the substrate 21 to form a magnetic metal thin film 22.

【0031】溶液量制御装置16、試料回転機構23、
試料温度制御装置24と外部磁場発生装置25は、中央
制御装置26のパーソナルコンピューターから回転塗布
や試料加熱の実験条件を設定できるようになっている。
本発明の装置を用いて、実施例1、2の高密度磁気記録
媒体を作製した。
The solution amount control device 16, the sample rotation mechanism 23,
The sample temperature control device 24 and the external magnetic field generation device 25 can set experimental conditions for spin coating and sample heating from a personal computer of the central control device 26.
Using the apparatus of the present invention, high-density magnetic recording media of Examples 1 and 2 were produced.

【0032】[0032]

【発明の効果】従来技術では、真空スパッタ蒸着やメッ
キ法を用いて、磁性体金属薄膜を作製するため、装置が
大掛かりになり、時間がかかっていた。本実施例では、
大気中での回転塗布による薄膜形成であるので、簡便に
作製することが可能となり、外部磁場の印加により、磁
性薄膜の特性も制御できる。さらにメッキ液のように有
毒な溶剤を不要とするため、製造の安全性や環境保全に
対して非常に有効な方法である。
According to the prior art, a magnetic metal thin film is formed by vacuum sputter deposition or plating, so that the apparatus becomes large and time consuming. In this embodiment,
Since the thin film is formed by spin coating in the atmosphere, it can be easily manufactured, and the characteristics of the magnetic thin film can be controlled by applying an external magnetic field. Further, since a toxic solvent such as a plating solution is not required, it is a very effective method for safety of production and environmental protection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気記録媒体の作製原理を示す磁
気記録媒体の概略図。
FIG. 1 is a schematic diagram of a magnetic recording medium showing the principle of manufacturing the magnetic recording medium according to the present invention.

【図2】本発明による連続磁気記録媒体の作製手順の実
施例を示す概略図。
FIG. 2 is a schematic view showing an embodiment of a procedure for manufacturing a continuous magnetic recording medium according to the present invention.

【図3】本発明による磁気ドットの作製手順の実施例を
示す概略図。
FIG. 3 is a schematic view showing an example of a procedure for manufacturing a magnetic dot according to the present invention.

【図4】本発明による高密度記録媒体の作製装置の実施
例を示すブロック図。
FIG. 4 is a block diagram showing an embodiment of an apparatus for manufacturing a high-density recording medium according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…磁性体金属薄膜、3…外部磁場、4…磁
性体金属薄膜、5…記録ビットの孔、6…磁性粒子、7
…アルミニウム基板、8…高透磁率層、9…分散溶液タ
ンク、10…アセトン溶液、11…コバルト薄膜、12
…コバルト薄膜、13…ドットパターン、14…コバル
ト薄膜、15…記録ドット、16…溶液量制御装置、1
7…ノズル、18…磁場印加用コイル、19…磁場印加
用コイル、20…試料保持機構、21…基板、22…磁
性体金属薄膜、23…試料回転機構、24…試料温度制
御装置、25…外部磁場発生装置、26…中央制御装
置。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Magnetic metal thin film, 3 ... External magnetic field, 4 ... Magnetic metal thin film, 5 ... Recording bit hole, 6 ... Magnetic particle, 7
... Aluminum substrate, 8 ... High magnetic permeability layer, 9 ... Dispersion solution tank, 10 ... Acetone solution, 11 ... Cobalt thin film, 12
... Cobalt thin film, 13 dot pattern, 14 cobalt thin film, 15 recording dots, 16 solution control device, 1
7 ... Nozzle, 18 ... Coil for applying magnetic field, 19 ... Coil for applying magnetic field, 20 ... Sample holding mechanism, 21 ... Substrate, 22 ... Metal thin metal film, 23 ... Sample rotating mechanism, 24 ... Sample temperature controller, 25 ... External magnetic field generator, 26 central control unit.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】磁気媒体基板表面にコバルト、ニッケル、
鉄、クロム等の金属原子またはそれらの合金の金属微粒
子を分散させた有機溶液を用いた回転塗布法により、磁
性体薄膜を形成することを特徴とする高密度磁気記録媒
体の作製方法。
1. The method according to claim 1, wherein cobalt, nickel,
A method for producing a high-density magnetic recording medium, wherein a magnetic thin film is formed by a spin coating method using an organic solution in which metal particles of metal atoms such as iron and chromium or metal alloys thereof are dispersed.
【請求項2】上記回転塗布法による磁性体薄膜形成時
に、外部磁場を印加することにより、磁性体薄膜中の磁
性粒子の結晶配向性を制御することを特徴とする請求項
1に記載の高密度磁気記録媒体の作製方法。
2. The method according to claim 1, wherein the crystal orientation of the magnetic particles in the magnetic thin film is controlled by applying an external magnetic field when the magnetic thin film is formed by the spin coating method. Method for producing a high density magnetic recording medium.
【請求項3】上記磁気媒体基板が、支持基板、高透磁率
層、絶縁体層の三層構造からなり、上記絶縁体層に磁性
粒子埋め込み用の磁気ドット孔があり、コバルト、ニッ
ケル、鉄、クロム等の金属原子またはそれらの合金の金
属微粒子を分散させた有機溶液を回転塗布法を用いて塗
布し、上記孔を埋め込むことにより、磁気微粒子を孤立
化させた磁気ドットを形成することを特徴とする請求項
1に記載の高密度磁気記録媒体の作製方法。
3. The magnetic medium substrate has a three-layer structure of a support substrate, a high magnetic permeability layer, and an insulator layer, wherein the insulator layer has magnetic dot holes for embedding magnetic particles, and includes cobalt, nickel, and iron. An organic solution in which metal particles such as chromium or the like or metal alloys thereof are dispersed using a spin coating method, and the above-mentioned holes are filled to form magnetic dots in which the magnetic particles are isolated. The method for producing a high-density magnetic recording medium according to claim 1, wherein:
【請求項4】上記回転塗布法による磁性粒子埋め込み時
に、外部磁場を印加することにより、磁気ドット中の磁
性微粒子の結晶配向性を制御することを特徴とする請求
項3に記載の高密度磁気記録媒体作製方法。
4. The high-density magnetic device according to claim 3, wherein an external magnetic field is applied when the magnetic particles are embedded by the spin coating method, whereby the crystal orientation of the magnetic fine particles in the magnetic dots is controlled. Recording medium production method.
【請求項5】上記磁気媒体基板は、上記回転塗布法によ
る磁性粒子埋め込み後に表面を平坦化処理のため研磨が
なされることを特徴とする請求項1ないし4のいずれか
記載の高密度磁気記録媒体の作製方法。
5. The high-density magnetic recording according to claim 1, wherein the magnetic medium substrate is polished for flattening the surface after embedding the magnetic particles by the spin coating method. How to make a medium.
【請求項6】磁気媒体基板が少なくとも支持基板、高透
磁率層、絶縁体層の三層を有した構造からなり、上記絶
縁体層に磁性粒子埋め込み用の磁気ドット孔が形成さ
れ、上記磁気ドットには有機溶媒を用いた回転塗布法に
より埋め込まれた、コバルト、ニッケル、鉄、クロム等
の金属原子またはそれらの合金からなる金属微粒子が固
定されてなることを特徴とする高密度磁気記録媒体。
6. A magnetic medium substrate having a structure having at least three layers of a support substrate, a high magnetic permeability layer, and an insulator layer, wherein said insulator layer is provided with magnetic dot holes for embedding magnetic particles. A high-density magnetic recording medium in which dots are fixed with metal fine particles made of metal atoms such as cobalt, nickel, iron, and chromium, or alloys thereof, embedded by a spin coating method using an organic solvent. .
【請求項7】上記磁気ドット中の磁性微粒子は、上記回
転塗布時に外部磁場を印加することにより、結晶配向性
を制御されてなることを特徴とする請求項6に記載の高
密度磁気記録媒体。
7. The high-density magnetic recording medium according to claim 6, wherein the magnetic fine particles in the magnetic dots are controlled in crystal orientation by applying an external magnetic field during the spin coating. .
【請求項8】請求項6または7記載の高透磁率層が、記
録時の放電用電極として使用されることを特徴とする高
密度磁気記録媒体。
8. A high density magnetic recording medium characterized in that the high magnetic permeability layer according to claim 6 or 7 is used as a discharge electrode during recording.
JP34840399A 1999-12-08 1999-12-08 High density magnetic recording medium and its manufacturing method Pending JP2001167431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34840399A JP2001167431A (en) 1999-12-08 1999-12-08 High density magnetic recording medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34840399A JP2001167431A (en) 1999-12-08 1999-12-08 High density magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001167431A true JP2001167431A (en) 2001-06-22

Family

ID=18396797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34840399A Pending JP2001167431A (en) 1999-12-08 1999-12-08 High density magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001167431A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074170A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Composite material, structural body and method of manufacturing the structural body, polycrystalline structural film, and method of manufacturing particulates
WO2005029471A1 (en) * 2003-09-22 2005-03-31 Tdk Corporation Process for producing magnetic recording medium and magnetic recording medium
US6936403B2 (en) 2001-12-12 2005-08-30 Fuji Photo Film Co., Ltd. Recording medium
JP2007004959A (en) * 2005-05-24 2007-01-11 Fujifilm Holdings Corp Magnetic recording medium and its manufacturing method
JP2012043531A (en) * 2006-10-16 2012-03-01 Konica Minolta Opto Inc Substrate for magnetic recording medium for discrete track media or patterned media, and magnetic recording medium for discrete track media or patterned media
US8153190B2 (en) 2003-07-19 2012-04-10 Samsung Electronics Co., Ltd. Patterned magnetic recording medium and method of manufacturing the same
US8202571B2 (en) 2006-02-16 2012-06-19 Showa Denko K.K. Manufacturing method for magnetic recording medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936403B2 (en) 2001-12-12 2005-08-30 Fuji Photo Film Co., Ltd. Recording medium
WO2004074170A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Composite material, structural body and method of manufacturing the structural body, polycrystalline structural film, and method of manufacturing particulates
JPWO2004074170A1 (en) * 2003-02-20 2006-06-01 富士通株式会社 COMPOSITE MATERIAL, STRUCTURE AND MANUFACTURING METHOD THEREOF
US8153190B2 (en) 2003-07-19 2012-04-10 Samsung Electronics Co., Ltd. Patterned magnetic recording medium and method of manufacturing the same
WO2005029471A1 (en) * 2003-09-22 2005-03-31 Tdk Corporation Process for producing magnetic recording medium and magnetic recording medium
CN100395825C (en) * 2003-09-22 2008-06-18 Tdk股份有限公司 Process for producing magnetic recording medium and magnetic recording medium
JP2007004959A (en) * 2005-05-24 2007-01-11 Fujifilm Holdings Corp Magnetic recording medium and its manufacturing method
US8202571B2 (en) 2006-02-16 2012-06-19 Showa Denko K.K. Manufacturing method for magnetic recording medium
JP2012043531A (en) * 2006-10-16 2012-03-01 Konica Minolta Opto Inc Substrate for magnetic recording medium for discrete track media or patterned media, and magnetic recording medium for discrete track media or patterned media

Similar Documents

Publication Publication Date Title
US8367164B2 (en) Method of manufacturing nano-template for a high-density patterned medium and high-density magnetic storage medium using the same
US7067207B2 (en) Magnetic recording medium having a patterned soft magnetic layer
US7153597B2 (en) Magnetic recording media having chemically modified patterned substrate to assemble self organized magnetic arrays
JP3861197B2 (en) Manufacturing method of recording medium
JP2006286159A (en) Magnetic recording medium and its manufacturing method
JPH1166654A (en) Formation of fine structure, fine structure, magnetic sensor, magnetic recording medium and magneto-optical recording medium
JP2004110917A (en) Magnetic recording medium, and magnetic disc device using the same and method for manufacturing the same
JP2001167431A (en) High density magnetic recording medium and its manufacturing method
US20160071537A1 (en) Fabrication of bit patterned media using microcontact printing
US20100086733A1 (en) Aluminum alloy substrate and a method of manufacturing the same
JPH10320772A (en) Production of high density magnetic recording medium and high density magnetic recording medium by the method
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JP3657793B2 (en) Magnetic recording medium and manufacturing method thereof
JP2003263713A (en) Cylindrical magnetic recording medium and its manufacturing method
JP4073002B2 (en) Method for producing magnetic recording medium
JP2010140592A (en) Method of manufacturing l10-ordered fept nanodot array, l10-ordered fept nanodot array manufactured by using the same and high density magnetic recording medium using l10-ordered fept nanodot array
CN1307617C (en) Magnetic storage medium and its prepn
JP2001332421A (en) Magnetic thin film and method of manufacturing the magnetic thin film
Gulyaev et al. Advanced inorganic materials for hard magnetic media
EP1134731A2 (en) Discrete magnetic thin film elements having perpendicular magnetization
JP2001167432A (en) High density magnetic recording medium and its manufacturing method
JP2004079104A (en) High density magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2008172067A (en) Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium
KR101360078B1 (en) Patterned magnetic recording media and method of manufacturing the same
JP4927778B2 (en) Method for manufacturing magnetic recording medium