JP2001158950A - Silicon steel sheet for small-size electrical equipment, and its manufacturing method - Google Patents

Silicon steel sheet for small-size electrical equipment, and its manufacturing method

Info

Publication number
JP2001158950A
JP2001158950A JP34422999A JP34422999A JP2001158950A JP 2001158950 A JP2001158950 A JP 2001158950A JP 34422999 A JP34422999 A JP 34422999A JP 34422999 A JP34422999 A JP 34422999A JP 2001158950 A JP2001158950 A JP 2001158950A
Authority
JP
Japan
Prior art keywords
steel sheet
orientation
annealing
less
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34422999A
Other languages
Japanese (ja)
Other versions
JP4123662B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Seiji Okabe
誠司 岡部
Takeshi Imamura
今村  猛
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34422999A priority Critical patent/JP4123662B2/en
Priority to US09/722,017 priority patent/US6562473B1/en
Priority to EP00126202A priority patent/EP1108794B1/en
Priority to TW089125509A priority patent/TW486522B/en
Priority to DE60016149T priority patent/DE60016149T2/en
Priority to CN00137241A priority patent/CN1124357C/en
Priority to KR1020000072525A priority patent/KR100727333B1/en
Publication of JP2001158950A publication Critical patent/JP2001158950A/en
Application granted granted Critical
Publication of JP4123662B2 publication Critical patent/JP4123662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet, as a silicon steel sheet for small-size electrical equipment, which has an economical advantage as well as the greatest advantage in magnetic properties. SOLUTION: As to a component system, the contents of Se, S, O and N as impurities in the steel are reduced to <=30 ppm, respectively. Further, as to magnetic properties, magnetic flux density B50 in a rolling direction (L direction) and that in a direction (C direction) perpendicular to the rolling direction are regulated to >=1.70 T, respectively, and also the ratio between these magnetic flux densities, B50(L)/B50(C), is regulated to 1.005-1.100.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として小型のモ
ーターや発電機の鉄心材料に用いて好適な小型電気機器
用電磁鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic steel sheet for a small electric device which is preferably used mainly as a core material of a small motor or a generator, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電磁鋼板の磁気特性は、結晶方位の影響
を受け、結晶粒の磁化容易軸<001>が鋼板面に平行
になっていることが優れた磁気特性を得る上で必要なこ
とが知られている。
2. Description of the Related Art The magnetic properties of an electromagnetic steel sheet are affected by the crystal orientation, and it is necessary that the easy axis <001> of the crystal grains be parallel to the steel sheet surface in order to obtain excellent magnetic properties. It has been known.

【0003】ところで、従来の電磁鋼板は、一般用冷延
鋼板またはそれを脱炭した低級品、あるいはSiを添加
し、さらに不純物を減少して鉄損を減少させた無方向性
電磁鋼板や二次再結晶を利用してゴス({110}<0
01>)方位粒を優先成長させた一方向性電磁鋼板、さ
らには正キューブ({100}<001>)方位を発達
させた二方向性電磁鋼板に分かれている。このうち無方
向性電磁鋼板は、集合組織の発達が弱く、板面内に<0
01>軸が平行である結晶粒の数が少ないため、方向性
電磁鋼板に比べると良好な磁気特性は得られない。
[0003] Conventional magnetic steel sheets include general-purpose cold-rolled steel sheets or low-grade products obtained by decarburizing them, and non-oriented magnetic steel sheets and iron sheets in which Si is added and impurities are further reduced to reduce iron loss. Goss ({110} <0
01>) oriented steel sheet with preferential growth of grain orientation, and further divided into bidirectional electromagnetic steel sheet with a positive cube ({100} <001>) orientation developed. Of these, the non-oriented electrical steel sheet has a weak texture development and has a <0
01> Since the number of crystal grains having parallel axes is small, good magnetic properties cannot be obtained as compared with grain-oriented electrical steel sheets.

【0004】また、変圧器の鉄心材料として最も一般的
に使用されている、ゴス方位に集積した結晶粒からなる
一方向性電磁鋼板は、圧延方向に<001>が高度に集
積していることから、圧延方向に磁化する場合には優れ
た磁気特性を示す。しかしながら、面内には磁化が最も
困難である<111>軸も含まれているため、この方向
に磁化する場合には磁気特性は極めて悪い。そのため、
変圧器のように一方向の磁気特性が良好であればよい用
途には有効ではあるが、モーターや発電機の鉄心材料の
ように面内のあらゆる方向で良好な磁気特性を必要とす
る場合には、一方向性電磁鋼板を使用しても良好な磁気
特性は得られない。
[0004] In addition, a unidirectional electrical steel sheet, which is most commonly used as a core material of a transformer and is composed of crystal grains accumulated in a Goss orientation, has a high degree of <001> accumulation in the rolling direction. Therefore, when magnetized in the rolling direction, it shows excellent magnetic properties. However, since the <111> axis, which is most difficult to magnetize, is included in the plane, the magnetic properties are extremely poor when magnetized in this direction. for that reason,
It is effective in applications where good magnetic properties in one direction are required, such as transformers, but is required when good magnetic properties are required in all directions in the plane, such as core materials for motors and generators. Does not provide good magnetic properties even with the use of a grain-oriented electrical steel sheet.

【0005】これらの電磁鋼板に対し、{100}面を
圧延面とする結晶組織を持つ電磁鋼板を製造することが
できれば、圧延面内には<100>軸が多く、また<1
11>軸が存在しないために有利である。特に圧延面が
{100}で<001>軸の方向がランダムである{1
00}<uvw>組織は、面内における磁気特性の異方
性が全くなくなるので、モーター用の材料として理想的
である。
If an electrical steel sheet having a crystal structure with a {100} plane as a rolling plane can be manufactured with respect to these electrical steel sheets, there are many <100> axes and <1
11> is advantageous because there is no axis. In particular, {1} in which the rolling surface is {100} and the direction of the <001> axis is random
The 00} <uvw> structure is ideal as a material for a motor because the anisotropy of magnetic properties in the plane is completely eliminated.

【0006】そのため{100}組織を発達させる技術
は古くから試みられてきた。例えば、特公昭51−942 号
公報には、冷間圧延の圧下率を85%以上好ましくは90%
以上とした上で、 700〜1200℃で1分〜1時間の長時間
焼鈍を施す方法が開示されている。しかしながら、この
方法では、圧延後には{100}組織が発達するもの
の、再結晶させると{111}組織も発達するために、
良好な磁気特性は得られない。
Therefore, techniques for developing {100} tissues have been tried for a long time. For example, Japanese Patent Publication No. 51-942 discloses that the rolling reduction of cold rolling is 85% or more, preferably 90%.
On the basis of the above, a method of performing long-time annealing at 700 to 1200 ° C. for 1 minute to 1 hour is disclosed. However, in this method, although {100} structure develops after rolling, {111} structure also develops when recrystallized,
Good magnetic properties cannot be obtained.

【0007】また、特公昭57−14411 号公報には、冷間
圧延後の再結晶時にγ相からα相への相変態における冷
却速度を制御することによって{100}組織を発達さ
せる方法が開示されている。しかしながら、この技術で
は、再結晶時にγ変態を起こすことが前提になるので、
α層を安定化するSi量を高めることはできない。例え
ば、C,Mnを含まない場合には、Si量が約2wt%以上に
なるとγ変態が起こらず、その場合にはこの技術を適用
することはできない。従って、この技術は、鉄損の低減
に有利なSiを増量することができない不利な方法といえ
る。
Further, Japanese Patent Publication No. 57-14411 discloses a method of developing a {100} structure by controlling a cooling rate in a phase transformation from a γ phase to an α phase during recrystallization after cold rolling. Have been. However, in this technique, it is assumed that γ transformation occurs during recrystallization,
The amount of Si that stabilizes the α layer cannot be increased. For example, when C and Mn are not included, γ transformation does not occur when the amount of Si is about 2 wt% or more, and in this case, this technique cannot be applied. Therefore, this technique can be said to be a disadvantageous method in which the amount of Si that is advantageous for reducing iron loss cannot be increased.

【0008】さらに、特開平5−5126号公報には、Cを
0.006〜0.020 wt%含む成分の鋼について、冷間圧延
後、 900〜1100℃に加熱して再結晶させたのち、900 ℃
以下で再結晶焼鈍を施す技術が開示されている。この技
術により得られる磁気特性は、実施例1によると圧延方
向と圧延直角方向の磁束密度B50の平均値で1.66〜1.68
T程度であり、鋼板面内における<001>軸の集積度
は高いとはいえない。以上述べたとおり、無方向性電磁
鋼板の製造法に改良を加える従来の方法では、集積度の
高い{100}組織は得られておらず、従って磁気特性
の改善は不十分であった。
Further, Japanese Patent Application Laid-Open No. 5-5126 discloses that C is
After cold rolling, steel containing 0.006 to 0.020 wt% is heated to 900 to 1100 ° C and recrystallized, then 900 ° C
A technique for performing recrystallization annealing is disclosed below. Magnetic properties obtained by this technique, the average value of the magnetic flux density B 50 and according to Example 1 and the rolling direction perpendicular to the rolling direction from 1.66 to 1.68
T, and the degree of integration of the <001> axis in the plane of the steel sheet cannot be said to be high. As described above, the conventional method of improving the manufacturing method of the non-oriented electrical steel sheet has not obtained a {100} structure having a high degree of integration, and thus has not sufficiently improved the magnetic properties.

【0009】一方、二次再結晶によって正キューブ組織
を発達させる、いわゆる二方向性電磁鋼板の製造方法も
古くから検討されている。例えば、特公昭35−2657号公
報には、一方向に冷間圧延したのち、さらにこの方向と
交差する向きに冷間圧延を加え、短時間焼鈍と 900〜13
00℃の高温焼鈍を行う、いわゆるクロス圧延により、正
キューブ方位粒をインヒビターを利用して二次再結晶さ
せる方法が、また特開平4−362132号公報には、熱延方
向に対して直角の方向に50〜90%の圧下率で冷延したの
ち、一次再結晶を目的とする焼鈍を施し、ついで二次再
結晶と純化を目的とする最終仕上焼鈍を施して、正キュ
ーブ方位粒をAlNを利用して二次再結晶させる方法が開
示されている。これらの二次再結晶を利用する方法で
は、面内の<100>軸が圧延方向に高度に集積してい
るため、圧延方向および圧延直角方向の磁化特性は良好
ではあるが、圧延方向から45°の方向は<110>方向
になるので、この方向の磁化特性は悪い。
On the other hand, a method for producing a so-called bidirectional electrical steel sheet that develops a positive cube structure by secondary recrystallization has been studied for a long time. For example, in Japanese Patent Publication No. 35-2657, cold rolling is performed in one direction, and then cold rolling is performed in a direction crossing this direction.
A method of performing high-temperature annealing at 00 ° C., that is, a method of performing secondary recrystallization of so-called cross rolling by using an inhibitor using an inhibitor, is disclosed in JP-A-4-362132. After cold-rolling at a reduction rate of 50 to 90% in the direction, annealing for primary recrystallization is performed, and then final finish annealing for secondary recrystallization and purification is performed. A method of performing secondary recrystallization by using is disclosed. In the method using these secondary recrystallizations, the in-plane <100> axis is highly integrated in the rolling direction, so that the magnetization characteristics in the rolling direction and the direction perpendicular to the rolling direction are good, but 45 ° from the rolling direction. Since the direction of ° is the <110> direction, the magnetization characteristics in this direction are poor.

【0010】ところで、電磁鋼板を積層して使用する小
型トランスの代表的な形状として、図1に示すような、
EI型コアが知られている。このようなEI型コア用の
鉄心材料としては、無方向性電磁鋼板と方向性電磁鋼板
の両方が現在用いられている。無方向性電磁鋼板を使用
した場合は、方向性電磁鋼板を使用した場合に比べ、磁
気特性のレベルが低いために、コアの磁気特性は劣って
いる。しかしながら、無方向性電磁鋼板は、方向性電磁
鋼板に比べて製造プロセスが単純で価格が低いため、経
済的な観点から使用されている。
[0010] By the way, as a typical shape of a small transformer using electromagnetic steel sheets laminated, as shown in FIG.
EI type cores are known. As such an iron core material for the EI type core, both non-oriented electrical steel sheets and oriented electrical steel sheets are currently used. When a non-oriented electrical steel sheet is used, the magnetic properties of the core are inferior to those when a grain-oriented electrical steel sheet is used, because the magnetic properties are at a lower level. However, the non-oriented electrical steel sheet is used from an economical point of view because the manufacturing process is simpler and the price is lower than that of the oriented electrical steel sheet.

【0011】他方、方向性電磁鋼板は、上述したとお
り、圧延方向の磁気特性は良好ではあるが圧延直角方向
の磁気特性は著しく劣っている。EI型コアの鉄心材料
として使用した場合、磁束の流れは圧延方向と圧延直角
方向の両方にまたがるので、無方向性電磁鋼板よりも良
好ではあるが、磁気特性的に方向性電磁鋼板の有利な使
用方法がなされているとは言えない。
On the other hand, as described above, the grain-oriented electrical steel sheet has good magnetic properties in the rolling direction, but has extremely poor magnetic properties in the direction perpendicular to the rolling direction. When used as an iron core material of the EI type core, the flow of magnetic flux extends both in the rolling direction and the direction perpendicular to the rolling direction, so that it is better than the non-oriented electrical steel sheet, but the magnetic properties of the grain-oriented electrical steel sheet are advantageous. It cannot be said that the usage has been done.

【0012】磁気特性的には、圧延方向と圧延直角方向
の両方の磁気特性が良好な二方向性電磁鋼板が最も有利
であると考えられる。しかしながら、従来の技術では、
二方向性電磁鋼板の製造には生産性が極めて低いクロス
圧延が必要とされており、工業的に大量生産されたこと
は未だかつてない。また、EI型コアのような小型のト
ランス鉄心での磁束の流れは直角に変化する部分の影響
も小さくないので、圧延方向から45°の方向の磁気特性
が悪い二方向性電磁鋼板も必ずしも理想的な材料とは言
えない。上述したとおり、従来の技術では、EI型コア
のような小型トランスの鉄心材料として理想的な材料は
提供されていない。
In terms of magnetic properties, it is considered that a bidirectional electrical steel sheet having good magnetic properties in both the rolling direction and the direction perpendicular to the rolling direction is most advantageous. However, in the prior art,
The production of bi-oriented electrical steel sheets requires cross-rolling with extremely low productivity, and has never been industrially mass-produced. Also, since the flow of magnetic flux in a small transformer core such as an EI type core is not so affected by the part that changes at right angles, a bidirectional electrical steel sheet with poor magnetic properties in the direction of 45 ° from the rolling direction is not necessarily ideal. Is not a typical material. As described above, the prior art does not provide an ideal material as a core material of a small transformer such as an EI type core.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、磁気特性的に最も有利なだけ
でなく、経済的にも有利な全く新しい小型電気機器用電
磁鋼板を、その有利な製造方法と共に提案することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and provides a completely new electromagnetic steel sheet for small electric equipment which is not only most advantageous in terms of magnetic properties but also economically advantageous. , Together with its advantageous manufacturing method.

【0014】[0014]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、試行錯誤の
末に、小型のトランス等の使途に最適な電磁鋼板を開発
し、本発明を完成するに至ったのである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, after trial and error, have developed an electromagnetic steel sheet most suitable for use in a small transformer or the like. Thus, the present invention has been completed.

【0015】すなわち、本発明の要旨構成は次のとおり
である。 1.質量百分率でSi:2.0 〜8.0 %,Mn:0.005 〜3.0
%,Al:0.0010〜0.020 %を含み、かつSe,S,Oおよ
びNの含有量をそれぞれ 30ppm以下に抑制し、残部は実
質的にFeの組成になり、圧延方向(L方向)と圧延直角
方向(C方向)の磁束密度B50がいずれも1.70T以上
で、かつこれらの磁束密度比B50(L)/B50(C)が 1.005
以上、 1.100以下であることを特徴とする小型電気機器
用電磁鋼板。
That is, the gist of the present invention is as follows. 1. Si: 2.0 to 8.0% by mass percentage, Mn: 0.005 to 3.0
%, Al: 0.0010 to 0.020%, and the contents of Se, S, O, and N are suppressed to 30 ppm or less, respectively, and the remainder substantially has a composition of Fe, and is perpendicular to the rolling direction (L direction). The magnetic flux density B 50 in the direction (C direction) is 1.70 T or more, and their magnetic flux density ratio B 50 (L) / B 50 (C) is 1.005.
Above, 1.100 or less, electrical steel sheet for small electric equipment characterized by the above-mentioned.

【0016】2.鋼板を構成する結晶粒の方位につき、
正キューブ({100}<001>)方位からの方位差
が20°以内である結晶粒の面積率が50%以上、80%以下
で、かつゴス({110}<001>)方位からの方位
差が20°以内である結晶粒の面積率が6%以上、20%以
下であることを特徴とする上記1記載の小型電気機器用
電磁鋼板。
2. Regarding the orientation of the crystal grains constituting the steel sheet,
The area ratio of the crystal grains whose azimuth difference from the regular cube ({100} <001>) orientation is within 20 ° is 50% or more and 80% or less, and the orientation from the Goss ({110} <001>) orientation 2. The electrical steel sheet for a small electric device according to the above item 1, wherein an area ratio of crystal grains having a difference within 20 ° is 6% or more and 20% or less.

【0017】3.鋼板が、さらに、質量百分率でNi:0.
01〜1.50%,Sn:0.01〜1.50%,Sb:0.005 〜0.50%,
Cu:0.01〜1.50%,Mo:0.005 〜0.50%およびCr:0.01
〜1.50%のうちから選んだ少なくとも一種を含有する組
成になることを特徴とする上記1または2記載の小型電
気機器用電磁鋼板。
3. The steel sheet also has a mass percentage of Ni: 0.
01 to 1.50%, Sn: 0.01 to 1.50%, Sb: 0.005 to 0.50%,
Cu: 0.01 to 1.50%, Mo: 0.005 to 0.50%, and Cr: 0.01
3. The electrical steel sheet for a small electric device according to the above item 1 or 2, wherein the composition contains at least one selected from a range of from 1.50% to 1.50%.

【0018】4.質量百分率でC:0.003 〜0.08%,S
i:2.0 〜8.0 %,Mn:0.005 〜3.0 %,Al:0.0010〜
0.020 %を含み、かつSe,S,OおよびNの含有量をそ
れぞれ 30ppm以下に抑制した組成になる鋼スラブを、熱
間圧延し、ついで 950〜1200℃以下の温度で熱延板焼鈍
を施したのち、1回または中間焼鈍を挟む2回以上の冷
間圧延を施し、ついで再結晶焼鈍後、必要に応じて焼鈍
分離剤を適用してから、 750℃以上での平均加熱速度を
25℃/h以下として 800℃以上の温度域まで加熱する最終
仕上焼鈍を行うことを特徴とする小型電気機器用電磁鋼
板の製造方法。
4. C in mass percentage: 0.003 to 0.08%, S
i: 2.0 to 8.0%, Mn: 0.005 to 3.0%, Al: 0.0010 to
A steel slab containing 0.020% and having a composition in which the contents of Se, S, O, and N are each suppressed to 30 ppm or less is hot-rolled, and then subjected to hot-rolled sheet annealing at a temperature of 950 to 1200 ° C or less. After that, cold rolling is performed once or two or more times with intermediate annealing, then, after recrystallization annealing, if necessary, an annealing separator is applied, and then the average heating rate at 750 ° C or more is increased.
A method for producing electrical steel sheets for small electrical equipment, comprising performing a final finish annealing in which the temperature is reduced to 25 ° C / h or less and heated to a temperature range of 800 ° C or more.

【0019】5.鋼スラブが、さらに、質量百分率でN
i:0.01〜1.50%,Sn:0.01〜1.50%,Sb:0.005 〜0.5
0%,Cu:0.01〜1.50%,Mo:0.005 〜0.50%およびC
r:0.01〜1.50%のうちから選んだ少なくとも一種を含
有する組成になることを特徴とする上記4記載の小型電
気機器用電磁鋼板の製造方法。
5. Steel slabs also have N
i: 0.01 to 1.50%, Sn: 0.01 to 1.50%, Sb: 0.005 to 0.5
0%, Cu: 0.01 to 1.50%, Mo: 0.005 to 0.50% and C
r: The method for producing a magnetic steel sheet for a small electric device according to the above item 4, wherein the composition contains at least one selected from 0.01 to 1.50%.

【0020】[0020]

【発明の実施の形態】以下、本発明を由来するに至った
実験結果について説明する。 C:0.010 %(質量百分率。以下、同じ),Si:2.5
%、Mn:0.05%、Al:0.0080%、N:8ppm およびO:
12 ppmを含有し、インヒビター成分を含まない組成にな
る鋼塊Aを、連続鋳造によって製造し、1120℃に加熱
後、熱間圧延により2.8mm厚の熱延板とした。ついで、
この熱延板を、1150℃の窒素雰囲気中にて種々の温度で
1分間均熱したのち、急冷し、ついで 230℃の温度で冷
間圧延を行って0.35mmの最終板厚に仕上げた。ついで、
水素:75 vol%、窒素:25 vol%、露点:35℃の雰囲気
中にて 920℃で均熱20秒の再結晶焼鈍を行い、Cを0.00
20%以下まで低減したのち、最終仕上焼鈍を施した。最
終仕上焼鈍は、常温から 750℃までは50℃/hの速度で、
また 750℃から 900℃までは5℃/hの速度で加熱し、こ
の温度に50時間保持する方法にて行った。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the experimental results which led to the present invention will be described. C: 0.010% (mass percentage; hereinafter the same), Si: 2.5
%, Mn: 0.05%, Al: 0.0080%, N: 8 ppm and O:
A steel ingot A containing 12 ppm and having a composition containing no inhibitor component was produced by continuous casting, heated to 1120 ° C., and then hot-rolled into a hot-rolled sheet having a thickness of 2.8 mm. Then
This hot-rolled sheet was soaked at various temperatures in a nitrogen atmosphere at 1150 ° C. for 1 minute, quenched, and then cold-rolled at a temperature of 230 ° C. to obtain a final sheet thickness of 0.35 mm. Then
Hydrogen: 75 vol%, Nitrogen: 25 vol%, Dew point: 35 ° C, anneal at 920 ° C for 20 seconds to recrystallize and anneal C to 0.00
After reducing to 20% or less, final finish annealing was performed. The final finish annealing is performed at a rate of 50 ° C / h from normal temperature to 750 ° C.
In addition, heating was performed at a rate of 5 ° C./h from 750 ° C. to 900 ° C., and the temperature was maintained for 50 hours.

【0021】仕上焼鈍後のマクロ組織について調査した
結果、全ての熱延板焼鈍温度で二次再結晶が完了してい
た。また、仕上焼鈍後の圧延方向(L方向)および圧延
方向に対して直角方向(C方向)の磁束密度について調
査した。さらに、得られた製品板を用いてEI型コアを
作製し、その鉄損 (W15/50)を測定した。
As a result of investigating the macrostructure after the finish annealing, the secondary recrystallization was completed at all the hot-rolled sheet annealing temperatures. Further, the magnetic flux density in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) after the finish annealing was investigated. Further, an EI type core was prepared using the obtained product plate, and the iron loss (W 15/50 ) was measured.

【0022】図2に、熱延板焼鈍温度と製品板のL方向
およびC方向の磁束密度B50ならびにそれらの比B
50(L)/B50(C) との関係を整理して示す。図2に示した
ように、熱延板焼鈍温度が低い場合にはL方向の磁束密
度の方がC方向よりも著しく高いものの、熱延板焼鈍温
度が高くなると、最終的にC方向の特性がL方向よりも
わずかに高くなることが判明した。
FIG. 2 shows the annealing temperature of the hot-rolled sheet, the magnetic flux density B 50 in the L direction and the C direction of the product sheet, and their ratio B
The relationship with 50 (L) / B 50 (C) is organized and shown. As shown in FIG. 2, when the hot-rolled sheet annealing temperature is low, the magnetic flux density in the L direction is significantly higher than that in the C direction. Was slightly higher than in the L direction.

【0023】次に、図3に、EI型のコアの鉄損と製品
板のL,C方向の磁束密度比B50(L)/B50(C) との関係
を示す。図3に示したように、EI型コアの鉄損は、L
方向とC方向の磁束密度の比が1.005 〜1.100 の範囲、
すなわちL方向の磁束密度がC方向のそれよりも若干高
い場合に、最も良好になることが新規に知見された。
Next, FIG. 3 shows the relationship between the iron loss of the EI type core and the magnetic flux density ratio B 50 (L) / B 50 (C) of the product plate in the L and C directions. As shown in FIG. 3, the iron loss of the EI type core is L
The ratio of the magnetic flux density in the direction C to the direction C is in the range of 1.005 to 1.100,
That is, it has been newly found that the magnetic flux density becomes the best when the magnetic flux density in the L direction is slightly higher than that in the C direction.

【0024】次に、このような磁束密度の違いは鋼板の
集合組織の差によるものと考え、各々の製品板につい
て、その表面の二次再結晶粒の方位測定を、X線回折ラ
ウエ法を用いて 100mm×280mm の領域について行い、各
結晶方位粒の面積率を求めた。図4に、熱延板焼鈍温度
と製品板のゴス({110}<001>)方位からのず
れ角が20°以内の結晶粒の面積率および正キューブ
({100}<001>)方位粒からのずれ角が20°以
内の結晶粒の面積率との関係を示す。鋼塊Aでは、熱延
板焼鈍温度が 950℃以上になると、正キューブ方位近傍
の結晶粒が最も多く、少数のゴス方位近傍の結晶粒が少
数混在する状態となることが分かった。定量的には、図
4によると、磁束密度の比が 1.005〜1.100 の範囲であ
った熱延板焼鈍温度が 950〜1200℃の時には、正キュー
ブ方位からのずれ角が20°以内である結晶粒の比率が50
〜80%、一方ゴス方位からのずれ角が20°以内の結晶方
位を持つ二次再結晶粒の比率は6〜20%であった。
Next, it is considered that such a difference in magnetic flux density is due to a difference in texture of the steel sheet. For each product sheet, the orientation of secondary recrystallized grains on the surface is measured by the X-ray diffraction Laue method. The measurement was performed on a region of 100 mm × 280 mm to determine the area ratio of each crystal orientation grain. FIG. 4 shows the area ratio of crystal grains having a deviation angle from the Goss ({110} <001>) orientation of the hot-rolled sheet and the Goss ({110} <001>) orientation of the product sheet within 20 ° and the positive cube ({100} <001>) orientation Shows the relationship with the area ratio of crystal grains whose deviation angle from the crystal grain is within 20 °. It was found that in the steel ingot A, when the hot-rolled sheet annealing temperature was 950 ° C. or higher, the crystal grains in the vicinity of the normal cube orientation were the largest, and a small number of crystal grains in the vicinity of the small number of Goss orientations were mixed. Quantitatively, according to Fig. 4, when the ratio of the magnetic flux density was in the range of 1.005 to 1.100 and the annealing temperature of the hot-rolled sheet was 950 to 1200 ° C, the crystal whose deviation from the normal cube orientation was within 20 ° was obtained. The ratio of grains is 50
8080%, while the proportion of secondary recrystallized grains having a crystal orientation within 20 ° of the angle of deviation from the Goss orientation was 6-20%.

【0025】そこで、発明者らは次に、上記の知見、す
なわちL方向の磁束密度がC方向よりも若干高い場合
に、EI型コアの鉄損が最も良好であることを確認する
ために、鋼塊Aの製品板と同じ板厚:0.35mmで、Siを
2.5%含有し、ゴス方位が集積している一方向性電磁鋼
板、および正キューブ方位が高度に集積している二方向
性電磁鋼板の製品板を用いて、同一のEI型コアを作製
し、単板での磁束密度およびコア組み立て後の鉄損を比
較してみた。得られた結果を図5(a), (b)に示す。
Then, the present inventors next examined the above findings, that is, when the magnetic flux density in the L direction was slightly higher than that in the C direction, to confirm that the core loss of the EI type core was the best. Same thickness as the product plate of ingot A: 0.35mm, Si
The same EI-type core is manufactured using a product sheet of 2.5% -containing, unidirectional magnetic steel sheet with Goss orientation accumulated and a bidirectional electromagnetic steel sheet with positive cube orientation highly accumulated, The magnetic flux density in a single plate and the core loss after assembling the core were compared. The obtained results are shown in FIGS. 5 (a) and 5 (b).

【0026】同図に示したとおり、EI型コアの鉄損
は、一方向性電磁鋼板や二方向性電磁鋼板を用いた場合
よりも、鋼塊Aから得られた電磁鋼板を用いた場合の方
が優れていることが分かる。なお、L方向とC方向の磁
束密度の比は、鋼塊Aにおいては 1.015であったのに対
して、一方向性電磁鋼板では1.331 、二方向性電磁鋼板
では1.002 といずれも前述の好適な範囲から外れてい
た。この結果は、発明者らの実験から得られたEI型コ
アの鉄損はL方向とC方向の磁束密度の比が 1.005〜1.
100 の範囲、すなわちL方向がC方向より若干高い場合
に鉄損が最も良好になることを裏付づけている。
As shown in the figure, the iron loss of the EI type core is larger when the magnetic steel sheet obtained from the ingot A is used than when the unidirectional magnetic steel sheet or the bidirectional magnetic steel sheet is used. It turns out that it is better. The ratio of the magnetic flux density in the L direction to the magnetic flux density in the C direction was 1.015 for the ingot A, 1.331 for the unidirectional magnetic steel sheet, and 1.002 for the bidirectional magnetic steel sheet. Was out of range. This result shows that the iron loss of the EI type core obtained from the experiments of the inventors was such that the ratio of the magnetic flux density in the L direction to the C direction was 1.005 to 1.
It is supported that the iron loss is best in the range of 100, that is, when the L direction is slightly higher than the C direction.

【0027】なお、参考のため、一方向性電磁鋼板およ
び二方向性電磁鋼板の各製品板表面の二次再結晶粒の方
位測定を、X線回折ラウエ法を用いて 100mm×280mm の
領域について行い、各結晶方位粒の面積率を求めた。そ
の結果、一方向性電磁鋼板の製品板における二次再結晶
粒のゴス方位からのずれ角が20°以内の二次再結晶粒の
存在頻度は96%であり、また二方向性電磁鋼板の製品板
における二次再結晶粒の正キューブ方位からのずれ角が
20°以内の二次再結晶粒の存在頻度は90%であった。
For reference, the orientation of secondary recrystallized grains on the surface of each product sheet of a unidirectional electrical steel sheet and a bidirectional electrical steel sheet was measured for an area of 100 mm × 280 mm using the X-ray diffraction Laue method. Then, the area ratio of each crystal orientation grain was determined. As a result, the frequency of occurrence of secondary recrystallized grains in the product sheet of unidirectional magnetic steel sheet, in which the angle of deviation of the secondary recrystallized grains from the Goss orientation is within 20 °, is 96%. The deviation angle of the secondary recrystallized grains from the positive cube orientation in the product plate is
The frequency of secondary recrystallized grains within 20 ° was 90%.

【0028】このような一方向性および二方向性電磁鋼
板の製品板における高度な方位集積は、磁気特性の異方
性を著しく増加させる。そのために様々な方向へと磁束
の流れが変化しがちな小型EI型コアでは、鋼塊Aのよ
うに正キューブ方位からのずれ角が20°以内である結晶
粒が適度に発達して、ゴス方位からのずれ角が20°以内
の結晶方位が少量混在した集合組織の方が圧延方向およ
び圧延直角方向の両方の磁気特性が良好で、かつそれ以
外の方向での磁気特性の低下も比較的小さいので、EI
コアの鉄損が最適になったものと推定される。
The high degree of orientation accumulation in the product sheet of such unidirectional and bidirectional electrical steel sheets significantly increases the anisotropy of magnetic properties. For this reason, in a small EI type core in which the flow of magnetic flux tends to change in various directions, crystal grains having a deviation angle of less than 20 ° from the normal cube orientation, such as steel ingot A, are moderately developed. A texture with a small amount of crystal orientation within 20 ° of the misorientation has better magnetic properties in both the rolling direction and the direction perpendicular to the rolling direction, and the magnetic properties in other directions are relatively low. EI because it ’s small
It is estimated that the core iron loss has been optimized.

【0029】このように、鋼塊Aを用い、最終仕上焼鈍
時の二次再結晶により、正キューブ組織とゴス組織の両
方を適度に発達させ、圧延方向の磁束密度と圧延直角方
向の磁束密度の比を 1.005〜1.100 とすることにより、
EI型の小型トランスの鉄損を効果的に減少させられる
ことが新規に知見された。
As described above, by using the steel ingot A, both the normal cube structure and the Goss structure are appropriately developed by the secondary recrystallization during the final annealing, and the magnetic flux density in the rolling direction and the magnetic flux density in the direction perpendicular to the rolling direction are obtained. By setting the ratio of 1.005 to 1.100,
It has been newly found that iron loss of an EI type small transformer can be effectively reduced.

【0030】さらに、発明者らは、鋼塊Aを用いて、最
終仕上焼鈍における加熱速度を変化させる次のような実
験を行った。1150℃に加熱したスラブを、熱間圧延によ
って 2.8mm厚の熱延板としたのち、1180℃の窒素雰囲気
中で1分間均熱後、急冷した。ついで、250 ℃の温度で
冷間圧延を行って0.35mmの最終板厚に仕上げた後、水
素:75 vol%、窒素:25 vol%、露点:35℃の雰囲気中
にて 920℃で均熱20秒の再結晶焼鈍を行い、Cを0.0020
%以下まで低減したのち、仕上焼鈍を行った。仕上焼鈍
は、常温から 750℃までは50℃/hの加熱速度で、 750℃
から 900℃までは加熱速度を種々に変更して昇温し、90
0 ℃で50時間保持する方法にて行った。
Further, the inventors conducted the following experiment using the steel ingot A to change the heating rate in the final finish annealing. The slab heated to 1150 ° C. was hot-rolled to form a hot-rolled sheet having a thickness of 2.8 mm, then soaked in a nitrogen atmosphere at 1180 ° C. for 1 minute, and then rapidly cooled. Then, after cold rolling at a temperature of 250 ° C to a final thickness of 0.35mm, hydrogen: 75vol%, nitrogen: 25vol%, and dew point: 920 ° C in a 35 ° C atmosphere Perform recrystallization annealing for 20 seconds and set C to 0.0020.
%, And then finish annealing was performed. Finish annealing is performed at a heating rate of 50 ° C / h from room temperature to 750 ° C,
From 900 to 900 ° C with various heating rates
The test was performed at a temperature of 0 ° C. for 50 hours.

【0031】仕上焼鈍後の圧延方向(L方向)および圧
延方向に対して直角方向(C方向)の磁束密度について
調査した。また、得られた製品板を用いてEI型コアを
作製し、その鉄損 (W15/50)を測定した。さらに、各々
の製品板の二次再結晶粒の方位測定を、X線回折ラウエ
法を用いて 100mm×280mm の領域について行い、正キュ
ーブ方位近傍の結晶粒およびゴス方位近傍の結晶粒の存
在頻度を調査した。
The magnetic flux density in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) after the finish annealing was examined. Further, an EI type core was manufactured using the obtained product plate, and the iron loss (W 15/50 ) was measured. Further, the orientation of secondary recrystallized grains of each product plate was measured for the area of 100 mm × 280 mm using the X-ray diffraction Laue method, and the frequency of the presence of grains near the normal cube orientation and near the Goss orientation was measured. investigated.

【0032】図6(a), (b)に、最終仕上焼鈍時の 750℃
以上の温度域における加熱速度と、製品板のL方向およ
びC方向の磁束密度B50ならびにそれらの比B50(L)/B
50(C) との関係を示す。図6に示したとおり、加熱速度
が25℃/h以下の場合に、圧延方向の磁束密度と圧延直角
方向の磁束密度の比が 1.005〜1.100 を満たし、加熱速
度が25℃/hを超えると圧延直角方向の磁束密度が低下し
て磁束密度の比が 1.100を超えるようになった。
FIGS. 6 (a) and 6 (b) show 750 ° C. during final finish annealing.
And above temperature range in the heating rate, the flux in the L direction and the C direction of the product plate density B 50 and their ratio B 50 (L) / B
The relationship with 50 (C) is shown. As shown in FIG. 6, when the heating rate is 25 ° C./h or less, the ratio of the magnetic flux density in the rolling direction to the magnetic flux density in the direction perpendicular to the rolling satisfies 1.005 to 1.100, and when the heating rate exceeds 25 ° C./h. The magnetic flux density in the direction perpendicular to the rolling decreased, and the ratio of the magnetic flux density exceeded 1.100.

【0033】また、図7に、圧延方向の磁束密度と圧延
直角方向の磁束密度の比とEI型コアの鉄損との関係を
示すが、同図に示したとおり、磁束密度の比が 1.100を
超えた場合には、EI型コアの鉄損は急激に劣化する。
FIG. 7 shows the relationship between the ratio of the magnetic flux density in the rolling direction to the magnetic flux density in the direction perpendicular to the rolling direction and the iron loss of the EI type core. As shown in FIG. , The core loss of the EI type core rapidly deteriorates.

【0034】さらに、図8に、正キューブ方位からのず
れ角が20°以内である結晶粒の面積率とゴス方位からの
ずれ角が20°以内の結晶方位を持つ二次再結晶粒の面積
率について調べた結果を示す。同図に示したとおり、加
熱速度が速くなるほど正キューブ方位粒が減少し、ゴス
方位粒やその他の方位を持つ結晶粒が増加する傾向にあ
る。そして、同図によれば、良好な鉄損が得られた加熱
速度が25℃/h以下の場合には、正キューブ方位粒の面積
率が50〜80%で、かつゴス方位粒の面積率が6〜20%の
範囲にあることが分かる。このように、二次再結晶粒の
方位は、 750℃以上の温度域における加熱速度の如何に
よって変化し、750 ℃以上の温度域での加熱速度を25℃
/h以下とすることによって、圧延方向の磁束密度と圧延
直角方向の磁束密度の比が 1.005〜1.100を満たすEI
型コアの鉄損低減に最適な集合組織が得られることが究
明されたのである。
Further, FIG. 8 shows the area ratio of the crystal grains whose deviation angle from the normal cube orientation is within 20 ° and the area of the secondary recrystallized grains having the crystal orientation whose deviation angle from the Goss orientation is within 20 °. The results of examining the ratio are shown. As shown in the figure, the higher the heating rate, the smaller the number of grains in the normal cube orientation and the more the number of crystal grains having the Goss orientation and other orientations. According to the figure, when the heating rate at which good iron loss was obtained was 25 ° C./h or less, the area ratio of the positive cube oriented grains was 50 to 80%, and the area rate of the Goss oriented grains was Is in the range of 6 to 20%. Thus, the orientation of the secondary recrystallized grains changes depending on the heating rate in the temperature range of 750 ° C or more, and the heating rate in the temperature range of 750 ° C or more is 25 ° C.
/ h or less so that the ratio of the magnetic flux density in the rolling direction to the magnetic flux density in the direction perpendicular to the rolling satisfies 1.005 to 1.100.
It was determined that an optimal texture for reducing the core loss of the mold core could be obtained.

【0035】[0035]

【作用】上述したように、正キューブ組織を主体として
ゴス組織を少量発達させた集合組織とすることによっ
て、圧延方向の磁束密度と圧延直角方向の磁束密度の比
が1.005〜1.100 となり、EI型コアの素材として最適
の組織となる理由については、必ずしも明らかではない
が、発明者らは以下のように考えている。このような集
合組織を得られる製造条件として、素材中にCを 0.003
〜0.08%程度含有させることが効果的である。おそら
く、固溶Cの影響で圧延時に交差すべりが増加して変形
帯の形成を促進し、キューブ粒やゴス粒の再結晶核を増
加させるものと推定される。また、冷間圧延時の少なく
とも1パスの圧延温度を100〜250 ℃に上昇させて行う
ことも、同様に交差すべりを増加させて変形帯の形成を
促進し、キューブ粒やゴス粒の再結晶核を増加させるの
に有効である。
[Function] As described above, by forming a texture in which a small amount of Goss structure is developed mainly by the regular cube structure, the ratio of the magnetic flux density in the rolling direction to the magnetic flux density in the direction perpendicular to the rolling becomes 1.005 to 1.100. Although it is not always clear why the organization is the most suitable as the core material, the inventors consider as follows. As a manufacturing condition to obtain such a texture, C in the material is 0.003%.
It is effective to contain about 0.08%. Probably, it is presumed that cross-slip increases during rolling due to the effect of solid solution C, which promotes the formation of deformation zones and increases the recrystallization nuclei of cube grains and goss grains. In addition, raising the rolling temperature of at least one pass during cold rolling to 100 to 250 ° C. also increases cross slip, promotes the formation of deformation zones, and recrystallizes cube grains and goss grains. It is effective for increasing the nucleus.

【0036】先に述べた実験で知見されたように、熱延
板焼鈍を 950〜1200℃の温度範囲で行うことが有効であ
る。この場合、冷間圧延前の粒径が粗大になり、粒界か
らの再結晶核の形成が抑えられ、再結晶焼鈍後の{11
1}組織が減少するものと考えられる。{111}組織
はゴス方位粒によって消費され易いので、ゴス方位粒を
優先的に二次再結晶させるのに役立っていることが一般
的に知られている。そのため{111}組織を減少させ
ることは、ゴス方位の二次再結晶粒を低減させるのに有
効であるものと考えられる。また、{100}<011
>方位粒は、熱延板焼鈍後に特に優先的に粒成長する。
しかも、この{100}<011>方位粒は、冷間圧延
時に方位が変化しない安定方位である。そして再結晶後
においても{100}<011>方位が増加する。また
{100}<011>方位粒は、ゴス方位粒によって蚕
食されにくいことが知られている。それ故、{100}
<011>方位の増加は、ゴス方位粒の成長を抑え、か
わって正キューブ方位粒を優先的に成長させるものと考
えられる。
As has been found in the above-mentioned experiments, it is effective to perform hot-rolled sheet annealing in a temperature range of 950 to 1200 ° C. In this case, the grain size before the cold rolling becomes coarse, the formation of recrystallization nuclei from the grain boundaries is suppressed, and the {11
1) It is thought that the organization will decrease. Since the {111} structure is easily consumed by goss grains, it is generally known that the {111} structure helps preferentially recrystallize the goss grains. Therefore, it is considered that reducing the {111} structure is effective for reducing the secondary recrystallized grains in the Goss orientation. Also, {100} <011
> Orientation grains grow particularly preferentially after annealing of the hot-rolled sheet.
Moreover, the {100} <011> oriented grains are stable orientations in which the orientation does not change during cold rolling. Then, even after recrystallization, the {100} <011> orientation increases. It is known that {100} <011> oriented grains are hard to be eaten by the Goss oriented grains. Therefore, {100}
It is considered that the increase in the <011> orientation suppresses the growth of Goss orientation grains, and preferentially grows the normal cube orientation grains.

【0037】さらに、最終仕上焼鈍時の加熱速度が小さ
い場合には、正キューブ方位粒が主に発達し、加熱速度
が大きい場合にはゴス方位粒が発達する傾向にあること
が知見されたが、この点については、それぞれの方位粒
毎に、二次再結晶粒の成長開始までの潜伏時間に加熱速
度が異なる影響を及ぼしたものと推定されるが、本質的
な機構は明らかでない。
Further, it has been found that when the heating rate during the final finish annealing is low, the grains having the normal cube orientation tend to develop mainly, and when the heating rate is high, the grains having the Goss orientation tend to develop. In this regard, it is presumed that the heating rate had a different effect on the incubation time until the start of the growth of the secondary recrystallized grains for each orientation grain, but the essential mechanism is not clear.

【0038】また、本発明技術において、インヒビター
成分を含まない鋼において二次再結晶が発現する理由に
ついては、必ずしも明らかではないが、以下のように考
えている。発明者らは、従来から、ゴス方位粒が二次再
結晶する機構について鋭意研究を重ねた結果、一次再結
晶組織における方位差角(隣り合う結晶の格子を重ねる
のに必要な最小回転角)が20〜45°である粒界が重要な
役割を果たしていることを見出し、Acta Material 45巻
(1997) 85ページに報告した。方向性電磁鋼板の二次再
結晶直前の状態である一次再結晶組織を解析し、様々な
結晶方位を持つ各々の結晶粒周囲の粒界について、粒界
方位差角が20〜45°である粒界の全体に対する割合
(%)について調査した結果を、図9に示す。同図にお
いて、結晶方位空間はオイラー角(Φ1、Φ、Φ2)の
Φ2=45°断面を用いて表示しており、ゴス方位などの
主な方位を摸式的に表示してある。
In the present invention, the reason why secondary recrystallization occurs in steel containing no inhibitor component is not necessarily clear, but is considered as follows. The inventors of the present invention have conducted intensive studies on the mechanism of secondary recrystallization of Goss grains, and found that the misorientation angle in the primary recrystallized structure (minimum rotation angle required for overlapping lattices of adjacent crystals). 20 to 45 °, grain boundaries play an important role, Acta Material 45
(1997) Reported on page 85. Analyze the primary recrystallization structure, which is the state immediately before the secondary recrystallization of grain-oriented electrical steel sheets, and for the grain boundaries around each crystal grain having various crystal orientations, the grain boundary misorientation angle is 20 to 45 ° FIG. 9 shows the result of investigation on the ratio (%) of the grain boundaries to the whole. In the figure, the crystal orientation space is displayed using a Φ2 = 45 ° cross section of Euler angles (Φ1, Φ, Φ2), and the main azimuths such as the Goss orientation are schematically displayed.

【0039】さて、図9によれば、ゴス方位粒周囲にお
ける方位差角が20〜45°である粒界の存在頻度について
は、ゴス方位が最も高い頻度を持つ。方位差角:20〜45
°の粒界は、C.G.Dunnらによる実験データ(AIME Trans
action 188巻(1949) 368 ページ)によれば、高エネル
ギー粒界である。高エネルギー粒界は、粒界内の自由空
間が大きく乱雑な構造をしている。粒界拡散は、粒界を
通じて原子が移動する過程であるので、粒界中の自由空
間の大きい高エネルギー粒界の方が粒界拡散が速い。二
次再結晶は、インヒビターと呼ばれる析出物の拡散律速
による成長に伴って発現することが知られている。高エ
ネルギー粒界上の析出物は、仕上焼鈍中の優先的に粗大
化が進行するので、優先的にピン止めがはずれて、粒界
移動を開始しゴス粒が成長する機構を示した。
According to FIG. 9, the Goss orientation has the highest frequency with respect to the frequency of existence of the grain boundary having the azimuth difference angle around the Goss orientation grain of 20 to 45 °. Azimuth angle: 20-45
° grain boundaries are based on experimental data (AIME Trans
According to action volume 188 (1949) p. 368, it is a high energy grain boundary. The high energy grain boundary has a large free space in the grain boundary and has a random structure. Since the grain boundary diffusion is a process in which atoms move through the grain boundary, the high energy grain boundary having a large free space in the grain boundary has a faster grain boundary diffusion. It is known that secondary recrystallization develops with the growth of a precipitate called an inhibitor by diffusion control. Precipitates on the high-energy grain boundaries were preferentially coarsened during finish annealing, so they were preferentially unpinned and started to move to the grain boundaries, indicating a mechanism by which goss grains grow.

【0040】発明者らは、上記の研究をさらに発展させ
て、ゴス方位粒の二次再結晶の本質的要因は、一次再結
晶組織中の高エネルギー粒界の分布状態にあり、インヒ
ビターの役割は、高エネルギー粒界と他の粒界の移動速
度差を生じさせることにあることを突き止めた。従っ
て、この理論に従えば、インヒビターを用いなくとも、
粒界の移動速度差を生じさせることができれば、二次再
結晶させることが可能となる。
The present inventors have further developed the above research, and the essential factor of the secondary recrystallization of Goss-oriented grains is the distribution of high energy grain boundaries in the primary recrystallized structure, and the role of the inhibitor. Have found that the difference lies in the movement speed difference between the high energy grain boundaries and other grain boundaries. Therefore, according to this theory, without using an inhibitor,
If a difference in the moving speed of the grain boundary can be generated, secondary recrystallization can be performed.

【0041】鋼中に存在する不純物元素は、粒界特に高
エネルギー粒界に偏析し易いため、不純物元素を多く含
む場合には、高エネルギー粒界と他の粒界の移動速度に
差がなくなっているものと考えられる。従って、素材の
高純度化によって、このような不純物元素の影響を排除
してやれば、高エネルギー粒界の構造に依存する本来的
な移動速度差が顕在化して、ゴス方位粒の二次再結晶が
可能になることが期待される。以上の考察に基づいて、
発明者らは、インヒビター成分を含まない成分系におい
ても、素材の高純度化により二次再結晶を生じさせ得る
ことを究明したのである。
Since impurity elements existing in steel are liable to segregate at grain boundaries, especially at high energy grain boundaries, there is no difference in the moving speed between the high energy grain boundaries and other grain boundaries when a large amount of impurity elements is contained. It is thought that it is. Therefore, if the influence of such an impurity element is eliminated by purifying the material, a difference in the original moving speed depending on the structure of the high-energy grain boundary becomes apparent, and the secondary recrystallization of the Goss-oriented grains is performed. It is expected to be possible. Based on the above considerations,
The inventors have determined that even in a component system containing no inhibitor component, secondary recrystallization can be caused by high purification of the material.

【0042】次に、本発明の構成要件の限定理由につい
て説明する。まず、鋼板の成分組成を前記の範囲に限定
した理由について説明する。 Si:2.0 〜8.0 % Siは、電気抵抗を高め、鉄損を改善する有用元素である
が、含有量が 2.0%に満たないとその効果に乏しく、ま
たγ変態を生じ、熱延組織が大きく変化する他、最終仕
上焼鈍において変態し、良好な磁気特性を得ることがで
きない。一方、Si量が 8.0%を超えると、製品の二次加
工性が悪化し、さらに飽和磁束密度も低下するので、Si
量は 2.0〜8.0 %の範囲に制限した。
Next, the reasons for limiting the constituent elements of the present invention will be described. First, the reason why the component composition of the steel sheet is limited to the above range will be described. Si: 2.0 to 8.0% Si is a useful element that increases electric resistance and improves iron loss. However, if its content is less than 2.0%, its effect is poor, and γ transformation occurs and the hot rolled structure is large. In addition to being changed, it is transformed in the final finish annealing, and good magnetic properties cannot be obtained. On the other hand, if the Si content exceeds 8.0%, the secondary workability of the product deteriorates, and the saturation magnetic flux density also decreases.
The amount was limited to the range of 2.0-8.0%.

【0043】Mn:0.005 〜3.0 wt% Mnは、熱間加工性を良好にするために必要な元素である
が、0.005 %未満ではその添加効果に乏しく、一方 3.0
%を超えると二次再結晶が困難となるので、Mn量は 0.0
05〜3.0 %の範囲に制限した。
Mn: 0.005 to 3.0 wt% Mn is an element necessary for improving hot workability, but if it is less than 0.005%, the effect of its addition is poor.
%, The secondary recrystallization becomes difficult.
Limited to the range of 05-3.0%.

【0044】Al:0.0010〜0.020 % 本発明では、Alを微量含有させることによって、仕上焼
鈍時の二次再結晶の発現が良好になり、正キューブ方位
粒を適度に発達させることができる。しかしながら、含
有量が0.0010%に満たないと正キューブ方位およびゴス
方位の集積度が低下して磁束密度が低下し、一方 0.020
%を超えても、やはり正キューブ方位およびゴス方位の
集積度が低下し、所望の磁気特性が得られないので、Al
は0.0010〜0.020 %の範囲で含有させるものとした。こ
こに、微量Alの影響は明らかではないが、微量Alが表層
に緻密な酸化層を形成して、仕上焼鈍時の表面酸化や窒
化の進行を抑える働きが有効に働くものと推定される。
なお、本発明では素材成分としては窒素を極力低減する
ので、AlNをインヒビターとして機能させて二次再結晶
させる従来の製造方法とは異なる。
Al: 0.0010 to 0.020% In the present invention, by adding a small amount of Al, the appearance of secondary recrystallization at the time of finish annealing is improved, and the grains of the normal cube orientation can be appropriately developed. However, if the content is less than 0.0010%, the degree of integration of the positive cube orientation and the Goss orientation decreases, and the magnetic flux density decreases.
%, The degree of integration of the normal cube orientation and the Goss orientation also decreases, and the desired magnetic properties cannot be obtained.
Is contained in the range of 0.0010 to 0.020%. Although the effect of a small amount of Al is not clear here, it is presumed that the small amount of Al forms a dense oxide layer on the surface layer and effectively suppresses the progress of surface oxidation and nitridation during finish annealing.
In the present invention, since nitrogen as a raw material component is reduced as much as possible, this is different from the conventional manufacturing method in which AlN functions as an inhibitor and secondary recrystallization is performed.

【0045】Se,S,OおよびN:それぞれ 30ppm以下 Se,S,OおよびNはいずれも、二次再結晶組織の発現
を大きく阻害し、しかも地鉄中に残存して鉄損を劣化さ
せる有害元素である。そこで、Se,S,OおびNはいず
れも 30ppm以下(望ましくは20ppm 以下)に低減するも
のとした。なお、これらの元素はいずれも、後工程で除
去が困難なため、溶鋼成分において 30ppm以下、望まし
くは 20ppm以下に低減しておくことが好ましい。
Se, S, O, and N: 30 ppm or less, respectively Se, S, O, and N all greatly inhibit the development of the secondary recrystallized structure, and remain in the base iron to deteriorate iron loss. It is a harmful element. Therefore, Se, S, O and N were all reduced to 30 ppm or less (preferably 20 ppm or less). Since it is difficult to remove any of these elements in the subsequent steps, it is preferable to reduce the content of the molten steel component to 30 ppm or less, preferably 20 ppm or less.

【0046】以上、必須成分および抑制成分について説
明したが、本発明ではその他、以下に述べる元素を適宜
含有させることができる。まず、磁束密度を向上させる
ためにNiを添加することができる。しかしながら、添加
量が0.01wt%に満たないと磁気特性の向上量が小さく、
一方1.50wt%を超えると二次再結晶粒の発達が不十分で
満足いく磁気特性が得られないので、添加量は0.01〜1.
50wt%とする。また、鉄損を向上するために、Sn:0.01
〜1.50wt%、Sb:0.005 〜0.50wt%、Cu:0.01〜1.50wt
%、Mo:0.005 〜0.50wt%、Cr:0.01〜1.50wt%を添加
することができる。これらの元素はいずれも、上記の範
囲より添加量が少ない場合には鉄損改善効果がなく、一
方添加量が多い場合には二次再結晶粒が発達しなくなり
鉄損の劣化を招く。
Although the essential components and the inhibitory components have been described above, the present invention may contain other elements as described below. First, Ni can be added to improve the magnetic flux density. However, if the addition amount is less than 0.01 wt%, the improvement amount of the magnetic properties is small,
On the other hand, if the content exceeds 1.50 wt%, secondary recrystallized grains are insufficiently developed and satisfactory magnetic properties cannot be obtained.
50 wt%. In addition, in order to improve iron loss, Sn: 0.01
~ 1.50wt%, Sb: 0.005 ~ 0.50wt%, Cu: 0.01 ~ 1.50wt
%, Mo: 0.005 to 0.50 wt%, and Cr: 0.01 to 1.50 wt%. Any of these elements has no effect of improving iron loss when the added amount is less than the above range, while when the added amount is large, secondary recrystallized grains do not develop and lead to deterioration of iron loss.

【0047】以上、本発明の成分系について説明した
が、本発明ではこれだけでは不十分で、圧延方向(L方
向)と圧延直角方向(C方向)の磁束密度B50につい
て、次の範囲を満足させる必要がある。すなわち、EI
型コアのような小型トランスの鉄損を効果的に低減する
ためには、L方向とC方向の磁束密度が共にB50≧1.70
Tで、かつこれらの磁束密度比B50(L)/B50(C) が 1.0
05以上、 1.100以下の範囲に制御することが不可欠であ
る。というのは、磁束密度B50が1.70T未満では、ヒス
テリシス損が増加して鉄損が劣化し、一方B50(L)/B50
(C) が 1.005以上、 1.100以下の範囲を外れると、コア
内部で磁化方向が回転している部分での鉄損が増大し、
コア全体の鉄損も劣化するからである。
The invention has been described component system of the present invention, not enough this present invention, the magnetic flux density B 50 in the rolling direction (L direction) and perpendicular to the rolling direction (C direction), satisfies the following range Need to be done. That is, EI
In order to effectively reduce the iron loss of a small transformer such as a mold core, the magnetic flux density in both the L direction and the C direction must be B 50 ≧ 1.70
T and their magnetic flux density ratio B 50 (L) / B 50 (C) is 1.0
It is indispensable to control it within the range from 05 to 1.100. If the magnetic flux density B 50 is less than 1.70 T, the hysteresis loss increases and the iron loss deteriorates, while B 50 (L) / B 50
If (C) is out of the range of 1.005 or more and 1.100 or less, the core loss in the portion where the magnetization direction rotates inside the core increases,
This is because iron loss of the entire core is also deteriorated.

【0048】また、上記したような磁気特性を得るため
には、製品板を構成するの結晶粒の方位制御をすること
が効果的である。すなわち、鋼板を構成する結晶粒の方
位につき、正キューブ方位からの方位差が20°以内であ
る結晶粒の面積率が50%以上、80%以下で、かつゴス方
位からの方位差が20°以内である結晶粒の面積率が6%
以上、20%以下の範囲にすることが重要であり、かよう
な集合組織とすることによって効果的に、L方向とC方
向の磁束密度が共にB50≧1.70Tで、かつB50(L)/B50
(C) を 1.005以上、 1.100以下の範囲に制御することが
できる。
In order to obtain the above-mentioned magnetic characteristics, it is effective to control the orientation of crystal grains constituting the product plate. That is, with respect to the orientation of the crystal grains constituting the steel sheet, the area ratio of the crystal grains whose orientation difference from the regular cube orientation is within 20 ° is 50% or more and 80% or less, and the orientation difference from the Goss orientation is 20 °. The area ratio of crystal grains within 6%
As described above, it is important to set the range to 20% or less, and by making such a texture effective, both the magnetic flux densities in the L direction and the C direction are B 50 ≧ 1.70 T and B 50 (L ) / B 50
(C) can be controlled in the range of 1.005 or more and 1.100 or less.

【0049】次に、本発明の製造方法について説明す
る。まず、素材成分について説明する。 C:0.003 〜0.08% Cは、結晶粒内における局所変形を促進して、正キュー
ブおよびゴス組織の発達を促し磁気特性を向上させるの
に有効であるが、含有量が 0.003%に満たないと変形帯
の生成効果が小さくなるために磁束密度が低下し、一方
0.08%を超えると再結晶焼鈍時に除去することが困難に
なり、また熱延板焼鈍時に部分的にγ変態を起こし、粗
大な冷延前粒径を確保しにくくなるので、C量は 0.003
〜0.08%の範囲に限定した。
Next, the manufacturing method of the present invention will be described. First, the material components will be described. C: 0.003 to 0.08% C is effective for promoting local deformation in crystal grains, promoting the development of a positive cube and a Goss structure, and improving magnetic properties, but when the content is less than 0.003%. The magnetic flux density decreases because the effect of forming the deformation zone decreases, while
If the content exceeds 0.08%, it becomes difficult to remove during annealing for recrystallization, and it is difficult to secure a coarse grain size before cold rolling, because it causes partial γ transformation during annealing of a hot-rolled sheet, making it difficult to secure a coarse grain size before cold rolling.
Limited to the range of ~ 0.08%.

【0050】その他、SiやMn, Al等の必須成分、Seや
S,O, N等の抑制成分およびNiやSn, Sb, Cu, Mo, Cr
等の磁気特性改善成分についての添加理由は、電磁鋼板
について上述したところと同じである。
Other essential components such as Si, Mn, and Al, suppressive components such as Se, S, O, and N, and Ni, Sn, Sb, Cu, Mo, and Cr.
The reason for adding the magnetic property improving component such as is the same as that described above for the electromagnetic steel sheet.

【0051】上記の好適成分組成に調整した溶鋼を、通
常の造塊法や連続鋳造法によりスラブとする。また、直
接鋳造法を用いて 100mm以下の厚さの薄鋳片を直接製造
してもよい。スラブは、通常の方法で加熱して熱間圧延
するが、鋳造後、加熱せずに直ちに熱延に供してもよ
い。また、薄鋳片の場合には、熱間圧延を行っても良い
し、熱間圧延を省略してそのまま以後の工程に進めても
よい。スラブ加熱温度は、素材成分にインヒビター成分
を含まないので、熱間圧延が可能な最低温度の1100℃程
度で十分である。
The molten steel adjusted to the above preferable composition is formed into a slab by a usual ingot-making method or a continuous casting method. Further, a thin slab having a thickness of 100 mm or less may be directly manufactured using a direct casting method. The slab is heated by a usual method and hot rolled, but may be subjected to hot rolling immediately after casting without heating. In the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps. Since the slab heating temperature does not include the inhibitor component in the raw material component, a minimum temperature of about 1100 ° C. at which hot rolling is possible is sufficient.

【0052】ついで、熱延板焼鈍を施すが、正キューブ
組織およびゴス組織を製品板において適度に発達させる
ためには、熱延板焼鈍温度は 950℃以上、1200℃以下と
する必要がある。というのは、熱延板焼鈍温度が 950℃
未満では冷間圧延前の粒径が粗大化せず、製品板におけ
る正キューブおよびゴス組織の発達が低下して所望の磁
気特性が得られず、一方1200℃を超えると製品板のゴス
組織の発達が低下し、磁束密度の異方性が劣化するから
である。
Then, hot-rolled sheet annealing is performed. In order to appropriately develop a regular cube structure and a Goss structure in a product sheet, the hot-rolled sheet annealing temperature needs to be 950 ° C. or more and 1200 ° C. or less. Because the annealing temperature of hot rolled sheet is 950 ℃
If it is less than 1, the grain size before cold rolling does not become coarse, the development of the positive cube and the Goss structure in the product sheet decreases, and the desired magnetic properties cannot be obtained. This is because the development is reduced and the anisotropy of the magnetic flux density is deteriorated.

【0053】熱延板焼鈍後、必要に応じて中間焼鈍を挟
む1回以上の冷延を施したのち、脱炭を兼ねる再結晶焼
鈍を行い、Cを磁気時効の起こらない 50ppm以下好まし
くは30ppm 以下まで低減する。また、冷間圧延の温度を
100〜250 ℃に上昇させて行うことは正キューブ組織お
よびゴス組織を発達させる点で有効である。さらに、最
終冷延後の脱炭を兼ねる再結晶焼鈍は 750〜950 ℃の範
囲で行うことが好適である。なお、最終冷間圧延後ある
いは再結晶焼鈍後に、浸珪法によってにSi量を増加させ
る技術を併用してもよい。
After the hot-rolled sheet annealing, if necessary, the steel sheet is subjected to one or more cold-rolling steps with intermediate annealing, followed by recrystallization annealing also serving as decarburization to reduce C to 50 ppm or less, preferably 30 ppm, at which magnetic aging does not occur. Reduce to below. Also, the cold rolling temperature
Raising the temperature to 100 to 250 ° C is effective in developing a normal cube structure and a Goss structure. Further, it is preferable that the recrystallization annealing also serving as decarburization after the final cold rolling is performed at a temperature of 750 to 950 ° C. After the final cold rolling or recrystallization annealing, a technique of increasing the amount of Si by a siliconizing method may be used in combination.

【0054】その後、必要に応じて焼鈍分離剤を適用す
る。焼鈍分離剤としては、シリカ、アルミナ、マグネシ
ア等の耐火物粉末のスラリーあるいはコロイド溶液が好
適である。また、これらの耐火物粉末を静電塗布等のド
ライコーティングにより鋼板に付着させる方法は、仕上
げ焼鈍雰囲気に水分を含ませないためより好ましい。さ
らに、これらの耐火物を溶射等で表面にコーティングし
た鋼板を挟み込む方法も適用できる。
Thereafter, an annealing separator is applied as required. As the annealing separator, a slurry or a colloid solution of a refractory powder such as silica, alumina, and magnesia is preferable. A method of attaching these refractory powders to a steel sheet by dry coating such as electrostatic coating is more preferable because moisture is not contained in the finish annealing atmosphere. Furthermore, a method of sandwiching a steel sheet whose surface is coated with these refractories by thermal spraying or the like can also be applied.

【0055】ついで、最終仕上焼鈍を施すことによって
二次再結晶組織を発達させる。本発明では、上記の最終
仕上焼鈍において、 750℃以上の温度域における平均加
熱速度を25℃/h以下として 800℃以上の温度域まで加熱
することが、正キューブおよびゴス方組織を製品板にお
いて速度に発達させる上で極めて重要である。この点、
750℃以上での平均加熱速度が25℃/hを超えると、正キ
ューブ組織が減少してゴス組織が増加し、所望の磁気特
性が得られない。なお、750 ℃までの加熱速度は、磁気
特性に大きな影響を与えないので任意の条件でよい。ま
た、上記のような制御加熱を施すべき温度が 800℃に満
たないと二次再結晶粒の発達が不十分となり磁気特性が
劣化するので、かような制御加熱は 800℃以上まで行う
必要がある。さらに、二次再結晶粒の発達のためには不
必要であるが、フォルステライト被膜のような下地被膜
を必要とする場合には、1100℃程度まで昇熱することに
問題はない。
Next, a secondary recrystallization structure is developed by performing final finish annealing. In the present invention, in the final finish annealing, the average heating rate in the temperature range of 750 ° C. or more is set to 25 ° C./h or less and heating is performed to the temperature range of 800 ° C. or more. It is extremely important in developing to speed. In this regard,
If the average heating rate at 750 ° C. or higher exceeds 25 ° C./h, the positive cube structure decreases and the goss structure increases, and desired magnetic properties cannot be obtained. The heating rate up to 750 ° C. does not significantly affect the magnetic properties, and may be set under any conditions. In addition, if the temperature at which the above-described controlled heating should be performed is less than 800 ° C, the development of secondary recrystallized grains becomes insufficient and the magnetic properties deteriorate, so such controlled heating must be performed up to 800 ° C or more. is there. Further, although unnecessary for the development of secondary recrystallized grains, when a base coat such as a forsterite coat is required, there is no problem in raising the temperature to about 1100 ° C.

【0056】なお、鋼板を積層して使用する場合には、
上記の最終仕上焼鈍後、鉄損を改善するために、鋼板表
面に絶縁コーティングを施すことが有効である。この目
的のためには、2種類以上の被膜からなる多層膜であっ
ても良いし、また用途に応じて樹脂等を混合させたコー
ティングを施しても良い。さらに、張力を付与する燐酸
塩を主体とする絶縁コーティングも鉄損や騒音を低下さ
せるために有効である。
When the steel sheets are laminated and used,
After the above-mentioned final finish annealing, it is effective to apply an insulating coating to the steel sheet surface in order to improve iron loss. For this purpose, a multilayer film composed of two or more kinds of films may be used, or a coating mixed with a resin or the like may be applied according to the application. Further, an insulating coating mainly composed of a phosphate for imparting tension is also effective for reducing iron loss and noise.

【0057】[0057]

【実施例】実施例1 C:0.009 %, Si:2.4 %, Mn:0.02%, Al:0.012
%, Se:3ppm , S:14ppm , O:10ppm およびN:9
ppm を含み、残部は実質的にFeの組成になる鋼スラブ
を、連続鋳造にて製造した。ついで、1100℃, 20分間の
スラブ加熱後、熱間圧延により 3.0mm厚の熱延板とした
のち、熱延板焼鈍を表1に示す均熱温度で30秒間行った
のち、150 ℃の冷間圧延により0.35mmの最終板厚に仕上
げた。ついで、水素:75 vol%、窒素:25 vol%、露
点:20℃の雰囲気中にて 930℃で均熱10秒の再結晶焼鈍
を行い、Cを 10ppmに低減したのち、(50%N2+50%Ar)の
混合雰囲気中にて 750℃までは50℃/hの速度で、また 7
50℃以上については表1に示す種々の加熱速度で 950℃
まで加熱し、30時間保持する方法にて、仕上焼鈍を行っ
た。その後、重クロム酸アルミニウム、エマルジョン樹
脂、エチレングリコールを混合したコーティング液を塗
布し、300 ℃で焼き付けて製品とした。
EXAMPLES Example 1 C: 0.009%, Si: 2.4%, Mn: 0.02%, Al: 0.012
%, Se: 3 ppm, S: 14 ppm, O: 10 ppm and N: 9
A steel slab containing ppm and the balance being substantially Fe was produced by continuous casting. Then, after slab heating at 1100 ° C for 20 minutes, a hot-rolled sheet having a thickness of 3.0 mm was formed by hot rolling, and hot-rolled sheet annealing was performed at a soaking temperature shown in Table 1 for 30 seconds, followed by cooling at 150 ° C. It was finished to a final thickness of 0.35 mm by cold rolling. Then, recrystallization annealing was performed at 930 ° C. for 10 seconds in an atmosphere of hydrogen: 75 vol%, nitrogen: 25 vol%, and dew point: 20 ° C. to reduce C to 10 ppm, and then (50% N 2 + 50% Ar) in a mixed atmosphere at a rate of 50 ° C / h up to 750 ° C.
For temperatures over 50 ° C, 950 ° C at various heating rates shown in Table 1.
, And subjected to finish annealing by a method of holding for 30 hours. Thereafter, a coating solution containing a mixture of aluminum dichromate, an emulsion resin and ethylene glycol was applied and baked at 300 ° C. to obtain a product.

【0058】かくして得られた製品板の磁束密度B50
L, C方向について測定した。また、製品板を打ち抜き
加工してEI型コアを作製し、その鉄損を測定した。さ
らに、製品板の結晶方位を、X線回折ラウエ法を用いて
100mm×280mm の領域について測定し、正キューブ方位
およびゴス方位からの方位差が20°以内である結晶粒の
面積率を求めた。得られた結果を表1に併記する。
The magnetic flux density B 50 of the product plate thus obtained was measured in the L and C directions. Further, an EI type core was prepared by punching a product plate, and the iron loss was measured. Furthermore, the crystal orientation of the product plate is determined using the X-ray diffraction Laue method.
The measurement was performed on a 100 mm × 280 mm area, and the area ratio of crystal grains in which the azimuth difference from the regular cube orientation and the Goss orientation was within 20 ° was determined. Table 1 also shows the obtained results.

【0059】[0059]

【表1】 [Table 1]

【0060】表1によれば、圧延方向(L方向)と圧延
直角方向(C方向)の磁束密度B50が共にB50≧1.70T
で、かつ磁束密度の比B50(L)/B50(C) が 1.005以上、
1.100 以下を満足する場合に、極めて優れたEI型コア
鉄損が得られることが分かる。また、このような磁気特
性は、正キューブ({100}<001>)方位からの
方位差が20°以内である結晶粒の面積率が50%以上、80
%以下で、かつゴス({110}<001>)方位から
の方位差が20°以内である結晶粒の面積率が6%以上、
20%以下を満足する場合に得られている。
According to Table 1, the magnetic flux densities B 50 in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) are both B 50 ≧ 1.70T.
And the ratio of magnetic flux density B 50 (L) / B 50 (C) is 1.005 or more,
It can be seen that when satisfies 1.100 or less, extremely excellent EI core iron loss can be obtained. In addition, such magnetic properties indicate that the area ratio of crystal grains whose azimuth difference from the positive cube ({100} <001>) orientation is within 20 ° is 50% or more,
% Or less, and the area ratio of crystal grains having an azimuth difference from the Goss ({110} <001>) orientation within 20 ° is 6% or more,
It is obtained when it is less than 20%.

【0061】実施例2 C:0.022 %, Si:3.3 %, Mn:0.52%, Al:0.0050
%, Se:5ppm , S:5ppm 、O:15ppm およびN:10
ppm を含み、残部は実質的にFeの組成になる鋼スラブ
を、連続鋳造にて製造した。ついで、1200℃, 20分間の
スラブ加熱後、熱間圧延により 3.2mm厚の熱延板とした
のち、1050℃, 20秒間の熱延板焼鈍を行った。その後、
常温にて冷間圧延を行い 1.5mmの中間厚に仕上げたの
ち、1000℃, 30秒の中間焼鈍を施し、引き続き常温の冷
間圧延にて0.28mmの最終板厚に仕上げた。ついで、水
素:75 vol%、窒素:25 vol%、露点:40℃の雰囲気中
にて 850℃で均熱30秒の再結晶焼鈍を行い、Cを 10ppm
に低減したのち、アルゴン雰囲気中にて 750℃までは70
℃/hの速度で、また 750℃から 820℃までは10℃/hの速
度で加熱し、820 ℃に 100時間保持する方法にて、仕上
焼鈍を行った。その後、重クロム酸アルミニウム、エマ
ルジョン樹脂、エチレングリコールを混合したコーティ
ング液を塗布し、300 ℃で焼き付けて製品とした。
Example 2 C: 0.022%, Si: 3.3%, Mn: 0.52%, Al: 0.0050
%, Se: 5 ppm, S: 5 ppm, O: 15 ppm and N: 10
A steel slab containing ppm and the balance being substantially Fe was produced by continuous casting. Then, after heating the slab at 1200 ° C. for 20 minutes, a hot-rolled sheet having a thickness of 3.2 mm was formed by hot rolling, and then annealed at 1050 ° C. for 20 seconds. afterwards,
After cold rolling at room temperature and finishing to an intermediate thickness of 1.5 mm, intermediate annealing was performed at 1000 ° C. for 30 seconds, and then cold rolling at room temperature was finished to a final thickness of 0.28 mm. Then, recrystallization annealing was performed at 850 ° C for 30 seconds in an atmosphere of hydrogen: 75 vol%, nitrogen: 25 vol%, and dew point: 40 ° C.
Reduced to 750 ° C in an argon atmosphere.
Finish annealing was performed by heating at a rate of 10 ° C / h from 750 ° C to 820 ° C and maintaining the temperature at 820 ° C for 100 hours from 750 ° C to 820 ° C. Thereafter, a coating solution containing a mixture of aluminum dichromate, an emulsion resin and ethylene glycol was applied and baked at 300 ° C. to obtain a product.

【0062】かくして得られた製品板の磁束密度B50
L, C方向について測定した。また、製品板を打ち抜き
加工してEI型コアを作製し、その鉄損を測定した。さ
らに、製品板の結晶方位を、X線回折ラウエ法を用いて
100mm×280mm の領域について測定し、正キューブ方位
およびゴス方位からの方位差が20°以内である結晶粒の
面積率を求めた。得られた結果を表2に示す。
The magnetic flux density B 50 of the product plate thus obtained was measured in the L and C directions. Further, an EI type core was prepared by punching a product plate, and the iron loss was measured. Furthermore, the crystal orientation of the product plate is determined using the X-ray diffraction Laue method.
The measurement was performed on a 100 mm × 280 mm area, and the area ratio of crystal grains in which the azimuth difference from the regular cube orientation and the Goss orientation was within 20 ° was determined. Table 2 shows the obtained results.

【0063】[0063]

【表2】 [Table 2]

【0064】表2に示したとおり、本発明法に従えば、
L方向とC方向の磁束密度B50が共にB50≧1.70Tで、
かつB50(L)/B50(C) が 1.005以上、1.100 以下を満足
する、EI型コア用素材として最適の電磁鋼板を得るこ
とができた。また、かかる電磁鋼板は、正キューブ
({100}<001>)方位からの方位差が20°以内
である結晶粒の面積率が50%以上、80%以下で、かつゴ
ス({110}<001>)方位からの方位差が20°以
内である結晶粒の面積率が6%以上、20%以下を満足す
る集合組織となっていた。
As shown in Table 2, according to the method of the present invention,
When the magnetic flux densities B 50 in the L direction and the C direction are both B 50 ≧ 1.70T,
And B 50 (L) / B 50 (C) is 1.005 or more, satisfying the 1.100 or less, it was possible to obtain optimum electrical steel sheet as a material for EI core. In addition, in such an electrical steel sheet, the area ratio of crystal grains having a misorientation difference from the regular cube ({100} <001>) orientation within 20 ° is 50% or more and 80% or less, and Goss ({110} <001>) The texture was such that the area ratio of crystal grains having an azimuth difference from the orientation of 20 ° or less was 6% or more and 20% or less.

【0065】実施例3 表3に示す種々の成分組成になる鋼スラブを、1160℃に
加熱後、熱間圧延により 2.8mm厚の熱延板とした。つい
で、1100℃で均熱60秒の条件で熱延板焼鈍を行ったの
ち、250 ℃の温度で0.50mmの最終板厚に仕上げた。つい
で、水素:75 vol%、窒素:25 vol%、露点:35℃の雰
囲気中にて 900℃で均熱20秒の脱炭を兼ねる再結晶焼鈍
を行い、Cを 20ppmに低減した。ついで、窒素雰囲気中
にて 750〜950 ℃まで 2.5℃/hで昇温する仕上焼鈍を行
った。その後、リン酸アルミニウム、重クロム酸カリウ
ム、ホウ酸を混合したコーティング液を塗布し、300 ℃
で焼き付けて製品とした。
Example 3 Steel slabs having various component compositions shown in Table 3 were heated to 1160 ° C. and then hot-rolled into hot-rolled sheets having a thickness of 2.8 mm. Then, after hot-rolled sheet annealing was performed at 1100 ° C. for 60 seconds, the sheet was finished at a temperature of 250 ° C. to a final thickness of 0.50 mm. Then, recrystallization annealing combined with decarburization at 900 ° C. for 20 seconds was performed in an atmosphere of hydrogen: 75 vol%, nitrogen: 25 vol%, and dew point: 35 ° C. to reduce C to 20 ppm. Then, finish annealing was performed in a nitrogen atmosphere at a rate of 2.5 ° C./h from 750 to 950 ° C. Then, apply a coating solution containing a mixture of aluminum phosphate, potassium dichromate and boric acid,
And baked into a product.

【0066】かくして得られた製品板の磁束密度B50
L, C方向について測定した。また、製品板を打ち抜き
加工してEI型コアを作製し、その鉄損を測定した。さ
らに、製品板の結晶方位を、X線回折ラウエ法を用いて
100mm×280mm の領域について測定し、正キューブ方位
およびゴス方位からの方位差が20°以内である結晶粒の
面積率を求めた。得られた結果を表4に示す。
The magnetic flux density B 50 of the product plate thus obtained was measured in the L and C directions. Further, an EI type core was prepared by punching a product plate, and the iron loss was measured. Furthermore, the crystal orientation of the product plate is determined using the X-ray diffraction Laue method.
The measurement was performed on a 100 mm × 280 mm area, and the area ratio of crystal grains in which the azimuth difference from the regular cube orientation and the Goss orientation was within 20 ° was determined. Table 4 shows the obtained results.

【0067】[0067]

【表3】 [Table 3]

【0068】[0068]

【表4】 [Table 4]

【0069】表4に示したとおり、本発明の成分組成範
囲を満足し、かつL方向およびC方向の磁束密度ならび
にこれらの比B50(L)/B50(C) が適正範囲を満足するも
のはいずれも、EI型コアにおいて良好な鉄損が得られ
ている。
As shown in Table 4, the component composition ranges of the present invention are satisfied, and the magnetic flux densities in the L and C directions and their ratio B 50 (L) / B 50 (C) satisfy the appropriate ranges. In each case, good iron loss was obtained in the EI type core.

【0070】以上、実施例では、本発明の電磁鋼板の用
途としてEI型コアを製造した場合について説明した
が、本発明の用途は必ずしもEI型コアのような小型ト
ランスに限定されるものではない。本発明の電磁鋼板
は、圧延方向および圧延直角方向の磁気特性が無方向性
電磁鋼板に比べて格段に優れているため、通常のモータ
ーに使用しても高い効率を得ることができる。なお、従
来技術で製造される二方向性電磁鋼板と比較すると、磁
気特性はやや劣るものの、素材としてインヒビターを使
用せず、また製造工程としてクロス圧延を施す必要がな
いので、低コストにて大量生産可能であるという大きな
利点がある。
In the above, the case where the EI type core is manufactured as the use of the magnetic steel sheet of the present invention has been described. However, the use of the present invention is not necessarily limited to a small transformer such as the EI type core. . Since the magnetic steel sheet of the present invention has much better magnetic properties in the rolling direction and the direction perpendicular to the rolling direction than the non-oriented magnetic steel sheet, high efficiency can be obtained even when used in a normal motor. Although the magnetic properties are slightly inferior to those of the conventional bidirectional electrical steel sheet manufactured by the conventional technology, no inhibitor is used as a material, and there is no need to perform cross-rolling in the manufacturing process. There is a great advantage that it can be produced.

【0071】[0071]

【発明の効果】本発明に従い得られた電磁鋼板は、従来
の一方向性電磁鋼板や二方向性電磁鋼板に比較して、磁
気特性の異方性が小さいので、コア内部での磁束の方向
の変化が大きい小型モーターや発電気用の鉄心材料の素
材として最適である。
The magnetic steel sheet obtained in accordance with the present invention has a smaller anisotropy of magnetic properties than conventional unidirectional magnetic steel sheets and bidirectional magnetic steel sheets. It is most suitable as a material for small motors and core materials for electric power generation, which have large changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 EI型コアの形状を示した図である。FIG. 1 is a view showing the shape of an EI type core.

【図2】 熱延板焼鈍温度と、製品板のL方向およびC
方向の磁束密度B50ならびにそれらの比B50(L)/B
50(C) との関係を示したグラフである。
FIG. 2 Annealing temperature of hot rolled sheet, L direction and C of product sheet
Direction magnetic flux density B 50 and their ratio B 50 (L) / B
It is the graph which showed the relationship with 50 (C).

【図3】 製品板におけるB50(L)/B50(C) とEI型コ
アの鉄損(W15/50 )との関係を示したグラフである。
FIG. 3 is a graph showing a relationship between B 50 (L) / B 50 (C) in a product plate and iron loss (W 15/50 ) of an EI type core.

【図4】 熱延板焼鈍温度と、製品板におけるゴス
({110}<001>)方位からのずれ角が20°以内
の結晶粒の面積率および正キューブ({100}<00
1>)方位粒からのずれ角が20°以内の結晶粒の面積率
との関係を示したグラフである。
FIG. 4 shows the area ratio of crystal grains having a deviation angle from the Goss ({110} <001>) orientation in the product sheet within 20 ° and the positive cube ({100} <00).
1>) is a graph showing the relationship with the area ratio of crystal grains whose deviation angle from the orientation grains is within 20 °.

【図5】 鋼魂A、一方向性電磁鋼板および二方向性電
磁鋼板それぞれの磁束密度およびEI型コアでの鉄損を
示した図である。
FIG. 5 is a diagram showing the magnetic flux densities of the steel soul A, the unidirectional magnetic steel sheet and the bidirectional magnetic steel sheet, and the iron loss in the EI type core.

【図6】 最終仕上焼鈍時の 750℃以上の温度域におけ
る加熱速度と、製品板のL方向およびC方向の磁束密度
50ならびにそれらの比B50(L)/B50(C) との関係を示
したグラフである。
FIG. 6 shows the relationship between the heating rate in the temperature range of 750 ° C. or more during final finish annealing, the magnetic flux density B 50 of the product plate in the L direction and the C direction, and their ratio B 50 (L) / B 50 (C). It is a graph showing the relationship.

【図7】 製品板におけるL方向とC方向の磁束密度B
50の比B50(L)/B50(C)とEI型コアの鉄揖(W
15/50 )との関係を示したグラフである。
FIG. 7 shows the magnetic flux density B in the L direction and the C direction on the product plate.
50 ratio B 50 (L) / B 50 (C) and EI type core iron (W
15/50 ).

【図8】 最終仕上焼鈍時の 750℃以上の温度域におけ
る加熱速度と、製品板における、ゴス({110}<0
01>)方位からのずれ角が20°以内の結晶粒の面積率
および正キューブ({100}<001>)方位粒から
のずれ角が20°以内の結晶粒の面積率との関係を示した
グラフである。
FIG. 8 shows the heating rate in the temperature range of 750 ° C. or more during final finish annealing and the goss ({110} <0) in the product plate.
01>) shows the relationship between the area ratio of crystal grains having a deviation angle of less than 20 ° from the orientation and the area ratio of crystal grains having a deviation angle of less than 20 ° from the positive cube ({100} <001>) orientation grains. FIG.

【図9】 一次再結晶組織における、様々な結晶方位を
持つ各々の結晶粒周囲の粒界について、粒界方位差角が
20〜45°である粒界の全体に対する割合(%)を示した
図である。
FIG. 9 shows that, in the primary recrystallized structure, the grain boundary azimuth difference angle is around the grain boundary around each crystal grain having various crystal orientations.
It is the figure which showed the ratio (%) with respect to the whole of the grain boundary which is 20-45 degrees.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A (72)発明者 今村 猛 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 BA02 CA09 FA13 HA01 HA03 LA02 NA02 NA04 5E041 AA04 AA19 CA04 NN01 NN13──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 A (72) Inventor Takeshi Takeshi 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture None) Inside of Mizushima Works, Kawasaki Steel Corporation (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Pref. NA02 NA04 5E041 AA04 AA19 CA04 NN01 NN13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量百分率でSi:2.0 〜8.0 %,Mn:0.
005 〜3.0 %,Al:0.0010〜0.020 %を含み、かつSe,
S,OおよびNの含有量をそれぞれ 30ppm以下に抑制
し、残部は実質的にFeの組成になり、圧延方向(L方
向)と圧延直角方向(C方向)の磁束密度B50がいずれ
も1.70T以上で、かつこれらの磁束密度比B50(L)/B50
(C)が 1.005以上、 1.100以下であることを特徴とする
小型電気機器用電磁鋼板。
1. Si: 2.0 to 8.0% by mass percentage, Mn: 0.
005 to 3.0%, Al: 0.0010 to 0.020%, and Se,
The contents of S, O and N are suppressed to 30 ppm or less, respectively, and the remainder substantially has a Fe composition, and the magnetic flux densities B 50 in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) are all 1.70. T and their magnetic flux density ratio B 50 (L) / B 50
(C) 1.005 or more and 1.100 or less, electrical steel sheets for small electrical equipment.
【請求項2】 鋼板を構成する結晶粒の方位につき、正
キューブ({100}<001>)方位からの方位差が
20°以内である結晶粒の面積率が50%以上、80%以下
で、かつゴス({110}<001>)方位からの方位
差が20°以内である結晶粒の面積率が6%以上、20%以
下であることを特徴とする請求項1記載の小型電気機器
用電磁鋼板。
2. An orientation difference from a regular cube ({100} <001>) orientation with respect to the orientation of crystal grains constituting a steel sheet.
The area ratio of the crystal grains within 20 ° is 50% or more and 80% or less, and the area ratio of the crystal grains whose azimuth difference from the Goss ({110} <001>) direction is within 20 ° is 6% or more. The electromagnetic steel sheet for small electric equipment according to claim 1, wherein the content is not more than 20%.
【請求項3】 鋼板が、さらに、質量百分率でNi:0.01
〜1.50%,Sn:0.01〜1.50%,Sb:0.005 〜0.50%,C
u:0.01〜1.50%,Mo:0.005 〜0.50%およびCr:0.01
〜1.50%のうちから選んだ少なくとも一種を含有する組
成になることを特徴とする請求項1または2記載の小型
電気機器用電磁鋼板。
3. The steel sheet further comprises Ni: 0.01 in mass percentage.
Up to 1.50%, Sn: 0.01 to 1.50%, Sb: 0.005 to 0.50%, C
u: 0.01 to 1.50%, Mo: 0.005 to 0.50%, and Cr: 0.01
The magnetic steel sheet for a small electric device according to claim 1 or 2, wherein the composition contains at least one selected from a range of -1.50%.
【請求項4】 質量百分率でC:0.003 〜0.08%,Si:
2.0 〜8.0 %,Mn:0.005 〜3.0 %,Al:0.0010〜0.02
0 %を含み、かつSe,S,OおよびNの含有量をそれぞ
れ 30ppm以下に抑制した組成になる鋼スラブを、熱間圧
延し、ついで 950〜1200℃以下の温度で熱延板焼鈍を施
したのち、1回または中間焼鈍を挟む2回以上の冷間圧
延を施し、ついで再結晶焼鈍後、必要に応じて焼鈍分離
剤を適用してから、 750℃以上での平均加熱速度を25℃
/h以下として 800℃以上の温度域まで加熱する最終仕上
焼鈍を行うことを特徴とする小型電気機器用電磁鋼板の
製造方法。
4. C: 0.003 to 0.08% by mass percentage, Si:
2.0 to 8.0%, Mn: 0.005 to 3.0%, Al: 0.0010 to 0.02
A steel slab containing 0% and having a composition in which the contents of Se, S, O and N are suppressed to 30 ppm or less, respectively, is hot-rolled, and then subjected to hot-rolled sheet annealing at a temperature of 950 to 1200 ° C or less. After that, cold rolling is performed once or two or more times with intermediate annealing, then, after recrystallization annealing, if necessary, an annealing separator is applied, and then the average heating rate at 750 ° C or higher is 25 ° C.
A method for producing electrical steel sheets for small electrical equipment, comprising performing a final finish annealing in which the heating is performed to a temperature range of 800 ° C. or more at a rate of not more than / h.
【請求項5】 鋼スラブが、さらに、質量百分率でNi:
0.01〜1.50%,Sn:0.01〜1.50%,Sb:0.005 〜0.50
%,Cu:0.01〜1.50%,Mo:0.005 〜0.50%およびCr:
0.01〜1.50%のうちから選んだ少なくとも一種を含有す
る組成になることを特徴とする請求項4記載の小型電気
機器用電磁鋼板の製造方法。
5. The steel slab further comprises: Ni:
0.01 to 1.50%, Sn: 0.01 to 1.50%, Sb: 0.005 to 0.50
%, Cu: 0.01 to 1.50%, Mo: 0.005 to 0.50%, and Cr:
The method according to claim 4, wherein the composition contains at least one selected from 0.01 to 1.50%.
JP34422999A 1999-12-03 1999-12-03 Electrical steel sheet for small electrical equipment and manufacturing method thereof Expired - Fee Related JP4123662B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP34422999A JP4123662B2 (en) 1999-12-03 1999-12-03 Electrical steel sheet for small electrical equipment and manufacturing method thereof
US09/722,017 US6562473B1 (en) 1999-12-03 2000-11-27 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
TW089125509A TW486522B (en) 1999-12-03 2000-11-30 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
DE60016149T DE60016149T2 (en) 1999-12-03 2000-11-30 Electrical steel sheet for compact iron cores and its manufacturing process
EP00126202A EP1108794B1 (en) 1999-12-03 2000-11-30 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
CN00137241A CN1124357C (en) 1999-12-03 2000-12-01 Electric steel plate suitable for making small core and its manufacture
KR1020000072525A KR100727333B1 (en) 1999-12-03 2000-12-01 electrical steel sheet suitable for compact iron core and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34422999A JP4123662B2 (en) 1999-12-03 1999-12-03 Electrical steel sheet for small electrical equipment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001158950A true JP2001158950A (en) 2001-06-12
JP4123662B2 JP4123662B2 (en) 2008-07-23

Family

ID=18367640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34422999A Expired - Fee Related JP4123662B2 (en) 1999-12-03 1999-12-03 Electrical steel sheet for small electrical equipment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4123662B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049250A (en) * 2001-08-06 2003-02-21 Kawasaki Steel Corp Grain-oriented electrical steel sheet with excellent bendability, and its manufacturing method
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2006070356A (en) * 2004-08-04 2006-03-16 Jfe Steel Kk Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic property
JP2006104530A (en) * 2004-10-06 2006-04-20 Jfe Steel Kk Method for producing nonoriented silicon steel sheet having excellent magnetic property
CN100455405C (en) * 2005-07-28 2009-01-28 宝山钢铁股份有限公司 Method for producing non-orientation electric steel plates with insulation coatings
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method
JP2017222910A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Bidirectional electromagnetic steel sheet and manufacturing process therefor
JP2019183232A (en) * 2018-04-11 2019-10-24 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
KR20200066043A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
JP2020180347A (en) * 2019-04-25 2020-11-05 Jfeスチール株式会社 Electromagnetic steel sheet and method for producing the same
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
WO2021125738A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
CN115478135A (en) * 2022-09-06 2022-12-16 东北大学 Preparation method of high-silicon steel thin strip with strong {100} oriented columnar crystals
US11667984B2 (en) 2016-12-22 2023-06-06 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049250A (en) * 2001-08-06 2003-02-21 Kawasaki Steel Corp Grain-oriented electrical steel sheet with excellent bendability, and its manufacturing method
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2006070356A (en) * 2004-08-04 2006-03-16 Jfe Steel Kk Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic property
JP4613611B2 (en) * 2004-08-04 2011-01-19 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP2006104530A (en) * 2004-10-06 2006-04-20 Jfe Steel Kk Method for producing nonoriented silicon steel sheet having excellent magnetic property
JP4701669B2 (en) * 2004-10-06 2011-06-15 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
CN100455405C (en) * 2005-07-28 2009-01-28 宝山钢铁股份有限公司 Method for producing non-orientation electric steel plates with insulation coatings
EP3095887A1 (en) * 2014-01-14 2016-11-23 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3095887A4 (en) * 2014-01-14 2017-04-05 JFE Steel Corporation Non-directional electromagnetic steel sheet having excellent magnetic properties
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
JP2017222910A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Bidirectional electromagnetic steel sheet and manufacturing process therefor
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method
US11667984B2 (en) 2016-12-22 2023-06-06 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor
JP2019183232A (en) * 2018-04-11 2019-10-24 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
KR20200066043A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102176348B1 (en) 2018-11-30 2020-11-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
JP2020180347A (en) * 2019-04-25 2020-11-05 Jfeスチール株式会社 Electromagnetic steel sheet and method for producing the same
JP7078009B2 (en) 2019-04-25 2022-05-31 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method
WO2021125738A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
CN115478135A (en) * 2022-09-06 2022-12-16 东北大学 Preparation method of high-silicon steel thin strip with strong {100} oriented columnar crystals
CN115478135B (en) * 2022-09-06 2024-02-02 东北大学 Preparation method of high-silicon steel thin strip with strong {100} oriented columnar crystals

Also Published As

Publication number Publication date
JP4123662B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP4123662B2 (en) Electrical steel sheet for small electrical equipment and manufacturing method thereof
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS6250529B2 (en)
JP2008150697A (en) Production method of magnetic steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JP3956621B2 (en) Oriented electrical steel sheet
JP4484710B2 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2001032021A (en) Manufacture of grain oriented silicon steel sheet
JP2006503189A5 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP4692518B2 (en) Oriented electrical steel sheet for EI core
JP3896937B2 (en) Method for producing grain-oriented electrical steel sheet
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP4123663B2 (en) Electrical steel sheet and manufacturing method thereof
JP6842549B2 (en) Directional electrical steel sheet and its manufacturing method
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2005179745A (en) Method for producing bi-directional silicon steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees