JP2001143698A - Negative electrode material for non-aqueous lithium secondary cell and non-aqueous secondary cell using the same - Google Patents

Negative electrode material for non-aqueous lithium secondary cell and non-aqueous secondary cell using the same

Info

Publication number
JP2001143698A
JP2001143698A JP32514199A JP32514199A JP2001143698A JP 2001143698 A JP2001143698 A JP 2001143698A JP 32514199 A JP32514199 A JP 32514199A JP 32514199 A JP32514199 A JP 32514199A JP 2001143698 A JP2001143698 A JP 2001143698A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
graphite
substance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32514199A
Other languages
Japanese (ja)
Other versions
JP4416232B2 (en
Inventor
Toru Fuse
亨 布施
Hideji Sato
秀治 佐藤
Keiko Nishioka
圭子 西岡
Shinji Kasamatsu
真治 笠松
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP32514199A priority Critical patent/JP4416232B2/en
Priority to US09/712,207 priority patent/US6541156B1/en
Priority to DE60036843T priority patent/DE60036843T2/en
Priority to EP00124323A priority patent/EP1102339B1/en
Publication of JP2001143698A publication Critical patent/JP2001143698A/en
Application granted granted Critical
Publication of JP4416232B2 publication Critical patent/JP4416232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary cell using a negative electrode body which has a high capacity, a long cycle life and a low irreversible capacity on primary charging, i.e., is soft to an electrolyte. SOLUTION: The negative electrode material for a non-aqueous lithium secondary cell contains a metallic material M consisting of solid-phases A, B, a graphitic material and a carbonaceous material having a crystalline lower than that of the graphitic material, where the metallic M is a structure coating a portion or front of a circumference of core particle consisting of the solid- phase A with the solid-phase B, the solid-phase A contains at least silicon as a constituent, the solid-phase B is at least one element selected from a group consisting of elements of group 2, transition metal elements, elements of group 12, elements of group 13 and elements of group 14 except for carbon and silicon, solid solution with silicon, or inter-metallic compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型、計量の電気
機器や電気自動車の電源として好適な、非水系リチウム
二次電池用負極材並びにこれを用いた非水系リチウム二
次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material for a non-aqueous lithium secondary battery and a non-aqueous lithium secondary battery using the same, which is suitable as a power source for small and weighed electric appliances and electric vehicles.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、高容量
の二次電池が求められている。そのため、ニッケル・カ
ドミウム電池、ニッケル・水素電池に比べ、エネルギー
密度の高い非水系リチウム二次電池が注目されている。
2. Description of the Related Art In recent years, as electronic devices have become smaller, high-capacity secondary batteries have been demanded. For this reason, non-aqueous lithium secondary batteries having higher energy density than nickel-cadmium batteries and nickel-metal hydride batteries have attracted attention.

【0003】[0003]

【発明が解決しようとする課題】負極材としては、最初
リチウム金属を用いる事が試みられたが、充放電を繰り
返すうちに、樹枝状のリチウムが析出し、セパレーター
を貫通して正極体にまで達し、この結果短絡を起こす可
能性があることが判明した。
At first, the use of lithium metal as the negative electrode material was attempted. However, as charge and discharge were repeated, dendritic lithium was precipitated and penetrated through the separator to reach the positive electrode body. It was found that this could cause a short circuit.

【0004】また、特開昭57−208079号公報に
は、リチウムを負極材とし、電極板として結晶化度が高
い黒鉛を使用することが提案された。しかしながら、黒
鉛は、リチウム吸蔵に黒鉛結晶中へのインターカレーシ
ョンを利用するため、常温、常圧では、その体積理論容
量である820mAh/ccを超えるものは得られないという
欠点があった。
Japanese Patent Laid-Open Publication No. 57-208079 has proposed that lithium be used as a negative electrode material and graphite having a high degree of crystallinity be used as an electrode plate. However, graphite has a drawback that, at normal temperature and normal pressure, a material exceeding the volume theoretical capacity of 820 mAh / cc cannot be obtained because of the use of intercalation into graphite crystals for lithium occlusion.

【0005】より高容量を発現できる負極材としては、
Al、Si、Sn等、リチウムと化合する金属を用いれ
ば良いことが知られているが、これらの材料は充放電サ
イクルに伴い、容量が著しく低下するという問題があっ
た。
[0005] As a negative electrode material capable of expressing higher capacity,
It is known that a metal that combines with lithium, such as Al, Si, and Sn, may be used. However, these materials have a problem in that the capacity is significantly reduced with charge / discharge cycles.

【0006】特開平5−286763号公報には、Al
に複数種の炭素質物を添加する事で、充放電サイクルに
伴う容量の低下が抑制されることが開示されているが、
Alを用いると、その体積当たりの容量は、最大でも
2,839mAh/ccと制限される。一方、Siはその体積
当たりの容量が最大4,648mAh/ccと大きいが、充放
電時の体積変化も大きく、上述の問題が生じる為、負極
材として実用化に至っていない。
[0006] Japanese Patent Application Laid-Open No. Hei 5-286763 discloses that Al
It is disclosed that by adding a plurality of types of carbonaceous materials, a decrease in capacity due to a charge / discharge cycle is suppressed,
When Al is used, its capacity per volume is limited to a maximum of 2839 mAh / cc. On the other hand, Si has a large capacity per volume of 4,648 mAh / cc at the maximum, but has a large change in volume at the time of charge / discharge and causes the above-mentioned problems, and thus has not been put to practical use as a negative electrode material.

【0007】近年、これらの欠点を解決する方法とし
て、珪化物粉体をLi二次電池用負極材として用いる技
術が、特開平7−240201号公報に開示されてい
る。これらの化合物は体積容量が比較的大きく、サイク
ル寿命も長いことがわかってきたが、本材料は電導度が
低く、単体で用いるとLiと十分に化合できず、理論容
量を発現できない。そこで、特開平8−153517号
公報には本材料粉体にアセチレンブラックなどの導電剤
を添加して負極材を形成する技術が開示されている。
In recent years, as a method of solving these drawbacks, Japanese Patent Application Laid-Open No. 7-240201 discloses a technique using silicide powder as a negative electrode material for a Li secondary battery. It has been found that these compounds have a relatively large volume capacity and a long cycle life, but this material has a low conductivity, and when used alone, cannot be sufficiently combined with Li to exhibit a theoretical capacity. Therefore, Japanese Patent Application Laid-Open No. 8-153517 discloses a technique for forming a negative electrode material by adding a conductive agent such as acetylene black to the material powder.

【0008】しかし、アセチレンブラックは、一般的に
その粒子径が1μm未満と非常に小さいため、比表面積
が大きく、初回充電時の不可逆容量を増大させると言う
問題がある。
However, acetylene black generally has a very small particle size of less than 1 μm, and thus has a problem that the specific surface area is large and the irreversible capacity at the time of the first charge is increased.

【0009】この様な欠点を解決するため、珪化物とと
もに導電材として結晶性の高い黒鉛粒子を用いること
が、特開平10−199527号公報に記載されてい
る。これにより、珪化物単体で使用するよりも、容量は
向上し、サイクル寿命も向上、更に初回充電時の不可逆
容量が低減された。しかしながら、長期にわたる充放電
サイクルを行うと容量の漸次低下が起こる。これは、リ
チウムの充放電に伴う珪化物の体積変化が、黒鉛で導電
化されている負極体構造に変化を及ぼし、充放電サイク
ルに伴いこれを破壊していっているためと考えられる。
Japanese Patent Application Laid-Open No. 10-199527 discloses that in order to solve such a drawback, graphite particles having high crystallinity are used as a conductive material together with silicide. As a result, the capacity was improved, the cycle life was improved, and the irreversible capacity at the time of the first charge was reduced as compared with the case of using silicide alone. However, when the charge / discharge cycle is performed for a long time, the capacity gradually decreases. This is presumably because the volume change of the silicide due to the charge and discharge of lithium changes the structure of the negative electrode body made conductive with graphite, and destroys the structure with the charge and discharge cycle.

【0010】負極体の主負極材が珪化物でなくSi金属
ではあるものの、上述の構造破壊を抑制するために、主
負極材に対し、導電剤である黒鉛質物をより近接させた
構造を得るために、負極材粉体と黒鉛を共に機械処理す
る方法が特開平9−249407号公報に提案されてい
る。本技術を珪化物に適用すればSiの場合と同様、サ
イクル寿命は更に伸びると推察されるが、その一方で、
黒鉛粒子を機械処理することは、黒鉛の比表面積を増加
させることに繋がり、結果として初回充電時の不可逆容
量の増加を招いてしまうことも考えられる。
Although the main negative electrode material of the negative electrode body is made of Si metal instead of silicide, a structure in which a graphite material as a conductive agent is brought closer to the main negative electrode material in order to suppress the above-described structural destruction is obtained. Therefore, a method of mechanically processing both the negative electrode material powder and graphite has been proposed in Japanese Patent Application Laid-Open No. 9-249407. If this technology is applied to silicide, the cycle life is expected to be further extended, as in the case of Si.
Mechanical treatment of the graphite particles leads to an increase in the specific surface area of the graphite, which may result in an increase in the irreversible capacity at the time of the first charge.

【0011】我々は、鋭意検討した結果、後述する特定
の構成の材料をリチウム二次電池用負極材として用いる
ことで、高容量、且つ長期にわたる充放電サイクルを行
っても容量劣化が極めて小さく、更に初回充放電時に発
生する不可逆容量も抑制した負極体を作成可能であるこ
とを見いだした。
As a result of our intensive studies, we have found that by using a material having a specific structure described below as a negative electrode material for a lithium secondary battery, the capacity deterioration is extremely small even when a high capacity and long charge / discharge cycle is performed. Furthermore, they have found that it is possible to produce a negative electrode body in which the irreversible capacity generated during the initial charge and discharge is suppressed.

【0012】即ち、本発明の目的は、高容量で、長サイ
クル寿命、且つ初回充電時の不可逆容量が小さく、即ち
電解液に対し優しい負極体を用いたリチウム二次電池を
提供することにある。
That is, an object of the present invention is to provide a lithium secondary battery using a negative electrode body having a high capacity, a long cycle life, and a small irreversible capacity at the time of initial charging, that is, an electrolyte-friendly anode body. .

【0013】[0013]

【課題を解決するための手段】本発明の目的を達するた
め、リチウム二次電池は、正極体、負極体及び非水系溶
媒中に電解質を溶解した電解液から少なくともなる非水
系リチウム二次電池であって、その負極体は、固相A、
Bからなる金属質物M、黒鉛質物、及び当該黒鉛質物よ
り結晶性の低い炭素質物を含有するものであって、該金
属質物Mは固相Aからなる核粒子の周囲の一部又は全面
を、固相Bによって被覆した構造であり、前記固相Aは
構成元素としてケイ素を少なくとも含み、前記固相Bは
周期律表の2族元素、遷移金属元素、12族元素、13
族元素、並びに炭素とケイ素を除く14族元素からなる
群から選ばれた少なくとも一種の元素と、ケイ素との固
溶体又は金属間化合物であることを特徴とするものであ
る。
In order to achieve the object of the present invention, a lithium secondary battery is a non-aqueous lithium secondary battery comprising at least a positive electrode body, a negative electrode body, and an electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent. Then, the negative electrode body is a solid phase A,
B containing a metal material M, a graphite material, and a carbon material having a lower crystallinity than the graphite material, wherein the metal material M is a part or the entire periphery of core particles made of the solid phase A, It has a structure coated with a solid phase B, wherein the solid phase A contains at least silicon as a constituent element, and the solid phase B is a group 2 element, a transition metal element, a group 12 element,
A solid solution or an intermetallic compound of silicon with at least one element selected from the group consisting of group 14 elements and group 14 elements excluding carbon and silicon.

【0014】上記金属質物Mは、固溶体もしくは金属間
化合物からなるが、これは構成元素を所定の比率で混合
した物を高温で溶融させ、その溶融物を乾式噴霧法、ロ
ール急冷法、及び回転電極法などで、急冷、凝固させる
ことで得られる。その際、必要に応じて、金属状態図に
おける該粒子の構成元素比率での固溶線温度よりも低い
温度で熱処理することにより、好ましい固溶体もしくは
金属間化合物の組織を得ることができる。本方法は溶融
物の急冷、凝固の制御により、上記固相Aからなる核の
周囲の全面、又は一部に上記固相Bを析出させて被覆
し、金属質物Mを得る方法であるが、その後の熱処理に
より、更に固相A,B相の均一性を高めることもでき、
この様な物を金属質物Mとして用いても良い。また、急
冷、凝固の方法は上記手法に何ら限定されるものではな
い。
The above-mentioned metallic substance M is composed of a solid solution or an intermetallic compound, which is obtained by melting a mixture of the constituent elements at a predetermined ratio at a high temperature, and subjecting the molten substance to a dry spray method, a roll quenching method, and a rotating method. It is obtained by rapid cooling and solidification by an electrode method or the like. At this time, if necessary, a heat treatment is performed at a temperature lower than the solid solution temperature at the constituent element ratio of the particles in the metal phase diagram, whereby a preferable solid solution or intermetallic compound structure can be obtained. This method is a method of obtaining a metallic material M by depositing and coating the solid phase B on the entire surface or a part of the nucleus made of the solid phase A by controlling the quenching and solidification of the melt, The subsequent heat treatment can further enhance the uniformity of the solid phases A and B,
Such a material may be used as the metal material M. In addition, the method of quenching and solidification is not limited to the above method.

【0015】また、金属質物Mは、固相Aからなる粉末
の表面に固相Bの構成元素から固相Aの構成元素を除い
た元素からなる層を付着させ、それを金属状態図におけ
る金属質物Mの固相線温度より低い温度で熱処理して得
ても良い。本熱処理により、固相A中の元素が、付着し
た層に拡散して、その拡散層が固相Bの組成となる。前
記付着は、メッキ法、又はメカニカルアロイング法によ
り行うことができる。メカニカルアロイング法は熱処理
をせずに上記金属質物Mを得ることが可能な方法の一つ
である。
The metallic substance M is formed by attaching a layer made of an element obtained by removing the constituent elements of the solid phase A from the constituent elements of the solid phase B to the surface of the powder made of the solid phase A. The heat treatment may be performed at a temperature lower than the solidus temperature of the substance M. By this heat treatment, the elements in the solid phase A diffuse into the layer to which the solid phase A has adhered, and the diffusion layer has the composition of the solid phase B. The attachment can be performed by a plating method or a mechanical alloying method. The mechanical alloying method is one of the methods capable of obtaining the metal material M without heat treatment.

【0016】上述した金属質物Mと導電性に優れた黒鉛
粒子を炭素質物と混合、被覆することにより、高容量、
長サイクル寿命、且つ初回充電時に生じる不可逆容量を
抑制した材料を作成できる。
By mixing and coating the above-described metal material M and graphite particles having excellent conductivity with a carbon material, a high capacity,
A material having a long cycle life and suppressed irreversible capacity generated at the time of initial charging can be produced.

【0017】[0017]

【発明の実施の形態】次に本発明の詳細を述べる。本発
明の負極材を構成する、金属質物M、黒鉛、及び黒鉛質
物より結晶性の低い炭素質物の複合の形態としては、例
えば、(1)金属質物M粉体、黒鉛質物粉体、及び炭素
質物粉体が混合された形態、(2)金属質物M粉体と、
炭素質物により表面の一部、又は全部が被覆された黒鉛
質物粉体を混合した形態、(3)金属質物M粉体の表面
の一部又は全部を炭素質物により被覆し、ここに黒鉛質
物粉体、或いは炭素質物により表面の一部又は全部が被
覆された黒鉛質物粉体を混合した形態、(4)金属質物
M粉体の表面の一部又は全部を、黒鉛質物粉体及び炭素
質物により結合、又は被覆した形態、(5)金属質物M
粉体の表面の一部又は全部を黒鉛質物粉体により一旦被
覆し、当該被覆物を更に炭素質物により結合、又は被覆
した形態、或いはこれらの形態の一種以上の混成された
形態が挙げられる。
Next, the details of the present invention will be described. Examples of the composite form of the metal material M, graphite, and a carbon material having lower crystallinity than the graphite material, which constitute the negative electrode material of the present invention, include (1) a metal material M powder, a graphite material powder, and a carbon material. And (2) a metallic substance M powder,
A form in which a graphite material powder whose surface is partially or wholly coated with a carbonaceous material is mixed. (3) A part or all of the surface of the metallic material M powder is coated with a carbonaceous material, and the graphite material powder is added thereto. (4) A part or all of the surface of the metallic material M powder is mixed with the graphite material powder and the carbonaceous material. Bonded or coated form, (5) metallic material M
A form in which a part or the whole of the surface of the powder is once coated with a graphite substance powder, and the coated substance is further bound or covered with a carbon substance, or a form in which one or more of these forms are mixed.

【0018】本負極材の上記(3)、(4)又は(5)
の形態は金属質物Mの表面を、黒鉛及び/又は黒鉛質物
より結晶性の低い炭素質物が直接覆う形状を作ることが
可能となるので、電解液と金属質物Mとの反応性が低減
し、安全性が向上するという面から好ましく、(4)、
(5)の形態は黒鉛質物が金属質物Mの近傍に存在し、
導電性を保ちやすい構造を形成し得るという観点から、
更に好ましい。
The above (3), (4) or (5) of the present negative electrode material
Can form a shape in which the surface of the metal material M is directly covered with graphite and / or a carbon material having a lower crystallinity than the graphite material, so that the reactivity between the electrolytic solution and the metal material M is reduced, It is preferable from the viewpoint that safety is improved. (4),
In the form (5), the graphite substance exists near the metal substance M,
From the viewpoint that a structure that easily maintains conductivity can be formed,
More preferred.

【0019】本負極材の平均粒子径としては、レーザー
回折式粒度分布計を用いた場合、8〜25μmに有るこ
とが望ましい。この粒子径以下であると比表面積が増大
するため、リチウム二次電池用の負極材としたときに、
初回充放電時の不可逆容量が大きくなり、この粒子径以
上であると、後述する様な負極体を作成しにくい。
The average particle diameter of the present negative electrode material is preferably 8 to 25 μm when using a laser diffraction type particle size distribution meter. Since the specific surface area increases when the particle size is not more than this, when used as a negative electrode material for a lithium secondary battery,
The irreversible capacity at the time of the first charge / discharge becomes large, and if the irreversible capacity is more than this particle size, it is difficult to form a negative electrode body as described later.

【0020】本負極材のタップ密度は、粉体密度測定器
((株)セイシン企業社製タップデンサ−KYT−30
00)を用いて測定することができる。この測定器を用
いてストローク長10mmのタップを100回行なった場
合、そのタップ密度が1.3g/cm3以上と大きく、リチ
ウム二次電池用の負極材とした時に、黒鉛系負極や非晶
質炭素系の負極材と比べ、体積(cm3)当たり高容量を
発現できるので好ましい。タップ密度が1.5g/cm3
上、又は1.7g/cm3以上のものは、充填性が良く、容
量を大きくできるので更に好ましい。
The tap density of the present negative electrode material was measured using a powder density measuring instrument (Tap Denser KYT-30 manufactured by Seishin Enterprise Co., Ltd.).
00). When a tap having a stroke length of 10 mm is performed 100 times using this measuring instrument, the tap density is as large as 1.3 g / cm 3 or more, and when used as a negative electrode material for a lithium secondary battery, a graphite-based negative electrode or an amorphous This is preferable because a higher capacity per volume (cm 3 ) can be achieved as compared with a carbonaceous negative electrode material. Those having a tap density of 1.5 g / cm 3 or more, or 1.7 g / cm 3 or more are more preferable because they have good filling properties and can increase the capacity.

【0021】また、上記(3)、(4)、及び(5)の
複合形態に於いては、金属質物Mの最表面上に、上記黒
鉛質物、及び/又は炭素質物からなる被覆層が少なくと
も一層以上存在しても良いが、そのような場合、この厚
みは、レーザー回折式粒度分布計にて測定した際得られ
る本発明材料粒子のモード径と、同様に測定した前記金
属質物M粒子単体のモード径の差から得られる。本発明
材料粒子を負極材として用いるときには、この大きさが
0.05〜5μmの範囲にあると好ましい。0.1〜4
μmの範囲にあると更に好ましい。
In the composite form of the above (3), (4) and (5), at least the coating layer made of the graphite substance and / or the carbon substance is formed on the outermost surface of the metal substance M. More than one layer may be present, but in such a case, the thickness is the same as the mode diameter of the material particles of the present invention obtained when measured by a laser diffraction type particle size distribution analyzer, and the metal substance M particles alone similarly measured. Is obtained from the difference in the mode diameters. When the material particles of the present invention are used as a negative electrode material, the size is preferably in the range of 0.05 to 5 μm. 0.1-4
More preferably, it is in the range of μm.

【0022】負極材内での金属質物M、黒鉛質物、及び
炭素質物の割合は、求められる電池の性能によって、そ
れぞれの含有量を任意に変化させれば良いが、粉体全体
を100重量%としたとき、それぞれ50〜95重量
%、4.9〜30重量%、及び0.1〜20重量%の範
囲に収めると、高容量で、サイクル寿命が長く、且つ初
回充放電時の不可逆容量が低減される様なものとなるの
で好ましい。上記範囲がそれぞれ80〜95重量%、
4.9〜20重量%、及び0.1〜10重量%の範囲に
あるものが更に好ましく、82〜95重量%、4.9〜
17重量%、及び0.1〜10重量%の範囲にあるもの
が最も好ましい。
The content of the metallic substance M, the graphite substance, and the carbonaceous substance in the negative electrode material may be arbitrarily changed depending on the required performance of the battery. When they are within the ranges of 50 to 95% by weight, 4.9 to 30% by weight, and 0.1 to 20% by weight, respectively, the capacity is high, the cycle life is long, and the irreversible capacity at the time of the first charge / discharge. Is preferably reduced. 80 to 95% by weight of each of the above ranges,
Those in the range of 4.9 to 20% by weight, and 0.1 to 10% by weight are more preferable, and 82 to 95% by weight, 4.9 to
Most preferred are those in the range of 17% by weight, and 0.1 to 10% by weight.

【0023】また、上記負極材の波長514.3nmのア
ルゴンイオンレーザー光を用いたラマンスペクトル分析
に於いて、1580cm-1〜1620cm-1の範囲に現れる
ピークの強度をIA、1350cm-1〜1370cm-1の範
囲に現れるピークの強度をIBとしたときのピーク強度
比R(=IB/IA)が、0.2以上1以下の範囲にあ
るものが好ましく、0.25以上0.7以下の範囲にあ
るものは更に好ましい。
Further, the negative electrode material an argon ion laser beam having a wavelength 514.3nm of In Raman spectrum analysis using an intensity of a peak appearing in the range of 1580cm -1 ~1620cm -1 IA, 1350cm -1 ~1370cm It is preferable that the peak intensity ratio R (= IB / IA) when the intensity of the peak appearing in the range of -1 is IB is in the range of 0.2 to 1, and 0.25 to 0.7. Those in the range are more preferred.

【0024】窒素ガスにより測定したBET比表面積が
0.1〜20m2/gであると、負極体としたときの初回充
放電時の不可逆容量が低減されるので好ましい。0.1
〜15m2/gであると更に好ましく、0.1〜6m2/gであ
ると最も好ましい。
It is preferable that the BET specific surface area measured with nitrogen gas is 0.1 to 20 m 2 / g, because the irreversible capacity at the time of the first charge / discharge of the negative electrode body is reduced. 0.1
More preferable to be ~15m 2 / g, most preferably a 0.1~6m 2 / g.

【0025】該負極材の電導度は以下の様に測定した。
四端子電極式電導度測定機(三菱化学製 Loresta-GP
MCP-T600)に、加圧式粉体抵抗測定ユニットオプション
(三菱化学製)を接続し、該活物質粉体を測定セルに投
入後、その空隙率が75%になる様に該粉体にかかる圧
力を調整した。この時測定された電気伝導度が1×10
-5S/cm以上であるものは、負極材としたとき、リチウム
の充放電が速やかに行われるので好ましい。この値が、
1×10-4S/cm以上であるものは更に好ましく、1×1
-3S/cm以上であるものは最も好ましい。電気伝導度の
上限は通常1×104S/cm以下である。
The conductivity of the negative electrode material was measured as follows.
Four-terminal electrode conductivity meter (Mitsubishi Chemical's Loresta-GP
MCP-T600), pressurized powder resistance measurement unit option (manufactured by Mitsubishi Chemical Corporation) is connected, and after the active material powder is charged into the measurement cell, the powder is applied to the powder so that the porosity is 75%. The pressure was adjusted. At this time, the measured electric conductivity is 1 × 10
A material having a resistivity of -5 S / cm or more is preferable when used as a negative electrode material because lithium can be rapidly charged and discharged. This value is
More preferably, it is 1 × 10 −4 S / cm or more.
Those having 0 -3 S / cm or more are most preferable. The upper limit of the electric conductivity is usually 1 × 10 4 S / cm or less.

【0026】また、上述したように形態的には金属質物
M粒子の周囲を黒鉛質物、及び/又は且つ炭素質物から
なる層が、結着或いは被覆している構造のものが好まし
い。更に、その様な構造を持つ材料の中でも、本発明材
料粉体をエポキシ樹脂中に包埋、硬化後、ミクロトーム
で切断し、現れた切断面をSEMにより観察したとき
に、前記金属質物Mの最表面の円周上に、黒鉛質物、及
び/又は炭素質物からなる、厚みを持った被覆層が観察
でき、且つその被覆層の長さが、金属質物M最表面円周
長の30〜100%を占める様な粒子が少なくとも複数
個観察されるものは好ましい。即ち、金属質物Mを、そ
のモード径から換算される球体として考えたときに、そ
の球表面を、平均30〜100%、黒鉛質物又は/且つ
炭素質物からなる層が被覆しているものが好ましい。9
0%〜100%被覆しているものは更に好ましく、10
0%であるものは最も好ましい。
As described above, the morphology is preferably a structure in which a layer made of a graphite material and / or a carbon material is bound or covered around the metal material M particles. Furthermore, among materials having such a structure, the material powder of the present invention is embedded in an epoxy resin, cured, cut with a microtome, and the cut surface that appears is observed with a SEM. A thick coating layer made of a graphite substance and / or a carbon substance can be observed on the circumference of the outermost surface, and the length of the coating layer is 30 to 100 of the circumference of the outermost surface of the metal substance M. % Is preferred. That is, when the metallic material M is considered as a sphere converted from its mode diameter, it is preferable that the surface of the sphere is covered with a layer made of a graphite material and / or a carbon material on average 30 to 100%. . 9
More preferably, 0% to 100% is coated.
A value of 0% is most preferred.

【0027】上記の金属質物M、黒鉛質物、及び炭素質
物の種類としては、請求項の範囲に有る限り、従来公知
のものを使用することが可能であるが、例えば、金属質
物Mとしては前記固相AがSiからなり、固相BがNi
Si2、CoSi2、VSi2、TiSi2、MnS
1.8、及び/又はMg2Siからなる金属質物、黒鉛質
物としては、例えば結晶面(002)の面間隔d002
0.338nm以下である高結晶性の人造黒鉛、天然黒
鉛、これらの高純度精製品、又はこれらのものの混合品
が好ましく、更に炭素質物としては、黒鉛質物よりも結
晶性の低い、例えば、結晶面(002)の面間隔d002
が0.34nm以上の有機物由来の焼成炭を用いることが
できる。
As the types of the metallic substance M, the graphite substance, and the carbonaceous substance, conventionally known substances can be used as long as they fall within the scope of the claims. The solid phase A is made of Si, and the solid phase B is made of Ni
Si 2 , CoSi 2 , VSi 2 , TiSi 2 , MnS
Examples of the metal material and the graphite material made of i 1.8 and / or Mg 2 Si include, for example, highly crystalline artificial graphite and natural graphite having a spacing d 002 of a crystal plane (002) of 0.338 nm or less. purified product, or preferably mixed products of these things, as a further carbonaceous material, low crystallinity than the graphite pledge, for example, interplanar spacing of the crystal plane (002) d 002
However, calcined charcoal derived from organic matter having a particle size of 0.34 nm or more can be used.

【0028】次に、本発明材料を負極材とし、これを用
いて負極を構成する方法について説明する。
Next, a method for forming a negative electrode using the material of the present invention as a negative electrode material will be described.

【0029】本発明の負極体は、上記金属質物M、黒鉛
質物、及び当該黒鉛質物より結晶性の低い炭素質物を使
用する限り、限定無く従来公知の方法が採用可能である
が、例えば、その構成が金属質物M/黒鉛質物/炭素質
物との重量比が90/9/1であるような材料を混合、
加熱処理によって作成し、好ましくは8〜25μm、更
に好ましくは8〜20μm、最も好ましくは10〜15
μmの範囲に粉砕又は解砕し、粉体状とする。これに導
電剤、結着剤、溶媒等を加えて、スラリー状とし、銅
箔、ニッケルメッシュ、又はステンレスメッシュ等の集
電体の基板にスラリーを塗布・乾燥することで電極とす
る。該粒子を結着させる集電体としては、限定無く用い
ることができ、例えば金属円柱、金属コイル、金属板、
炭素板、炭素円柱などを用いることができるが、ニッケ
ル箔やアルミニウム箔などの金属薄膜が好ましい。銅箔
は更に好ましい。更に、これら集電体に負極材となる粒
子を付着させた電極材料をそのままロール成形、圧縮成
形等の方法で任意の形状に成形することもできる。
The negative electrode body of the present invention can employ any conventionally known method without limitation, as long as the metal material M, the graphite material, and the carbon material having lower crystallinity than the graphite material are used. A material whose composition is such that the weight ratio of metal material M / graphite material / carbon material is 90/9/1,
Prepared by heat treatment, preferably 8 to 25 μm, more preferably 8 to 20 μm, most preferably 10 to 15 μm
Pulverized or crushed to a range of μm to make a powder. A conductive agent, a binder, a solvent, and the like are added thereto to form a slurry, and the slurry is applied to a current collector substrate such as a copper foil, a nickel mesh, or a stainless steel mesh and dried to form an electrode. The current collector for binding the particles can be used without limitation, for example, a metal cylinder, a metal coil, a metal plate,
Although a carbon plate and a carbon column can be used, a metal thin film such as a nickel foil or an aluminum foil is preferable. Copper foil is more preferred. Further, an electrode material in which particles serving as a negative electrode material are adhered to these current collectors can be directly formed into an arbitrary shape by a method such as roll forming or compression molding.

【0030】上記の目的で使用できる導電剤としては、
その電導度が1S/cm以上の高結晶性の人造黒鉛、天然黒
鉛、これらの高純度精製品、また、例えば銅、ニッケ
ル、ステンレス、鉄などで、その粒子径が25μm以
下、好ましくは15μm以下、更に好ましくは10μm以
下、通常0.1μm以上の金属微粉、又はこれらのもの
の混合品が挙げられる。
Examples of the conductive agent that can be used for the above purpose include:
Highly crystalline artificial graphite having a conductivity of 1 S / cm or more, natural graphite, high-purity refined products thereof, and, for example, copper, nickel, stainless steel, iron, etc., having a particle diameter of 25 μm or less, preferably 15 μm or less. More preferably, metal fine powder of 10 μm or less, usually 0.1 μm or more, or a mixture thereof is used.

【0031】結着剤としては、溶媒に対して安定な、ポ
リエチレン、ポリプロピレン、ポリエチレンテレフタレ
ート、芳香族ポリアミド、セルロース等の樹脂系高分
子、スチレン・ブタジエンゴム、イソプレンゴム、ブタ
ジエンゴム、エチレン・プロピレンゴム等のゴム状高分
子、スチレン・ブタジエン・スチレンブロック共重合
体、その水素添加物、スチレン・エチレン・ブタジエン
・スチレン共重合体、スチレン・イソプレン・スチレン
ブロック共重合体、その水素添加物等の熱可塑性エラス
トマー状高分子、シンジオタクチック1,2−ポリブタ
ジエン、エチレン・酢酸ビニル共重合体、プロピレン・
α−オレフィン(炭素数2〜12)共重合体等の軟質樹
脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオ
ロエチレン、ポリテトラフルオロエチレン・エチレン共
重合体等のフッ素系高分子、アルカリ金属イオン、特に
リチウムイオンのイオン伝導性を有する高分子組成物や
上記の結着剤の混合物が挙げられる。
Examples of the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, and cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, and ethylene / propylene rubber which are stable to solvents. Heat of rubber-like polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, hydrogenated products, etc. Plastic elastomeric polymer, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene /
soft resin-like polymers such as α-olefin (C 2 to C 12) copolymers, fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymers, alkali metal ions, In particular, a polymer composition having lithium ion ionic conductivity and a mixture of the above-mentioned binders are exemplified.

【0032】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、又はリチウムを主体とする
アルカリ金属塩を複合させた系、或いはこれにプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン等の高い誘電率を有する有機化合物を配合した系
を用いることができる。
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and the like. Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is compounded, or propylene carbonate, ethylene carbonate, having a high dielectric constant such as γ-butyrolactone A system containing an organic compound can be used.

【0033】溶媒としては、上記溶媒の他、水、アセト
ン、ジメチルエーテル、或いはメタノール、エタノー
ル、ブタノール、イソプロパノール等のアルコール、N
−メチルピロリジノン、ジメチルホルムアミド、ジメチ
ルアセタミド、ヘキサメチルホスフォルアミド、ジメチ
ルスルフォキシド、ベンゼン、トルエン、キシレン、キ
ノリン、ピリジン、メチルナフタレン、ヘキサン等を用
いることができる。
Examples of the solvent include water, acetone, dimethyl ether, alcohols such as methanol, ethanol, butanol and isopropanol, N
-Methylpyrrolidinone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, dimethylsulfoxide, benzene, toluene, xylene, quinoline, pyridine, methylnaphthalene, hexane and the like can be used.

【0034】本発明に用いる上記負極材粒子及び上記結
着剤との混合形式としては、各種の形態をとることがで
きる。即ち、二種の粒子が混合結着した形態、繊維状の
結着剤が上記発明粒子及び導電剤に絡み合う形で混合し
た形態、又は結着剤の層が粒子表面に付着した形態など
が挙げられる。
The negative electrode material particles and the binder used in the present invention can be mixed in various forms. That is, a form in which two kinds of particles are mixed and bound, a form in which a fibrous binder is mixed in a form entangled with the above-mentioned invention particles and a conductive agent, or a form in which a layer of a binder is attached to the particle surface, and the like. Can be

【0035】上記負極材粒子と導電剤の混合割合は、負
極体の構成物質全体を100重量%とした時、負極材を
少なくとも60重量%以上、且つ導電剤を1重量%以上
30重量%以下とすると好ましい。これ以上の量の導電
剤を添加すると、単位体積あたりに電極が発生できる充
放電容量が小さくなり、これ以下の量では導電剤同士の
導電パスが電極内に形成できないなどの理由で添加効果
が十分に発現されない。
The mixing ratio of the negative electrode material particles and the conductive agent is such that, when the total constituent materials of the negative electrode body are 100% by weight, the negative electrode material is at least 60% by weight and the conductive agent is 1% by weight to 30% by weight. Is preferable. If the conductive agent is added in an amount greater than this, the charge / discharge capacity that the electrode can generate per unit volume decreases, and if the amount is less than this, the effect of the addition cannot be formed because conductive paths between the conductive agents cannot be formed in the electrode. Not fully expressed.

【0036】上記結着剤の上記負極材粒子及び導電剤と
の混合割合は、負極材粒子と導電剤の合計の重量に対
し、好ましくは0.1〜30重量%、より好ましくは、
0.5〜5重量%である。これ以上の量の結着剤を添加
すると、電極の内部抵抗が大きくなり、好ましくなく、
これ以下の量では集電体と電極粉体の結着性に劣る。
The mixing ratio of the binder to the negative electrode material particles and the conductive agent is preferably 0.1 to 30% by weight, more preferably 0.1 to 30% by weight, based on the total weight of the negative electrode material particles and the conductive agent.
0.5 to 5% by weight. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable.
If the amount is less than this, the binding property between the current collector and the electrode powder is inferior.

【0037】この負極体を用いて電池を作製する場合を
以下に説明する。電解液、正極体を、その他の公知の電
池構成要素であるセパレータ、ガスケット、集電体、封
口板、セルケース等と組み合わせて非水系リチウム二次
電池を構成する。作成可能な電池は筒型、角型、コイン
型等特に限定されるものではないが、基本的にはセル床
板上に集電体と負極体を乗せ、その上に電解液とセパレ
ータを、更に負極と対向するように正極を乗せ、ガスケ
ット、封口板と共にかしめて二次電池とする。
A case where a battery is manufactured using this negative electrode body will be described below. The nonaqueous lithium secondary battery is formed by combining the electrolyte solution and the positive electrode body with other known battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case. The batteries that can be created are not particularly limited, such as a cylindrical type, a square type, a coin type, but basically, a current collector and a negative electrode body are placed on a cell floor plate, and an electrolytic solution and a separator are further placed thereon. A positive electrode is placed so as to face the negative electrode, and caulked together with a gasket and a sealing plate to form a secondary battery.

【0038】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、エチルメチ
ルカーボネート、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、スルホラン、1,3−ジオキソラン、ジメ
チルスルフィド、プロピレンサルファイド、エチレンサ
ルファイド、ビニレンカーボネート等の有機溶媒、ポリ
エピクロルヒドリン、ポリフォスファゼン、ポリシロキ
サン、ポリビニルピロリドン、ポリビニリデンカーボネ
ート、ポリアクリロニトリル等の高分子化合物に、リチ
ウム塩、又はリチウムを主体とするアルカリ金属塩を複
合させた系、或いはこれにプロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン等の高い誘電
率やイオン−双極子相互作用力を有する有機化合物の単
独、又は二種類以上を混合したものを用いることができ
る。
Non-aqueous solvents that can be used for the electrolyte include:
Propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3-dioxolan, dimethyl sulfide, propylene sulfide, ethylene sulfide An organic solvent such as vinylene carbonate, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or an alkali metal salt mainly composed of lithium was compounded. System or high dielectric constants such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and ion-dipole Organic compounds having an interaction force can be used alone or in combination of two or more.

【0039】これらの溶媒に0.5〜2.0M程度のL
iClO4、LiPF6、LiBF4、LiCF3SO3
LiAsF6、LiCl、LiBr、Liトリフルオロ
スルフォンイミド、Liビス(テトラフルオロメタンス
ルフォニル)イミド等の電解質を溶解して電解液とす
る。
In these solvents, L of about 0.5 to 2.0 M is added.
iClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 ,
An electrolyte such as LiAsF 6 , LiCl, LiBr, Li trifluorosulfonimide, or Li bis (tetrafluoromethanesulfonyl) imide is dissolved to form an electrolyte.

【0040】また、リチウムイオン等のアルカリ金属カ
チオンの導電体であるポリエチレンオキシドやポリプロ
ピレンオキシド、ポリ(メタクロイルエチレンオキシ
ド)等のポリエーテル系高分子化合物、ポリエーテル化
合物の架橋体高分子、またこれらのものの構造末端の水
素基がメチル基、或いはエチル基等のアルキル基に交換
されたポリエチレンオキシドジメチルエーテル等のω−
アルキル基化ポリエーテル、ポリアクリロニトリルやけ
ん化度が高いポリビニルアルコールを上記有機溶媒と上
記電解質を混合したゲル電解質を用いることもできる。
Further, polyether polymer compounds such as polyethylene oxide, polypropylene oxide and poly (methacryloyl ethylene oxide) which are conductors of alkali metal cations such as lithium ions, cross-linked polymers of polyether compounds, Ω- such as polyethylene oxide dimethyl ether in which the hydrogen group at the structural end has been replaced by an alkyl group such as a methyl group or an ethyl group
It is also possible to use a gel electrolyte in which the above organic solvent and the above electrolyte are mixed with an alkylated polyether, polyacrylonitrile, or polyvinyl alcohol having a high degree of saponification.

【0041】正極材としては、従来から知られているい
ずれも使用でき、特に限定されるものではない。具体的
には、LiFeO2、LiCoO2、LiNiO2、Li
Mn24及びこれらの非定比化合物、MnO2、Ti
2、FeS2、Nb34、Mo34、CoS2、V
25、P25、CrO3、V33、TeO2、GeO2
を用いることができる。
As the positive electrode material, any conventionally known one can be used, and it is not particularly limited. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , Li
Mn 2 O 4 and their non-stoichiometric compounds, MnO 2 , Ti
S 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V
2 O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2 and the like can be used.

【0042】正極体は、例えば、上記正極材に、アセチ
レンブラック、黒鉛等の導電剤を添加し、テトラフルオ
ロエチレン等を結着剤として混合後、アルミ箔上に塗布
し、成形、乾燥することによって得ることができる。
The positive electrode body is prepared, for example, by adding a conductive agent such as acetylene black or graphite to the above-mentioned positive electrode material, mixing tetrafluoroethylene or the like as a binder, applying the mixture on an aluminum foil, molding and drying. Can be obtained by

【0043】[0043]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【0044】電極材料の評価方法 すべての評価は以下の如く行った。本発明の負極材と結
着剤を用い、銅箔集電体上に塗布、結着した後、ペレッ
ト状に成形した。これをセパレーター、電解液と共に、
対極をリチウム金属とした半電池とし、2016コイン
セル中に組み立てた。充放電容量は充放電試験機を用
い、上述の様なセルで評価したが、正極体とともに組ん
だリチウムイオン電池でも同様な効果が期待できる。
Evaluation Method for Electrode Materials All evaluations were performed as follows. The negative electrode material of the present invention and a binder were applied and bound on a copper foil current collector, and then formed into a pellet. This together with the separator and electrolyte,
A half-cell with a lithium metal counter electrode was assembled in 2016 coin cells. The charge / discharge capacity was evaluated using a cell as described above using a charge / discharge tester. Similar effects can be expected with a lithium ion battery assembled with a positive electrode body.

【0045】(実施例1)SiをNiSi2の表面及び
内部に包含する平均粒子径12.5μmの金属質物40
gと、d002が0.336nm、ラマンスペクトルから得
られたR値が0.2である平均粒子径1.6μmの人造
黒鉛2gを、MRK製モルダーグラインダーにて大気中
で2分間均一に混合した。この混合物にH/Cが約1.
0、芳香族性指数faが約0.5のタールピッチ5gを
添加し、更に混合した。これを焼成炉中でアルゴン雰囲
気下、昇温速度8℃/min.で900℃まで昇温させ、1
時間保持した。室温付近まで冷却後、焼成したものを瑪
瑙乳鉢で解砕し、目開き45μmの篩で分級し、平均粒
子径14.1μmに整粒してサンプルとした。焼成時の
収率及び元素分析から得られたこの粒子の金属質物M、
黒鉛質物、及び炭素質物の割合は、粒子全体を100重
量%とした時、94重量%、5重量%、及び1重量%で
あった。また、SEMにより該サンプル粒子を観察した
ところ、金属質物M粒子の表面を、黒鉛と炭素質物の混
合物が被覆した構造が観察された。該粒子の窒素ガスに
よるBET法から求められた比表面積の値は1m2/g、1
00回タップしたときのタップ密度は2.1g/cc、ラマ
ンスペクトルから得られたR値は0.4、更に空隙率7
5%の時の電導度は8×10-4S/cmであった。このサン
プル粒子6gに対し導電剤としてd002が0.336nm
である平均粒子径1.6μmの人造黒鉛1gを、結着剤
として前記粒子100重量%に対し、カルボキシメチル
セルロース(CMC)及びスチレンブタジエンゴム(S
BR)合計2.46重量%と、共に混合し、厚み19μ
mの銅箔上に塗布後、80℃で予備乾燥した。更に、直
径12.5mmの円盤状に打ち抜き110℃で一昼夜加熱
減圧乾燥して電極とした。得られた電極に対し、電解液
を含浸させたポリエチレン性セパレーターを挟み、リチ
ウム金属電極に対向させたコイン型セルを作成し、充放
電試験を行った。電解液には、エチレンカーボネート
(EC)とエチルメチルカーボネート(EMC)を容量
比で1:3比率で混合した溶媒に、リチウムヘキサフル
オロフォスフェート(LiPF6)を1.25mol/Lの
割合で溶解させたものを用いた。基準充放電試験は、電
流密度0.32mA/cm2で極間電位差が0Vになるまでド
ープを行い、同じ電流密度で1.5Vになるまで脱ドー
プを行った。容量値は、コイン型セル3個について各々
充放電試験を行い、第1回目充放電サイクル時の脱ドー
プ容量の平均、同サイクルのドープ容量から脱ドープ容
量を差し引いた不可逆容量の平均、及び第20回目の放
電容量を第1回目の放電容量で割った値の百分率(容量
維持率/%)で評価した。
(Example 1) Metallic material 40 containing Si at the surface and inside of NiSi 2 and having an average particle diameter of 12.5 μm
g and, d 002 is 0.336 nm, artificial graphite 2g having an average particle diameter of 1.6μm is R value of 0.2 was obtained from the Raman spectra, 2 minutes uniformly mixed in air at MRK made Mulder Grinder did. The mixture has an H / C of about 1.
0 and 5 g of tar pitch having an aromaticity index fa of about 0.5 were added and further mixed. This was heated to 900 ° C. at a rate of 8 ° C./min.
Hold for hours. After cooling to around room temperature, the fired product was crushed in an agate mortar, classified with a sieve having openings of 45 μm, and sized to an average particle size of 14.1 μm to obtain a sample. The metallic material M of the particles obtained from the yield at the time of firing and elemental analysis,
The proportions of the graphite substance and the carbonaceous substance were 94% by weight, 5% by weight, and 1% by weight, assuming that the whole particles were 100% by weight. When the sample particles were observed by SEM, a structure in which the surface of the metallic substance M particles was coated with a mixture of graphite and carbonaceous substance was observed. The specific surface area of the particles determined by the BET method using nitrogen gas is 1 m 2 / g,
The tap density after tapping 00 times is 2.1 g / cc, the R value obtained from the Raman spectrum is 0.4, and the porosity is 7
The conductivity at 5% was 8 × 10 −4 S / cm. D 002 is 0.336 nm as a conductive agent for 6 g of the sample particles.
Carboxymethylcellulose (CMC) and styrene-butadiene rubber (S) were used in an amount of 1 g of artificial graphite having an average particle size of 1.6 μm as a binder.
BR) 2.46% by weight in total and mixed together to a thickness of 19 μ
It was pre-dried at 80 ° C. after coating on a copper foil of m. Further, a disc having a diameter of 12.5 mm was punched out and dried by heating under reduced pressure at 110 ° C. for 24 hours to form an electrode. With respect to the obtained electrode, a coin type cell in which a polyethylene separator impregnated with an electrolytic solution was sandwiched and opposed to a lithium metal electrode was prepared, and a charge / discharge test was performed. In the electrolytic solution, lithium hexafluorophosphate (LiPF6) was dissolved at a ratio of 1.25 mol / L in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 3. Was used. In the reference charge / discharge test, doping was performed at a current density of 0.32 mA / cm 2 until the potential difference between the electrodes became 0 V, and undoping was performed at the same current density until the voltage reached 1.5 V. The capacity value was obtained by conducting a charge / discharge test on each of the three coin-type cells, and averaging the undoped capacity in the first charge / discharge cycle, the irreversible capacity obtained by subtracting the undoped capacity from the dope capacity in the same cycle, and Evaluation was made as a percentage (capacity retention /%) of a value obtained by dividing the twentieth discharge capacity by the first discharge capacity.

【0046】[0046]

【数1】 (Equation 1)

【0047】なお、負極材の比重には、リチウムドープ
前の該サンプルの真比重を用いた。
As the specific gravity of the negative electrode material, the true specific gravity of the sample before lithium doping was used.

【0048】(実施例2)実施例1の金属質物M、人造
黒鉛、及びタールピッチをそれぞれ40g、3g、及び
7g使用し、実施例1と同様の方法で混合、焼成した。
室温付近まで冷却後、瑪瑙乳鉢で解砕し、目開き45μ
mの篩で分級し、平均粒子径14.1μmに整粒してサン
プルとした。焼成時の収率及び元素分析から得られたこ
の粒子の金属質物M、黒鉛質物、及び炭素質物の割合
は、粒子全体を100重量%としたとき、91重量%、
7重量%、及び2重量%であった。また、SEMにより
サンプル粒子を観察したところ、金属質物M粒子の表面
に炭素質物が被覆した構造が観察された。該粒子の窒素
ガスによるBET法から求められた比表面積の値は1m2
/g、100回タップしたときのタップ密度は1.9g/c
c、ラマンスペクトルから得られたR値は0.4、更に
空隙率75%の時の電導度は9×10-3S/cmであった。
このサンプル粒子6gに対し、導電剤としてd002
0.336nmである平均粒子径3.7μmの人造黒鉛
0.9gを、結着剤として前記粒子100重量%に対
し、カルボキシメチルセルロース(CMC)及びスチレ
ンブタジエンゴム(SBR)合計2.46重量%と、共
に混合し、実施例1と同様に電極を作製し、充放電試験
を行った。
(Example 2) Using 40 g, 3 g and 7 g of the metallic substance M, artificial graphite and tar pitch of Example 1, respectively, were mixed and fired in the same manner as in Example 1.
After cooling to around room temperature, crush it in an agate mortar and open 45μ
The particles were classified with a sieve having a particle size of m and sized to an average particle diameter of 14.1 μm to obtain a sample. The ratio of the metallic substance M, the graphite substance, and the carbonaceous substance of the particles obtained from the yield at the time of firing and the elemental analysis was 91% by weight, when the whole particles were 100% by weight.
7% by weight and 2% by weight. When the sample particles were observed by SEM, a structure in which the surface of the metal material M particles was coated with the carbon material was observed. The specific surface area of the particles determined by the BET method using nitrogen gas is 1 m 2.
/ g, tap density after tapping 100 times is 1.9g / c
c, the R value obtained from the Raman spectrum was 0.4, and the conductivity at a porosity of 75% was 9 × 10 −3 S / cm.
To 6 g of the sample particles, 0.9 g of artificial graphite having an average particle diameter of 3.7 μm having a d 002 of 0.336 nm as a conductive agent, and carboxymethyl cellulose (CMC) and A total of 2.46% by weight of styrene butadiene rubber (SBR) was mixed together to prepare an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0049】(実施例3)実施例1の金属質物M、人造
黒鉛、及びタールピッチをそれぞれ40g、4g、及び
15g使用し、実施例1と同様の方法で混合、焼成し
た。室温付近まで冷却後、ハンマーミルで解砕し、目開
き38μmの篩で分級し、平均粒子径14.1μmに整粒
してサンプルとした。焼成時の収率及び元素分析から得
られたこの粒子の金属質物M、黒鉛質物、及び炭素質物
の割合は、粒子全体を100重量%としたとき、87重
量%、9重量%、及び4重量%であった。また、SEM
によりサンプル粒子を観察したところ、金属質物M粒子
の表面に炭素質物が被覆した構造が観察された。該粒子
の窒素ガスによるBET法から求められた比表面積の値
は2m2/g、100回タップしたときのタップ密度は1.
7g/cc、ラマンスペクトルから得られたR値は0.4、
更に空隙率75%の時の電導度は5×10-3S/cmであっ
た。このサンプル粒子6gに対し、導電剤としてd002
が0.336nmである平均粒子径3.7μmの人造黒鉛
0.6gを、結着剤として前記粒子100重量%に対し
カルボキシメチルセルロース(CMC)及びスチレンブ
タジエンゴム(SBR)合計2.46重量%と、共に混
合し、実施例1と同様に電極を作製し、充放電試験を行
った。
(Example 3) Using 40 g, 4 g and 15 g of the metallic substance M, artificial graphite and tar pitch of Example 1, respectively, mixing and firing were performed in the same manner as in Example 1. After cooling to around room temperature, the mixture was crushed with a hammer mill, classified with a sieve having openings of 38 μm, and sized to an average particle diameter of 14.1 μm to obtain a sample. The ratio of the metallic substance M, the graphite substance, and the carbonaceous substance of the particles obtained from the yield at the time of calcination and the elemental analysis was 87% by weight, 9% by weight, and 4% by weight when the whole particles were 100% by weight. %Met. Also, SEM
As a result, the structure in which the surface of the metal material M particles was covered with the carbon material was observed. The value of the specific surface area of the particles determined by the BET method using nitrogen gas was 2 m 2 / g, and the tap density after tapping 100 times was 1.
7 g / cc, R value obtained from Raman spectrum is 0.4,
Further, the conductivity at a porosity of 75% was 5 × 10 −3 S / cm. To 6 g of the sample particles, d 002 was used as a conductive agent.
Is 0.336 nm, and 0.6 g of artificial graphite having an average particle diameter of 3.7 μm is used as a binder. The total amount of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) is 2.46% by weight based on 100% by weight of the particles. Were mixed together to form an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0050】(実施例4)実施例1使用の金属質物15
0gに、d002が0.336nm、ラマンスペクトルのR
値が0.1である平均粒子径1.6μmの人造黒鉛12
gを、ホソカワミクロン製メカノフュージョンにて常
温、窒素雰囲気下で実15分間処理した。この混合物1
00gに実施例1で用いたタールピッチ18gを添加
し、更に大気中で混合した。これを実施例1と同様の方
法で焼成、ハンマーミルで解砕し、目開き38μmの篩
で分級し、平均粒子径14.1μmに整粒してサンプル
とした。焼成時の収率及び元素分析から得られたこの粒
子の金属質物M、黒鉛質物、及び炭素質物の割合は、粒
粒子全体を100重量%としたとき、90重量%、8重
量%、及び2重量%であった。また、SEMにより該サ
ンプル粒子を観察したところ、金属質物M粒子の表面
を、黒鉛と炭素質物の混合物が被覆した構造が観察され
た。該粒子の窒素ガスによるBET法から求められた比
表面積の値は3m2/g、100回タップしたときのタップ
密度は2.2g/cc、ラマンスペクトルから得られたR値
は0.2、更に空隙率75%の時の電導度は3×10-3
S/cmであった。このサンプル粒子に6gに対し、導電剤
としてd002が0.336nmある平均粒子径3.7μmの
人造黒鉛0.8gを、結着剤として前記粒子100重量
%に対しカルボキシメチルセルロース(CMC)及びス
チレンブタジエンゴム(SBR)合計2.46重量%
と、共に混合し、実施例1と同様に電極を作製し、充放
電試験を行った。
Example 4 Metallic object 15 used in Example 1
0g, d 002 is 0.336 nm, R of Raman spectrum
Artificial graphite 12 having an average particle size of 1.6 μm having a value of 0.1
g was treated with Mesofusion manufactured by Hosokawa Micron at room temperature under a nitrogen atmosphere for 15 minutes. This mixture 1
18 g of the tar pitch used in Example 1 was added to 00 g, and further mixed in the air. This was fired in the same manner as in Example 1, crushed with a hammer mill, classified with a sieve having an opening of 38 μm, and sized to an average particle diameter of 14.1 μm to obtain a sample. The ratio of the metallic substance M, the graphite substance, and the carbonaceous substance of the particles obtained from the yield at the time of calcination and the elemental analysis was 90% by weight, 8% by weight, and 2% by weight, assuming that all the particles were 100% by weight. % By weight. When the sample particles were observed by SEM, a structure in which the surface of the metallic substance M particles was coated with a mixture of graphite and carbonaceous substance was observed. The value of the specific surface area of the particles determined by the BET method using nitrogen gas was 3 m 2 / g, the tap density after tapping 100 times was 2.2 g / cc, the R value obtained from the Raman spectrum was 0.2, Further, the conductivity at a porosity of 75% is 3 × 10 -3.
It was S / cm. 0.8 g of artificial graphite having an average particle diameter of 3.7 μm having a d 002 of 0.336 nm as a conductive agent was added to 6 g of the sample particles. 2.46% by weight of butadiene rubber (SBR)
Were mixed together to form an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0051】(実施例5)実施例1で使用した金属質物
80gと、d002が0.336nm、ラマンスペクトルの
R値が0.2である平均粒子径1.6μmの人造黒鉛5
gを奈良機械製ハイブリダイザーにて常温、アルゴン雰
囲気下で3分間処理した。この混合物40gに実施例1
で用いたタールピッチ8gを添加し、更に大気中で混合
した。これを実施例1と同様な方法で焼成、瑪瑙乳鉢で
解砕し、目開き45μmの篩で分級し、整粒された平均
粒子径14.1μmのサンプルを得た。焼成時の収率及
び元素分析から、得られたこの粒子の金属質物M、黒鉛
質物、及び炭素質物の割合は、粒粒子全体を100重量
%としたとき、92重量%、6重量%、及び2重量%で
あった。また、SEMにより該サンプル粒子を観察した
ところ、金属質物M粒子の表面を、黒鉛と炭素質物の混
合物が被覆した構造が観察された。該粒子の窒素ガスに
よるBET法から求められた比表面積の値は2m2/g、1
00回タップしたときのタップ密度は2.2g/cc、ラマ
ンスペクトルから得られたR値は0.9、更に空隙率7
5%の時の電導度2×10-3S/cmであった。このサンプ
ル粒子に6gに対し、導電剤としてd002が0.336n
mある平均粒子径1.6μmの人造黒鉛0.9gを、結着
剤として前記粒子100重量%に対しカルボキシメチル
セルロース(CMC)及びスチレンブタジエンゴム(S
BR)合計2.46重量%と、共に混合し、実施例1と
同様に電極を作製し、充放電試験を行った。
[0051] (Example 5) and the metal pledge 80g used in Example 1, d 002 is 0.336 nm, the average particle diameter of 1.6 [mu] m R value is 0.2 in the Raman spectrum artificial graphite 5
g was treated with a hybridizer manufactured by Nara Machinery Co., Ltd. for 3 minutes at room temperature under an argon atmosphere. Example 1 was added to 40 g of this mixture.
8 g of the tar pitch used in the above was added and further mixed in the atmosphere. This was fired in the same manner as in Example 1, crushed with an agate mortar, and classified with a sieve having an opening of 45 μm to obtain a sized sample having an average particle diameter of 14.1 μm. From the yield and the elemental analysis at the time of calcination, the ratios of the metal material M, the graphite material, and the carbonaceous material in the obtained particles were 92% by weight, 6% by weight, and 100% by weight of the whole particle. It was 2% by weight. When the sample particles were observed by SEM, a structure in which the surface of the metallic substance M particles was coated with a mixture of graphite and carbonaceous substance was observed. The specific surface area of the particles determined by the BET method using nitrogen gas is 2 m 2 / g, 1
The tap density after tapping 00 times is 2.2 g / cc, the R value obtained from the Raman spectrum is 0.9, and the porosity is 7
The conductivity at 5% was 2 × 10 −3 S / cm. With respect to 6 g of the sample particles, 0.336 n of d 002 was used as a conductive agent.
0.9 g of artificial graphite having an average particle diameter of 1.6 μm is used as a binder, and carboxymethyl cellulose (CMC) and styrene butadiene rubber (S
BR) and a total of 2.46% by weight, and mixed together to produce an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0052】(比較例1)d002が0.336nm、ラマ
ンスペクトルのR値が0.1、窒素ガスによるBET法
から求められた比表面積の値が21m2/g、100回タッ
プしたときのタップ密度が0.2g/cc、更に空隙率75
%の時の電導度5S/cmである平均粒子径3.7μmの人
造黒鉛を、結着剤であるカルボキシメチルセルロース
(CMC)及びスチレンブタジエンゴム(SBR)合計
2.46重量%と共に混合し、実施例1と同様に電極を
作製し、充放電試験を行った。
Comparative Example 1 d 002 was 0.336 nm, R value of Raman spectrum was 0.1, value of specific surface area determined by BET method using nitrogen gas was 21 m 2 / g, and tapping was performed 100 times. Tap density 0.2g / cc, porosity 75
% Of artificial graphite having an average particle size of 3.7 μm having an electric conductivity of 5 S / cm at the time of mixing with carboxymethylcellulose (CMC) as a binder and 2.46% by weight of styrene-butadiene rubber (SBR) in total. An electrode was prepared in the same manner as in Example 1, and a charge / discharge test was performed.

【0053】(比較例2)実施例1で用いた、比表面積
の値が0.3m2/g、100回タップした時のタップ密度
が2.3g/cc、空隙率75%の時の電導度が6×10-7
S/cmである金属物質Mを、結着剤であるカルボキシメチ
ルセルロース(CMC)及びスチレンブタジエンゴム
(SBR)合計2.46重量%と共に混合し、実施例1
と同様に電極を作製し、充放電試験を行った。
(Comparative Example 2) Conductivity when the value of the specific surface area used in Example 1 was 0.3 m 2 / g, the tap density after tapping 100 times was 2.3 g / cc, and the porosity was 75%. Degree 6 × 10 -7
Example 1 A metal substance M of S / cm was mixed with carboxymethyl cellulose (CMC) as a binder and 2.46% by weight of styrene butadiene rubber (SBR) in total.
An electrode was prepared in the same manner as described above, and a charge / discharge test was performed.

【0054】(比較例3)実施例1で用いた金属質物M
4.8gに対し、比較例1で用いた人造黒鉛を1.2g
添加し、均一に混合した。該混合物の窒素ガスによるB
ET法から求められた比表面積の値は4m2/g、100回
タップしたときのタップ密度は0.8g/cc、ラマンスペ
クトルから得られたR値は0.1、更に空隙率75%の
時の電導度は1×10-7S/cm以上であった。この混合物
100重量%に対し、結着剤であるカルボキシメチルセ
ルロース(CMC)及びスチレンブタジエンゴム(SB
R)合計2.46重量%を共に混合し、実施例1と同様
に電極を作製し、充放電試験を行った。
(Comparative Example 3) Metallic object M used in Example 1
1.2 g of the artificial graphite used in Comparative Example 1 with respect to 4.8 g
Add and mix homogeneously. B of the mixture with nitrogen gas
The value of the specific surface area determined by the ET method was 4 m 2 / g, the tap density after tapping 100 times was 0.8 g / cc, the R value obtained from the Raman spectrum was 0.1, and the porosity was 75%. The conductivity at that time was 1 × 10 −7 S / cm or more. With respect to 100% by weight of this mixture, carboxymethylcellulose (CMC) as a binder and styrene-butadiene rubber (SB) were used.
R) A total of 2.46% by weight was mixed together to prepare an electrode in the same manner as in Example 1, and a charge / discharge test was performed.

【0055】以下、本発明によって作製したリチウム二
次電池を具体的に充放電した実施例1から5及び比較例
1から3との比較検討を示す。表1に実施例1から5及
び比較例1から3のリチウム二次電池の脱ドープ容量、
不可逆容量、容量維持率をまとめた。
The following is a comparison study between Examples 1 to 5 and Comparative Examples 1 to 3 in which the lithium secondary battery manufactured according to the present invention was specifically charged and discharged. Table 1 shows the undoping capacity of the lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 3,
The irreversible capacity and capacity maintenance rate are summarized.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明の負極材を用いることにより、高
容量で、長期サイクルでの容量劣化が小さく、更に初回
充電時に発生する不可逆容量が小さいリチウム二次電池
を提供することができる。
By using the negative electrode material of the present invention, it is possible to provide a lithium secondary battery having a high capacity, a small capacity deterioration in a long-term cycle, and a small irreversible capacity generated at the time of initial charging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 秀治 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 西岡 圭子 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 笠松 真治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA02 AA04 BB02 BB15 BC01 BC05 BD00 BD03 BD04 BD05 5H014 AA02 EE05 EE07 HH01 HH02 HH04 HH08 5H029 AJ03 AJ05 AK02 AK03 AK05 AL11 AM03 AM04 AM05 AM07 BJ02 BJ03 HJ01 HJ07 HJ08 HJ13 HJ20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideharu Sato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Keiko Nishioka 8-chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No. 3-1 Mitsubishi Chemical Corporation Tsukuba Research Laboratory (72) Inventor Shinji Kasamatsu 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshiaki Nitta 1006 Odaka Kadoma Kadoma, Osaka Matsushita Electric F-term (reference) in Sangyo Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 固相A、Bからなる金属質物M、黒鉛質
物、及び当該黒鉛質物より結晶性の低い炭素質物を含有
する非水系リチウム二次電池用負極材であって、該金属
質物Mは固相Aからなる核粒子の周囲の一部又は全面
を、固相Bによって被覆した構造であり、前記固相Aは
構成元素としてケイ素を少なくとも含み、前記固相Bは
周期律表の2族元素、遷移金属元素、12族元素、13
族元素、並びに炭素とケイ素を除く14族元素からなる
群から選ばれた少なくとも一種の元素と、ケイ素との固
溶体又は金属間化合物であることを特徴とする、前記負
極材。
1. A negative electrode material for a non-aqueous lithium secondary battery, comprising a metal substance M composed of solid phases A and B, a graphite substance, and a carbon substance having a lower crystallinity than the graphite substance. Has a structure in which a part or the entire surface of a core particle composed of a solid phase A is covered with a solid phase B. The solid phase A contains at least silicon as a constituent element. Group element, transition metal element, group 12 element, 13
The negative electrode material, characterized in that the negative electrode material is a solid solution or an intermetallic compound of silicon with a group IV element and at least one element selected from the group consisting of group 14 elements excluding carbon and silicon.
【請求項2】 金属質物Mが、その表面の一部又は全部
を、予め黒鉛質物及び当該黒鉛質物より結晶性の低い炭
素質物で被覆したものである請求項1記載の負極材。
2. The negative electrode material according to claim 1, wherein the metal material M is obtained by coating a part or all of the surface thereof in advance with a graphite material and a carbon material having a lower crystallinity than the graphite material.
【請求項3】 100回タップしたときのタップ密度が
1.3g/cm3以上である請求項1又は2記載の負極材。
3. The negative electrode material according to claim 1, wherein the tap density after tapping 100 times is 1.3 g / cm 3 or more.
【請求項4】 前記金属質物M、黒鉛、及び炭素質物の
割合が、それぞれ50〜95重量%、4.9〜30重量
%、及び0.1〜20重量%である請求項1乃至3のい
ずれか1に記載の負極材。
4. The method according to claim 1, wherein the proportions of the metallic substance M, graphite and carbonaceous substance are 50 to 95% by weight, 4.9 to 30% by weight, and 0.1 to 20% by weight, respectively. The negative electrode material according to any one of the above.
【請求項5】 波長514.3nmのアルゴンイオンレー
ザー光を用いたラマンスペクトル分析に於いて、158
0cm-1〜1620cm-1の範囲に現れるピークの強度をI
A、1350cm-1〜1370cm-1の範囲に現れるピーク
の強度をIBとしたときのピーク強度比R(=IB/I
A)が、0.2以上1以下である請求項1乃至4のいず
れか1に記載の負極材。
5. In Raman spectrum analysis using argon ion laser light having a wavelength of 514.3 nm, 158
The intensity of the peak appearing in the range of 0cm -1 ~1620cm -1 I
A, peak intensity ratio R (= IB / I) where IB is the peak intensity appearing in the range of 1350 cm -1 to 1370 cm -1
The negative electrode material according to any one of claims 1 to 4, wherein A) is 0.2 or more and 1 or less.
【請求項6】 窒素ガスにより測定したBET比表面積
が0.1〜20m2/gである請求項1乃至5のいずれか1
に記載の負極材。
6. The method according to claim 1, wherein the BET specific surface area measured with nitrogen gas is 0.1 to 20 m 2 / g.
The negative electrode material according to 1.
【請求項7】 空隙率が75%である時に電気伝導度が
1x10-5S/cm以上である請求項1乃至6のいずれか1
に記載の負極材。
7. The method according to claim 1, wherein the electric conductivity is 1 × 10 −5 S / cm or more when the porosity is 75%.
The negative electrode material according to 1.
【請求項8】 SEMから観察される前記金属質物Mの
表面を被覆する黒鉛質物又は炭素質物の被覆割合が、金
属質物Mの全表面の30〜100%を占める請求項2乃
至7のいずれか1に記載の負極材。
8. The metal material M covered by a graphite or carbon material covering 30% to 100% of the entire surface of the metal material M as observed from an SEM. 2. The negative electrode material according to 1.
【請求項9】 正極体、負極体及び非水系溶媒中に電解
質を溶解した電解液から少なくともなる非水系リチウム
二次電池であって、請求項1乃至8のいずれか1に記載
の負極材を負極体に含むことを特徴とする非水系リチウ
ム二次電池。
9. A non-aqueous lithium secondary battery comprising at least a positive electrode body, a negative electrode body, and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent, wherein the negative electrode material according to claim 1 is used. A non-aqueous lithium secondary battery, which is included in a negative electrode body.
【請求項10】 負極体が、負極体の材料全体を100
重量%とした時、負極材を少なくとも60重量%以上、
且つ導電剤として黒鉛質物を1重量%以上30重量%以
下含む請求項9記載のリチウム二次電池。
10. The negative electrode body contains 100% of the whole material of the negative electrode body.
Wt%, the negative electrode material is at least 60 wt% or more,
The lithium secondary battery according to claim 9, further comprising a graphite substance as a conductive agent in an amount of 1% by weight to 30% by weight.
JP32514199A 1999-11-16 1999-11-16 Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same Expired - Fee Related JP4416232B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32514199A JP4416232B2 (en) 1999-11-16 1999-11-16 Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
US09/712,207 US6541156B1 (en) 1999-11-16 2000-11-15 Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
DE60036843T DE60036843T2 (en) 1999-11-16 2000-11-16 Non-aqueous lithium secondary battery negative electrode material, process for producing the same, and nonaqueous lithium secondary battery containing this material
EP00124323A EP1102339B1 (en) 1999-11-16 2000-11-16 Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32514199A JP4416232B2 (en) 1999-11-16 1999-11-16 Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2001143698A true JP2001143698A (en) 2001-05-25
JP4416232B2 JP4416232B2 (en) 2010-02-17

Family

ID=18173521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32514199A Expired - Fee Related JP4416232B2 (en) 1999-11-16 1999-11-16 Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4416232B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2001073872A1 (en) * 2000-03-28 2001-10-04 Sanyo Electric Co., Ltd. Rechargeable battery
WO2004114439A1 (en) * 2003-06-25 2004-12-29 Lg Chem, Ltd. Anode material for lithium secondary cell with high capacity
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method
JP2006134683A (en) * 2004-11-05 2006-05-25 Sony Corp Negative electrode and battery
WO2006106782A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2009514164A (en) * 2005-10-27 2009-04-02 エルジー・ケム・リミテッド Secondary battery electrode active material
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
JP2014060139A (en) * 2012-08-22 2014-04-03 Sekisui Chem Co Ltd Carbon material, electrode material, lithium ion secondary battery and method for manufacturing carbon material
US8795890B2 (en) 2003-07-29 2014-08-05 Lg Chem, Ltd. Negative active material containing silicon particles for a lithium secondary battery and a method for preparing the same
JP2015191824A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the negative electrode active material
CN110854367A (en) * 2019-11-21 2020-02-28 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
CN114512729A (en) * 2020-11-16 2022-05-17 比亚迪股份有限公司 Nanomaterial for negative electrode protection layer, negative electrode protection slurry, lithium negative electrode and lithium battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012990A1 (en) * 2018-07-10 2020-01-16 帝人株式会社 Nonaqueous secondary battery binder and liquid dispersion thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2001073872A1 (en) * 2000-03-28 2001-10-04 Sanyo Electric Co., Ltd. Rechargeable battery
US7655273B2 (en) 2000-03-28 2010-02-02 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
US7316717B2 (en) 2000-03-28 2008-01-08 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
EP1644999A1 (en) * 2003-06-25 2006-04-12 LG Chem, Ltd. Anode material for lithium secondary cell with high capacity
WO2004114439A1 (en) * 2003-06-25 2004-12-29 Lg Chem, Ltd. Anode material for lithium secondary cell with high capacity
US8182939B2 (en) 2003-06-25 2012-05-22 Lg Chem, Ltd. Anode material for lithium secondary cell with high capacity
EP1644999A4 (en) * 2003-06-25 2009-07-22 Lg Chemical Ltd Anode material for lithium secondary cell with high capacity
JP2006525625A (en) * 2003-06-25 2006-11-09 エルジー・ケム・リミテッド High capacity anode material for lithium secondary battery
KR100776912B1 (en) 2003-06-25 2007-11-15 주식회사 엘지화학 Anode material for lithium secondary cell with high capacity
US8795890B2 (en) 2003-07-29 2014-08-05 Lg Chem, Ltd. Negative active material containing silicon particles for a lithium secondary battery and a method for preparing the same
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method
JP2006134683A (en) * 2004-11-05 2006-05-25 Sony Corp Negative electrode and battery
WO2006106782A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2009514164A (en) * 2005-10-27 2009-04-02 エルジー・ケム・リミテッド Secondary battery electrode active material
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
JP2014060139A (en) * 2012-08-22 2014-04-03 Sekisui Chem Co Ltd Carbon material, electrode material, lithium ion secondary battery and method for manufacturing carbon material
JP2015191824A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the negative electrode active material
CN110854367A (en) * 2019-11-21 2020-02-28 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
CN110854367B (en) * 2019-11-21 2022-05-03 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
CN114512729A (en) * 2020-11-16 2022-05-17 比亚迪股份有限公司 Nanomaterial for negative electrode protection layer, negative electrode protection slurry, lithium negative electrode and lithium battery
CN114512729B (en) * 2020-11-16 2023-07-14 比亚迪股份有限公司 Nanomaterial, negative electrode protection slurry, lithium negative electrode and lithium battery

Also Published As

Publication number Publication date
JP4416232B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
EP1102339B1 (en) Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
KR101361567B1 (en) Composite graphite particles and use of same
US7771876B2 (en) Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
JP3726958B2 (en) battery
WO2021108983A1 (en) Secondary battery, device, artificial graphite, and preparation method therefor
WO2021108982A1 (en) Artificial graphite, secondary battery, preparation method, and device
Morales et al. Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells
US20160211512A1 (en) Negative-electrode active material and electric storage apparatus
WO2021108981A1 (en) Secondary battery, device, artificial graphite, and preparation method
JP2015179565A (en) Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
US11901557B2 (en) Negative electrode active material, method for preparing same, secondary battery and apparatus including the secondary battery
JP4416232B2 (en) Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
US10693128B2 (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack
CN112310352A (en) Negative electrode active material and secondary battery
JP4818498B2 (en) Nonaqueous electrolyte secondary battery
Li et al. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
US20220002160A1 (en) Composite graphite material and method for preparation thereof, secondary battery, and apparatus
EP3955348B1 (en) Negative electrode active material and method for preparation thereof, secondary battery, and apparatus including secondary battery
CN112310358B (en) Negative electrode active material and secondary battery
CN114585589A (en) Artificial graphite, method for producing artificial graphite, negative electrode comprising artificial graphite, and lithium secondary battery
JP2001210329A (en) Manufacturing method of negative electrode material for nonaqueous lithium secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof
WO2021258275A1 (en) Secondary battery and device comprising said secondary battery
JP2016062833A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees