JP2001135305A - Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery - Google Patents

Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2001135305A
JP2001135305A JP31055999A JP31055999A JP2001135305A JP 2001135305 A JP2001135305 A JP 2001135305A JP 31055999 A JP31055999 A JP 31055999A JP 31055999 A JP31055999 A JP 31055999A JP 2001135305 A JP2001135305 A JP 2001135305A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
secondary battery
battery
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31055999A
Other languages
Japanese (ja)
Inventor
Riichi Nakamura
利一 中村
Yorito Oohana
頼人 大花
Hideki Okada
秀輝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31055999A priority Critical patent/JP2001135305A/en
Publication of JP2001135305A publication Critical patent/JP2001135305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution secondary battery which can improve high load discharging characteristics and decrease open voltage defect ratio of a battery. SOLUTION: When a positive dectrode plate made by applying synthetic agent of positive electrode active material that contains organic viscosity increase agent to a collector body is put under a heat processing at 170 to 350 deg.C concentration of oxygen around the positive electrode plate is not less than 30 vol.% and not more than 100 vol.%. Thereafter, the positive electrode plate is rolled and shaped for obtaining the positive plate for nonaqueous electrolytic solution secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池用正極板の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型・軽
量でエネルギー密度が高く、さらに繰り返し充放電が可
能な二次電池の開発が要望されている。このような電池
として非水電解液二次電池、特に、正極にコバルト酸リ
チウムなどのリチウム含有複合酸化物、負極に炭素材料
などを用いたリチウム二次電池の研究、開発が活発に行
われている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery which is small and lightweight, has a high energy density, and can be repeatedly charged and discharged. Research and development of such nonaqueous electrolyte secondary batteries, especially lithium secondary batteries using lithium-containing composite oxides such as lithium cobalt oxide for the positive electrode and carbon materials for the negative electrode, have been actively conducted. I have.

【0003】しかし、この種の電池は非水電解液を用い
るため、水溶液系の電池に比べてイオン伝導度が低いと
いう問題がある。このため、電流特性の観点から正負極
板をシート状極板として渦巻状に巻回し、電極面積を大
きくして極板群を構成する構造が多く提案されている。
However, since this type of battery uses a non-aqueous electrolyte, there is a problem that the ion conductivity is lower than that of an aqueous solution type battery. For this reason, from the viewpoint of current characteristics, many structures have been proposed in which a positive / negative electrode plate is spirally wound as a sheet-like electrode plate to increase the electrode area to form an electrode group.

【0004】一般的に、この様なシート状極板は集電体
に合剤を塗着して作製されるが、合剤を集電体に薄く均
一に塗着する必要があるため、合剤は溶媒に活物質、導
電剤、結着剤とともに増粘剤を加えてペースト状にし、
集電体に塗着する方法が用いられている。また、場合に
よっては活物質の充填量を多くするために塗着した後圧
延する方法も検討されている。
In general, such a sheet-like electrode plate is manufactured by applying a mixture to a current collector. However, since it is necessary to apply the mixture to the current collector thinly and uniformly, a mixture is required. The agent is a paste by adding a thickener together with an active material, a conductive agent and a binder to a solvent,
A method of coating the current collector is used. Further, in some cases, a method of rolling after coating, in order to increase the filling amount of the active material, has been studied.

【0005】[0005]

【発明が解決しようとする課題】増粘剤および結着剤を
含有する合剤では、活物質の周りを増粘剤や結着剤が一
部覆っている状態であり、この合剤を集電体に塗着した
後圧延した極板では、この増粘剤が集電体と活物質の間
に膜として介在することになる。この為、塗着後圧延し
た極板を組み込んだ電池は高負荷放電特性が悪く、また
充放電サイクルにより合剤が膨張収縮を繰り返すため、
合剤が集電体から脱離しやすくなる。その結果、合剤と
芯材との電気的接触がとれにくくなり、充放電サイクル
特性が悪くなるという問題点があった。
In a mixture containing a thickener and a binder, the active material is partially covered with the thickener and the binder. In the electrode plate rolled after being applied to the current collector, the thickener intervenes as a film between the current collector and the active material. For this reason, batteries incorporating electrodes rolled after coating have poor high-load discharge characteristics, and the mixture repeatedly expands and contracts due to charge and discharge cycles.
The mixture is easily detached from the current collector. As a result, there has been a problem that electrical contact between the mixture and the core material is hardly obtained, and charge / discharge cycle characteristics are deteriorated.

【0006】そこで特開平7−105970号公報で提
案されている方法では、有機系増粘剤を含有する正極活
物質合剤を集電体に塗着した正極板を170℃〜350
℃の温度で熱処理を行い、熱処理の後圧延成形して得ら
れた正極板を用いて非水電解液二次電池を作製すること
により高負荷放電特性およびサイクル寿命特性を改善し
てきた。ところが使用機器の高度化の進展に伴いさらな
る高負荷放電特性の向上が課題となってきた。また電池
開路電圧不良品の明確な選別を行うため必要とされてい
たエージング諸条件等の工数増大による生産性低下を改
善する事も課題であった。
Therefore, in the method proposed in Japanese Patent Application Laid-Open No. 7-105970, a positive electrode plate obtained by applying a positive electrode active material mixture containing an organic thickener to a current collector at 170 ° C. to 350 ° C.
A high-temperature discharge characteristic and a cycle life characteristic have been improved by producing a non-aqueous electrolyte secondary battery using a positive electrode plate obtained by performing a heat treatment at a temperature of ° C. and performing a roll forming after the heat treatment. However, with the advancement of equipment used, further improvement in high-load discharge characteristics has become an issue. Another problem is to improve productivity reduction due to an increase in man-hours such as aging conditions, which are required for clearly selecting defective battery open circuit voltages.

【0007】本発明はこのような課題を解決するもの
で、高負荷放電特性の向上や電池開路電圧不良の低減を
実現し、生産性を改善できる非水電解液二次電池用正極
板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a positive electrode plate for a non-aqueous electrolyte secondary battery capable of improving high-load discharge characteristics and reducing battery open circuit voltage defects and improving productivity. It provides a method.

【0008】[0008]

【発明の実施の形態】上記課題を解決するために、本発
明の非水電解液二次電池の製造法は、有機系増粘剤を含
有する正極活物質合剤を集電体に塗着した正極板を17
0℃〜350℃の温度で熱処理を行う際、前記正極板の
周囲の雰囲気の酸素濃度を30体積%以上100体積%
以下で行い、その後圧延成形して得るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above problems, a method for producing a non-aqueous electrolyte secondary battery according to the present invention comprises applying a cathode active material mixture containing an organic thickener to a current collector. 17
When performing the heat treatment at a temperature of 0 ° C. to 350 ° C., the oxygen concentration in the atmosphere around the positive electrode plate is set to 30% by volume or more and 100% by volume.
It is obtained as follows and then obtained by rolling.

【0009】[0009]

【実施例】以下に、本発明の実施例を、図面に用いて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の実施の形態に用いた円筒型
電池の縦断面図である。図1において、正極板1は活物
質にコバルト酸リチウム、導電剤としてアセチレンブラ
ックの炭素粉末、結着剤としてポリテトラフルオロエチ
レン(PTFE)樹脂ディスパージョンを混合し、さら
に増粘剤としてカルボキシメチルセルロースナトリウム
塩水溶液を混練し、ペースト状にしたものを集電体であ
る金属箔上に塗着、乾燥した後、熱処理条件として、処
理温度170℃、250℃、350℃において酸素濃度
を30vol%、60vol%、90vol%、100
vol%下で各々10時間熱処理を行い、その後圧延し
て所定の寸法に切断し正極板を作製した。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in an embodiment of the present invention. In FIG. 1, a positive electrode plate 1 is made by mixing lithium cobaltate as an active material, acetylene black carbon powder as a conductive agent, polytetrafluoroethylene (PTFE) resin dispersion as a binder, and sodium carboxymethyl cellulose as a thickener. A paste obtained by kneading a salt aqueous solution to form a paste is coated on a metal foil as a current collector, and dried, and then subjected to heat treatment at 170 ° C., 250 ° C., and 350 ° C. at an oxygen concentration of 30 vol% and 60 vol. %, 90 vol%, 100
Each heat treatment was performed for 10 hours at a vol%, and then rolled and cut to a predetermined size to produce a positive electrode plate.

【0011】負極板3はリチウムを吸蔵、放出可能な鱗
片状黒鉛、結着剤としてスチレンブタジエンラバーの水
溶性ディスパージョン、増粘剤としてカルボキシメチル
セルロースナトリウム塩水溶液を混練し、ペースト状に
したものを集電体である金属箔上に塗着、乾燥した後、
圧延して所定の寸法に切断した。これには負極リード4
をスポット溶接して取り付けてある。
The negative electrode plate 3 is obtained by kneading flaky graphite capable of absorbing and releasing lithium, a water-soluble dispersion of styrene-butadiene rubber as a binder, and an aqueous solution of sodium carboxymethylcellulose as a thickener to form a paste. After coating and drying on the current collector metal foil,
It was rolled and cut to predetermined dimensions. This has a negative electrode lead 4
Is spot-welded.

【0012】これら正、負極板の間にポリプロピレン製
セパレータ5を配し、渦巻状に巻回し極板群を構成し
た。この極板群の上下それぞれに上部絶縁板6、下部絶
縁板7を配して電池ケース8に挿入後、所定量の電解液
を注入し、ポリプロピレン製のガスケット9を介して電
池ケース8で封口板10を密封して完成電池とした。な
お、電解液には、エチレンカーボネート、エチルメチル
カーボネートの混合溶媒中に、1.3モルのヘキサフル
オロリン酸リチウムを電解質として溶かしたものを用い
た。電池サイズは円筒18650型である。
A polypropylene separator 5 was disposed between the positive and negative electrode plates, and was spirally wound to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 are arranged on the upper and lower sides of the electrode plate group, respectively. The plate 10 was sealed to obtain a completed battery. As the electrolytic solution, a solution prepared by dissolving 1.3 mol of lithium hexafluorophosphate as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used. The battery size is a cylinder 18650 type.

【0013】このようにして組み立てた電池を本発明電
池1〜12とした。
The batteries assembled in this manner were designated as batteries 1 to 12 of the present invention.

【0014】(比較例)正極板熱処理時の酸素濃度を2
5vol%とした以外は上記本発明電池と同様の電池を
作製し、これらを比較例電池1〜3とした。
(Comparative Example) The oxygen concentration during heat treatment of the positive electrode plate was 2
Batteries similar to the above-mentioned batteries of the present invention were produced except that the content was 5 vol%, and these were used as Comparative Examples Batteries 1 to 3.

【0015】(従来例)正極板熱処理時の条件として、
空気中(酸素濃度19vol%)とした以外は、上記本
発明電池と同様の電池を作製し、これらを従来例電池1
〜3とした。
(Conventional example) Conditions for heat treatment of the positive electrode plate are as follows.
Batteries similar to the batteries of the present invention described above were prepared except that they were in air (oxygen concentration: 19 vol%),
To 3.

【0016】ついで、これら作製した電池の放電特性評
価を行った。試験条件は、充電電流0.2C、終止電圧
4.2Vの定電流定電圧充電、放電電流0.2C、1.
0C、2.0C、終止電圧3.0Vの定電流放電とし、
20℃で充放電を繰り返し行った。
Next, the discharge characteristics of the batteries thus manufactured were evaluated. The test conditions were a constant current constant voltage charge of a charge current of 0.2 C and a final voltage of 4.2 V, a discharge current of 0.2 C, and a discharge current of 0.2 C.
0C, 2.0C, constant voltage discharge with a final voltage of 3.0 V,
Charge and discharge were repeatedly performed at 20 ° C.

【0017】(表1)に従来例電池1〜3と比較例電池
1〜3及び本発明電池1〜12における放電試験の結果
を示す。
Table 1 shows the results of the discharge tests of the conventional batteries 1 to 3, the comparative batteries 1 to 3, and the batteries 1 to 12 of the present invention.

【0018】[0018]

【表1】 [Table 1]

【0019】(表1)の結果より、正極板の熱処理条件
において酸素濃度を通常の空気中の19vol%より高
くしていくにしたがって放電性能、とくに高負荷放電特
性が向上していることがわかる。好ましくは30vol
%以上の酸素濃度であり、さらに好ましくは100vo
l%酸素雰囲気下で熱処理することである。
From the results shown in Table 1, it can be seen that the discharge performance, especially the high-load discharge characteristics, is improved as the oxygen concentration is made higher than 19 vol% in normal air under the heat treatment conditions for the positive electrode plate. . Preferably 30 vol
% Or more, more preferably 100 vol.
Heat treatment is performed in a 1% oxygen atmosphere.

【0020】この結果は、活物質上に被膜化し放電の阻
害要素となる有機系増粘剤や結着剤中の分散剤等の酸化
分解が熱処理時の酸素濃度を高くするに従いより効率化
されたためであると考えられる。
The result is that the oxidative decomposition of an organic thickener or a dispersant in a binder, which forms a film on the active material and inhibits electric discharge, becomes more efficient as the oxygen concentration during the heat treatment is increased. It is considered that it is.

【0021】図2に放電曲線の一例として従来例電池2
(通常の空気中)と比較例電池2(酸素濃度25vol
%)及び本発明電池8(酸素濃度100vol%)のも
のを示した。
FIG. 2 shows a conventional battery 2 as an example of a discharge curve.
(Ordinary air) and Comparative Example Battery 2 (oxygen concentration 25 vol)
%) And the battery 8 of the present invention (oxygen concentration: 100 vol%).

【0022】つぎに、上記従来例電池1〜3と比較例電
池1〜3及び本発明電池1〜12において電池開路電圧
不良率の比較を行った。
Next, the battery open circuit voltage defect rates of the batteries 1 to 3 of the prior art, the batteries 1 to 3 of the comparative example, and the batteries 1 to 12 of the present invention were compared.

【0023】組み立てられた電池に数サイクルの充放電
を行い、充電状態で所定温度のエージングを行った後電
池電圧を測定し、測定数の平均値より±2mVより外れ
るものを不良とし、各々の電池について不良率を算出し
た。結果を(表2)に示す。
The assembled battery is charged and discharged for several cycles, aged at a predetermined temperature in a charged state, and the battery voltage is measured. If the battery voltage is out of ± 2 mV from the average of the measured numbers, the battery is regarded as defective. The defective rate was calculated for the battery. The results are shown in (Table 2).

【0024】[0024]

【表2】 [Table 2]

【0025】(表2)の結果より、正極板の熱処理条件
において酸素濃度を通常の空気中の19vol%より高
くしていくにしたがって開路電圧不良率が減少している
ことがわかる。好ましくは30vol%以上の酸素濃度
雰囲気下であり、さらに好ましくは100vol%酸素
雰囲気下で熱処理することである。
From the results shown in Table 2, it can be seen that the open circuit voltage failure rate decreases as the oxygen concentration is increased above 19 vol% in normal air under the heat treatment conditions for the positive electrode plate. The heat treatment is preferably performed under an oxygen concentration atmosphere of 30 vol% or more, and more preferably under a 100 vol% oxygen atmosphere.

【0026】そもそも熱処理を行うことにより活物質上
に被膜化している有機系増粘剤や結着剤中の分散剤等は
酸化分解されるが、その時に一酸化炭素やメタン、エタ
ンといった還元性ガスを発生するため正極合剤層は一時
的に還元雰囲気に曝されると考えられる。上記有機系増
粘剤や結着剤中の分散剤等の被膜が、薄かったりあるい
は存在しない活物質表面部分では、還元性ガスの影響を
直接受けることになり、コバルト価数が変化し微小なコ
バルト金属を生成していると考えられる。そして充放電
にともないコバルト金属が微小リークを起こし開路電圧
不良を発生させるものと考えられる。
In the first place, the organic thickener or the dispersant in the binder formed on the active material by the heat treatment is oxidatively decomposed, but at that time, the reducing agent such as carbon monoxide, methane or ethane is decomposed. It is considered that the positive electrode mixture layer is temporarily exposed to a reducing atmosphere in order to generate gas. The coating such as the organic thickener and the dispersant in the binder is thin or in the surface of the active material that does not exist, which is directly affected by the reducing gas, the cobalt valence changes, and the minute It is considered that cobalt metal was produced. Then, it is considered that the cobalt metal causes a minute leak due to the charge and discharge, and causes an open circuit voltage defect.

【0027】したがって熱処理時の酸素濃度を高くする
ことにより、活物質上に被膜化した有機系増粘剤や結着
剤中の分散剤等の酸化分解が効率化されると同時に正極
合剤層が還元性ガス雰囲気に曝されにくくなり、活物質
であるコバルト酸リチウムの局部的還元反応が生じず開
路電圧不良率低減に寄与したと考えられる。
Therefore, by increasing the oxygen concentration during the heat treatment, the oxidative decomposition of the organic thickener or the dispersant in the binder formed on the active material is made more efficient, and at the same time, the positive electrode mixture layer is formed. Is less likely to be exposed to a reducing gas atmosphere, and a local reduction reaction of lithium cobalt oxide as an active material does not occur, which is considered to have contributed to a reduction in the open circuit voltage defect rate.

【0028】本発明の実施例では、有機系増粘剤として
カルボキシメチルセルロースナトリウム塩を用いたが、
メチルセルロース、カルボキシメチルセルロースアルカ
リ金属塩、ポリビニルピロリドン、ポリアクリル酸ナト
リウム、ポリアクリル酸、ポリエチレングリコール、ポ
リエチレンオキサイドのいずれにおいても同様の効果を
得ることができた。
In the examples of the present invention, carboxymethylcellulose sodium salt was used as the organic thickener.
Similar effects could be obtained in any of methylcellulose, carboxymethylcellulose alkali metal salt, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol and polyethylene oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery used in an embodiment of the present invention.

【図2】電池の放電特性を示すモデル図FIG. 2 is a model diagram showing discharge characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 正極板 2 正極リード 3 負極板 4 負極リード 5 セパレータ 6 上部絶縁板 4 下部絶縁板 5 電池ケース 6 ガスケット 7 封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode lead 3 Negative electrode plate 4 Negative electrode lead 5 Separator 6 Upper insulating plate 4 Lower insulating plate 5 Battery case 6 Gasket 7 Sealing plate

フロントページの続き (72)発明者 岡田 秀輝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA01 AA04 BA01 BA03 BB05 BB11 BD01 5H014 AA02 AA04 BB00 BB01 BB05 BB06 BB08 EE01 HH08 Continued on the front page (72) Inventor Hideki Okada 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機系増粘剤を含有する正極活物質合剤
を集電体に塗着した正極板を170℃〜350℃の温度
で熱処理を行う際、前記正極板の周囲の雰囲気の酸素濃
度を30体積%以上100体積%以下とし、その後圧延
成形して得るものである非水電解液二次電池用正極板の
製造法。
When a heat treatment is performed on a positive electrode plate coated with a positive electrode active material mixture containing an organic thickener on a current collector at a temperature of 170 ° C. to 350 ° C., an atmosphere around the positive electrode plate is removed. A method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery, which is obtained by subjecting an oxygen concentration to 30% by volume or more and 100% by volume or less, and then rolling and molding.
【請求項2】 有機系増粘剤がメチルセルロース、カル
ボキシメチルセルロースアルカリ金属塩、ポリビニルピ
ロリドン、ポリアクリル酸ナトリウム、ポリアクリル
酸、ポリエチレングリコール、ポリエチレンオキサイド
のいずれかであることを特徴とする請求項1記載の非水
電解液二次電池用正極板の製造法。
2. The method according to claim 1, wherein the organic thickener is methylcellulose, carboxymethylcellulose alkali metal salt, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, or polyethylene oxide. Method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery.
JP31055999A 1999-11-01 1999-11-01 Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery Pending JP2001135305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31055999A JP2001135305A (en) 1999-11-01 1999-11-01 Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31055999A JP2001135305A (en) 1999-11-01 1999-11-01 Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2001135305A true JP2001135305A (en) 2001-05-18

Family

ID=18006707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31055999A Pending JP2001135305A (en) 1999-11-01 1999-11-01 Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2001135305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302553A (en) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery cathode plate, and lithium secondary battery using the cathode plate manufactured by the same
WO2009019861A1 (en) * 2007-08-09 2009-02-12 Panasonic Corporation Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2009122717A1 (en) * 2008-04-01 2009-10-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US20140020242A1 (en) * 2009-01-30 2014-01-23 Panasonic Corporation Method for fabricating a nonaqueous electrolyte secondary battery
CN111009692A (en) * 2019-12-26 2020-04-14 惠州市豪鹏科技有限公司 Manufacturing method of lithium ion battery and lithium ion battery
WO2022118721A1 (en) * 2020-12-02 2022-06-09 キヤノン株式会社 Active material particles, positive electrode, secondary battery, and method for producing active material particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302553A (en) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery cathode plate, and lithium secondary battery using the cathode plate manufactured by the same
WO2009019861A1 (en) * 2007-08-09 2009-02-12 Panasonic Corporation Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
KR101236027B1 (en) 2007-08-09 2013-02-21 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
US9705159B2 (en) 2007-08-09 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Method for fabricating a nonaqueous electrolyte secondary battery
WO2009122717A1 (en) * 2008-04-01 2009-10-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5506663B2 (en) * 2008-04-01 2014-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US9559362B2 (en) 2008-04-01 2017-01-31 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
US20140020242A1 (en) * 2009-01-30 2014-01-23 Panasonic Corporation Method for fabricating a nonaqueous electrolyte secondary battery
CN111009692A (en) * 2019-12-26 2020-04-14 惠州市豪鹏科技有限公司 Manufacturing method of lithium ion battery and lithium ion battery
WO2022118721A1 (en) * 2020-12-02 2022-06-09 キヤノン株式会社 Active material particles, positive electrode, secondary battery, and method for producing active material particles

Similar Documents

Publication Publication Date Title
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JP6156939B2 (en) Lithium ion secondary battery
US11011321B2 (en) Electrochemical energy storage device
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
CN110518293A (en) A kind of preparation method of solid lithium ion battery
Yamamoto et al. Probing the mechanism of improved performance for sodium-ion batteries by utilizing three-electrode cells: effects of sodium-ion concentration in ionic liquid electrolytes
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JPH10112318A (en) Nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2008198408A (en) Nonaqueous electrolyte secondary battery
CN117219777B (en) Lithium supplementing agent, preparation method thereof, positive electrode plate and secondary battery
CN110828777A (en) Electrode for secondary battery and secondary battery
JP2002151057A (en) Manufacturing method of paste for positive electrode of lithium secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2001135305A (en) Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery
JP2015053136A (en) Lithium air battery and positive complex
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2022144122A (en) Nonaqueous alkali metal power storage element
US20150357618A1 (en) Lithium-ion cell
CN111900338A (en) Preparation method of high-power thick electrode
JP2002117839A (en) Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP2003187787A (en) Method for manufacturing lithium battery positive electrode
JP7237055B2 (en) Non-aqueous electrolyte secondary battery