JP2001125649A - Fluid flow rate control equipment - Google Patents

Fluid flow rate control equipment

Info

Publication number
JP2001125649A
JP2001125649A JP30572299A JP30572299A JP2001125649A JP 2001125649 A JP2001125649 A JP 2001125649A JP 30572299 A JP30572299 A JP 30572299A JP 30572299 A JP30572299 A JP 30572299A JP 2001125649 A JP2001125649 A JP 2001125649A
Authority
JP
Japan
Prior art keywords
valve
solenoid valve
flow rate
liquid flow
pneumatic valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30572299A
Other languages
Japanese (ja)
Other versions
JP4256999B2 (en
Inventor
Yoshiro Kimura
美良 木村
Hiroshi Nishisato
洋 西里
Masahiko Okui
正彦 奥井
Tomohiro Mizoguchi
友博 溝口
Takeyoshi Hori
剛禎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stec KK
Original Assignee
Stec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stec KK filed Critical Stec KK
Priority to JP30572299A priority Critical patent/JP4256999B2/en
Publication of JP2001125649A publication Critical patent/JP2001125649A/en
Application granted granted Critical
Publication of JP4256999B2 publication Critical patent/JP4256999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluid flow rate control equipment which can evade sensor temperature influence due to heat from a solenoid valve and reduce cavitation. SOLUTION: The fluid flow rate control equipment has a fluid flow passage 2 and sensors 3 and 3 for measuring its flow rate in a main body block 1 made of resin and also has the top surface side of the block covered with a box- shaped case 4 made of resin and is provided with a flow rate adjusting pneumatic valve 6, an inflow control solenoid value for driving gas B to the valve, and a relief valve 11 for making the gas B flow in the case from the valve through a pipe 21 in the case. The solenoid valve 5 is provided precedently to the penumatic valve 6 and a heat insulating chamber 8 for insulating and storing the solenoid valve to evade the heat influence of the solenoid valve 5 on the sensors 3 and 3 is provided; and a cooling pipe 20 is provided which branches from the relief valve 11 and reaches the heat insulation chamber 8 and the fluid passage 2 on the secondary side of the pneumatic valve 6 is formed in a spread shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば半導体プ
ロセスで使われるフッ化水素酸(HF)などの薬液を含
む液体の流量を制御する液体流量制御機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid flow control device for controlling a flow rate of a liquid containing a chemical such as hydrofluoric acid (HF) used in a semiconductor process.

【0002】[0002]

【先行の技術】この種の液体流量制御機器として、本出
願人は、図4に示すものを試作した。図4において、例
えばテフロンなどの樹脂製の本体ブロック41内に、例
えばフッ化水素酸などの液体が流れる液体流路42と圧
力センサ43,43が設けられている。44は、本体ブ
ロック41の上面側を覆う箱状のケースで、例えばテフ
ロンなどの樹脂よりなる。そして、このケース44の内
面には、ソレノイドバルブ45と空圧バルブ46とが液
体流路42に対して並列的に配置されており、かつ、圧
力センサ43,43の下流側に空圧バルブ46が位置し
ている。なお、ソレノイドバルブ45は圧力センサ4
3,43の直上に縦置きされている。また、47は、液
体入口側の接続部材で、上流には加圧用ガスで圧送され
る薬液(例えばHF)Eのタンクが設けられている。4
8は、液体出口側の接続部材で、流量調整されたフッ化
水素酸が接続部材48の下流において例えば純水で希釈
され、HF溶液としてウエハ洗浄やエッチング工程で広
く使われる。なお、50は、空圧バルブ46を駆動する
駆動用ガス(例えば空気)Aが外部からソレノイドバル
ブ45へ導入される駆動用ガス導入路である。また、5
1は、ソレノイドバルブ45を通った駆動用ガスの導出
路である。なお、本体ブロック41は、センサブロック
41a、弁ブロック41bおよび空圧バルブブロック4
1cより構成される。
2. Description of the Related Art As a liquid flow control device of this type, the present applicant has made a prototype shown in FIG. In FIG. 4, a liquid flow path 42 through which a liquid such as hydrofluoric acid flows and pressure sensors 43 and 43 are provided in a main body block 41 made of a resin such as Teflon. A box-shaped case 44 covers the upper surface side of the main body block 41 and is made of, for example, a resin such as Teflon. On the inner surface of the case 44, a solenoid valve 45 and a pneumatic valve 46 are arranged in parallel with the liquid flow path 42, and a pneumatic valve 46 is provided downstream of the pressure sensors 43, 43. Is located. The solenoid valve 45 is connected to the pressure sensor 4
It is placed vertically just above 3,43. Reference numeral 47 denotes a connection member on the liquid inlet side, and a tank for a chemical (for example, HF) E which is pumped by a pressurizing gas is provided upstream. 4
Reference numeral 8 denotes a connection member on the liquid outlet side. Hydrofluoric acid whose flow rate has been adjusted is diluted, for example, with pure water downstream of the connection member 48, and is widely used as a HF solution in wafer cleaning and etching processes. Reference numeral 50 denotes a drive gas introduction passage through which a drive gas (for example, air) A for driving the pneumatic valve 46 is introduced from the outside to the solenoid valve 45. Also, 5
Reference numeral 1 denotes an outgoing path of the driving gas passing through the solenoid valve 45. The main body block 41 includes a sensor block 41a, a valve block 41b, and a pneumatic valve block 4.
1c.

【0003】動作は以下の通りである。すなわち、駆動
用ガスAを導入路50、ソレノイドバルブ45、導出路
51を介して空圧バルブ46へ流し込む。そして、圧力
センサ43,43からの液体流量測定信号(センサ出
力)と液体流量設定信号とを比較し、この比較結果に基
づいて空圧バルブ46の開度を制御する。この場合、空
圧バルブ46を開く際はソレノイドバルブ45が開き、
駆動用ガスAが空圧バルブ46に流れる一方、ソレノイ
ドバルブ45が閉じ、空圧バルブ46内の駆動用ガスA
が、ソレノイドバルブ45および空圧バルブ46間に設
けた逃がし弁49からケース44内の空間Sに流れ出る
ことで空圧バルブ46が閉じたり、空圧バルブ46が閉
じた状態でもソレノイドバルブ45に電圧をかけてわず
かに開いた状態に保ちながら、逃がし弁49からケース
44内に流れ出る駆動用ガスAによってケース44内部
をバージしている。つまり、ケース44と本体ブロック
41との隙間などからケース44内にHFガスなどが侵
入するのを防止している。
The operation is as follows. That is, the driving gas A flows into the pneumatic valve 46 via the introduction path 50, the solenoid valve 45, and the derivation path 51. Then, the liquid flow rate measurement signal (sensor output) from the pressure sensors 43, 43 is compared with the liquid flow rate setting signal, and the opening of the pneumatic valve 46 is controlled based on the comparison result. In this case, when opening the pneumatic valve 46, the solenoid valve 45 opens,
While the driving gas A flows through the pneumatic valve 46, the solenoid valve 45 closes, and the driving gas A in the pneumatic valve 46 is closed.
Flows out of the relief valve 49 provided between the solenoid valve 45 and the pneumatic valve 46 into the space S in the case 44, thereby closing the pneumatic valve 46 or applying a voltage to the solenoid valve 45 even when the pneumatic valve 46 is closed. The inside of the case 44 is barged by the driving gas A flowing out of the relief valve 49 into the case 44 while keeping it slightly open. That is, HF gas or the like is prevented from entering the case 44 from the gap between the case 44 and the main body block 41.

【0004】[0004]

【発明が解決しようとする課題】前記液体流路42は樹
脂製の本体ブロック41内に形成されているので、ステ
ンレス製ブロック内に形成した液体流路に比して、液体
として有機溶剤以外にステンレスを腐食するフッ化水素
酸や硫酸といった薬液も流すことができるけれども、ケ
ース内部バージを行うため、ソレノイドバルブ45は常
時発熱しており、それが直下に位置する圧力センサ4
3,43に熱影響を与え、前記センサ出力に異常が生
じ、正確な液体流量が測れないという問題がある。
Since the liquid flow path 42 is formed in the main body block 41 made of resin, a liquid other than the organic solvent is used as the liquid as compared with the liquid flow path formed in the stainless steel block. Although a chemical solution such as hydrofluoric acid or sulfuric acid that corrodes stainless steel can be flowed, the solenoid valve 45 always generates heat to perform a barge inside the case, and the pressure sensor 4 located immediately below the solenoid valve 45 is heated.
There is a problem that a thermal influence is exerted on the sensors 3 and 43, an abnormality occurs in the sensor output, and an accurate liquid flow rate cannot be measured.

【0005】また、所定の設定流量および温度下で液体
流量を測定しても、液体が流れだすと圧力センサ43,
43の温度分布が変化し、前記センサ出力がドリフトす
るという問題がある。
[0005] Even if the liquid flow rate is measured at a predetermined set flow rate and temperature, when the liquid starts flowing, the pressure sensor 43,
There is a problem that the temperature distribution of the sensor 43 changes and the sensor output drifts.

【0006】更に、空圧バルブ46の2次側において
は、細径の液体流路54から大径の液体流路53が急激
に広がり、しかも広がった部分は同一断面積を有するの
で、急激な圧力降下によって液体内に気泡が発生する現
象が起こっていた(キャビテーションの発生)。
Further, on the secondary side of the pneumatic valve 46, the large-diameter liquid flow path 53 rapidly expands from the small-diameter liquid flow path 54, and the widened portion has the same sectional area. A phenomenon in which bubbles were generated in the liquid due to the pressure drop occurred (cavitation occurred).

【0007】この発明は、上述の事柄に留意してなされ
たもので、その目的は、ソレノイドバルブからの発熱に
よるセンサ温度影響を回避するとともに、キャビテーシ
ョンを軽減できる液体流量制御機器を提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to provide a liquid flow control device capable of avoiding the influence of sensor temperature due to heat generated from a solenoid valve and reducing cavitation. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、内部に液体流路および液体の流量測定
を行うセンサを有する樹脂製の本体ブロックと、この本
体ブロックの上面側を覆う樹脂製で箱状のケースとを備
え、このケースの内面に、駆動用ガスで液体の流量調整
のための開度が制御される空圧バルブと、前記センサか
らの液体流量測定信号と液体流量設定信号との比較結果
に基づいて前記空圧バルブへの駆動用ガス流入量を制御
するソレノイドバルブとを設け、更に、前記ソレノイド
バルブから前記空圧バルブに至る駆動用ガス用パイプに
前記駆動用ガスを前記ケース内に流し込む逃がし弁を設
けた液体流量制御機器において、前記ソレノイドバルブ
を前記空圧バルブよりも上位に設けるとともに、前記セ
ンサへの前記ソレノイドバルブからの熱影響を回避すべ
く前記ソレノイドバルブを隔離・収容するための断熱室
を設け、更に、前記逃がし弁から分岐して前記断熱室に
至る冷却用パイプを設け、しかも、前記空圧バルブの2
次側における前記液体流路を末広がり状に構成してい
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a resin main body block having therein a liquid flow path and a sensor for measuring a flow rate of a liquid, and covers an upper surface side of the main body block. A resin-made box-shaped case, a pneumatic valve whose opening is controlled by a driving gas for adjusting the flow rate of the liquid, a liquid flow rate measurement signal from the sensor, and a liquid flow rate on the inner surface of the case. A solenoid valve for controlling the amount of driving gas flowing into the pneumatic valve based on the result of comparison with the setting signal; and a driving gas pipe extending from the solenoid valve to the pneumatic valve. In a liquid flow control device provided with a relief valve for flowing gas into the case, the solenoid valve is provided above the pneumatic valve, and the solenoid is connected to the sensor. A heat insulating chamber for isolating and housing the solenoid valve to avoid thermal influence from the drain valve; and further providing a cooling pipe branched from the relief valve to the heat insulating chamber. 2
The liquid flow path on the next side is formed in a divergent shape.

【0009】[0009]

【発明の実施の形態】以下、この発明の好ましい実施形
態を、図を参照しながら説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、この発明の一つの実施形態を示
す。図1において、1は、例えばテフロンなどの樹脂製
の本体ブロックで、内部に、例えばフッ化水素酸(H
F)などの液体Eが流れる液体流路2と圧力センサ3,
3が設けられている。4は、本体ブロック1の上面側を
覆う箱状のケースで、例えばテフロンなどの樹脂よりな
る。樹脂製本体ブロック1は、センサブロック1a、弁
ブロック1bおよび空圧バルブブロック1cよりなる。
なお、樹脂製ケース4の大きさは図4に示した前記先行
例のものと変わりはない。また、弁ブロック1bおよび
空圧バルブブロック1cの大きさも図4に示した前記先
行例のものと変わりはない。
FIG. 1 shows one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a main body block made of a resin such as Teflon, for example.
F) and the liquid flow path 2 through which the liquid E flows, the pressure sensor 3,
3 are provided. Reference numeral 4 denotes a box-shaped case that covers the upper surface side of the main body block 1 and is made of, for example, a resin such as Teflon. The resin body block 1 includes a sensor block 1a, a valve block 1b, and a pneumatic valve block 1c.
The size of the resin case 4 is the same as that of the prior example shown in FIG. Further, the sizes of the valve block 1b and the pneumatic valve block 1c are not different from those of the prior art shown in FIG.

【0011】そして、このケース4の内面には、ソレノ
イドバルブ5と空圧バルブ6とが配置されている。この
ソレノイドバルブ5は、電磁力とばね力との平衡により
弁体が図示しない制御手段で位置制御されるもので、ソ
レノイドバルブ5は空圧バルブ6の制御を行っている。
すなわち、空圧バルブ駆動用ガス(例えば空気)Bがソ
レノイドバルブ5を介して空圧バルブ6に流し込まれ
る。一方、液体の流量制御を空圧バルブ6で行ってい
る。この流量制御の手法も前記先行例のものと変わりは
ない。10aは、駆動用ガスBが外部からソレノイドバ
ルブ5に導入される駆動用ガス導入路、10bは、駆動
用ガスBをソレノイドバルブ5から空圧バルブ6に流し
込むための駆動用ガス導出路である。なお、ソレノイド
バルブ5と空圧バルブ6の大きさおよび機能は前記先行
例のものと変わりはないが、後述するように、ソレノイ
ドバルブ5の樹脂製ケース4への取り付け位置を空圧バ
ルブ6の上方にするため、ソレノイドバルブ5を前記先
行例の縦置きから横置きに変更している。
On the inner surface of the case 4, a solenoid valve 5 and a pneumatic valve 6 are arranged. The position of the solenoid valve 5 is controlled by a control unit (not shown) based on the balance between the electromagnetic force and the spring force. The solenoid valve 5 controls the pneumatic valve 6.
That is, the pneumatic valve driving gas (for example, air) B flows into the pneumatic valve 6 via the solenoid valve 5. On the other hand, the flow rate of the liquid is controlled by the pneumatic valve 6. The flow control method is not different from that of the preceding example. Reference numeral 10a denotes a drive gas introduction path through which the drive gas B is introduced from the outside into the solenoid valve 5, and 10b denotes a drive gas lead-out path through which the drive gas B flows from the solenoid valve 5 to the pneumatic valve 6. . The size and function of the solenoid valve 5 and the pneumatic valve 6 are the same as those of the preceding example, but the mounting position of the solenoid valve 5 to the resin case 4 is changed as described later. In order to move the solenoid valve 5 upward, the solenoid valve 5 is changed from the vertical arrangement in the preceding example to the horizontal arrangement.

【0012】また、空圧バルブ6は、液体流路2におけ
る圧力センサ3,3の下流側に位置している。前記液体
流路2は、空圧バルブ6の上流側(1次側)における液
体流路2aと空圧バルブ46の下流側(2次側)におけ
る液体流路2bとより構成されている。2cは液体流路
2aにおける絞り部分、2dは細径部分で、これら絞り
部分2c、細径部分2d以外の液体流路2aを構成する
パイプの内径は同一である。一方、液体流路2bは、細
径のL型液体流路37とこれより大径の液体流路36で
構成されている。
The pneumatic valve 6 is located downstream of the pressure sensors 3 in the liquid flow path 2. The liquid flow path 2 includes a liquid flow path 2a on the upstream side (primary side) of the pneumatic valve 6 and a liquid flow path 2b on the downstream side (secondary side) of the pneumatic valve 46. Reference numeral 2c denotes a constricted portion of the liquid flow path 2a, and 2d denotes a small-diameter portion. On the other hand, the liquid flow path 2b is composed of an L-shaped liquid flow path 37 having a small diameter and a liquid flow path 36 having a larger diameter.

【0013】更に、ソレノイドバルブ5は空圧バルブ6
の直上に横置き状態で位置している。すなわち、ソレノ
イドバルブ5と圧力センサ3,3との距離を前記先行例
のものに比してあけている。しかも、圧力センサ3,3
へのソレノイドバルブ5からの熱影響を回避すべく例え
ばテフロンなどの樹脂よりなる隔壁7a,7bで隔離さ
れた断熱室8内に収容されている。
Further, the solenoid valve 5 is a pneumatic valve 6
It is located in the horizontal position directly above. That is, the distance between the solenoid valve 5 and the pressure sensors 3 is larger than that of the preceding example. Moreover, the pressure sensors 3, 3
In order to avoid the influence of heat from the solenoid valve 5 on the inside of the housing, it is housed in a heat insulating chamber 8 separated by partitions 7a and 7b made of a resin such as Teflon.

【0014】この断熱室8の隔壁7bには、駆動用ガス
Bでソレノイドバルブ5を冷却するための駆動用ガス入
口9が設けられている。また、隔壁7bに対向する位置
にある壁部分7cには断熱室8に流し込まれた逃がしガ
スを放出するための放出口22が形成されている。
A driving gas inlet 9 for cooling the solenoid valve 5 with the driving gas B is provided in the partition wall 7b of the heat insulating chamber 8. Further, a discharge port 22 for discharging the escape gas flowing into the heat insulating chamber 8 is formed in the wall portion 7c located at a position facing the partition wall 7b.

【0015】11は逃がし弁で、前記先行例のものと同
様、ガス雰囲気の外部からケース4内にHFガスなどが
侵入するのを防止すべく駆動用ガスBをケース4内に逃
がすためのものである。すなわち、空圧バルブ6が閉じ
るときに空圧バルブ6内の駆動用ガスBを逃がし弁本体
11bに設けた出口12から逃がしたり、空圧バルブ6
が閉じた状態でもソレノイドバルブ5に電圧をかけてわ
ずかに開いた状態に保ちながら、駆動用ガスBを出口1
2からケース4内に逃がしたりする。33は、駆動用ガ
スBが空圧バルブ6内へ出入りするための出入口であ
る。
Reference numeral 11 denotes a relief valve for releasing the driving gas B into the case 4 in order to prevent HF gas or the like from entering the case 4 from outside the gas atmosphere, similarly to the above-mentioned prior art. It is. That is, when the pneumatic valve 6 closes, the driving gas B in the pneumatic valve 6 is released from the outlet 12 provided in the valve body 11b, or the pneumatic valve 6
When the valve is closed, the driving gas B is supplied to the outlet 1 while applying a voltage to the solenoid valve 5 and keeping the valve slightly open.
It escapes from case 2 to case 4. Reference numeral 33 denotes an entrance for the driving gas B to enter and exit the pneumatic valve 6.

【0016】また、逃がし弁11のノズル部分11cに
は、断熱室8の隔壁7bに設けた駆動用ガス入口9に駆
動用ガスBを供給する供給口13が設けられている。2
0は、この供給口13および駆動用ガス入口9を接続す
るソレノイドバルブ冷却用パイプ、21は、駆動用ガス
導出路10bと逃がし弁11の導入口11aを繋ぐパイ
プである。なお、前記出口12の位置を二点鎖線で示す
ように逃がし弁本体11bからノズル部分11cに変更
してもよい。
A supply port 13 for supplying a drive gas B to a drive gas inlet 9 provided in the partition wall 7b of the heat insulating chamber 8 is provided in the nozzle portion 11c of the relief valve 11. 2
Reference numeral 0 denotes a solenoid valve cooling pipe connecting the supply port 13 and the driving gas inlet 9, and reference numeral 21 denotes a pipe connecting the driving gas outlet path 10 b and the introduction port 11 a of the relief valve 11. The position of the outlet 12 may be changed from the relief valve main body 11b to the nozzle portion 11c as shown by a two-dot chain line.

【0017】一方、前記液体流路36は下流へ行くほど
断面積が大となる構造を有している。この実施形態では
液体流路36を上流側から、細径のL型液体流路37
と、これよりごくわずか大径の流路部分36a、この流
路部分36aよりごくわずか大径の流路部分36bおよ
びこの流路部分36bよりごくわずか大径の流路部分3
6cを有する形で構成している。すなわち、液体流路3
6を、下流へ行くほど階段状に太くしている。前記流路
部分36cを構成するパイプの内径と液体流路2aを構
成するパイプの内径とは同一である。なお、細径のL型
液体流路37に続く流路を形成するパイプの内面を末広
がり状のテーパ面に形成してもよい。
On the other hand, the liquid flow path 36 has a structure in which the cross-sectional area increases toward the downstream. In this embodiment, the liquid flow path 36 is formed from the upstream side into an L-shaped liquid flow path 37 having a small diameter.
And a flow path portion 36a having a slightly larger diameter than this, a flow path portion 36b having a slightly larger diameter than the flow path portion 36a, and a flow path portion 3 having a slightly larger diameter than the flow path portion 36b.
6c. That is, the liquid flow path 3
6 is made stepwise thicker toward the downstream. The inner diameter of the pipe forming the flow path portion 36c is the same as the inner diameter of the pipe forming the liquid flow path 2a. The inner surface of the pipe forming the flow path following the small diameter L-shaped liquid flow path 37 may be formed as a divergent tapered surface.

【0018】而して、ケース4の上部に設けた駆動用ガ
ス導入路10aよりソレノイドバルブ5を介して空圧バ
ルブ6に空圧バルブ駆動用ガスBを流し込む。そして、
2つの圧力センサ3,3の差圧に基づく液体流量測定信
号からのフィードバックにより、ソレノイドバルブ5で
空圧バルブ6へのガス流入量がコントロールされる。
The pneumatic valve driving gas B flows into the pneumatic valve 6 via the solenoid valve 5 from the driving gas introduction passage 10a provided in the upper part of the case 4. And
The amount of gas flowing into the pneumatic valve 6 is controlled by the solenoid valve 5 by feedback from a liquid flow measurement signal based on the differential pressure between the two pressure sensors 3.

【0019】この場合、駆動用ガスは、出入口33を介
して空圧バルブ6を出入りする一方、その逃がしガス
は、ケース4内への出口12を介してケース4内へ流れ
出ることによって、ガス雰囲気の外部からケース4内に
HFガスなどが侵入するのを防止するとともに、駆動用
ガス入口9から断熱室8に流れ込み、ソレノイドバルブ
5を冷却できる。断熱室8に流れ込んだ逃がしガスは、
その後、外部へ放出される。また、ソレノイドバルブ5
は空圧バルブ6が流量を制御していない状態であって
も、空圧バルブ6が開かない程度の駆動用ガスを流すだ
けの開度をとることができるので、常時ソレノイドバル
ブ5の冷却およびケース内部パージを行える。
In this case, the driving gas enters and exits the pneumatic valve 6 through the inlet / outlet 33, and the escape gas flows out of the case 4 through the outlet 12 into the case 4. The HF gas and the like can be prevented from entering the case 4 from the outside, and the solenoid valve 5 can be cooled by flowing into the heat insulating chamber 8 from the driving gas inlet 9. The escape gas flowing into the heat insulation chamber 8 is
After that, it is released to the outside. Also, the solenoid valve 5
Even if the pneumatic valve 6 does not control the flow rate, the opening degree can be set to allow the driving gas to flow so that the pneumatic valve 6 does not open. Purge inside the case.

【0020】また、前記先行例のものでは、空圧バルブ
46の2次側における液体流路が急激に広がっている箇
所でキャビテーションが発生していたのを、この発明で
は、空圧バルブ6の2次側の液体流路36を階段状に太
くして最終的に大径の流路部分36cになるよう構成し
たので、空圧バルブ6の2次側の液体流路36において
キャビテーションが発生するのを防止できる。
Further, in the above-mentioned prior art, cavitation occurs at a place where the liquid flow path on the secondary side of the pneumatic valve 46 is rapidly expanded. Since the secondary-side liquid flow path 36 is thickened in a stepwise manner so as to finally have a large-diameter flow path portion 36 c, cavitation occurs in the secondary-side liquid flow path 36 of the pneumatic valve 6. Can be prevented.

【0021】図2は、この発明と前記先行例のものにお
ける流量変化を示し、図3は、この発明と前記先行例の
ものにおけるセンサ周辺温度の変化を示す。なお、この
データは設定流量を100CCMとし、25℃の条件下
で流量測定して得たものである。
FIG. 2 shows a change in the flow rate in the present invention and the preceding example, and FIG. 3 shows a change in the sensor ambient temperature in the present invention and the preceding example. This data was obtained by measuring the flow rate at 25 ° C. with the set flow rate being 100 CCM.

【0022】図2に示す前記先行例のデータaおよび図
3に示す前記先行例のデータbとから、それぞれ流量の
ドリフトおよびセンサ周辺温度のドリフトがあることが
分かる。これは、ソレノイドバルブ45の熱が圧力セン
サ43,43に影響を与えているからである。
From the data a of the preceding example shown in FIG. 2 and the data b of the preceding example shown in FIG. 3, it can be seen that there is a drift in the flow rate and a drift in the temperature around the sensor, respectively. This is because the heat of the solenoid valve 45 affects the pressure sensors 43, 43.

【0023】一方、図2に示すこの発明のデータcか
ら、流量に関してはドリフトもなく安定していることが
分かり、また、図3に示すこの発明のデータdから、セ
ンサ周辺温度のドリフトが前記先行例のものに比して軽
減していることが分かる。これは、ソレノイドバルブ5
の位置を圧力センサ3,3から遠ざけるとともに、ソレ
ノイドバルブ5を断熱室8内に隔離・収容したからであ
る。
On the other hand, the data c of the present invention shown in FIG. 2 shows that the flow rate is stable without drift, and the data d of the present invention shown in FIG. It can be seen that it is reduced as compared with the preceding example. This is the solenoid valve 5
Is moved away from the pressure sensors 3 and 3 and the solenoid valve 5 is isolated and accommodated in the heat insulating chamber 8.

【0024】なお、図3において、時間の経過とともに
前記先行例のデータbおよびこの発明のデータdにおけ
る温度が下降しているのは、それぞれ液体流路42およ
び液体流路2を流れる液体によって圧力センサ43,4
3および圧力センサ3,3周辺が冷やされるからであ
り、前記先行例ではセンサ周辺温度のドリフトが大であ
ることから、温度の下降変化がこの発明のデータdより
も顕著に現れている。
In FIG. 3, the temperature in the data b of the preceding example and the temperature in the data d of the present invention decrease with the passage of time because the liquid flowing through the liquid flow channel 42 and the liquid Sensor 43, 4
3 and the surroundings of the pressure sensors 3 and 3 are cooled. In the above-mentioned prior art, the drift of the temperature around the sensor is large, so that the change in the temperature decreases more remarkably than the data d of the present invention.

【0025】[0025]

【発明の効果】以上説明したようにこの発明は、内部に
液体流路および液体の流量測定を行うセンサを有する樹
脂製の本体ブロックの上面側を覆う樹脂製で箱状のケー
ス内部にソレノイドバルブを隔離する断熱室を設け、ソ
レノイドバルブ下位に設けた空圧バルブからの逃げガス
をソレノイドバルブの冷却に用いたので、ソレノイドバ
ルブからの発熱によるセンサ温度影響を回避できる。
As described above, the present invention provides a solenoid valve inside a resin-made box-shaped case which covers the upper surface of a resin body block having a liquid flow path and a sensor for measuring the flow rate of the liquid. Is provided, and the escape gas from the pneumatic valve provided below the solenoid valve is used for cooling the solenoid valve. Therefore, it is possible to avoid the influence of the sensor temperature due to the heat generated from the solenoid valve.

【0026】また、空圧バルブの2次側における前記液
体流路を末広がり状に構成したので、急激な圧力降下に
よって液体内に気泡が発生する現象を軽減できる。
Further, since the liquid flow path on the secondary side of the pneumatic valve is formed to have a divergent shape, it is possible to reduce a phenomenon that bubbles are generated in the liquid due to a rapid pressure drop.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を示す全体構成説明図で
ある。
FIG. 1 is an explanatory diagram of an overall configuration showing an embodiment of the present invention.

【図2】この発明と先行例における流量変化を示す図で
ある。
FIG. 2 is a diagram showing a flow rate change in the present invention and a prior art.

【図3】この発明と先行例におけるセンサ周辺温度の変
化を示す図である。
FIG. 3 is a diagram showing a change in a sensor ambient temperature according to the present invention and a prior art.

【図4】先行例を示す全体構成説明図である。FIG. 4 is an explanatory diagram of the entire configuration showing a prior example.

【符号の説明】[Explanation of symbols]

1…樹脂製本体ブロック、2…液体流路、3,3…圧力
センサ、4…樹脂製ケース、5…ソレノイドバルブ、6
…空圧バルブ、7a,7b…隔壁、8…断熱室、9…駆
動用ガス入口、11…逃がし弁、12…駆動用ガス出
口、13…駆動用ガス供給口、20…冷却用パイプ、3
6…階段状の液体流路、37…細径のL型液体流路、B
…駆動用ガス。
DESCRIPTION OF SYMBOLS 1 ... Resin body block, 2 ... Liquid flow path, 3, 3 ... Pressure sensor, 4 ... Resin case, 5 ... Solenoid valve, 6
... pneumatic valves, 7a, 7b ... partition walls, 8 ... heat insulation chamber, 9 ... drive gas inlet, 11 ... relief valve, 12 ... drive gas outlet, 13 ... drive gas supply port, 20 ... cooling pipe, 3
6 Step-like liquid flow path, 37 L-shaped liquid flow path with small diameter, B
... Driving gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥井 正彦 京都府京都市南区上鳥羽鉾立町11番5 株 式会社エステック内 (72)発明者 溝口 友博 京都府京都市南区上鳥羽鉾立町11番5 株 式会社エステック内 (72)発明者 堀 剛禎 京都府京都市南区上鳥羽鉾立町11番5 株 式会社エステック内 Fターム(参考) 3H056 AA02 BB34 BB47 BB50 CA02 CB03 CC12 CD04 DD03 DD10 EE10 GG01 GG04 GG11 3H106 DA07 EE27 GC29 KK01 KK31 5H307 AA20 BB05 DD06 DD08 EE02 EE08 EE12 FF03 GG01 HH04 HH11 JJ03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiko Okui 11-5, Kamitobakotachimachi, Minami-ku, Kyoto, Kyoto Prefecture Within STEC Co., Ltd. (72) Inventor Tomohiro Mizoguchi 11, Kamitobakotachicho, Minami-ku, Kyoto, Kyoto No. 5 Inside S-Tech Co., Ltd. (72) Inventor Takeyoshi Hori 11-5 Kamitobakotatemachi, Minami-ku, Kyoto, Kyoto Prefecture F-term (reference) 3H056 AA02 BB34 BB47 BB50 CA02 CB03 CC12 CD04 DD03 DD10 EE10 GG01 GG04 GG11 3H106 DA07 EE27 GC29 KK01 KK31 5H307 AA20 BB05 DD06 DD08 EE02 EE08 EE12 FF03 GG01 HH04 HH11 JJ03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に液体流路および液体の流量測定を
行うセンサを有する樹脂製の本体ブロックと、この本体
ブロックの上面側を覆う樹脂製で箱状のケースとを備
え、このケースの内面に、駆動用ガスで液体の流量調整
のための開度が制御される空圧バルブと、前記センサか
らの液体流量測定信号と液体流量設定信号との比較結果
に基づいて前記空圧バルブへの駆動用ガス流入量を制御
するソレノイドバルブとを設け、更に、前記ソレノイド
バルブから前記空圧バルブに至る駆動用ガス用パイプに
前記駆動用ガスを前記ケース内に流し込む逃がし弁を設
けた液体流量制御機器において、前記ソレノイドバルブ
を前記空圧バルブよりも上位に設けるとともに、前記セ
ンサへの前記ソレノイドバルブからの熱影響を回避すべ
く前記ソレノイドバルブを隔離・収容するための断熱室
を設け、更に、前記逃がし弁から分岐して前記断熱室に
至る冷却用パイプを設け、しかも、前記空圧バルブの2
次側における前記液体流路を末広がり状に構成したこと
を特徴とするとする液体流量制御機器。
1. A resin-made main body block having a liquid flow path and a sensor for measuring a flow rate of a liquid therein, and a resin-made box-shaped case that covers an upper surface side of the main body block. A pneumatic valve whose opening degree for controlling the flow rate of the liquid is controlled by the driving gas, and a pneumatic valve to the pneumatic valve based on a comparison result of a liquid flow measurement signal and a liquid flow setting signal from the sensor A solenoid valve for controlling the inflow amount of the driving gas, and a relief valve for introducing the driving gas into the case in a pipe for the driving gas from the solenoid valve to the pneumatic valve; In the device, the solenoid valve is provided above the pneumatic valve, and the solenoid valve is disposed in order to avoid a thermal influence from the solenoid valve on the sensor. A heat insulating chamber for isolating and housing the cooling valve, and a cooling pipe branched from the relief valve to the heat insulating chamber.
A liquid flow control device, wherein the liquid flow path on the next side is formed in a divergent shape.
JP30572299A 1999-10-27 1999-10-27 Liquid flow control equipment Expired - Fee Related JP4256999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30572299A JP4256999B2 (en) 1999-10-27 1999-10-27 Liquid flow control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30572299A JP4256999B2 (en) 1999-10-27 1999-10-27 Liquid flow control equipment

Publications (2)

Publication Number Publication Date
JP2001125649A true JP2001125649A (en) 2001-05-11
JP4256999B2 JP4256999B2 (en) 2009-04-22

Family

ID=17948571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30572299A Expired - Fee Related JP4256999B2 (en) 1999-10-27 1999-10-27 Liquid flow control equipment

Country Status (1)

Country Link
JP (1) JP4256999B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650903B2 (en) 2004-08-31 2010-01-26 Asahi Organic Chemicals Industry Co., Ltd. Fluid controller
KR101107503B1 (en) 2007-12-27 2012-01-31 (주)에이디에스 Solenoid valve which can be used in high temperature, and source providing system comprising the same
US8393227B2 (en) 2010-02-26 2013-03-12 Tokyo Electron Limited Substrate processing method, storage medium storing program for executing the same, substrate processing apparatus, and fault detection method for differential pressure flowmeter
KR101397900B1 (en) 2012-12-14 2014-05-20 오스템임플란트 주식회사 Apparatus of controlling fluid for dental unit chair
JP2014137724A (en) * 2013-01-17 2014-07-28 Asahi Organic Chemicals Industry Co Ltd Fluid control device
CN104619925A (en) * 2012-11-14 2015-05-13 株式会社小松制作所 Excavating equipment display system and excavating equipment
JP2017025935A (en) * 2015-07-15 2017-02-02 日産自動車株式会社 Valve device
EP3150975A1 (en) * 2015-10-02 2017-04-05 Surpass Industry Co., Ltd. Flow rate adjustment apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650903B2 (en) 2004-08-31 2010-01-26 Asahi Organic Chemicals Industry Co., Ltd. Fluid controller
KR101107503B1 (en) 2007-12-27 2012-01-31 (주)에이디에스 Solenoid valve which can be used in high temperature, and source providing system comprising the same
US8393227B2 (en) 2010-02-26 2013-03-12 Tokyo Electron Limited Substrate processing method, storage medium storing program for executing the same, substrate processing apparatus, and fault detection method for differential pressure flowmeter
US9556593B2 (en) 2012-11-14 2017-01-31 Komatsu Ltd. Display system of excavating machine and excavating machine
CN104619925B (en) * 2012-11-14 2017-07-04 株式会社小松制作所 The display system and excavating machinery of excavating machinery
CN104619925A (en) * 2012-11-14 2015-05-13 株式会社小松制作所 Excavating equipment display system and excavating equipment
KR101397900B1 (en) 2012-12-14 2014-05-20 오스템임플란트 주식회사 Apparatus of controlling fluid for dental unit chair
JP2014137724A (en) * 2013-01-17 2014-07-28 Asahi Organic Chemicals Industry Co Ltd Fluid control device
JP2017025935A (en) * 2015-07-15 2017-02-02 日産自動車株式会社 Valve device
EP3150975A1 (en) * 2015-10-02 2017-04-05 Surpass Industry Co., Ltd. Flow rate adjustment apparatus
KR20170040092A (en) * 2015-10-02 2017-04-12 사파스고교 가부시키가이샤 Flow rate adjustment apparatus
US9977436B2 (en) 2015-10-02 2018-05-22 Surpass Industry Co., Ltd. Flow rate adjustment apparatus
KR102493650B1 (en) 2015-10-02 2023-01-30 사파스고교 가부시키가이샤 Flow rate adjustment apparatus

Also Published As

Publication number Publication date
JP4256999B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP5459895B2 (en) Gas shunt supply unit
US7244335B2 (en) Substrate processing system and substrate processing method
US8512474B2 (en) Apparatus for precursor delivery system for irradiation beam instruments
JP3924386B2 (en) Flow control system
JP5350824B2 (en) Liquid material vaporization supply system
TW201541214A (en) Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
US11114319B2 (en) Heat treatment apparatus and heat treatment method
JP2001125649A (en) Fluid flow rate control equipment
JP3005449B2 (en) Vacuum valve with heating function
US5733375A (en) Apparatus for supplying a treatment material
US10607819B2 (en) Cleaning method and processing apparatus
JP2006012872A (en) Substrate processor
KR20020031350A (en) Semiconductor manufacture equipment, and method and apparatus for semiconductor manufacture
JP6118092B2 (en) Diaphragm valve device
US8079838B2 (en) Pure particle generator
KR20130084965A (en) Air valve
JP2005175183A (en) Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
US8002894B2 (en) Processing apparatus and processing method
JPH05121361A (en) Semiconductor wafer cooler
JPH11315957A (en) Vacuum valve equipped with heating function
KR102644149B1 (en) Method of setting reference value for proportional pressure control valve control in pressure control system and pressure control system using the same
JPH10300173A (en) Operation for constant-temperature and constant humidity air supply device
JPH09205066A (en) Gas generator
JP5486445B2 (en) Film forming apparatus and film forming method
JPH07230958A (en) Cooling water circuit of manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees