JP2001121001A - Photocatalyst coating film and method for forming the same - Google Patents

Photocatalyst coating film and method for forming the same

Info

Publication number
JP2001121001A
JP2001121001A JP2000314691A JP2000314691A JP2001121001A JP 2001121001 A JP2001121001 A JP 2001121001A JP 2000314691 A JP2000314691 A JP 2000314691A JP 2000314691 A JP2000314691 A JP 2000314691A JP 2001121001 A JP2001121001 A JP 2001121001A
Authority
JP
Japan
Prior art keywords
titanium oxide
sintering
tio
sol
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000314691A
Other languages
Japanese (ja)
Inventor
Eiichi Kojima
栄一 小島
Toshiya Watabe
俊也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2000314691A priority Critical patent/JP2001121001A/en
Publication of JP2001121001A publication Critical patent/JP2001121001A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the peel strength of a photocatalyst coating film made of TiO2 while maintaining photoactivity. SOLUTION: This photocatalyst coating film 1 is formed by a wet method on a substrate 2 with a flat surface such as a tile or the like. The photocatalyst coating film 1 is made of sintered TiO2 particle 3, etc., SnO2 4 is condensed at the neck parts to thicken the neck parts. The bond of TiO2 particles 3 to one another is strengthened and enhances the film strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はトイレや厨房の壁面
等の基板上に脱臭、抗菌作用等の目的で形成される光触
媒被膜とその形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalytic film formed on a substrate such as a toilet or kitchen wall for the purpose of deodorization, antibacterial action, and the like, and a method of forming the same.

【0002】[0002]

【従来の技術】紫外線の照射を受けて光触媒反応を進行
させる光触媒としてアナターゼ型のTiO2が特公平2−
62499号公報等に提案されている。この光触媒は紫
外線の照射によって吸着水と光触媒の正孔とが反応して
水酸基ラジカル(OH*)を生成し、この水酸基ラジカ
ルとアンモニアとが以下のように反応して脱臭する。 NH3+2OH*=1/2N2+2H2
2. Description of the Related Art Anatase-type TiO 2 is a photocatalyst which promotes a photocatalytic reaction upon irradiation with ultraviolet rays.
No. 62499, and the like. In this photocatalyst, the adsorbed water reacts with the holes of the photocatalyst by irradiation of ultraviolet rays to generate hydroxyl radicals (OH *), and the hydroxyl radicals react with ammonia to deodorize as follows. NH 3 + 2OH * = 1 / 2N 2 + 2H 2 O

【0003】また、TiO2からなる光触媒被膜の形成法
としては、スプレー法、ディッピング法或いはスピンコ
ート法等にてTiO2ゾル被膜を形成した後に熱処理(焼
成)する湿式法、スパッタリングやCVD等による乾式
法、或いは金属チタンを陽極酸化する方法等が知られて
いる。そして、湿式法としては特開平1−288321
号公報に開示されるものがあり、この方法は、TiO2
ルを繊維質材料であるセラミックペーパにスプレーして
400〜700℃で熱処理した後、SnO2ゾルをスプレ
ーし400〜700℃で熱処理することでアルデヒド類
の酸化分解を高め得る光触媒被膜を形成するようにして
いる。
As a method of forming a photocatalytic film made of TiO 2 , a spray method, a dipping method, a spin coating method or the like is used to form a TiO 2 sol film, followed by a heat treatment (firing), a wet method, a sputtering method, a CVD method, or the like. A dry method, a method of anodizing titanium metal, and the like are known. Japanese Patent Application Laid-Open No. 1-288321 discloses a wet method.
In this method, a TiO 2 sol is sprayed on a ceramic paper as a fibrous material and heat-treated at 400 to 700 ° C., and then a SnO 2 sol is sprayed and heat-treated at 400 to 700 ° C. By doing so, a photocatalytic film capable of increasing the oxidative decomposition of aldehydes is formed.

【0004】[0004]

【発明が解決しようとする課題】上述した光触媒被膜の
形成方法のうち、乾式法と陽極酸化法は光触媒被膜を形
成する相手方の部材が限定され、トイレや厨房の壁面等
に適用しにくい。また、湿式法による場合には、タイル
や板材等にも光触媒被膜を形成しやすいが、表面が繰り
返して擦られると膜が傷ついて脱落する等、被膜強度の
点で問題がある。また、被膜強度を高めるべく焼結温度
を高くすると、TiO2の構造がルチル型に変り、そのま
までは、光触媒活性が低下する。更に、特開平1−28
8321号公報に開示されるものにあっては、TiO2
りも活性の低いSnO2にて被膜の全表面を覆ってしまう
ことになる。
Among the above-described methods for forming a photocatalytic film, the dry method and the anodic oxidation method are difficult to apply to a wall surface of a toilet or a kitchen, because members for forming the photocatalytic film are limited. Further, in the case of the wet method, a photocatalytic film is easily formed on a tile, a plate material or the like, but there is a problem in the film strength such that the film is damaged and falls off when the surface is repeatedly rubbed. When the sintering temperature is increased to increase the film strength, the structure of TiO 2 changes to a rutile type, and the photocatalytic activity is reduced as it is. Further, JP-A 1-228
In the device disclosed in JP-A No. 8321, the entire surface of the coating is covered with SnO 2 having lower activity than TiO 2 .

【0005】更に、膜強度を高めようとした際には、ク
ラックが発生しやすい。即ち、図5(a)に示すように
タイル100の表面にTiO2粒子101を含むゾルを塗
布し、これを熱処理(焼結)すると、図5(b)に示す
ようにクラック102が発生する。この原因は、ルチル
型への相転移が体積収縮(密度が高くなる)を起こす他
に、焼結前にあってはTiO2粒子101間の間隔はL0
であったものが、ルチル型で焼結後は相手方への体積拡
散により粒子間の間隔はL1(L1<L0)と短くなり、
その結果としてクラックが生じると考えられる。
[0005] Furthermore, cracks are likely to occur when trying to increase the film strength. That is, as shown in FIG. 5A, a sol containing TiO 2 particles 101 is applied to the surface of the tile 100, and when this is heat-treated (sintered), cracks 102 are generated as shown in FIG. 5B. . This is because the phase transition to the rutile type causes volume shrinkage (increase in density), and the interval between the TiO 2 particles 101 is L0 before sintering.
However, after sintering in the rutile type, the spacing between the particles is reduced to L1 (L1 <L0) due to volume diffusion to the counterpart,
As a result, it is considered that cracks occur.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく本
発明に係る光触媒被膜は、アナターゼ型の酸化チタン粒
子をその主たる構成材とし、これら酸化チタン粒子の間
隔を焼結の前後において略等しく、且つ酸化チタン粒子
間のネック部には酸化チタンよりも蒸気圧が高い物質を
凝縮せしめた。
In order to solve the above-mentioned problems, the photocatalytic film according to the present invention comprises anatase-type titanium oxide particles as its main constituent material, and the intervals between these titanium oxide particles are substantially equal before and after sintering. At the neck between the titanium oxide particles, a substance having a higher vapor pressure than titanium oxide was condensed.

【0007】また、本発明に係る光触媒被膜の形成方法
は、酸化チタンゾルと酸化チタンよりも蒸気圧が高い物
質のゾルとを混合し、この混合ゾルをタイル等の基板上
に塗布した後に、ルチル型への相転移温度以下の温度で
焼結するようにした。
The method for forming a photocatalytic film according to the present invention is characterized in that a titanium oxide sol and a sol of a substance having a higher vapor pressure than titanium oxide are mixed, and the mixed sol is applied on a substrate such as a tile. Sintering was performed at a temperature lower than the phase transition temperature to the mold.

【0008】[0008]

【作用】酸化チタン粒子の正の曲率をもつ表面は、蒸気
圧が高くなり、負の曲率をもつ表面、つまり2つの酸化
チタン粒子によって形成されるネック部の表面は蒸気圧
が低くなる。その結果、ネック部には酸化チタンよりも
蒸気圧が高いSnO2等が凝縮し、この気化−凝縮機構に
よって焼結が行われる。
The surface of the titanium oxide particles having a positive curvature has a high vapor pressure, and the surface having a negative curvature, that is, the surface of the neck formed by two titanium oxide particles has a low vapor pressure. As a result, SnO 2 or the like having a higher vapor pressure than titanium oxide condenses on the neck portion, and sintering is performed by this vaporization-condensation mechanism.

【0009】[0009]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る光触媒被膜を模
式的に示した図であり、光触媒被膜1はタイル等の表面
が平滑な基板2上に湿式法にて形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram schematically showing a photocatalytic film according to the present invention. The photocatalytic film 1 is formed on a substrate 2 having a smooth surface such as a tile by a wet method.

【0010】光触媒被膜1は0.1μm以下のTiO2
子3…が焼結して構成され、そのネック部にはSnO2
が凝縮し、ネック部を太くしてTiO2粒子3同士の結合
を強め、結果として膜強度を高くしている。
The photocatalytic coating 1 is formed by sintering TiO 2 particles 3 of 0.1 μm or less, and SnO 2 4
Are condensed, the neck portion is thickened, and the bonding between the TiO 2 particles 3 is strengthened. As a result, the film strength is increased.

【0011】以上の光触媒被膜1を形成するには、Ti
2ゾルにSnO2ゾルを混合・攪拌して基板2上に塗布
し、所定の温度範囲で熱処理(焼結)する。尚、TiO2
ゾル濃度は4〜6wt%程度とし、NH3溶液でpH11
に調整され、TiO2粒子の平均1次粒径は0.01μm
(10nm)とし、SnO2ゾル濃度は約10wt%程度と
し、NH3溶液でpH11に調整され、SnO2粒子の平
均1次粒径は0.0035μmとする。ここで示した平
均1次粒径は、XRD(X線回析)の回析線の半値幅か
ら求めた結晶子サイズ(1次粒子)のことである。
In order to form the above photocatalytic film 1, Ti
The SnO 2 sol is mixed and stirred with the O 2 sol, applied on the substrate 2, and heat-treated (sintered) in a predetermined temperature range. In addition, TiO 2
The sol concentration is about 4 to 6 wt%, and the pH is 11 with NH 3 solution.
The average primary particle size of the TiO 2 particles is 0.01 μm
(10 nm), the SnO 2 sol concentration is about 10 wt%, the pH is adjusted to 11 with an NH 3 solution, and the average primary particle size of the SnO 2 particles is 0.0035 μm. The average primary particle size shown here is a crystallite size (primary particle) determined from a half-width of a diffraction line of XRD (X-ray diffraction).

【0012】ここで、SnO2はTiO2よりも蒸気圧が高
いため、焼結前にあってはTiO2粒子3の間隔は図2
(a)に示すようにL0であるが、酸化チタン粒子3の
正の曲率をもつ表面では蒸気圧が高く、負の曲率をもつ
表面、つまり2つの酸化チタン粒子3が当接するネック
部の表面は蒸気圧が低くなる。その結果、図2(b)に
示すようにネック部には酸化チタンよりも蒸気圧が高い
SnO2が入り込み、図2(c)に示すように凝縮し、気
化−凝縮機構によって焼結が行われる。そして、気化−
凝縮機構によって焼結が行われると、焼結後のTiO2
子の間隔L2は焼結前の間隔L0と略等しいため、クラッ
ク等は発生しない。
[0012] Here, since SnO 2 is higher vapor pressure than TiO 2, In the prior sintering interval of the TiO 2 particles 3 2
As shown in (a), the surface of the titanium oxide particles 3 having a positive curvature has a high vapor pressure and has a negative curvature, that is, the surface of the neck portion where the two titanium oxide particles 3 are in contact. Decreases the vapor pressure. As a result, SnO 2 having a higher vapor pressure than titanium oxide enters the neck portion as shown in FIG. 2 (b), condenses as shown in FIG. 2 (c), and is sintered by the vaporization-condensation mechanism. Will be And vaporization-
When sintering is carried out by condensation mechanism, spacing L2 of TiO 2 particles after sintering because substantially equal to the distance L0 before sintering, no cracks are generated.

【0013】上記したように、焼結の前後でTiO2粒子
の間隔を実質的に変化させずに、しかも光触媒被膜とし
ての光活性(R30)を50%以上とするには、図3に示
すようにSnO2のTiO2に対する割合(内比)を20〜
70%にする必要がある。尚、配合割合は、それぞれの
ゾルに含まれる固形分の重量比を示す。また、光活性の
評価は、メチルメルカプタンの分解で行い、光照射30
分後の除去率(R30)を指標とした。詳細には、11L
のガラス容器内に光触媒被膜を形成した150角タイル
を光源(BLB蛍光灯4W)から8cmの距離に配置
し、メチルメルカプタンガスを3〜5ppmとなるよう
に容器内に注入し、暗時の吸着がないことを確認した
後、蛍光灯を点灯し、ガスクロマトグラフィにて経時的
に濃度変化を測定した。 ここで、R30=(x0−x30)/x0×100%但し、x
0=初期濃度[ppm] x30=30分後の濃度[ppm] また、膜強度の評価はプラスチック消しゴムを用いた摺
動摩耗を行い、外観の変化を比較し、4段階で以下のよ
うに評価した。 ◎:40回往復に対して変化なし○:10〜40回の摺
動で傷が入り、膜が剥がれ釉薬が見えた△:5〜9回の
摺動で傷が入り、膜が剥がれ釉薬が見えた×:4回以下
の摺動で傷が入り、膜が剥がれ釉薬が見えた。
As described above, in order to make the photoactivity (R30) of the photocatalytic film 50% or more without substantially changing the interval between the TiO 2 particles before and after sintering, as shown in FIG. Thus, the ratio (inner ratio) of SnO 2 to TiO 2 is 20 to
It needs to be 70%. In addition, a compounding ratio shows the weight ratio of the solid content contained in each sol. The photoactivity was evaluated by decomposing methyl mercaptan,
The removal rate after minutes (R30) was used as an index. For details, 11L
A 150-square tile with a photocatalytic coating formed in a glass container is placed at a distance of 8 cm from the light source (BLB fluorescent lamp 4W), and methyl mercaptan gas is injected into the container so as to have a concentration of 3 to 5 ppm. After confirming that there was no, a fluorescent lamp was turned on, and the concentration change was measured over time by gas chromatography. Here, R30 = (x0−x30) / x0 × 100% where x
0 = initial concentration [ppm] x30 = concentration [ppm] after 30 minutes In addition, the evaluation of the film strength was performed by sliding wear using a plastic eraser, and comparing the change in appearance, and evaluated in the following four steps. did. ◎: No change after 40 reciprocations. :: Scratched by 10 to 40 slides, peeled off the film and glaze was seen. Δ: Scratched by 5 to 9 slides, peeled off the film and glaze. Appearance ×: Scratches were made by sliding four times or less, the film was peeled off, and glaze was visible.

【0014】また、図4は熱処理温度と光活性の関係を
示すグラフであり、TiO2ゾルに有機安定剤を添加した
場合には、光活性が低下するが、いずれにおいても熱処
理温度は300〜850℃とする。これは熱処理温度が
300℃未満では活性が生じにくく850℃を超えると
TiO2の構造がアナターゼからルチルに変化するからで
ある。
FIG. 4 is a graph showing the relationship between the heat treatment temperature and the photoactivity. When an organic stabilizer is added to the TiO 2 sol, the photoactivity decreases. 850 ° C. This is because if the heat treatment temperature is lower than 300 ° C., the activity hardly occurs, and if the temperature exceeds 850 ° C., the structure of TiO 2 changes from anatase to rutile.

【0015】[0015]

【発明の効果】以上に説明した如く本発明に係る光触媒
被膜は、酸化チタン粒子とこの酸化チタンよりも蒸気圧
が高い物質とを含むゾルをタイル等に塗布し、所定の温
度で焼結することで、気化−凝縮機構による焼結で被膜
形成が行われるようにしたので、焼結の前後において酸
化チタン粒子の間隔が略等しくクラックが発生しにく
い。また、酸化チタン粒子間のネック部にはSnO2等が
凝縮するため、被膜の剥離強度が高くなる。特に、Sn
2等の添加量(TiO2との内比)を20〜70%とす
ることで、膜強度と光活性の双方を満足することがで
き、また300℃以上850℃以下の範囲で熱処理する
ことで、充分な光活性を得ることができる。
As described above, the photocatalytic film according to the present invention is obtained by applying a sol containing titanium oxide particles and a substance having a higher vapor pressure than the titanium oxide to a tile or the like and sintering it at a predetermined temperature. Thus, since the film is formed by sintering by the vaporization-condensation mechanism, the intervals between the titanium oxide particles before and after sintering are substantially equal, and cracks are less likely to occur. Further, since SnO 2 and the like condense on the neck portion between the titanium oxide particles, the peel strength of the coating film is increased. In particular, Sn
By setting the addition amount of O 2 or the like (internal ratio to TiO 2 ) to 20 to 70%, both the film strength and the photoactivity can be satisfied, and the heat treatment is performed in the range of 300 ° C. to 850 ° C. Thereby, sufficient photoactivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光触媒被膜を模式的に示した図。FIG. 1 is a diagram schematically showing a photocatalytic film according to the present invention.

【図2】(a)は本願のTiO2粒子の焼結前の状態を示
す図、(b)は焼結途中の状態を示す図、(c)は焼結
後の状態を示す図。
2A is a view showing a state before sintering of the TiO 2 particles of the present application, FIG. 2B is a view showing a state during sintering, and FIG. 2C is a view showing a state after sintering.

【図3】TiO2とSnO2の配合と膜強度及び光活性の関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the composition of TiO 2 and SnO 2 and the film strength and photoactivity.

【図4】熱処理温度と光活性の関係を示すグラフ。FIG. 4 is a graph showing a relationship between a heat treatment temperature and photoactivity.

【図5】(a)は従来のTiO2ゾルの焼結前の状態を示
す図、(b)はルチル型焼結後の状態を示す図。
5A is a view showing a state before sintering of a conventional TiO 2 sol, and FIG. 5B is a view showing a state after rutile type sintering.

【図6】(a)は従来のTiO2粒子の焼結前の状態を示
す図、(b)は焼結後の状態を示す図。
6A is a view showing a state before sintering of conventional TiO 2 particles, and FIG. 6B is a view showing a state after sintering.

【符号の説明】[Explanation of symbols]

1…光触媒被膜、2…基板、3…TiO2粒子、4…Sn
2
1 ... photocatalytic film, 2 ... substrate, 3 ... TiO 2 particles, 4 ... Sn
O 2 .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タイル等の基板上に形成される光触媒被
膜において、この光触媒被膜はアナターゼ型の酸化チタ
ン粒子が焼結してなり、また酸化チタン粒子の間隔は焼
結の前後において略等しく、且つ酸化チタン粒子間のネ
ック部には酸化チタンよりも蒸気圧が高い物質が凝縮し
ていることを特徴とする光触媒被膜。
In a photocatalytic film formed on a substrate such as a tile, the photocatalytic film is formed by sintering anatase type titanium oxide particles, and the intervals of the titanium oxide particles are substantially equal before and after sintering. A photocatalytic film, wherein a substance having a higher vapor pressure than titanium oxide is condensed in a neck portion between titanium oxide particles.
【請求項2】 酸化チタンゾルと酸化チタンよりも蒸気
圧が高い物質のゾルとを混合し、この混合ゾルをタイル
等の基板上に塗布した後に、ルチル型への相転移温度以
下の温度で焼結するようにしたことを特徴とする光触媒
被膜の形成方法。
2. A titanium oxide sol and a sol of a substance having a higher vapor pressure than titanium oxide are mixed, and the mixed sol is applied on a substrate such as a tile, and then fired at a temperature lower than a phase transition temperature to rutile type. A method for forming a photocatalytic film, comprising:
JP2000314691A 2000-10-16 2000-10-16 Photocatalyst coating film and method for forming the same Pending JP2001121001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314691A JP2001121001A (en) 2000-10-16 2000-10-16 Photocatalyst coating film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314691A JP2001121001A (en) 2000-10-16 2000-10-16 Photocatalyst coating film and method for forming the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5310165A Division JPH07155598A (en) 1993-10-12 1993-12-10 Photocatalyst coating film and its formation

Publications (1)

Publication Number Publication Date
JP2001121001A true JP2001121001A (en) 2001-05-08

Family

ID=18793896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314691A Pending JP2001121001A (en) 2000-10-16 2000-10-16 Photocatalyst coating film and method for forming the same

Country Status (1)

Country Link
JP (1) JP2001121001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138199A (en) * 2020-01-03 2020-05-12 南京工业大学 Method for preparing silicon carbide catalytic membrane for water treatment by co-sintering
CN111807712A (en) * 2020-07-23 2020-10-23 长虹美菱股份有限公司 Self-cleaning glass panel of refrigerator and preparation process thereof
CN112229945A (en) * 2020-10-15 2021-01-15 何正和 Feed additive dosage detection device and detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138199A (en) * 2020-01-03 2020-05-12 南京工业大学 Method for preparing silicon carbide catalytic membrane for water treatment by co-sintering
CN111138199B (en) * 2020-01-03 2021-10-26 南京工业大学 Method for preparing silicon carbide catalytic membrane for water treatment by co-sintering
CN111807712A (en) * 2020-07-23 2020-10-23 长虹美菱股份有限公司 Self-cleaning glass panel of refrigerator and preparation process thereof
CN112229945A (en) * 2020-10-15 2021-01-15 何正和 Feed additive dosage detection device and detection method

Similar Documents

Publication Publication Date Title
Yu et al. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films
Hattori et al. Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer‐type catalyst
Yu et al. The effect of SiO 2 addition on the grain size and photocatalytic activity of TiO 2 thin films
Hattori et al. High photocatalytic activity of F-doped TiO2 film on glass
AU676299B2 (en) Photocatalyst composite and process for producing the same
EP1074525B1 (en) Article having photocatalytic activity
Yu et al. Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO 2 thin films
JPH07155598A (en) Photocatalyst coating film and its formation
JP4672822B2 (en) Hydrophilic coating agent and surface hydrophilic substrate
KR20180084142A (en) Process for producing metallic structures
JP2001303276A (en) Enamel material
JP2002234105A (en) Hydrophilic member and method for manufacturing the same
JP2002169303A (en) Pattern forming method and electronic device, optical element and photocatalytic member each produced by the same
JP2001121001A (en) Photocatalyst coating film and method for forming the same
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP3885248B2 (en) Photocatalyst composition
JPH07222928A (en) Production of member having catalyst containing metal fine particles
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JPH08117606A (en) Multifunctional material having photocatalytic function and its production
JPH11157966A (en) Pottery with photocataytic function and its production
Liang et al. Effects of post-treatment on the photocatalytic activity of mesoporous TiO 2 thin films.
JP3794067B2 (en) Method for producing photocatalyst composition
JP2013099706A (en) Water-repellent thin film and method for manufacturing the same
KR100631104B1 (en) Hydrophilic glass coated with metal oxide and method for producing it
JP3978635B2 (en) Titanyl oxalate coating liquid and method for producing photocatalytic element using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307