JP2001120696A - Shaft of golf club - Google Patents

Shaft of golf club

Info

Publication number
JP2001120696A
JP2001120696A JP30521899A JP30521899A JP2001120696A JP 2001120696 A JP2001120696 A JP 2001120696A JP 30521899 A JP30521899 A JP 30521899A JP 30521899 A JP30521899 A JP 30521899A JP 2001120696 A JP2001120696 A JP 2001120696A
Authority
JP
Japan
Prior art keywords
shaft
prepreg
metal
fiber
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30521899A
Other languages
Japanese (ja)
Other versions
JP3617797B2 (en
Inventor
Megumi Yamada
恵 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRAPHITE DESIGN Inc
Original Assignee
GRAPHITE DESIGN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRAPHITE DESIGN Inc filed Critical GRAPHITE DESIGN Inc
Priority to JP30521899A priority Critical patent/JP3617797B2/en
Priority to US09/736,975 priority patent/US20020107089A1/en
Publication of JP2001120696A publication Critical patent/JP2001120696A/en
Priority to US10/097,831 priority patent/US20020123392A1/en
Application granted granted Critical
Publication of JP3617797B2 publication Critical patent/JP3617797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/12Metallic shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/10Non-metallic shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/0081Substantially flexible shafts; Hinged shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • A63B2209/023Long, oriented fibres, e.g. wound filaments, woven fabrics, mats
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/08Handles characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/10Handles with means for indicating correct holding positions

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Golf Clubs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-metal shaft manufactured by a sheet winding method, the performance of which is close to a metal shaft. SOLUTION: The EI value obtained by the formula given below at the position 200 mm from the tip is 3.0 to 4.5 kgf.m2, and by wrapping a metal fiber or metal powder prepreg around at least a part on the tip side from the middle portion in the length direction of the shaft, it is mixed into a nonmetal fiber prepreg, the mass is 80 to 130 g, and the center of gravity of the shaft is located in a position separated by a distance corresponding to 45 to 51% of the total length from the tip. The metal fiber or metal powder prepreg is preferably wrapped around only in the inner layer on the tip side of the shaft. Wherein, δis an amount of deflection (mm), W is a central value (20 kg) and L is a point-to-point distance (300 mm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、上級者向けに改良され
たゴルフクラブ用の非金属シャフトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-metallic shaft for golf clubs which has been improved for advanced users.

【0002】[0002]

【従来技術】非金属シャフト(カ−ボンシャフト)は、
金属シャフト(スチ−ルシャフト)に比較して軽量化が
容易で、また、曲げ剛性やその分布などの設計の自由度
が大きいという特徴を有するので、従来よりその特徴を
生かしたシャフトが種々開発され、多くのプレイヤ−に
使用されている。この非金属シャフトは、ウッド用シャ
フトの場合、上級者用からアベレ−ジゴルファ−用に至
るまでカ−ボンシャフトが使用され、普及率は高いが、
アイアン用シャフトに対する普及率はウッド用に比べて
低い。特に、上級者のアイアン用シャフトの場合、カ−
ボンシャフトの使用率が極めて低く、スチ−ルシャフト
の使用率が近年増加している。一方、上述の特徴を生か
して、スチ−ルシャフトの性能を超えるカ−ボンシャフ
トの研究開発がなされているが、依然として所望のカ−
ボンシャフトを得るまでには至っていない。
BACKGROUND OF THE INVENTION Non-metallic shafts (carbon shafts)
Compared to metal shafts (steel shafts), they have the features of being lighter and easier to design, such as flexural rigidity and their distribution. , Are used by many players. For non-metal shafts, in the case of wood shafts, carbon shafts are used from advanced users to average golfers, and the diffusion rate is high,
The penetration rate for iron shafts is lower than that for wood shafts. In particular, in the case of an advanced iron shaft,
The usage rate of the Bon shaft is extremely low, and the usage rate of the Steel shaft has been increasing in recent years. On the other hand, research and development of carbon shafts exceeding the performance of steel shafts have been carried out by taking advantage of the above-mentioned features, but still desired carbon shafts have been developed.
It is not enough to get a Bon shaft.

【0003】本発明者は、上級者がアイアン用クラブの
シャフトとして何故カ−ボンシャフトよりスチ−ルシャ
フトを使用するのかを調べたところ、カ−ボンシャフト
は軽く、スウィングスピ−ドを上げれば、飛距離アップ
が図れるという特長を有する反面、オ−バ−スウィング
になり易く、また、打撃条件により距離のバラツキが出
たりするため、安定性に欠けるという問題があることが
判明した。そこで、これらの要因に関する解析を行った
結果、以下の点が明らかになった。すなわち、通常使用
されているスチ−ルシャフトは、質量が100g以上
で、重心(バランスポイント)が、非金属シャフトの場
合には先端から約53%前後であるのに対して、シャフ
ト先端から約50%前後となっているため(表1参
照)、ヘッドとして、同一質量、同一剛性のカ−ボンシ
ャフト用のヘッドより軽いものを装着しても、同じスウ
ィングバランスを出すことができる。このため、スチ−
ルシャフトを使用したクラブはカ−ボンシャフトを使用
したクラブよりトウダウンが小さく押さえることがで
き、また、軌道の安定性も高めることができる。その結
果、飛距離および方向の安定性が得られるのである。
The inventor of the present invention has investigated why an advanced player uses a steel shaft rather than a carbon shaft as a shaft of an iron club. The carbon shaft is light and if the swing speed is raised, It has been found that, while having the advantage of increasing the flight distance, overswing is liable to occur, and the distance is varied depending on the impact condition, resulting in a problem of lack of stability. Therefore, as a result of analyzing these factors, the following points became clear. That is, a normally used steel shaft has a mass of 100 g or more and its center of gravity (balance point) is about 53% from the tip of a non-metallic shaft, whereas about 50% from the tip of the shaft. % (See Table 1), the same swing balance can be obtained even when a head that is lighter than the head for a carbon shaft having the same mass and the same rigidity is mounted as the head. For this reason, steel
The club using the shaft can reduce the toe-down smaller than the club using the carbon shaft, and can also improve the stability of the track. As a result, flight distance and direction stability can be obtained.

【0004】[0004]

【表1】 (注)重心(%)はシャフト先端から重心までの距離を
全長で除した値を100倍したものである。
[Table 1] (Note) The center of gravity (%) is 100 times the value obtained by dividing the distance from the shaft tip to the center of gravity by the total length.

【0005】ところで、ゴルフクラブの非金属シャフト
の多くは、非金属繊維のプリプレグを芯金に巻き付けて
成形するシ−トワインディング法により製造されてい
る。この方法は先端に向かう程外径が小さくなった芯金
に非金属繊維のプリプレグを複数回巻き付けた後、加熱
により、巻き付けた内外のプリプレグ同士を相互に加熱
硬化させて、一体のシャフトにし、その後、芯金をシャ
フトから基部側(元部側)に抜き取る方法で、芯金とし
ては多くの場合横断面が円形で、長さがシャフトより長
いものを使用している。このため、シャフトは全長が中
空になっている。また、非金属繊維のプリプレグとして
は、例えば、炭素繊維、ホウ素繊維、ガラス繊維、アラ
ミド繊維などの1種または混合物のシ−トに熱硬化型樹
脂を含浸させたものだけを使用しているので、横断面は
非金属繊維が層状に配列されている。従って、非金属シ
ャフトの重心位置をスチ−ルシャフトに合わせるには、
先端部に巻き付ける層の数を増やし、先端部の重量を増
大させれば可能であるが、このような場合、先端部の剛
性が硬くなり、キックポイントの位置が従来のカ−ボン
シャフトと大きく異なり、ボ−ルの打ち出し条件に大き
な影響を及ぼすという別の問題が発生する。
[0005] By the way, many nonmetallic shafts of golf clubs are manufactured by a sheet winding method in which a prepreg of nonmetallic fiber is wound around a cored bar and formed. In this method, after winding the non-metallic fiber prepreg several times around the core metal whose outer diameter becomes smaller toward the tip, by heating, the wound inner and outer prepregs are mutually heated and cured to form an integrated shaft, Thereafter, the core is removed from the shaft toward the base (original portion) side. In many cases, a core having a circular cross section and a length longer than the shaft is used. For this reason, the shaft has a hollow length. As the non-metallic fiber prepreg, for example, only a sheet of one or a mixture of carbon fiber, boron fiber, glass fiber, and aramid fiber impregnated with a thermosetting resin is used. In the cross section, non-metallic fibers are arranged in layers. Therefore, to match the center of gravity of the non-metal shaft with the steel shaft,
It is possible to increase the number of layers wound around the tip and increase the weight of the tip, but in such a case, the rigidity of the tip becomes hard and the position of the kick point differs greatly from the conventional carbon shaft. Another problem is that the ball launching condition is greatly affected.

【0006】[0006]

【発明が解決しようとする課題】本発明は、非金属シャ
フトの上述の課題を解決し、安定した飛距離と方向性を
得るために改善したゴルフクラブのシャフトを提供する
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the non-metallic shaft, and provides a golf club shaft improved to obtain a stable flight distance and directionality.

【0007】[0007]

【課題を解決するための手段】本発明のゴルフクラブの
シャフトは、非金属繊維のプリプレグを芯金に複数回巻
き付けて、その巻き付けた内外プリプレグ同士を加熱硬
化させることによりシャフトとした後、芯金をシャフト
から引き抜いてなる非金属シャフトにおいて、先端から
200mmの位置での下記(式1)より算出したEI値
が3.0〜4.5kgf・m2で、かつ、シャフトの長さ方
向中間より先端側の少なくとも一部に金属繊維または金
属粉末のプリプレグを巻き付けることにより非金属繊維
のプリプレグ中に混入させて、その質量が80〜130
gで、シャフトの重心が先端から全長の45〜51%に
相当する距離離れた位置に存在するようにしたことを特
徴としている。
The shaft of the golf club of the present invention is obtained by winding a prepreg of non-metallic fiber around a core metal a plurality of times, and heating and curing the wrapped inner and outer prepregs to form a shaft. In a non-metallic shaft obtained by extracting gold from the shaft, the EI value calculated from the following (Equation 1) at a position 200 mm from the tip is 3.0 to 4.5 kgf · m 2 , and the middle in the longitudinal direction of the shaft. By winding a prepreg of a metal fiber or a metal powder around at least a part of the more distal end side, the prepreg of the non-metallic fiber is mixed into the prepreg, and the mass thereof is 80 to 130.
g, the center of gravity of the shaft is located at a position away from the tip by a distance equivalent to 45 to 51% of the entire length.

【数2】 ここで、δ 曲げたわみ量(mm) W 中央荷重(20kg) L 支点間距離(300mm)(Equation 2) Here, δ bending deflection (mm) W center load (20 kg) L distance between fulcrums (300 mm)

【0008】本発明で金属繊維または金属粉末[以下金
属繊維(粉末)という]のプリプレグをシャフトの長さ
方向中間より先端側の少なくとも一部に巻き付けるに
は、シャフト先端側の内層だけに巻き付けた後、その上
に非金属繊維のプリプレグを全長にわたり巻き付けるの
が好ましい。とくに、このように金属繊維(粉末)のプ
リプレグをシャフトの内層に巻き付けると、プリプレグ
が金属繊維であっても、金属繊維の剛性の影響が小さ
く、非金属シャフトの性能が失われないため、質量を増
加させただけのものになる。もちろん、金属繊維(粉
末)のプリプレグは中層や外層に巻き付けることも可能
である。また、複数箇所に巻き付ける場合、1カ所だけ
は内層にするのが好ましい。内層だけに巻き付ける場合
はシャフト先端から全長の40%以内に行うのが好まし
い。しかし、複数箇所に巻き付ける場合はそのような必
要はない。
In the present invention, in order to wind a prepreg of a metal fiber or a metal powder (hereinafter, referred to as a metal fiber (powder)) around at least a part of the front end side of the shaft in the longitudinal direction, it is wound only on the inner layer on the front end side of the shaft. Thereafter, it is preferable to wind a prepreg of non-metallic fibers over the entire length. In particular, when the prepreg of the metal fiber (powder) is wound around the inner layer of the shaft in this manner, even if the prepreg is a metal fiber, the effect of the rigidity of the metal fiber is small, and the performance of the non-metal shaft is not lost, so that the mass is reduced. Is simply increased. Of course, the prepreg of the metal fiber (powder) can be wound around the middle layer or the outer layer. Also, when winding around a plurality of locations, it is preferable that only one location be an inner layer. When wound around only the inner layer, it is preferable to perform the winding within 40% of the entire length from the tip of the shaft. However, this is not necessary when winding around a plurality of locations.

【0009】シ−トワインディング法により金属繊維
(粉末)のプリプレグをシャフトの中間より先端側の少
なくとも一部に混入したシャフトを製造するには、例え
ば、芯金の中間より先端側の一部だけにまず金属繊維
(粉末)のプリプレグを巻き付け、次に、非金属繊維の
プリプレグを全長に巻き付け、その後、加熱により巻き
付けた内外のプリプレグ同士を相互に加熱硬化させて、
一体のシャフトにし、冷却後、芯金をシャフトから基部
方向に抜き取ればよい。しかし、芯金として、縦断面で
軸芯に対して基部から先端に向かって一定のテ−パ−角
で細くなった従来の丸棒形のものを使用すると、金属繊
維(粉末)のプリプレグを巻き付けた部分が他の部分よ
り肉厚になるため、盛り上がって外径が大きくなり、外
観を損なう。そこで、芯金は、金属繊維(粉末)のプリ
プレグ巻き付け部分を縦断面で中間部の先端方向延長線
より巻き付け後の肉厚に相当するだけ細くして、その細
くした部分に金属繊維(粉末)のプリプレグを巻き付け
た場合、その外径が中間部の先端方向延長線になるよう
にすればよい。
In order to manufacture a shaft in which a prepreg of a metal fiber (powder) is mixed into at least a part of the shaft from the center to the front end by the sheet winding method, for example, only a part of the core bar from the center to the front end is used. First, a prepreg of metal fiber (powder) is wound, then a prepreg of non-metal fiber is wound over the entire length, and then the inner and outer prepregs wound by heating are mutually heated and cured,
An integrated shaft may be formed, and after cooling, the core metal may be withdrawn from the shaft in the base direction. However, when a conventional round bar-shaped metal bar having a constant taper angle from the base to the tip with respect to the shaft core in a longitudinal cross section is used as the metal core, the prepreg of the metal fiber (powder) is used. Since the wound portion is thicker than the other portions, it swells to increase the outer diameter, which impairs the appearance. Therefore, the core metal is formed by thinning the prepreg-wound portion of the metal fiber (powder) in a longitudinal cross section from the extension line in the front end direction of the intermediate portion to a thickness corresponding to the thickness after winding, and the metal fiber (powder) is added to the thinned portion. When the prepreg is wound, the outer diameter of the prepreg may be set to be an extension of the intermediate portion in the distal direction.

【0010】また、細くする部分をシャフト縦断面で段
状に細くなるようにすると、金属繊維(粉末)のプリプ
レグを巻き付けた部分と非金属繊維のプリプレグだけの
部分とでは剛性が異なるため、シャフトが湾曲した場
合、段状部分に応力が集中し、破損することもある。こ
のため、細くする部分は縦断面でその基部側部分におけ
る軸芯に対するテ−パ−角を大きくして、基部に向かっ
て徐々に太くなるようにすることにより、巻き付けた金
属繊維(粉末)のプリプレグの肉厚が基部側に向かって
徐々に薄くなるようにするのが好ましい。
[0010] Further, if the portion to be thinned is made stepwise thin in the longitudinal section of the shaft, the rigidity is different between the portion where the prepreg of the metal fiber (powder) is wound and the portion where only the prepreg of the non-metallic fiber is used. When is curved, stress concentrates on the stepped portion, which may cause breakage. For this reason, the tapered angle with respect to the axis at the base side portion of the thinned portion is increased in the vertical section so that the tapered angle gradually increases toward the base, so that the wound metal fiber (powder) is reduced. It is preferable that the thickness of the prepreg be gradually reduced toward the base.

【0011】ここで、金属繊維としては、表2に例示し
たように、比重が7以上で、引張強度も大きいものを使
用すると、剛性を大きくできる。金属粉末も比重が7以
上の金属の粉末を使用すればよい。また、金属繊維のプ
リプレグ1には図1に示すように並列に並べた金属繊維
2の表裏に非金属繊維のプリプレグ3を貼付けたものま
たは片面だけに非金属繊維のプリプレグ3を貼付けたも
のを用いると、芯金が細くても巻き付けることができ
る。さらに、金属粉末のプリプレグ4には図2に示すよ
うに金属粉末5を分散させた合成樹脂シ−ト6の表裏に
非金属繊維のプリプレグ3を貼付けたものを用いればよ
い。いずれのプリプレグとも表裏に貼付ける非金属繊維
のプリプレグ3は表裏がともに同一のものでも、異なっ
たものでもよい。
Here, as shown in Table 2, the rigidity can be increased by using a metal fiber having a specific gravity of 7 or more and a large tensile strength as shown in Table 2. The metal powder may be a metal powder having a specific gravity of 7 or more. As shown in FIG. 1, a metal fiber prepreg 1 is a metal fiber 2 which is arranged in parallel as shown in FIG. 1 and a non-metal fiber prepreg 3 is adhered to the front and back of the metal fiber 2 or a non-metal fiber prepreg 3 is adhered to only one surface. If used, it can be wound even if the core metal is thin. Further, as the prepreg 4 of the metal powder, a prepreg 3 of non-metallic fibers attached to the front and back of a synthetic resin sheet 6 in which the metal powder 5 is dispersed may be used as shown in FIG. The prepreg 3 of the nonmetallic fiber to be stuck on the front and back of each prepreg may be the same or different on both sides.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【作用】本発明では、シャフトの一部に非金属繊維より
重く、剛性の劣る金属繊維(粉末)のプリプレグを混入
させるのであるから、非金属繊維のプリプレグだけを巻
き付けた従来のシャフトより先端の剛性はさほど増大せ
ず、また、混入はシャフトの長さ方向中間より先端側に
行って、シャフトの重心を先端から45〜51%に相当
する距離離れた位置に移動させ、しかも、シャフト先部
のEI値も従来の質量が80〜130gである場合の
2.5〜3.5kgf・m2から3.0〜4.5kgf・m2
増大させて、重心位置、剛性をスチ−ル金属シャフトの
値に近づけてあるので、カ−ボンシャフトでありながら
金属シャフトの性能を出すことができる。このため、ス
ウィング時のシャフト変形により生じるトウダウンは金
属シャフトのようになり、軌道も安定する。剛性の指標
であるEI値測定を先端から200mmの位置にしたの
はこの位置はトウダウンを左右するポイントであるから
である。また、その位置でのEI値を3.0〜4.5kg
f・m2にしたのは、3.0kgf・m2より小さいと、剛
性が軟らかいため、トウダウンが大きく、ブレが発生
し、4.5kgf・m2より大きいと、剛性が硬すぎるた
め、打感が悪くなるからである。なお、EI値の測定に
おける曲げたわみ量(mm)δ、中央荷重(20kg)
W、支点間距離(300mm)Lは図9に示すとおりで
ある。
According to the present invention, a prepreg of metal fiber (powder), which is heavier than non-metal fiber and less rigid, is mixed into a part of the shaft. The rigidity does not increase so much, and the mixing is performed at the distal end side from the middle in the longitudinal direction of the shaft to move the center of gravity of the shaft to a position corresponding to 45 to 51% from the distal end. EI value is increased from 2.5 to 3.5 kgf · m 2 when the conventional mass is 80 to 130 g to 3.0 to 4.5 kgf · m 2 , and the position of the center of gravity and the rigidity of steel are increased. Since the value is close to the value of the shaft, the performance of the metal shaft can be obtained while being a carbon shaft. For this reason, the toe down caused by the shaft deformation at the time of swing becomes like a metal shaft, and the track is also stabilized. The measurement of the EI value, which is an index of the rigidity, was set at a position 200 mm from the tip because this position is a point that affects toe-down. In addition, the EI value at that position is 3.0 to 4.5 kg.
Because to that in f · m 2 has a 3.0 kgf · m 2 less than the rigidity is soft, toe down large blur occurs, larger than 4.5 kgf · m 2, the stiffness is too hard, hitting This is because the feeling becomes worse. In addition, the amount of bending deflection (mm) δ and the center load (20 kg) in the measurement of the EI value
W and the distance between fulcrums (300 mm) L are as shown in FIG.

【0014】先端から重心までの距離が全長の45%未
満であると、スウィングバランスを金属シャフト製のゴ
ルフクラブと同じにするのにヘッドをかなり軽くしなけ
ればならないため、ヘッドのきかないクラブとなり、ス
ウィング軌道が安定せず、飛距離や方向性が不安定にな
ってしまう。一方、先端から重心までの距離が全長の5
1%を超えると、従来の非金属シャフトと変わらなくな
る。さらに、金属繊維(粉末)のプリプレグを巻き付け
てある部分は質量が急に増加するので、シャフトの単位
長さ当たりの質量も大きくなる。このため、全長の質量
分布は金属シャフトのように先端側と基部側で大きく、
中間部で小さくなる。もし、中間部の質量分布も大きい
と、中間部は硬いことになるので、シャフト全長が硬い
ことになり、非金属シャフト本来の性能の硬さやしなり
を発揮しないことになる。金属繊維(粉末)のプリプレ
グ混入によるシャフトの質量、重心、EI値などの調整
はプリプレグの金属繊維(粉末)の種類、使用量、太
さ、プリプレグ巻数などにより行う。金属シャフトと全
く同じ感触でスウィングするためには、シャフトの質量
を80〜130gにする必要がある。80g未満である
と、ヘッドスピ−ドは上がるが、軽すぎるため、安定性
がないが、80g以上になると、EI値が3.0〜4.5
kgf・m2で、しかも、重心位置が先端から全長の45
〜51%離れていれば、上記同様の良好な結果が得られ
る。一方、質量が130gより重くなると、ヘッドスピ
−ドが上がらず、飛距離が伸びない。質量は金属シャフ
トの一般的な質量である120g前後にするのが好まし
い。
If the distance from the tip to the center of gravity is less than 45% of the total length, the head must be made considerably lighter to make the swing balance the same as a golf club made of a metal shaft. As a result, the swing trajectory becomes unstable, and the flight distance and directionality become unstable. On the other hand, the distance from the tip to the center of gravity is 5
If it exceeds 1%, it is no different from a conventional non-metallic shaft. Further, since the mass of the metal fiber (powder) wrapped with the prepreg sharply increases, the mass per unit length of the shaft also increases. For this reason, the mass distribution of the full length is large on the tip side and the base side like a metal shaft,
Smaller in the middle. If the mass distribution of the intermediate portion is also large, the intermediate portion becomes hard, so that the entire length of the shaft becomes hard, and the non-metallic shaft does not exhibit the original hardness or flexibility. The adjustment of the mass, the center of gravity, the EI value, etc. of the shaft by mixing the metal fiber (powder) with the prepreg is performed according to the type, the used amount, the thickness, the number of prepreg windings, etc. of the metal fiber (powder) of the prepreg. In order to swing with the same feeling as a metal shaft, the mass of the shaft needs to be 80 to 130 g. If the weight is less than 80 g, the head speed is increased, but the head speed is too light, so there is no stability, but if the weight is 80 g or more, the EI value is 3.0 to 4.5.
kgf · m 2 and the position of the center of gravity is 45
If the distance is about 51%, the same good result as described above can be obtained. On the other hand, when the mass is heavier than 130 g, the head speed does not rise and the flight distance does not increase. The mass is preferably around 120 g, which is the general mass of a metal shaft.

【0015】[0015]

【実施例】実施例1 図3は、全長975mmの本発明のシャフトの先端側縦
断面を示すもので、7は先端部内層に設けられた金属繊
維のプリプレグ層(長さ280mm)、8は全長に設け
られた非金属繊維のプリプレグ層、9は先端にのみ設け
られた補助層で、金属繊維のプリプレグ層7は非金属繊
維のプリプレグ層8の円筒状内面より突出していて、基
部側の肉厚は端部に向かう程薄くなり、クサビ状になっ
ている。また、非金属繊維のプリプレグ層8は縦断面が
先端に向かって所定の角度でテ−パ−状に細くなってい
て、内層側がバイアス層10、外層側がストレ−ト層1
1になっている。
EXAMPLE 1 FIG. 3 shows a vertical cross section of the shaft of the present invention having a total length of 975 mm, in which 7 is a prepreg layer (280 mm in length) of metal fibers provided in the inner layer at the tip, and 8 is A prepreg layer 9 of non-metallic fibers provided over the entire length, 9 is an auxiliary layer provided only at the tip, and a prepreg layer 7 of metal fibers projects from a cylindrical inner surface of a prepreg layer 8 of non-metallic fibers. The wall thickness becomes thinner toward the end, forming a wedge shape. The non-metallic fiber prepreg layer 8 has a longitudinal section tapered at a predetermined angle toward the tip, with the inner layer side being the bias layer 10 and the outer layer side being the straight layer 1.
It is 1.

【0016】このシャフトの製造には、縦断面が先端に
向かってテ−パ−状に細くなった従来の芯金の軸芯に対
するテ−パ−角を先端側部分で中間部より大きくするこ
とにより、外径を徐々に細くして、先端側に金属繊維の
プリプレグ層7を収容する窪み12を設けた芯金13を
用いる。金属繊維のプリプレグ層7の形成は窪み12の
部分に図4に示すように金属繊維のプリプレグ1を中間
部のテ−パ−角と一致するまで巻き付け、巻き付け後の
縦断面が窪み12のない従来の芯金の形状になるように
することにより行う。この金属繊維のプリプレグ1とし
ては図1において金属繊維2をステンレス繊維(外径1
00μm、配列間隔0.5mm)の表側に炭素繊維のプ
リプレグ(樹脂はエポキシ樹脂)を貼付け、裏側にはガ
ラス繊維のプリプレグ(樹脂はエポキシ樹脂)を貼付け
たものを用いた。金属繊維のプリプレグ1は図5に示す
ように長さが窪み12の長さより短く、基部側が斜めに
切断されている。基部側を斜めに切断してあると、芯金
13の窪み12に巻き付けても、テ−パ−角が大きくな
り始めの部分の肉厚が急激に厚くならず、徐々に厚くな
る。
In manufacturing the shaft, the taper angle with respect to the axis of the conventional cored bar whose longitudinal section is tapered toward the tip is made larger at the tip end portion than at the middle portion. Accordingly, a core metal 13 whose outer diameter is gradually reduced, and a depression 12 for accommodating the prepreg layer 7 of the metal fiber is provided on the distal end side is used. As shown in FIG. 4, the metal fiber prepreg layer 7 is formed by winding the metal fiber prepreg 1 around the depression 12 until it matches the taper angle of the intermediate portion. This is performed by making the shape of a conventional cored bar. As the prepreg 1 of the metal fiber, the metal fiber 2 in FIG.
A carbon fiber prepreg (resin was an epoxy resin) was adhered to the front side having a thickness of 00 μm and an arrangement interval of 0.5 mm, and a glass fiber prepreg (resin was an epoxy resin) was adhered to the back side. As shown in FIG. 5, the metal fiber prepreg 1 has a length shorter than the length of the depression 12 and has a base portion obliquely cut. If the base side is cut obliquely, even when it is wound around the depression 12 of the cored bar 13, the taper angle does not suddenly increase, but gradually increases in thickness.

【0017】非金属繊維のプリプレグ層8の形成は、バ
イアス層10に図5に示すバイアス炭素繊維のプリプレ
グ(樹脂はエポキシ樹脂)14、14aを2枚巻き付
け、ストレ−ト層11にはストレ−ト炭素繊維のプリプ
レグ(樹脂はエポキシ樹脂)15、15a、15bを3
枚巻き付けた。また、補助層9にはストレ−ト炭素繊維
のプリプレグ15cを巻き付けた。以上のようにして金
属繊維や非金属繊維のプリプレグを芯金に巻き付けた
後、加熱して、巻き付けた内外のプリプレグ同士を相互
に加熱硬化させて、一体のシャフトにした。そして、冷
却後、芯金をシャフトから基部方向に抜き取り、仕上げ
後のこのシャフトの質量は120.6gで、重心位置は
先端から全長の49.4%であり、先端から200mm
でのEI値は3.7kgf・m2であった。なお、EI値
は前記(式1)により算出した。
The non-metallic fiber prepreg layer 8 is formed by winding two bias carbon fiber prepregs (resin is epoxy resin) 14 and 14a shown in FIG. Carbon fiber prepreg (resin is epoxy resin) 15, 15a, 15b
Wrapped. A prepreg 15c of straight carbon fiber was wound around the auxiliary layer 9. After the prepreg of the metal fiber or the non-metal fiber was wound on the core metal as described above, the inner and outer prepregs were heated and mutually cured by heating to form an integrated shaft. Then, after cooling, the core metal is withdrawn from the shaft in the base direction. The mass of this shaft after finishing is 120.6 g, the center of gravity is 49.4% of the entire length from the tip, and 200 mm from the tip.
Was 3.7 kgf · m 2 . The EI value was calculated by the above (Equation 1).

【0018】実施例2 実施例1において、非金属繊維のプリプレグ層8のバイ
アス層10とストレ−ト層11の間に実施例1の金属繊
維のプリプレグ1と同じ構造の金属繊維のプリプレグ1
a(但し、長さは480mm)を巻き付け、金属繊維の
プリプレグ層7aとした。このシャフトの質量は12
0.7gで、重心位置は先端から全長の50.1%であ
り、先端から200mmでのEI値は3.73kgf・m
2であった。図6にこのシャフトの先端側断面を、図7
に芯金13を用いた製造方法を、図8に巻き付けるプリ
プレグの順序を示す。
Example 2 In Example 1, a metal fiber prepreg 1 having the same structure as the metal fiber prepreg 1 of Example 1 was provided between the bias layer 10 and the straight layer 11 of the nonmetallic fiber prepreg layer 8.
a (however, the length is 480 mm) was wound to form a prepreg layer 7a of metal fibers. The mass of this shaft is 12
At 0.7 g, the center of gravity is 50.1% of the total length from the tip, and the EI value at 200 mm from the tip is 3.73 kgfm.
Was 2 . FIG. 6 shows a cross section of the shaft at the tip end, and FIG.
FIG. 8 shows a manufacturing method using the core metal 13 and the order of prepregs to be wound.

【0019】実施例3 実施例2において、金属繊維のプリプレグ1aの代わり
に金属粉末のプリプレグ4を巻き付けた。この金属粉末
のプリプレグ4としては図2において金属粉末5をタン
グステン粉末に、合成樹脂シ−ト6の樹脂をエポキシ樹
脂にし、かつ、表裏の非金属繊維のプリプレグ3をそれ
ぞれ炭素繊維のプリプレグ、ガラス繊維のプリプレグに
したものを用いた。このシャフトの質量は120.6g
で、重心位置は先端から全長の50.3%であり、先端
から200mmでのEI値は3.68kgf・m2であっ
た。
Example 3 In Example 2, metal powder prepreg 4 was wound instead of metal fiber prepreg 1a. As the prepreg 4 of this metal powder, in FIG. 2, the metal powder 5 is made of tungsten powder, the resin of the synthetic resin sheet 6 is made of epoxy resin, and the prepregs 3 of non-metallic fibers on the front and back are each made of carbon fiber prepreg and glass. A fiber prepreg was used. The mass of this shaft is 120.6g
The center of gravity was 50.3% of the total length from the tip, and the EI value at 200 mm from the tip was 3.68 kgf · m 2 .

【0020】実施例4 実施例2において、芯金13をやや太目のものに変更す
るとともに、バイアス炭素繊維のプリプレグ14、14
aを樹脂量と繊維量とを減らした高弾性のものに変更し
て、巻き付けを先端部に多く、基部に少なくすることに
より実施例2より軽量化した。このシャフトの質量は1
05.7gで、重心位置は先端から全長の50.5%であ
り、先端から200mmでのEI値は3.74kgf・m
2であった。
Example 4 In Example 2, the core metal 13 was changed to a slightly thicker one, and the prepregs 14 and 14 of the bias carbon fiber were used.
a was changed to a high elasticity resin having a reduced amount of resin and a small amount of fiber, and the amount of winding was increased at the front end portion and reduced at the base portion, whereby the weight was reduced as compared with Example 2. The mass of this shaft is 1
At 55.7 g, the center of gravity is 50.5% of the total length from the tip, and the EI value at 200 mm from the tip is 3.74 kgfm.
Was 2 .

【0021】実施例5 実施例4において、バイアス炭素繊維のプリプレグ1
4、14aを実施例4で使用したものよりさらに軽く、
高弾性のものに変更して、巻き付け回数を少なくするこ
とにより実施例4より軽量化した。こうして得られたシ
ャフトは、質量が96.1gで、重心位置は先端から全
長の49.3%であり、先端から200mmでのEI値
は3.74kgf・m2であった。
Example 5 In Example 4, the prepreg 1 of the bias carbon fiber was used.
4, 14a are lighter than those used in Example 4,
The weight was reduced compared to Example 4 by changing to a high elasticity one and reducing the number of windings. The shaft thus obtained had a mass of 96.1 g, the center of gravity was 49.3% of the total length from the tip, and the EI value at 200 mm from the tip was 3.74 kgf · m 2 .

【0022】比較例1 実施例2において、芯金を軸芯に対するテ−パ−角が先
端から基部に至るまで一定なものに変更するとともに、
金属繊維のプリプレグ1、1aも炭素繊維のプリプレグ
に変更することにより従来の典型的な非金属シャフトと
した。このシャフトの質量は102.7gで、重心位置
は先端から全長の52.8%であり、先端から200m
mでのEI値は3.18kgf・m2であった。
Comparative Example 1 In Example 2, the taper angle of the cored bar was changed to a constant taper angle from the tip to the base, and
Metal fiber prepregs 1 and 1a were also changed to carbon fiber prepregs to obtain conventional typical non-metal shafts. The mass of this shaft is 102.7 g, the center of gravity is 52.8% of the total length from the tip, and 200 m from the tip
The EI value at m was 3.18 kgf · m 2 .

【0023】比較例2 実施例2において、芯金を軸芯に対するテ−パ−角が先
端から基部に至るまで一定なものに変更するともに、金
属繊維のプリプレグ1、1aもガラス繊維のプリプレグ
に変更し、その変更した各プリプレグ1と1aとを2枚
に巻き付けた。このシャフトの質量は119.6gで、
重心位置は先端から全長の49.8%と先端側に移動し
ていた。そして、先端から200mmでのEI値は4.
90kgf・m2であった。
Comparative Example 2 In Example 2, the core metal was changed so that the taper angle with respect to the shaft core was constant from the tip to the base, and the prepregs 1 and 1a made of metal fibers were changed to prepregs made of glass fibers. Each of the prepregs 1 and 1a was wound around two sheets. The mass of this shaft is 119.6g,
The position of the center of gravity was 49.8% of the total length from the tip and moved toward the tip. The EI value at 200 mm from the tip is 4.
It was 90 kgf · m 2 .

【0024】比較例3 実施例2において、バイアス炭素繊維のプリプレグ1
4、14aを矩形に近い形状のものにして、金属繊維の
プリプレグ1aを2枚にし、重心位置を先端側にさらに
移動させた。このシャフトの質量は123.1gで、重
心位置は先端から全長の44.4%であり、先端から2
00mmでのEI値は4.06kgf・m2であった。
Comparative Example 3 In Example 2, prepreg 1 of bias carbon fiber was used.
4 and 14a were formed into a shape close to a rectangle, and two metal fiber prepregs 1a were used, and the position of the center of gravity was further moved to the tip side. The mass of this shaft is 123.1 g, the position of the center of gravity is 44.4% of the total length from the tip, and 2
The EI value at 00 mm was 4.06 kgf · m 2 .

【0025】以上のように作製した実施例1〜5、比較
例1〜3のシャフトの性能をまとめて表3に示す。ま
た、これらのシャフトを用いて5番アイアンクラブを作
製して、バランスの測定するとともに、以下の条件で実
打試験を行った。これらの結果を表4に示す。 (1)使用クラブ シャフト先端に246gのヘッドを、基部に48gのグ
リップをそれぞれ装着し、クラブ長さを38インチにし
たものとした。 (2)バランス 測定は(社)日本ゴルフ用品協会の定めるスウィングバ
ランス測定方法によった。この方法はゴルフクラブの基
部側端から14インチの位置を支点として支承して、ク
ラブを水平に保つのに必要な基部側の重量を算出し、そ
の重量とスウィングバランスのランク(…、D0、D
1、D2、D3、D4、…)との対照表からスウィング
バランスを測定する方法である。スウィングバランスの
ランクはアルファベット文字、数字が若いほどヘッドが
軽く感じられる。 (3)実打 ゴルフ歴が10年以上で、ハンディキャップ10以下の
プレヤ−を8人選定して、カ−ボンシャフトはブライン
ドテストを行い、評価項目別に5点法により採点し、そ
の平均値として算出した。 (4)トウダウン 飛行方向の後方から高速ビデオカメラを用い、図10に
示す方法でホゼル端から200mmの位置の接線Sと予
めクラブヘッドのバック面に記した基準線GLのなす角
度をアドレス時の角度αとインパクト時の角度βを測定
し、その差(β−α)をトウダウンとし、その平均値を
算出した。
Table 3 summarizes the performance of the shafts of Examples 1 to 5 and Comparative Examples 1 to 3 produced as described above. Further, a No. 5 iron club was manufactured using these shafts, the balance was measured, and an actual hit test was performed under the following conditions. Table 4 shows the results. (1) Club used The head of 246 g was attached to the tip of the shaft, and the grip of 48 g was attached to the base, so that the club length was 38 inches. (2) The balance was measured by the swing balance measurement method specified by the Japan Golf Equipment Association. In this method, a golf club is supported at a position 14 inches from the base end of the golf club as a fulcrum, and the base weight required to keep the club horizontal is calculated, and the weight and the swing balance rank (..., D0, D
1, D2, D3, D4,...). The swing balance rank is such that the younger the alphabet letters and numbers, the lighter the head. (3) Actual hitting Eight players with golf history of 10 years or more and a handicap of 10 or less are selected, the carbon shaft is subjected to a blind test, and each evaluation item is scored by a 5-point method, and the average value is obtained. It was calculated as (4) Toe-down Using a high-speed video camera from the rear in the flight direction, the angle between the tangent S at a position 200 mm from the end of the hosel and the reference line GL previously written on the back surface of the club head by the method shown in FIG. The angle α and the angle β at the time of impact were measured, and the difference (β−α) was defined as toe-down, and the average value was calculated.

【0026】[0026]

【表3】 (注1)外径は先端から200mmの位置を測定した。 (注2)参考例1、2は市販スチ−ルシャフトである。[Table 3] (Note 1) The outer diameter was measured at a position 200 mm from the tip. (Note 2) Reference Examples 1 and 2 are commercially available steel shafts.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】以上のように、本発明のゴルフクラブシ
ャフトは、シャフトの長さ方向中間より先端側の少なく
とも一部に金属繊維または金属粉末のプリプレグを巻き
付けることにより非金属繊維のプリプレグ中に混入させ
て、先端から200mmの位置でのEI値が3.0〜4.
5kgf・m2、また、その質量が80〜130gで、そ
の重心位置が先端から全長の45〜51%に相当する距
離離れた位置に存在するようにしてあるので、非金属シ
ャフトであっても、上級者の好む金属シャフトの特性を
有し、飛距離および方向性が良く、しかも、感触の良い
シャフトを提供できる。
As described above, in the golf club shaft of the present invention, the prepreg of the non-metallic fiber is formed by winding the prepreg of the metal fiber or the metal powder around at least a part of the shaft from the middle in the longitudinal direction of the shaft. And the EI value at a position 200 mm from the tip is 3.0 to 4.0.
5 kgf · m 2 , its mass is 80 to 130 g, and its center of gravity is located at a position corresponding to 45 to 51% of the total length from the tip, so even if it is a non-metallic shaft, It is possible to provide a shaft that has the characteristics of a metal shaft preferred by advanced users, has a good flight distance and directionality, and has a good feel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属繊維のプリプレグ断面図である。FIG. 1 is a cross-sectional view of a prepreg of a metal fiber.

【図2】金属粉末のプリプレグ断面図である。FIG. 2 is a cross-sectional view of a prepreg of a metal powder.

【図3】本発明のゴルフクラブシャフトの第1実施例の
縦断面図である。
FIG. 3 is a longitudinal sectional view of a first embodiment of the golf club shaft of the present invention.

【図4】芯金にプリプレグを巻き付けて、第1実施例の
ゴルフクラブシャフトを製造する場合の縦断面図であ
る。
FIG. 4 is a longitudinal sectional view in a case where a prepreg is wound around a core metal to manufacture the golf club shaft of the first embodiment.

【図5】第1実施例のゴルフクラブシャフトの製造に用
いたプリプレグの構成を示すものである。
FIG. 5 shows a configuration of a prepreg used for manufacturing the golf club shaft of the first embodiment.

【図6】本発明のゴルフクラブシャフトの第2実施例縦
断面図である。
FIG. 6 is a longitudinal sectional view of a golf club shaft according to a second embodiment of the present invention.

【図7】芯金にプリプレグを巻き付けて、第2実施例の
ゴルフクラブシャフトを製造する場合の縦断面図であ
る。
FIG. 7 is a longitudinal sectional view in the case where a prepreg is wound around a cored bar to manufacture the golf club shaft of the second embodiment.

【図8】第2実施例のゴルフクラブシャフトの製造に用
いたプリプレグの構成を示すものである。
FIG. 8 shows a configuration of a prepreg used for manufacturing the golf club shaft of the second embodiment.

【図9】EI値の測定方法を示すものである。FIG. 9 shows a method of measuring an EI value.

【図10】ゴルフクラブのトウダウンの測定方法を示す
もので、(A)はアドレス時のゴルフクラブ先端側を示
し、(B)はインパクト時のゴルフクラブ先端側を示し
ている。
10A and 10B show a method of measuring the toe-down of a golf club, wherein FIG. 10A shows the golf club tip side at the time of addressing, and FIG. 10B shows the golf club tip side at the time of impact.

【符号の説明】[Explanation of symbols]

1、1a 金属繊維のプリプレグ 2 金属繊維 3 非金属繊維のプリプレグ 4 金属粉末のプリプレグ 5 金属粉末 6 合成樹脂シ−ト 7、7a 金属繊維のプリプレグ層 8 非金属繊維のプリプレグ層 9 補助層 10 バイアス層 11 ストレ−ト層 12 窪み 13 芯金 14、14a バイアス炭素繊維のプリプレグ 15、15a、15b、15c ストレ−ト炭素繊維の
プリプレグ
DESCRIPTION OF SYMBOLS 1, 1a Metal fiber prepreg 2 Metal fiber 3 Nonmetal fiber prepreg 4 Metal powder prepreg 5 Metal powder 6 Synthetic resin sheet 7, 7a Metal fiber prepreg layer 8 Nonmetal fiber prepreg layer 9 Auxiliary layer 10 Bias Layer 11 Straight layer 12 Depression 13 Metal core 14, 14a Pre-preg of bias carbon fiber 15, 15a, 15b, 15c Pre-preg of straight carbon fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非金属繊維のプリプレグを芯金に複数
回巻き付けて、その巻き付けた内外プリプレグ同士を加
熱硬化させることによりシャフトとした後、芯金をシャ
フトから引き抜いてなる非金属シャフトにおいて、先端
から200mmの位置での下記(式1)より算出したE
I値が3.0〜4.5kgf・m2で、かつ、シャフトの長
さ方向中間より先端側の少なくとも一部に金属繊維また
は金属粉末のプリプレグを巻き付けることにより非金属
繊維のプリプレグ中に混入させて、その質量が80〜1
30gで、シャフトの重心が先端から全長の45〜51
%に相当する距離離れた位置に存在するようにしたこと
を特徴とするゴルフクラブのシャフト。 【数1】 ここで、δ 曲げたわみ量(mm) W 中央荷重(20kg) L 支点間距離(300mm)
1. A non-metallic shaft obtained by winding a prepreg of a non-metallic fiber around a core metal a plurality of times, heating and curing the wrapped inner and outer prepregs together, and then pulling out the core metal from the shaft. E calculated from the following (Equation 1) at a position 200 mm from
I value is 3.0 to 4.5 kgf · m 2 , and metal fiber or metal powder prepreg is wrapped around at least a part of the shaft from the middle in the longitudinal direction of the shaft to be mixed into the prepreg of non-metallic fiber. Let the mass be 80-1
30g, the center of gravity of the shaft is 45 to 51
%. The shaft of a golf club, wherein the shaft is located at a position corresponding to a distance corresponding to%. (Equation 1) Here, δ bending deflection (mm) W center load (20 kg) L distance between fulcrums (300 mm)
【請求項2】 金属繊維または金属粉末のプリプレグ
をシャフト先端側の内層だけに巻き付けた後、その上に
非金属繊維のプリプレグを全長にわたり巻き付けたこと
を特徴とする請求項1に記載のゴルフクラブのシャフ
ト。
2. The golf club according to claim 1, wherein a prepreg of a metal fiber or a metal powder is wound only on the inner layer on the tip end side of the shaft, and a prepreg of a non-metallic fiber is wound thereon over the entire length. Shaft.
JP30521899A 1999-10-27 1999-10-27 Golf club shaft Expired - Lifetime JP3617797B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30521899A JP3617797B2 (en) 1999-10-27 1999-10-27 Golf club shaft
US09/736,975 US20020107089A1 (en) 1999-10-27 2000-12-14 Golf club shaft formed from metal-containing prepreg and non-metal fiber prepreg and method of making the same
US10/097,831 US20020123392A1 (en) 1999-10-27 2002-03-13 Golf club shaft formed from metal-containing prepreg and non-metal fiber prepreg and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30521899A JP3617797B2 (en) 1999-10-27 1999-10-27 Golf club shaft
US09/736,975 US20020107089A1 (en) 1999-10-27 2000-12-14 Golf club shaft formed from metal-containing prepreg and non-metal fiber prepreg and method of making the same

Publications (2)

Publication Number Publication Date
JP2001120696A true JP2001120696A (en) 2001-05-08
JP3617797B2 JP3617797B2 (en) 2005-02-09

Family

ID=26564213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30521899A Expired - Lifetime JP3617797B2 (en) 1999-10-27 1999-10-27 Golf club shaft

Country Status (2)

Country Link
US (2) US20020107089A1 (en)
JP (1) JP3617797B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102884A (en) * 2001-09-28 2003-04-08 Sumitomo Rubber Ind Ltd Golf club shaft and method for manufacturing golf club shaft
US8517857B2 (en) 2010-11-24 2013-08-27 Fujikura Rubber Ltd. Golf club shaft and method of producing the same
US8715101B2 (en) 2011-11-22 2014-05-06 Mizuno Corporation Iron golf club
JP2015231426A (en) * 2014-06-09 2015-12-24 ブリヂストンスポーツ株式会社 Golf club and shaft

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092330A1 (en) * 2002-11-12 2004-05-13 Meyer Jeffrey W. Hybrid golf club shaft
US20040138000A1 (en) * 2003-01-15 2004-07-15 Braly W. Kim Lightweight, durable golf club shafts
US20050233839A1 (en) * 2004-04-16 2005-10-20 Adams Jonathan R Design for lacrosse stick and method of using same
CN101903066B (en) * 2007-12-21 2013-05-01 伊萨伦公司 Set of golf clubs
US7862447B2 (en) * 2008-02-25 2011-01-04 Daniel You Matrix composite golf club shaft and mandrel
JP4335289B1 (en) * 2008-03-14 2009-09-30 藤倉ゴム工業株式会社 Golf club shaft and golf club
SE532872C2 (en) * 2008-06-13 2010-04-27 Isaren Ab A method of designing a golf club
JP6166141B2 (en) * 2013-10-02 2017-07-19 ダンロップスポーツ株式会社 Golf club shaft
JP6411096B2 (en) * 2014-07-01 2018-10-24 株式会社本間ゴルフ Golf club shaft
US20160250530A1 (en) * 2015-02-26 2016-09-01 Acushnet Company Golf club with improved weighting
US10857433B2 (en) 2018-01-31 2020-12-08 Breakthrough Golf Technology, Llc Golf shaft system and golf shaft
US10213666B1 (en) 2018-01-31 2019-02-26 Breakthrough Golf Technology Llc Golf shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015130A (en) * 1996-07-09 1998-01-20 Fujikura Rubber Ltd Shaft for putter
JPH1133150A (en) * 1997-07-14 1999-02-09 Somar Corp Shaft for golf club and golf club with this shaft
JPH11164919A (en) * 1997-12-04 1999-06-22 Mitsubishi Rayon Co Ltd Shaft for golf club

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347132A (en) * 1976-10-13 1978-04-27 Hitachi Construction Machinery Control method of facing stability of tunnel excavator
JPH0271771A (en) * 1988-09-05 1990-03-12 Ryobi Ltd Golf shaft and manufacture thereof
JPH0790046B2 (en) * 1989-01-24 1995-10-04 株式会社本間ゴルフ Golf shaft
US6273830B1 (en) * 1996-04-19 2001-08-14 Nippon Mitsubishi Oil Corporation Tapered hollow shaft
US5820483A (en) * 1997-01-13 1998-10-13 Callaway Golf Company Reduced weight golf club shafts
US6309309B1 (en) * 1997-05-09 2001-10-30 Taylor Made Golf Company, Inc Oversized iron-type golf club
US6126557A (en) * 1997-08-26 2000-10-03 Callaway Golf Company Golf club shafts and methods of manufacturing the same
TW367873U (en) * 1999-02-09 1999-08-21 Paderson Sporting Goods Co Ltd Improved structure for shaft of golf clubs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015130A (en) * 1996-07-09 1998-01-20 Fujikura Rubber Ltd Shaft for putter
JPH1133150A (en) * 1997-07-14 1999-02-09 Somar Corp Shaft for golf club and golf club with this shaft
JPH11164919A (en) * 1997-12-04 1999-06-22 Mitsubishi Rayon Co Ltd Shaft for golf club

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102884A (en) * 2001-09-28 2003-04-08 Sumitomo Rubber Ind Ltd Golf club shaft and method for manufacturing golf club shaft
US8517857B2 (en) 2010-11-24 2013-08-27 Fujikura Rubber Ltd. Golf club shaft and method of producing the same
US8715101B2 (en) 2011-11-22 2014-05-06 Mizuno Corporation Iron golf club
JP2015231426A (en) * 2014-06-09 2015-12-24 ブリヂストンスポーツ株式会社 Golf club and shaft
US9463362B2 (en) 2014-06-09 2016-10-11 Bridgestone Sports Co., Ltd. Golf club and shaft

Also Published As

Publication number Publication date
JP3617797B2 (en) 2005-02-09
US20020123392A1 (en) 2002-09-05
US20020107089A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
JP2001120696A (en) Shaft of golf club
US4165874A (en) Golf club shaft and set of golf clubs
US7736245B2 (en) Golf club shaft and golf club
US10391373B2 (en) Golf club with improved weighting
US6908401B2 (en) Shaft for use in golf clubs and other shaft-based instruments and method of making the same
JP2010154875A (en) Shaft set for golf club and club set with it
JP4410668B2 (en) Golf club
JP3540195B2 (en) Fiber reinforced plastic golf club shaft
US9463362B2 (en) Golf club and shaft
KR102418078B1 (en) Golf club shaft
US6565450B1 (en) Golf club set
JP4263314B2 (en) Golf club shaft and golf club
JP2018171391A (en) Golf shaft for putter
JPH0838659A (en) Shaft for golf club
JPH11206933A (en) Golf club shaft
JP2002224256A (en) Golf shaft and golf club incorporated with golf shaft
JP4055835B2 (en) Golf club classification method
JP2003093562A (en) Golf club set
JP2023044829A (en) badminton racket
JP2009240627A (en) Golf club
JP2023044826A (en) badminton racket
JP2022068723A (en) Golf club shaft
JP2018171343A (en) Golf shaft for putter
JP2023044827A (en) badminton racket
JP3078194U (en) Golf club shaft

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Ref document number: 3617797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term