JP2001107160A - Constant electric resistance alloy for high temperature and high pressure, its producing method and sensor - Google Patents

Constant electric resistance alloy for high temperature and high pressure, its producing method and sensor

Info

Publication number
JP2001107160A
JP2001107160A JP31576399A JP31576399A JP2001107160A JP 2001107160 A JP2001107160 A JP 2001107160A JP 31576399 A JP31576399 A JP 31576399A JP 31576399 A JP31576399 A JP 31576399A JP 2001107160 A JP2001107160 A JP 2001107160A
Authority
JP
Japan
Prior art keywords
less
temperature
electric resistance
alloy
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31576399A
Other languages
Japanese (ja)
Other versions
JP4283954B2 (en
Inventor
Yuetsu Murakami
雄悦 村上
Takeshi Masumoto
剛 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP31576399A priority Critical patent/JP4283954B2/en
Publication of JP2001107160A publication Critical patent/JP2001107160A/en
Application granted granted Critical
Publication of JP4283954B2 publication Critical patent/JP4283954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a constant electric resistance alloy usable in an environment of high temperature and high pressure, high in tensile strength and small in the temperature coefficient of electric resistance, to provide a method for producing the same and to obtain an eddy current type sensor using the alloy. SOLUTION: This constant electric resistance alloy for high temperature and high pressure has a composition containing Ag, and the balance Pd as the main components and containing one or two or more elements selected from Mn, Ta, W, Fe, Co, Ni, Re, Os, Ru, Rh, Mo, Nb, In, V, Ge, Ti, Zr, Hf, Cr, Tl, Be, Ga, Al, Si, Sn, Sb, Bi, Zn, Cd, rare earth elements, C, B and P as assistant components, has high tensile strength and has a temperature coefficient of electric resistance at 0 to 600 deg.C of 100×10-6/ deg.C to -100×10-6/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、重量比にて、Agおよ
び残部Pdを主成分とし、副成分としてMn、Ta、
W、Fe、Co、Ni、Re、Os、Ru、Rh、M
o、Nb、In,V、Ge、Ti、Zr、Hf、Cr、
Tl、Be、Ga、Al、Si、Sn、Sb、Bi、Z
n、Cd、希土類元素、C、B、Pと少量の不純物とか
らなり、引張強さが大きく、0〜600℃における電気
抵抗の小さい温度係数を有する高温高圧用恒電気抵抗合
金に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a composition comprising, as a main component, Ag and the balance Pd, and Mn, Ta,
W, Fe, Co, Ni, Re, Os, Ru, Rh, M
o, Nb, In, V, Ge, Ti, Zr, Hf, Cr,
Tl, Be, Ga, Al, Si, Sn, Sb, Bi, Z
The present invention relates to a high-temperature and high-pressure constant electric resistance alloy comprising n, Cd, a rare earth element, C, B, P and a small amount of impurities, having a high tensile strength and a low temperature coefficient of electric resistance at 0 to 600 ° C. .

【0002】さらに詳しくは、本発明は上記恒電気抵抗
合金の線材または板材を200〜1200℃の大気中、
真空中または非酸化性雰囲気中において2秒以上100
時間以下加熱することにより、0〜600℃における電
気抵抗の小さい温度係数と大きな引張強さを有する高温
高圧用恒電気抵抗合金およびその製造法ならびに該合金
を使用した渦電流式変位センサを提供するにある。
More specifically, the present invention relates to a wire or plate made of the above-mentioned constant electric resistance alloy in air at 200 to 1200 ° C.
100 seconds or more in vacuum or non-oxidizing atmosphere
Provided are a high-temperature and high-pressure constant electric resistance alloy having a low temperature coefficient of electric resistance at 0 to 600 ° C. and a large tensile strength by heating for 0 to 600 ° C. or less, a method for producing the same, and an eddy current displacement sensor using the alloy. It is in.

【0003】[0003]

【従来の技術】近年、エレクトロニクス関連機器におけ
る部品、例えば渦電流式センサ等では、その小型化、高
性能化さらには耐環境性の向上のために、これらの部品
に使用される熱的安定性に優れた電気抵抗合金材料の開
発が強く要望されている。また、それらのデバイスを特
殊環境下、特に高温で安定に動作させるために、高温に
おける熱的安定性に優れた電気抵抗合金材料の開発が強
く要望されている。
2. Description of the Related Art In recent years, the thermal stability of components used in electronics-related equipment, such as eddy current sensors, has been used to reduce the size, improve performance, and improve environmental resistance. There is a strong demand for the development of an electric resistance alloy material having excellent resistance. In addition, in order to operate these devices stably in a special environment, particularly at a high temperature, development of an electric resistance alloy material having excellent thermal stability at a high temperature is strongly demanded.

【0004】高温で高圧の環境において使用される恒電
気抵抗合金に求められる必要条件としては、比電気抵抗
が適当な値を有すること、比電気抵抗の温度係数が小さ
いこと、必要とする引張強さを有すること等が重要であ
り、その他電気抵抗の経時変化が少ないこと、ろう付け
性に優れていること、加工しやすいこと、化学的に安定
であること、絶縁体とのなじみ性に優れていること等も
重要である。
The requirements for a constant electric resistance alloy used in a high temperature and high pressure environment include a specific electric resistance having an appropriate value, a small temperature coefficient of the specific electric resistance, and a required tensile strength. It is important that the material has good electrical properties, and that there is little change over time in electrical resistance, excellent brazing properties, easy processing, chemical stability, and excellent compatibility with insulators. Is important.

【0005】従来電気抵抗が小さい材料としては、銀、
銅および金等の純金属が考えられるが、いずれも電気抵
抗の温度係数が4000×10−6/℃以上の大きな値
を有するため、本発明の目的とするセンサデバイスへの
応用化は難しい。電気抵抗の温度係数は、一般にTCR
(単位:ppm/℃または10−6/℃)で示され、温
度TとT(T<Tとする)との間におけるその
値は次の式で表される。
Conventionally, materials having a low electric resistance include silver,
Pure metals such as copper and gold are conceivable, but all have a large temperature coefficient of electric resistance of 4000 × 10 −6 / ° C. or more, so that it is difficult to apply the present invention to a sensor device as an object of the present invention. The temperature coefficient of electrical resistance is generally TCR
(Unit: ppm / ° C. or 10 -6 / ° C.) is indicated by, the value between the temperature T a and T b (and T a <T b) is expressed by the following equation.

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで、pおよびp、ならびにR
よびRはそれぞれTおよびTの温度における比電
気抵抗値ならびに電気抵抗値を示す。ところで、これら
銀、銅および金にNi、Mn、CoあるいはCr等を少
量添加することによって電気特性がかなり改善されるこ
とが知られている。その他、Cu−Ni−Au系合金等
がある。これらの材料はいずれも電気抵抗の温度係数が
負値あるいは100x10−6/℃以下の極めて小さい
値を有することから、電気抵抗材料への実用化に際して
合金の優れた特性を十分に発揮し得る。しかし、これら
の材料は多くの欠点を有する。例えば、素材が硬く可撓
性が劣ること、化学的安定性にかけること、あるいは熱
エージングによる電気抵抗の経時変化が生ずること等が
あった。また、これらは高温での特性が悪く、高い温度
で使用するセンサ等に応用することは不可能であった。
[0007] Here, shown p a and p b, as well as the specific electric resistance and electrical resistance at a temperature of R a and R b are each T a and T b. By the way, it is known that the electrical properties are considerably improved by adding a small amount of Ni, Mn, Co or Cr to silver, copper and gold. In addition, there are Cu-Ni-Au alloys and the like. Each of these materials has a negative temperature coefficient of electric resistance or an extremely small value of 100 × 10 −6 / ° C. or less, so that the alloy can sufficiently exhibit excellent properties when put into practical use as an electric resistance material. However, these materials have many disadvantages. For example, the material was hard and inferior in flexibility, was subjected to chemical stability, or the electrical resistance changed with time due to thermal aging. In addition, they have poor characteristics at high temperatures, and cannot be applied to sensors and the like used at high temperatures.

【0008】[0008]

【発明が解決しようとする課題】近年、高温で高圧の流
体を取り扱う回転機、例えば火力発電機および地熱発電
機における蒸気タービンのロータ等の挙動解析を渦電流
式センサによって行うが、高温・高圧の環境の使用に耐
え得る恒電気抵抗材料が存在しないのが現状である。す
なわち、高温用の電気抵抗材料としては、耐酸化性の良
好なPt−Rh合金等が用いられるが、その電気抵抗の
温度係数は1000x10−6/℃以上と大きく、また
Pd−Ag系合金は電気抵抗の温度係数が非常に小さい
が、特に引張強さが小さいので断線するため、実用に供
することができないという問題がある。
In recent years, eddy current sensors have been used to analyze the behavior of rotating machines that handle high-temperature, high-pressure fluids, such as steam turbine rotors in thermal power generators and geothermal power generators. At present, there is no constant electric resistance material that can withstand the use of the environment. That is, as a high-temperature electric resistance material, a Pt-Rh alloy or the like having good oxidation resistance is used, and the temperature coefficient of the electric resistance is as large as 1000 × 10 −6 / ° C. or more. Although the temperature coefficient of the electric resistance is very small, there is a problem that the wire is disconnected because of particularly low tensile strength, so that it cannot be put to practical use.

【0009】[0009]

【問題点を解決する手段】そこで本発明は、室温から高
温に至るまで電気抵抗の温度係数が小さく、且つ高温に
おいても引張強さの大きい、従来にない優れた特性を有
する恒電気抵抗合金に関するものであり、関連産業界の
要請に応えるべく、鋭意研究されたものである。その結
果、0〜600℃の温度において優れた電気特性を有
し、引張強さの大きな新規な電気抵抗合金を発見し、ま
た該合金の独創的な製造技術を開発し、さらに該合金か
らなる線材もしくは板材などを使用した高性能な渦電流
式センサの開発に成功した。
SUMMARY OF THE INVENTION Accordingly, the present invention relates to a constant electric resistance alloy having a low temperature coefficient of electric resistance from room temperature to a high temperature and a high tensile strength even at a high temperature, which has unprecedented excellent properties. It has been intensively researched to meet the needs of related industries. As a result, a new electric resistance alloy having excellent electric properties at a temperature of 0 to 600 ° C. and having a large tensile strength was discovered, and a unique manufacturing technique for the alloy was developed. We succeeded in developing a high-performance eddy current sensor using wires or plates.

【0010】以下に、本発明合金の製造法について具体
的に説明する。重量比にて、Ag37〜47%および残
部Pdを主成分とし、副成分としてMn、Ta、W、F
eおよびCoをそれぞれ7%、Ni、Re、Os、Ru
およびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなる組成の原料を大気中、好まし
くは真空中あるいは非酸化性ガス(アルゴン、窒素、水
素、ヘリウムなど)などの雰囲気中において、適当な溶
解炉(高周波誘導溶解炉、電気炉、タンマン炉、アーク
溶解炉など)によって溶解した後、溶融した該合金を適
当な材質、形状および大きさの鋳型(金型、耐熱性坩堝
など)で鋳造するか、あるいは連続凝固法(ゾーンメル
ト法、タンマン−ブリッジマン法、高温鋳型法、引き上
げ法、吸い上げ法、浮遊帯域溶解法など)によって、所
望の形状、例えばインゴット、スラブあるいは丸棒等の
素材となす。ついで必要ならば、該素材を大気中、好ま
しくは非酸化性ガスなどの雰囲気中あるいは真空中にお
いて500〜1200℃の温度で適当な時間加熱後室温
まで適当な速度で冷却する。その後該素材を、必要なら
ば鍛造または熱間圧延などの熱間加工を施し、さらにス
ウェージング機、圧延機あるいは冷間線引機等により、
また必要ならば加工の中間で500〜1200℃の温度
で軟化焼鈍を施しながら、冷間加工、好ましくは加工率
25%以上の冷間加工を施して箔、細線、例えば線径1
0〜100μmあるいはリボン等の線材となす。最後
に、該線材を、例えば耐熱性の細いパイプを有する適当
な長さの加熱帯と冷却帯から構成された電気炉により大
気中、好ましくは真空中あるいは非酸化性雰囲気中にお
いて200〜1200℃の温度で2秒以上100時間以
下加熱焼鈍するか、あるいは適度な速度、例えば0.5
〜10m/分の速度で連続熱処理を施すことにより、引
張強さが大きく、0〜600℃における電気抵抗の温度
係数が100x10−6/℃〜−100x10−6/℃
を有する合金が得られる。
Hereinafter, a method for producing the alloy of the present invention will be specifically described. By weight ratio, 37-47% of Ag and the balance Pd are the main components, and Mn, Ta, W, F as subcomponents.
e and Co each in 7%, Ni, Re, Os, Ru
And Rh are respectively 5% or less, and Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
A raw material having a composition comprising a small amount of impurities and a suitable melting furnace (high-frequency induction melting furnace, electric furnace) in an atmosphere, preferably in a vacuum or in an atmosphere such as a non-oxidizing gas (argon, nitrogen, hydrogen, helium, etc.). Furnace, tanman furnace, arc melting furnace, etc.) and then cast the melted alloy in a mold (mold, heat-resistant crucible, etc.) of appropriate material, shape and size, or a continuous solidification method (zone A material having a desired shape, for example, an ingot, a slab or a round bar is formed by a melt method, a Tamman-Bridgeman method, a high-temperature mold method, a pulling method, a suction method, a floating zone melting method, or the like. Then, if necessary, the material is heated at a temperature of 500 to 1200 ° C. for a suitable time in the atmosphere, preferably in an atmosphere such as a non-oxidizing gas or in a vacuum, and then cooled to a room temperature at a suitable rate. Thereafter, the material is subjected to hot working such as forging or hot rolling if necessary, and further by a swaging machine, a rolling mill or a cold drawing machine, or the like.
If necessary, cold working, preferably at a working rate of 25% or more, is performed while softening and annealing at a temperature of 500 to 1200 ° C. in the middle of working to obtain a foil, a thin wire, for example, having a wire diameter of 1%.
A wire material such as 0 to 100 μm or a ribbon. Finally, the wire is heated to 200 to 1200 ° C. in the air, preferably in a vacuum or in a non-oxidizing atmosphere by an electric furnace having a heating zone and a cooling zone of a suitable length having a heat-resistant thin pipe, for example. At a temperature of 2 seconds or more and 100 hours or less, or at an appropriate speed, for example, 0.5
By performing continuous heat treatment at a speed of 〜1010 m / min, the tensile strength is large, and the temperature coefficient of electric resistance at 0 to 600 ° C. is 100 × 10 −6 / ° C. to −100 × 10 −6 / ° C.
Is obtained.

【0011】本発明の特徴とするところは以下の点にあ
る。第1発明は、重量比にて、Ag37〜47%および
残部Pdを主成分とし、副成分としてMn、Ta、W、
FeおよびCoをそれぞれ7%、Ni、Re、Os、R
uおよびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなり、引張強さが大きく、0〜6
00℃における電気抵抗の温度係数が100x10−6
/℃〜−100x10−6/℃を有することを特徴とす
る高温高圧用恒電気抵抗合金に関するものである。
The features of the present invention are as follows. The first invention comprises, as a main component, 37 to 47% of Ag and the balance Pd by weight, and Mn, Ta, W,
Fe and Co are each 7%, Ni, Re, Os, R
u and Rh are respectively 5% or less, Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
And a small amount of impurities.
Temperature coefficient of electric resistance at 100 ° C. is 100 × 10 −6
/ ° C to −100 × 10 −6 / ° C.

【0012】第2発明は、重量比にて、Ag37〜47
%および残部Pdを主成分とし、副成分としてMn、T
a、W、FeおよびCoをそれぞれ7%、Ni、Re、
Os、RuおよびRhをそれぞれ5%以下、Mo、N
b、In,V、Ge、Ti、Zr、Hf、CrおよびT
lをそれぞれ3%以下、Be、Ga、Al、Si、Sn
およびSbをそれぞれ2%以下、Bi、Zn、Cd、希
土類元素をそれぞれ1%以下、C、BおよびPをそれぞ
れ0.5%以下の1種あるいは2種以上の合計0.00
1〜10%と少量の不純物とからなる組成の原料を、大
気中、真空中あるいは非酸化性雰囲気中で溶解し、この
鋳塊を700℃以上の温度で鍛造により所望の形状とな
し、ついでこれを加工率25%以上の冷間加工により
箔、細線あるいはリボン等の線材となす。さらに200
〜1200℃の大気中、真空中あるいは非酸化性雰囲気
中において2秒以上100時間以下加熱することによ
り、引張強さが大きく、0〜600℃における電気抵抗
の温度係数が100x10−6/℃〜−100x10
−6/℃を有することを特徴とする高温高圧用恒電気抵
抗合金の製造法に関するものである。
In the second invention, Ag 37 to 47 in weight ratio is used.
% And the balance Pd as main components, and Mn and T as subcomponents.
a, W, Fe and Co are each 7%, Ni, Re,
Os, Ru and Rh are each 5% or less, Mo, N
b, In, V, Ge, Ti, Zr, Hf, Cr and T
1 to 3% or less, respectively, Be, Ga, Al, Si, Sn
And Sb are 2% or less, respectively, Bi, Zn, Cd, and rare earth elements are 1% or less, respectively, and C, B, and P are each 0.5% or less.
A raw material having a composition of 1 to 10% and a small amount of impurities is dissolved in the air, in a vacuum, or in a non-oxidizing atmosphere, and the ingot is formed into a desired shape by forging at a temperature of 700 ° C. or higher. This is made into a wire material such as a foil, a thin wire or a ribbon by cold working at a working ratio of 25% or more. 200 more
By heating in the atmosphere at 1200 to 1200 ° C. in the air, in a vacuum or in a non-oxidizing atmosphere for 2 seconds to 100 hours, the tensile strength is large, and the temperature coefficient of electric resistance at 0 to 600 ° C. is 100 × 10 −6 / ° C. -100x10
The present invention relates to a method for producing a high-temperature and high-pressure constant electric resistance alloy having a temperature of −6 / ° C.

【0013】第3発明は、重量比にて、Ag37〜47
%および残部Pdを主成分とし、副成分としてMn、T
a、W、FeおよびCoをそれぞれ7%、Ni、Re、
Os、RuおよびRhをそれぞれ5%以下、Mo、N
b、In,V、Ge、Ti、Zr、Hf、CrおよびT
lをそれぞれ3%以下、Be、Ga、Al、Si、Sn
およびSbをそれぞれ2%以下、Bi、Zn、Cd、希
土類元素をそれぞれ1%以下、C、BおよびPをそれぞ
れ0.5%以下の1種あるいは2種以上の合計0.00
1〜10%と少量の不純物とからなる組成の原料を大気
中、真空中あるいは非酸化性雰囲気中において溶解した
後、連続凝固法によって所望の形状の素材となす。つい
で該素材を、熱間加工および加工率25%以上の冷間加
工を施して箔、細線あるいはリボン等の線材となす。さ
らに該線材を、耐熱性の細いパイプを有する適当な長さ
の加熱帯と冷却帯から構成された電気炉により、大気
中、真空中あるいは非酸化性雰囲気中において200〜
1200℃の温度で2秒以上100時間以下加熱するか
あるいは0.5〜10m/分の速度で連続熱処理を施す
ことにより、引張強さが大きく、0〜600℃における
電気抵抗の温度係数が100x10−6/℃〜−100
x10−6/℃を有することを特徴とする高温高圧用恒
電気抵抗合金の製造法に関するものである。
The third invention is characterized in that Ag 37 to 47 in weight ratio.
% And the balance Pd as main components, and Mn and T as subcomponents.
a, W, Fe and Co are each 7%, Ni, Re,
Os, Ru and Rh are each 5% or less, Mo, N
b, In, V, Ge, Ti, Zr, Hf, Cr and T
1 to 3% or less, respectively, Be, Ga, Al, Si, Sn
And Sb are 2% or less, respectively, Bi, Zn, Cd, and rare earth elements are 1% or less, respectively, and C, B, and P are each 0.5% or less.
After a raw material having a composition of 1 to 10% and a small amount of impurities is dissolved in the air, in a vacuum or in a non-oxidizing atmosphere, a material having a desired shape is formed by a continuous solidification method. Next, the material is subjected to hot working and cold working at a working ratio of 25% or more to form a wire such as a foil, a thin wire, or a ribbon. Further, the wire is heated in air, in a vacuum or in a non-oxidizing atmosphere by an electric furnace comprising a heating zone and a cooling zone of an appropriate length having a heat-resistant thin pipe.
By heating at a temperature of 1200 ° C. for 2 seconds to 100 hours or by performing a continuous heat treatment at a rate of 0.5 to 10 m / min, the tensile strength is large and the temperature coefficient of electric resistance at 0 to 600 ° C. is 100 × 10 5 -6 / ° C to -100
The present invention relates to a method for producing a high-temperature and high-pressure constant electric resistance alloy having a temperature of x10 -6 / ° C.

【0014】第4発明は、重量比にて、Ag37〜47
%および残部Pdを主成分とし、副成分としてMn、T
a、W、FeおよびCoをそれぞれ7%、Ni、Re、
Os、RuおよびRhをそれぞれ5%以下、Mo、N
b、In,V、Ge、Ti、Zr、Hf、CrおよびT
lをそれぞれ3%以下、Be、Ga、Al、Si、Sn
およびSbをそれぞれ2%以下、Bi、Zn、Cd、希
土類元素をそれぞれ1%以下、C、BおよびPをそれぞ
れ0.5%以下の1種あるいは2種以上の合計0.00
1〜10%と少量の不純物とからなり、引張強さが大き
く、0〜600℃における電気抵抗の温度係数が100
x10−6/℃〜−100x10−6/℃を有する高温
高圧用恒電気抵抗合金からなることを特徴とする渦電流
式センサに関するものである。
The fourth invention is characterized in that Ag is 37 to 47 in weight ratio.
% And the balance Pd as main components, and Mn and T as subcomponents.
a, W, Fe and Co are each 7%, Ni, Re,
Os, Ru and Rh are each 5% or less, Mo, N
b, In, V, Ge, Ti, Zr, Hf, Cr and T
1 to 3% or less, respectively, Be, Ga, Al, Si, Sn
And Sb are 2% or less, respectively, Bi, Zn, Cd, and rare earth elements are 1% or less, respectively, and C, B, and P are each 0.5% or less.
It comprises a small amount of impurities of 1 to 10%, has a high tensile strength, and has a temperature coefficient of electric resistance of 100 at 0 to 600 ° C.
to consist x10 -6 / ℃ ~-100x10 -6 / ℃ high temperature and high pressure for a constant electrical resistance alloys having relates eddy current sensor according to claim.

【0015】[0015]

【作用】近年、0〜600℃の高温・高圧の環境下で使
用される渦電流式センサなどに用いることができる恒電
気抵抗材料が強く要望されているが、銅や金などの通常
の金属導電材料は電気抵抗の温度係数が大きく、温度に
対して電気抵抗が大きく変化するので、また機械的強度
が弱いので使用することができない。
In recent years, there has been a strong demand for a constant electric resistance material that can be used for an eddy current sensor used in a high temperature and high pressure environment of 0 to 600 ° C. A conductive material cannot be used because it has a large temperature coefficient of electrical resistance, and its electrical resistance changes greatly with temperature, and its mechanical strength is weak.

【0016】そこで本発明者らは、かかる関連産業の緊
急な要請に応えるべく、Pd−Ag系合金について検討
した結果、量産における製造上の取り扱いが容易で、か
つ加工性および成形性に優れたPd−Ag系合金の改良
を試みた。すなわち、本発明者らはPd−Ag系合金の
恒電気抵抗特性は、伝導電子の格子振動による散乱と、
結晶の短範囲規則性とがバランスした状態では、電子の
散乱が一定となり、電気抵抗の変化を少なくすることに
よって得られるが、600℃以上の温度ではこれら両因
子のバランスが崩れるため、電子の散乱が多くなり恒電
気抵抗特性が失われるものと考えられる。また、センサ
コイルの断線は、加工した材料を高温度で長時間加熱す
ることによって再結晶化し、さらに加熱温度の上昇およ
び加熱時間の増加とともに結晶粒が粗大成長化するが、
センサコイル材が昇温と冷却の繰り返しによる熱膨張と
収縮によって、この結晶粒界に強い応力が加わり、粒界
破壊を生じることによると考えられる。他方、センサコ
イルに長期間の振動などの外部応力が働くことによって
断線することも考えられる。これらのセンサコイルの断
線に対しては、センサコイル材の機械的強度(引張強
さ)を高めるのが有効である。さらに、高温まで使用可
能とするためには、耐食耐酸化性も重要であるが、Pd
−Ag系合金は良好である。
The present inventors have studied Pd-Ag based alloys in order to respond to the urgent demands of the related industries. As a result, the present inventors have found that they are easy to handle in mass production and excellent in workability and formability. An attempt was made to improve a Pd-Ag alloy. That is, the inventors of the present invention have a constant electrical resistance characteristic of a Pd-Ag alloy, which is caused by scattering of conduction electrons due to lattice vibration,
In a state where the short-range regularity of the crystal is balanced, the scattering of electrons is constant and can be obtained by reducing the change in electric resistance. However, at a temperature of 600 ° C. or higher, the balance between these two factors is lost, and the electron It is considered that the scattering increases and the constant electric resistance characteristics are lost. In addition, the disconnection of the sensor coil is recrystallized by heating the processed material at a high temperature for a long time, and the crystal grains grow coarse with the increase of the heating temperature and the heating time.
It is considered that a strong stress is applied to the crystal grain boundaries due to the thermal expansion and contraction of the sensor coil material due to the repetition of temperature rise and cooling, which causes grain boundary destruction. On the other hand, disconnection may be caused by external stress such as long-term vibration acting on the sensor coil. It is effective to increase the mechanical strength (tensile strength) of the sensor coil material for the disconnection of these sensor coils. Furthermore, in order to be usable up to high temperatures, corrosion resistance and oxidation resistance are also important.
-Ag based alloys are good.

【0017】本発明者らは、これらの特性を満足する恒
電気抵抗合金の研究を鋭意進めた結果、Pd−Ag系合
金の恒電気抵抗特性を保持しながら、引張強さを高める
効果のある元素、Mn、Ta、W、Fe、Co、Ni、
Re、Os、Ru、Rh、Mo、Nb、In,V、G
e、Ti、Zr、Hf、Cr、Tl、Be、Ga、A
l、Si、SnSb、Bi、Zn、Cd、希土類元素、
C、B、P等をPd−Ag系に添加した合金において、
優れた高温高圧用恒電気抵抗合金を実現することができ
たのである。
The present inventors have intensively studied on a constant electric resistance alloy which satisfies these characteristics, and as a result, have an effect of increasing the tensile strength while maintaining the constant electric resistance characteristic of the Pd-Ag alloy. Element, Mn, Ta, W, Fe, Co, Ni,
Re, Os, Ru, Rh, Mo, Nb, In, V, G
e, Ti, Zr, Hf, Cr, Tl, Be, Ga, A
1, Si, SnSb, Bi, Zn, Cd, rare earth element,
In an alloy in which C, B, P, etc. are added to a Pd-Ag system,
It was possible to realize an excellent high-temperature and high-pressure constant electric resistance alloy.

【0018】[0018]

【実施例】本発明の実施例について説明する。 実施例1 試料番号10(組成:Pd−42%Ag−5
%W)の合金の製造と評価 純度99.9%以上のPd、AgおよびWの総重量30
0gからなる原料をアルミナ坩堝に入れ、真空中で高周
波誘導電気炉によって溶解した後、よく攪拌して均質な
溶融合金とした。ついで、これを直径12mm、高さ2
00mmの孔をもつ金型に注入し、得られた丸棒状のイ
ンゴットをスウェージング機および冷間線引機により、
直径0.5mmの細線となした。最後にその線材を真空
中あるいは水素、アルゴンの雰囲気中にて種々熱処理を
施して試料とした。種々の測定から得られたこの試料の
20℃における引張強さσ、比電気抵抗ρおよび0〜
600℃における電気抵抗の温度係数TCRを表1に示
す。
An embodiment of the present invention will be described. Example 1 Sample No. 10 (Composition: Pd-42% Ag-5
% W) Production and evaluation of alloys with a total weight of Pd, Ag and W of not less than 99.9% purity 30
A raw material consisting of 0 g was placed in an alumina crucible, melted in a vacuum with a high-frequency induction electric furnace, and stirred well to obtain a homogeneous molten alloy. Then, this is 12mm in diameter, height 2
Injected into a mold having a hole of 00 mm, and the obtained round bar-shaped ingot was subjected to a swaging machine and a cold drawing machine.
A thin line having a diameter of 0.5 mm was formed. Finally, the wire was subjected to various heat treatments in a vacuum or in an atmosphere of hydrogen or argon to obtain samples. Tensile strength sigma t at 20 ° C. The samples obtained from the various measurements, the electrical resistivity ρ and 0
Table 1 shows the temperature coefficient TCR of electric resistance at 600 ° C.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 試料番号32(組成:Pd−4
0%Ag−3.5%Ru)の合金の製造と評価 純度99.9%以上のPd、AgおよびRuの総重量1
0gからなる原料を高純度アルミナ坩堝に入れ、酸化を
防ぐために高純度アルゴンガスを吹き付けながらタンマ
ン炉によって溶解した後、よく攪拌して均質な溶融合金
とした。ついで、これを内径3.5mmの石英管中に素
早く吸い上げ丸棒とした。得られた丸棒状のインゴット
をスウェージング機および冷間線引機により、直径0.
5mmの細線に加工した。この細線から適当な長さ切り
取り、冷間加工のままかあるいは水素、アルゴンまたは
大気の雰囲気中もしくは真空中にて200〜1200℃
の種々の温度で2秒〜100時間の種々の時間で加熱後
室温まで種々な速度で冷却する熱処理を行い引張強さお
よび電気抵抗測定用試料とした。またこれとは別に線径
0.5mmの細線をさらに精密冷間圧延機により厚さ
0.28mmおよび0.22mmの2種類のリボン状薄
板を作製し、上記熱処理条件の中から特性の優れたもの
を選択し、その条件で熱処理を施した。つぎに、これら
厚さの異なるリボン状薄板を重ねてトロイダル状に20
〜50回巻いた後、再結晶化温度よりやや高い700℃
で1時間加熱してくせ付けを施した。その後厚さ0.2
2mmのリボン状コイルを抜き取り、残ったもう一方の
厚さ0.28mmのトロイダル状センサコイルをポリイ
ミド樹脂中に浸漬して、乾燥固着した後、さらにセンサ
コイル表面の樹脂を研削して平滑となし、セラミック製
ケース内に装填し、ついで電極に同軸ケーブルをハンダ
付けして渦電流式センサを作製した。種々の測定から得
られたこの試料の20℃における引張強さσ、比電気
抵抗ρおよび0〜600℃における電気抵抗の温度係数
TCRを表2に示す。センサにした場合にも測定用試料
と同じ特性が得られ、本発明合金が0〜600℃の高温
高圧環境下で使用される渦電流式センサに用いることが
できることが判明した。
Example 2 Sample No. 32 (Composition: Pd-4)
Production and evaluation of alloy of 0% Ag-3.5% Ru) Total weight of Pd, Ag and Ru having a purity of 99.9% or more 1
A raw material consisting of 0 g was placed in a high-purity alumina crucible, melted in a Tamman furnace while blowing high-purity argon gas to prevent oxidation, and then thoroughly stirred to obtain a homogeneous molten alloy. Then, this was quickly sucked into a 3.5 mm inner diameter quartz tube to obtain a round bar. The obtained round bar-shaped ingot was swept with a swaging machine and a cold drawing machine to a diameter of 0.1 mm.
It was processed into a 5 mm thin wire. A suitable length is cut out from the fine wire, and 200 to 1200 ° C. in a cold working state or in an atmosphere of hydrogen, argon, air, or vacuum.
After heating at various temperatures for various times of 2 seconds to 100 hours, and then cooling to room temperature at various speeds, a sample for measuring tensile strength and electric resistance was obtained. Separately, a thin wire having a wire diameter of 0.5 mm was further formed by a precision cold rolling mill into two types of ribbon-like thin plates having a thickness of 0.28 mm and 0.22 mm, and excellent characteristics were obtained from the above heat treatment conditions. An object was selected and heat-treated under the conditions. Next, these ribbon-shaped thin plates having different thicknesses are stacked to form a toroidal shape.
After winding about 50 times, 700 ° C. slightly higher than the recrystallization temperature
For 1 hour. Then thickness 0.2
A 2 mm ribbon-shaped coil is removed, and the other 0.28 mm thick toroidal sensor coil is immersed in polyimide resin, dried and fixed, and then the resin on the sensor coil surface is ground to make it smooth. , And a coaxial cable was soldered to the electrodes to produce an eddy current sensor. Table 2 shows the tensile strength σ t at 20 ° C., the specific electrical resistance ρ, and the temperature coefficient TCR of the electrical resistance at 0 to 600 ° C. obtained from various measurements. Even when a sensor is used, the same characteristics as those of the measurement sample are obtained, and it has been found that the alloy of the present invention can be used for an eddy current sensor used in a high-temperature and high-pressure environment of 0 to 600 ° C.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例3 試料番号63(組成:Pd−4
4%Ag−2%Hf)の合金の製造と評価 純度99.9%以上のPd、AgおよびHfの総重量2
0gからなる原料をアルミナ坩堝に入れ、その坩堝ごと
透明石英管中に真空封入し、タンマン−ブリッジマン法
により連続凝固させ丸棒の素材となした。この丸棒を真
空中において500〜1200℃の温度で適当な時間加
熱後室温まで適当な速度で冷却した。ついで、その丸棒
をスウェージング機および冷間線引機により加工し、直
径0.5mmの細線となした。最後にその線材を水素、
アルゴンまたは真空中にて種々熱処理を施して試料とし
た。得られた試料は金属光沢があり、種々の測定から得
られたこの試料の20℃における引張強さσ、比電気
抵抗ρおよび0〜600℃における抵抗温度係数TCR
を表3に示す。
Example 3 Sample No. 63 (Composition: Pd-4)
Production and evaluation of alloy of 4% Ag-2% Hf) Total weight of Pd, Ag and Hf with purity of 99.9% or more 2
A raw material consisting of 0 g was placed in an alumina crucible, and the whole crucible was vacuum-sealed in a transparent quartz tube, and continuously solidified by a Tamman-Bridgeman method to obtain a round bar material. The round bar was heated in a vacuum at a temperature of 500 to 1200 ° C. for an appropriate time, and then cooled at a suitable rate to room temperature. Next, the round bar was processed by a swaging machine and a cold drawing machine to form a thin wire having a diameter of 0.5 mm. Finally, the wire is hydrogen,
Various heat treatments were performed in argon or vacuum to obtain samples. The resulting sample has a metallic luster, tensile strength sigma t at 20 ° C. The samples obtained from the various measurements, the electrical resistivity ρ and 0 to 600 temperature coefficient of resistance TCR in ° C.
Are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】表4および表5には、本発明の代表的な合
金について、実施例1の製造法を用いて作製した試料
を、850℃の真空中で1時間加熱した後、300℃/
hrの速度で室温まで冷却して、測定した20℃におけ
る引張強さσ、比電気抵抗ρおよび0〜600℃にお
ける抵抗温度係数TCRを示す。
Tables 4 and 5 show that, for a typical alloy of the present invention, a sample prepared by the production method of Example 1 was heated at 850 ° C. for 1 hour in a vacuum, and then heated at 300 ° C. /
It shows the measured tensile strength σ t at 20 ° C., the specific electrical resistance ρ, and the temperature coefficient of resistance TCR at 0 to 600 ° C. after cooling to room temperature at a rate of hr.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】また、第1図〜第4図には、Pd−42%
Ag合金に副成分のMn、Ta、W、Fe、Co、N
i、Re、Os、Ru、Rh、Mo、Nb、In,V、
Ge、Ti、Zr、Hf、Cr、Tl、Be、Ga、A
l、Si、SnSb、Bi、Zn、Cd、Y、Ce、
C、B、P等の各元素を添加した合金について、20℃
における引張強さσおよび電気抵抗の温度係数TCR
と添加元素の添加量との関係を示した。
FIGS. 1 to 4 show Pd-42%
Mn, Ta, W, Fe, Co, N
i, Re, Os, Ru, Rh, Mo, Nb, In, V,
Ge, Ti, Zr, Hf, Cr, Tl, Be, Ga, A
1, Si, SnSb, Bi, Zn, Cd, Y, Ce,
20 ° C for alloys to which elements such as C, B, and P are added
Strength σ t and temperature coefficient of electrical resistance TCR
And the relationship between the amount of the additive element and the amount of the additive element.

【0028】上記のように、本発明合金は加工が容易
で、線材あるいは板材などの所望の形状にすることがで
き、各実施例、各表および各図に見られるように、引張
強さが大きく、0〜600℃における電気抵抗の温度係
数が小さいので、高温で高圧の環境中で使用される各種
機器のセンサ材として好適である。
As described above, the alloy of the present invention is easy to process and can be formed into a desired shape such as a wire or a plate, and has a tensile strength as shown in each embodiment, each table and each drawing. Since it is large and has a small temperature coefficient of electrical resistance at 0 to 600 ° C., it is suitable as a sensor material for various devices used in a high-temperature and high-pressure environment.

【0029】つぎに、本発明における数値の限定理由に
ついて説明する。本発明合金の組成を、重量比にてAg
37〜47%および残部Pdを主成分とし、副成分とし
てMn、Ta、W、FeおよびCoをそれぞれ7%、N
i、Re、Os、RuおよびRhをそれぞれ5%以下、
Mo、Nb、In,V、Ge、Ti、Zr、Hf、Cr
およびTlをそれぞれ3%以下、Be、Ga、Al、S
i、SnおよびSbをそれぞれ2%以下、Bi、Zn、
Cd、希土類元素をそれぞれ1%以下、C、BおよびP
をそれぞれ0.5%以下の1種あるいは2種以上の合計
0.001〜10%と限定した理由は、これらの組成範
囲内では加工が容易で、引張強さが大きく、0〜600
℃における電気抵抗の温度係数が100x10−6/℃
〜−100x10−6/℃であるが、これらの組成範囲
外においては0〜600℃における電気抵抗の温度係数
が100x10−6/℃〜−100x10−6/℃を越
えて大きくなり、また加工が困難となって本発明の目的
に外れることによる。
Next, the reasons for limiting numerical values in the present invention will be described. The composition of the alloy of the present invention is expressed by weight ratio of Ag
37-47% and the balance Pd as main components, Mn, Ta, W, Fe and Co as auxiliary components at 7% each,
i, Re, Os, Ru and Rh are each 5% or less,
Mo, Nb, In, V, Ge, Ti, Zr, Hf, Cr
And Tl of 3% or less, respectively, Be, Ga, Al, S
i, Sn and Sb are each 2% or less, Bi, Zn,
Cd, rare earth element each 1% or less, C, B and P
Is limited to 0.5% or less of one kind or two or more kinds in total of 0.001 to 10%, because within these composition ranges, processing is easy, tensile strength is large, and 0 to 600%.
Temperature coefficient of electric resistance at 100 ° C is 100 × 10 −6 / ° C.
It is a ~-100x10 -6 / ℃, increases and exceeds the 100x10 -6 / ℃ ~-100x10 -6 / ℃ temperature coefficient of electrical resistance at 0 to 600 ° C. In these compositions range, also machining It is difficult and deviates from the object of the present invention.

【0030】すなわち、主成分のAgが37%以下、4
7%以上では、TCRが100x10−6/℃〜−10
0x10−6/℃を越えて大きくなり、副成分元素とし
てのTlが3%以上、Be、Ga、Al、Si、Sb、
がそれぞれ2%以上、C、Bがそれぞれ0.5%以上を
越えると加工が困難になる。
That is, the main component Ag is 37% or less,
At 7% or more, the TCR is 100 × 10 −6 / ° C. to −10.
0 × 10 −6 / ° C., and Tl as an accessory component element is 3% or more, and Be, Ga, Al, Si, Sb,
If each exceeds 2% or more, and C and B each exceed 0.5% or more, processing becomes difficult.

【0031】本発明合金作製時の熱処理温度を200℃
以上と限定した理由は、200℃以下の温度で熱処理し
た場合、100時間以上加熱しても加工歪みが充分除去
できないので、恒電気抵抗特性を発揮できないからであ
り、また熱処理温度を1200℃以下と限定した理由
は、この1200℃以上に加熱した場合、該合金が溶融
もしくは軟化してしまうことによる。さらに、熱処理時
間を2秒以上100時間以下と限定した理由は、2秒以
下では合金内の原子の移動が起こらないので、100x
10−6/℃〜−100x10−6/℃の電気抵抗の温
度係数が得られず、本発明の目的から外れ、他方100
時間以上加熱しても、主たる特性の更なる向上は得られ
ず、また経済的にも不利であることによる。
The heat treatment temperature at the time of producing the alloy of the present invention is 200 ° C.
The reason for limiting to the above is that when heat treatment is performed at a temperature of 200 ° C. or less, even if heating is performed for 100 hours or more, processing strain cannot be sufficiently removed, and thus constant electric resistance characteristics cannot be exhibited. The reason is that when the alloy is heated to 1200 ° C. or more, the alloy is melted or softened. Furthermore, the reason that the heat treatment time is limited to 2 seconds or more and 100 hours or less is that if the heat treatment time is 2 seconds or less, the movement of atoms in the alloy does not occur.
10 -6 / ℃ ~-100x10 -6 / temperature coefficient of electrical resistance of ° C. can not be obtained, beyond the scope of the present invention, the other 100
Even if the heating is carried out for more than an hour, further improvement of the main properties cannot be obtained, and it is economically disadvantageous.

【0032】上記の本発明合金は、バルク状の線材ある
いは板材についての恒電気抵抗合金に関して記述した
が、これを蒸着法あるいはスパッター法等によって作製
した薄膜においても、バルク状合金と同程度の恒電気抵
抗特性を得ることができる。また、高温高圧の環境中で
使用するセンサ材に好適であることを述べたが、室温あ
るいは低温における常圧あるいは高圧において使用する
センサ材としても、勿論優れた特性を発揮する。
Although the above alloy of the present invention has been described in terms of a constant electric resistance alloy for a bulk wire or a plate, a thin film produced by a vapor deposition method or a sputtering method or the like has a constant electric resistance similar to that of the bulk alloy. Electric resistance characteristics can be obtained. In addition, although it has been described that it is suitable for a sensor material used in a high-temperature and high-pressure environment, the sensor material also exhibits excellent characteristics as a sensor material used at normal pressure or high pressure at room temperature or low temperature.

【0033】なお、希土類元素はスカンジウム(S
c)、イットリウム(Y)およびランタン系元素からな
るが、その効果は均等であり、いずれも同効成分であ
る。したがって、希土類元素の代わりに、ミッシュメタ
ルを用いても良い。
The rare earth element is scandium (S
c), yttrium (Y) and a lanthanum-based element, the effects of which are equal and all are the same. Therefore, misch metal may be used instead of the rare earth element.

【0034】[0034]

【発明の効果】本発明合金は、加工が容易で線材あるい
は板材等の所望の形状にでき、室温から高温に至るまで
電気抵抗の温度係数が小さく、引張強さが大きいので、
室温から高温の常圧あるいは高圧の環境中において使用
される各種機器のセンサ材として、また該センサ材を使
用した渦電流式センサに好適である。
The alloy of the present invention can be easily formed into a desired shape such as a wire or a plate, has a small temperature coefficient of electric resistance from room temperature to a high temperature, and has a large tensile strength.
It is suitable as a sensor material for various devices used in a normal pressure or high pressure environment from room temperature to high temperature, and as an eddy current sensor using the sensor material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、Pd−42%Ag合金にMn,Ta、
W、FeあるいはCoを添加した場合の電気抵抗の温度
係数TCRおよび引張強さσと各元素の添加量との関
係を示す特性図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a Pd-42% Ag alloy containing Mn, Ta,
FIG. 4 is a characteristic diagram showing a relationship between the temperature coefficient TCR of electric resistance and the tensile strength σ t when W, Fe or Co is added, and the amount of each element added.

【図2】図2は、Pd−42%Ag合金にNi、Re、
Os、Ru、Rh、Mo、Nb、In,VあるいはGe
を添加した場合の電気抵抗の温度係数TCRおよび引張
強さσと各元素の添加量との関係を示す特性図であ
る。
FIG. 2 shows Ni, Re, and Pd-42% Ag alloys.
Os, Ru, Rh, Mo, Nb, In, V or Ge
FIG. 4 is a characteristic diagram showing a relationship between a temperature coefficient TCR of electric resistance and a tensile strength σ t when an element is added and the amount of each element added.

【図3】図3は、Pd−42%Ag合金にTi、Zr、
Hf、Cr、Tl、Be、Ga、Al、SiあるいはS
nを添加した場合の電気抵抗の温度係数TCRおよび引
張強さσと各元素の添加量との関係を示す特性図であ
る。
FIG. 3 shows Ti, Zr, and Pd-42% Ag alloys.
Hf, Cr, Tl, Be, Ga, Al, Si or S
FIG. 4 is a characteristic diagram showing the relationship between the temperature coefficient TCR of electric resistance and the tensile strength σ t when n is added and the amount of each element added.

【図4】図4は、Pd−42%Ag合金にSb、Bi、
Zn,Cd、Y、Ce、C、BあるいはPを添加した場
合の電気抵抗の温度係数TCRおよび引張強さσと各
元素の添加量との関係を示す特性図である。
FIG. 4 shows Sb, Bi, and Pd-42% Ag alloys.
FIG. 4 is a characteristic diagram showing a relationship between a temperature coefficient TCR of electric resistance and a tensile strength σ t when Zn, Cd, Y, Ce, C, B or P is added, and an addition amount of each element.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 650 650F 660 660Z 661 661B 661A 691 691A 691B 694 694A ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630A 650 650F 660 660Z 661 661B 661A 691 691A 691B 694 694A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比にて、Ag37〜47%および残
部Pdを主成分とし、副成分としてMn、Ta、W、F
eおよびCoをそれぞれ7%、Ni、Re、Os、Ru
およびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなり、引張強さが大きく、0〜6
00℃における電気抵抗の温度係数が100x10−6
/℃〜−100x10−6/℃を有することを特徴とす
る高温高圧用恒電気抵抗合金。
1. Ag 37-47% by weight and the balance Pd as main components, and Mn, Ta, W, F as subcomponents in weight ratio.
e and Co each in 7%, Ni, Re, Os, Ru
And Rh are respectively 5% or less, and Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
And a small amount of impurities.
Temperature coefficient of electric resistance at 100 ° C. is 100 × 10 −6
/ ° C to -100x10 -6 / ° C.
【請求項2】 重量比にて、Ag37〜47%および残
部Pdを主成分とし、副成分としてMn、Ta、W、F
eおよびCoをそれぞれ7%、Ni、Re、Os、Ru
およびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなる組成の原料を、大気中、真空
中あるいは非酸化性雰囲気中で溶解し、この鋳塊を70
0℃以上の温度で鍛造により所望の形状となし、ついで
これを加工率25%以上の冷間加工により箔、細線ある
いはリボン等の線材なす。さらに200〜1200℃の
大気中、真空中あるいは非酸化性雰囲気中において2秒
以上100時間以下加熱するかあるいは0.5〜10m
/分の速度で連続熱処理を施すことにより、引張強さが
大きく、0〜600℃における電気抵抗の温度係数が1
00x10−6/℃〜−100x10−6/℃を有する
ことを特徴とする高温高圧用恒電気抵抗合金の製造法。
2. As a weight ratio, 37 to 47% of Ag and the balance Pd are used as main components, and Mn, Ta, W, and F are used as subcomponents.
e and Co each in 7%, Ni, Re, Os, Ru
And Rh are respectively 5% or less, and Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
And a small amount of impurities are dissolved in the air, in a vacuum, or in a non-oxidizing atmosphere.
A desired shape is formed by forging at a temperature of 0 ° C. or more, and then a wire such as a foil, a thin wire or a ribbon is formed by cold working at a working rate of 25% or more. Further, it is heated for 2 seconds to 100 hours in the air, vacuum or non-oxidizing atmosphere at 200 to 1200 ° C., or 0.5 to 10 m
/ Minute of continuous heat treatment, the tensile strength is large and the temperature coefficient of electrical resistance at 0 to 600 ° C. is 1
00x10 -6 / ℃ ~-100x10 -6 / ℃ preparation of high temperature and high pressure for a constant electrical resistance alloy which is characterized by having a.
【請求項3】 重量比にて、Ag37〜47%および残
部Pdを主成分とし、副成分としてMn、Ta、W、F
eおよびCoをそれぞれ7%、Ni、Re、Os、Ru
およびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなる組成の原料を大気中、真空中
あるいは非酸化性雰囲気中において溶解した後、連続凝
固法によって所望の形状の素材となす。ついで該素材
を、熱間加工および加工率25%以上の冷間加工を施し
て箔、細線あるいはリボン等の線材となす。さらに該線
材を、耐熱性の細いパイプを有する適当な長さの加熱帯
と冷却帯から構成された電気炉により、大気中、真空中
あるいは非酸化性雰囲気中において200〜1200℃
の温度で2秒以上100時間以下加熱するかあるいは
0.5〜10m/分の速度で連続熱処理を施すことによ
り、引張強さが大きく、0〜600℃における電気抵抗
の温度係数が100x10−6/℃〜−100x10
−6/℃を有することを特徴とする高温高圧用恒電気抵
抗合金の製造法。
3. As a weight ratio, 37 to 47% of Ag and the balance Pd are used as main components, and Mn, Ta, W, and F are used as subcomponents.
e and Co each in 7%, Ni, Re, Os, Ru
And Rh are respectively 5% or less, and Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
After a raw material having a composition consisting of and a small amount of impurities is dissolved in the air, in a vacuum, or in a non-oxidizing atmosphere, a material having a desired shape is formed by a continuous solidification method. Next, the material is subjected to hot working and cold working at a working ratio of 25% or more to form a wire such as a foil, a thin wire, or a ribbon. Further, the wire is heated to 200 to 1200 ° C. in the air, in a vacuum, or in a non-oxidizing atmosphere by an electric furnace having a heating zone and a cooling zone of a suitable length having a heat-resistant thin pipe.
Or a continuous heat treatment at a rate of 0.5 to 10 m / min to increase the tensile strength and to increase the temperature coefficient of electric resistance at 0 to 600 ° C. to 100 × 10 −6. / ° C ~ -100x10
A method for producing a high-temperature and high-pressure constant electric resistance alloy having a temperature of -6 / C.
【請求項4】 重量比にて、Ag37〜47%および残
部Pdを主成分とし、副成分としてMn、Ta、W、F
eおよびCoをそれぞれ7%、Ni、Re、Os、Ru
およびRhをそれぞれ5%以下、Mo、Nb、In,
V、Ge、Ti、Zr、Hf、CrおよびTlをそれぞ
れ3%以下、Be、Ga、Al、Si、SnおよびSb
をそれぞれ2%以下、Bi、Zn、Cd、希土類元素を
それぞれ1%以下、C、BおよびPをそれぞれ0.5%
以下の1種あるいは2種以上の合計0.001〜10%
と少量の不純物とからなり、引張強さが大きく、0〜6
00℃における電気抵抗の温度係数が100x10−6
/℃〜−100x10−6/℃を有する高温高圧用恒電
気抵抗合金からなることを特徴とする渦電流式センサ。
4. Ag-37% -47% by weight and the balance Pd as main components, and Mn, Ta, W, F as sub-components in weight ratio.
e and Co each in 7%, Ni, Re, Os, Ru
And Rh are respectively 5% or less, and Mo, Nb, In,
V, Ge, Ti, Zr, Hf, Cr, and Tl are each 3% or less, and Be, Ga, Al, Si, Sn, and Sb.
2% or less, Bi, Zn, Cd, and rare earth elements each 1% or less, and C, B, and P each 0.5%.
0.001 to 10% in total of one or more of the following
And a small amount of impurities.
Temperature coefficient of electric resistance at 100 ° C. is 100 × 10 −6
An eddy current sensor comprising a high-temperature and high-pressure constant electric resistance alloy having a temperature of / 100 to -100 x 10-6 / C.
JP31576399A 1999-09-30 1999-09-30 Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor Expired - Fee Related JP4283954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31576399A JP4283954B2 (en) 1999-09-30 1999-09-30 Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31576399A JP4283954B2 (en) 1999-09-30 1999-09-30 Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor

Publications (2)

Publication Number Publication Date
JP2001107160A true JP2001107160A (en) 2001-04-17
JP4283954B2 JP4283954B2 (en) 2009-06-24

Family

ID=18069259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31576399A Expired - Fee Related JP4283954B2 (en) 1999-09-30 1999-09-30 Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor

Country Status (1)

Country Link
JP (1) JP4283954B2 (en)

Also Published As

Publication number Publication date
JP4283954B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
CN100478470C (en) Precise resistive Cu-Mn-Ga-Ge alloy and preparation method thereof
JPH0146570B2 (en)
JPH0941100A (en) Iron-chromium-silicon base alloy and its production and strain gauge
JP7214931B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
WO2023276904A1 (en) Copper alloy material, and resistive material for resistor and resistor using same
JP7342923B2 (en) Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards
JP5408533B2 (en) Fe-Ni-Cr-based isoelastic composition for strain gauge, and strain gauge manufactured using the composition
JPH1161289A (en) Glassy alloy of nonmagnetic metal for strain gauge having high gauge rate, high strength and high corrosion resistance and its production
JP4283954B2 (en) Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor
JPH0427286B2 (en)
JP3696310B2 (en) Electrical resistance alloy having large temperature coefficient of resistance, manufacturing method thereof and sensor device
JP3696312B2 (en) Electrical resistance alloy having large temperature coefficient of resistance, manufacturing method thereof and sensor device
JPH11193426A (en) Electric resistance alloy, its production and sensor device
JPH045734B2 (en)
JPS6253585B2 (en)
JPS6152224B2 (en)
JPH06235034A (en) Silver base low resistance temperature coefficient alloy and its production
CN116005033B (en) High super-elasticity Cu-Ni-Ga shape memory alloy microfilament and preparation method thereof
JP7136157B2 (en) Copper alloys, copper alloy plastic working materials, parts for electronic and electrical equipment, terminals
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JPS5953344B2 (en) Iron-boron glassy magnetic alloy
Clapp et al. Flexible A‐15 superconducting tape via the amorphous state
WO2022004789A1 (en) Plastic copper alloy working material, copper alloy wire material, component for electronic and electrical equipment, and terminal
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Effective date: 20071011

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120327

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120327

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees