JP2001107038A - Production method phosphor powder - Google Patents

Production method phosphor powder

Info

Publication number
JP2001107038A
JP2001107038A JP28300099A JP28300099A JP2001107038A JP 2001107038 A JP2001107038 A JP 2001107038A JP 28300099 A JP28300099 A JP 28300099A JP 28300099 A JP28300099 A JP 28300099A JP 2001107038 A JP2001107038 A JP 2001107038A
Authority
JP
Japan
Prior art keywords
powder
phosphor powder
producing
compound
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28300099A
Other languages
Japanese (ja)
Inventor
Fumiyuki Shimizu
史幸 清水
Kazuo Nagashima
和郎 永島
Mineto Iwasaki
峰人 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Co Ltd
Original Assignee
Shoei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Co Ltd filed Critical Shoei Co Ltd
Priority to JP28300099A priority Critical patent/JP2001107038A/en
Publication of JP2001107038A publication Critical patent/JP2001107038A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a spherical phosphor powder having a minute particle size and a high luminescence strength. SOLUTION: This method for producing a phosphor powder using a divalent metal aluminate and/or zirconate as the mother crystal comprises forming a mixed metal compound solution containing (A) an aluminum compound and/or a zirconium compound and (B) a divalent metal compound into minute liquid droplets; heating the droplets to a temperature higher than the decomposition points of the metal compounds to thermally decompose them; and thermally treating the resultant powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性に優れ、か
つ発光特性の制御が容易な、微細な球状蛍光体粉末の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine spherical phosphor powder having excellent crystallinity and easy control of light emission characteristics.

【0002】[0002]

【従来の技術】蛍光体として、アルカリ土類金属のアル
ミン酸塩等を母結晶とし、これに賦活剤としてユウロピ
ウムをドープしたものが従来から知られている。また最
近、これに共賦活剤としてセリウム、ジスプロシウム、
テルビウム等の希土類元素を添加した、残光性の優れた
蓄光材料が開発され、夜光塗料、標識、表示用等種々の
用途に用いられている。この種の蛍光体粉末は、従来、
構成金属元素の酸化物、炭酸塩などの化合物粉末を混合
して焼成し、これを粉砕することにより製造されてい
る。この方法により得られた粉末は一般的に粒径が大き
く、かつ不規則で角張った形状をしている。このため、
例えばこれを樹脂に混錬し射出成形に供した場合には成
形機ダイスを損傷する恐れがある。又、この方法で得ら
れた蛍光体粉末は、結晶性が悪いため、粒径が小さいと
発光特性が悪くなる。従って通常使用されるのはせいぜ
い20μmかそれより大きい粉末であり、用途が限定と
されている。
2. Description of the Related Art As a phosphor, there has been conventionally known a material in which an alkaline earth metal aluminate or the like is used as a mother crystal and doped with europium as an activator. Recently, cerium, dysprosium,
Luminescent materials with excellent afterglow properties to which rare earth elements such as terbium are added have been developed and used for various applications such as luminous paints, signs and displays. Conventionally, this kind of phosphor powder has
It is manufactured by mixing and firing compound powders such as oxides and carbonates of constituent metal elements, and pulverizing them. The powder obtained by this method generally has a large particle size and an irregular and angular shape. For this reason,
For example, when this is kneaded with a resin and subjected to injection molding, the molding machine die may be damaged. In addition, the phosphor powder obtained by this method has poor crystallinity, so that if the particle size is small, the light emission characteristics deteriorate. Therefore, usually used powders are at most 20 μm or more, and their use is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、この様な従
来技術の欠点を解決すべくなされたものであり、粒径が
微小ながらも発光強度が大きく、かつ球状の蛍光体粉末
を得ることを目的とするものである。更に、発光特性の
制御が容易な蛍光体粉末の製造方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to obtain a spherical phosphor powder having a large emission intensity even though the particle diameter is small. It is intended for. It is another object of the present invention to provide a method for producing a phosphor powder in which emission characteristics can be easily controlled.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の問
題を解決する研究の過程のなかで、製造方法に着目し、
本発明に到達した。すなわち本発明は、少なくとも
(A)アルミニウム化合物および/またはジルコニウム
化合物と、(B)2価金属化合物とを含む金属化合物の
混合溶液を微細な液滴とし、その液滴を該金属化合物の
分解温度より高い温度で加熱して熱分解した後、得られ
た粉末を更に熱処理することを特徴とする、2価金属の
アルミン酸塩および/またはジルコン酸塩を母結晶とす
る蛍光体粉末の製造方法を要旨とするものである。ま
た、上記蛍光体粉末の製造方法において、500℃〜1
800℃の温度で熱分解すること、また400℃〜18
00℃の温度で熱処理することを要旨とするものであ
る。さらに本発明は、これらの方法により得られた蛍光
体粉末に更に粉砕処理を施すことにより優れた蛍光体粉
末を得るものである。
Means for Solving the Problems In the course of research for solving the above problems, the present inventors focused on a manufacturing method,
The present invention has been reached. That is, in the present invention, a mixed solution of a metal compound containing at least (A) an aluminum compound and / or a zirconium compound and (B) a divalent metal compound is formed into fine droplets, and the droplets are subjected to a decomposition temperature of the metal compound. A method for producing a phosphor powder comprising a divalent metal aluminate and / or zirconate as a mother crystal, wherein the powder is further heat-treated after heating at a higher temperature for pyrolysis. It is the gist. Further, in the above method for producing a phosphor powder, the method may include the steps of:
Pyrolyzing at a temperature of 800 ° C .;
The gist is that the heat treatment is performed at a temperature of 00 ° C. Further, the present invention is to obtain an excellent phosphor powder by subjecting the phosphor powder obtained by these methods to further pulverization treatment.

【0005】[0005]

【発明の実施の形態】本発明によって製造される蛍光体
粉末の組成は、少なくともアルミニウムおよび/または
ジルコニウムと、2価の金属とを含む複合酸化物を母結
晶とするものである。2価金属としては、アルカリ土類
金属、亜鉛等が使用される。本発明の蛍光体には、通常
賦活剤として使用されるユウロピウム、マンガンなどの
元素が添加される。また蓄光性をもたせたり、発光特性
を制御するために、更に共賦活剤としてランタン、セリ
ウム、ジスプロシウム、テルビウム等の希土類元素や
錫、亜鉛、ビスマス、リン、チタン、ジルコニウム、ハ
フニウム、バナジウム、ニオブ、タンタル、モリブデ
ン、タングステン、クロム等を添加することができる。
本発明の蛍光体は、蓄光性を有する蛍光体も包含する。
BEST MODE FOR CARRYING OUT THE INVENTION The phosphor powder produced according to the present invention has a composition in which a composite oxide containing at least aluminum and / or zirconium and a divalent metal is used as a mother crystal. As the divalent metal, an alkaline earth metal, zinc or the like is used. Elements such as europium and manganese which are usually used as activators are added to the phosphor of the present invention. In addition, in order to impart luminous properties or control the luminescence characteristics, as a co-activator, lanthanum, cerium, dysprosium, rare earth elements such as terbium and tin, zinc, bismuth, phosphorus, titanium, zirconium, hafnium, vanadium, niobium, Tantalum, molybdenum, tungsten, chromium, or the like can be added.
The phosphor of the present invention also includes a phosphor having a light storage property.

【0006】このような蛍光体または蓄光体としては、
特に制限はないが、例えば米国特許第3294699号
に記載されているSrAl24 :Euタイプの蛍光
体、特許第2543825号公報や特開平8−1277
72号公報に示されるEuで賦活したアルカリ土類金属
のアルミン酸塩タイプの蓄光体、特開平8−73845
号公報に示される硼素が添加された2価金属のアルミン
酸塩系の蓄光体などが例示される。また、本発明者ら
は、本発明の方法で製造したアルカリ土類金属のジルコ
ン酸塩を主体とする蛍光体、例えばEuで賦活したCa
ZrO3 タイプのものについても、良好な蛍光特性が得
られることを確認した。
[0006] As such a phosphor or a luminous body,
Although there is no particular limitation, for example, a SrAl 2 O 4 : Eu type phosphor described in U.S. Pat. No. 3,294,699;
JP-A-8-73845, which discloses an alumina activated alkaline earth metal aluminate type phosphor disclosed in Japanese Patent Publication No. 72-72.
And the like, a divalent metal aluminate-based phosphorescent material to which boron is added, which is described in Japanese Patent Application Laid-Open Publication No. H11-163, 1993, is exemplified. In addition, the present inventors have proposed a phosphor mainly composed of an alkaline earth metal zirconate produced by the method of the present invention, for example, Ca activated with Eu.
It was also confirmed that good fluorescent characteristics were obtained for the ZrO 3 type.

【0007】本発明の製造方法において、出発金属化合
物としては、蛍光体を構成する金属元素の硝酸塩、硫酸
塩、塩化物、アンモニウム塩、リン酸塩、カルボン酸
塩、金属アルコラート、樹脂酸塩などの熱分解性化合物
などを適宜選択して使用する。複塩や錯塩、酸化物コロ
イド等を使用することもできる。また硼素、珪素等の半
金属やリンなどを添加する場合は、硼酸、リン酸、珪
酸、硼酸塩、珪酸塩なども使用される。これらの化合物
を、水や、アルコール、アセトン、エーテル等の有機溶
剤あるいはこれらの混合溶剤中に溶解又は分散した混合
溶液を、超音波式、二流体ノズル式等の噴霧器により微
細な液滴とし、次いで金属化合物の分解温度より高い温
度で加熱することにより熱分解を行う。
In the production method of the present invention, the starting metal compounds include nitrates, sulfates, chlorides, ammonium salts, phosphates, carboxylates, metal alcoholates, resinates, etc. of the metal elements constituting the phosphor. Is appropriately selected and used. Double salts, complex salts, oxide colloids and the like can also be used. When a semimetal such as boron or silicon or phosphorus is added, boric acid, phosphoric acid, silicic acid, borate, silicate, or the like is also used. These compounds, water, alcohol, acetone, a mixed solution dissolved or dispersed in an organic solvent such as ether or a mixed solvent thereof, ultrasonic, two-fluid nozzle or the like into fine droplets with a sprayer, Then, thermal decomposition is performed by heating at a temperature higher than the decomposition temperature of the metal compound.

【0008】この方法によれば、平均粒径が0.1μm
以下から10μm程度の、結晶性が極めて良好な、球状
の微粉末が得られる。また、蛍光性、蓄光性等の発光特
性が極めて良好である。従来の焼成法で得られたもの
は、粒径が小さくなるに従って発光強度が極端に低下す
るのに対して、本発明で得られたものは、微細な粉末で
あるにもかかわらず発光が低下することがなく、従来の
焼成法で得られたものに比べて極めて大きい発光強度が
得られる特徴がある。熱分解は、望ましくは500℃〜
1800℃程度の温度で行われる。加熱温度が高温の場
合、粒径が1 μm以上の比較的大きい中実の球状の粉末
が得られることが多い。一方、500℃〜1200℃の
比較的低温で加熱分解を行うと、0.1μm程度の微粒
子が集合したポーラスな粉末が得られる傾向がある。こ
のようなポーラスな粉末は容易に粉砕することができ、
きわめて微細でかつ結晶性の良い、球状の超微粉が得ら
れる。
According to this method, the average particle size is 0.1 μm
From the following, a spherical fine powder having a very good crystallinity of about 10 μm is obtained. Further, the light-emitting properties such as fluorescence and light storage properties are extremely good. In the case of the one obtained by the conventional sintering method, the emission intensity decreases extremely as the particle size becomes smaller, whereas in the case of the one obtained by the present invention, the emission decreases despite the fact that it is a fine powder. And a feature that an extremely high emission intensity can be obtained as compared with that obtained by a conventional firing method. Thermal decomposition is desirably 500 ° C.
This is performed at a temperature of about 1800 ° C. When the heating temperature is high, a relatively large solid spherical powder having a particle size of 1 μm or more is often obtained. On the other hand, when thermal decomposition is performed at a relatively low temperature of 500 ° C. to 1200 ° C., a porous powder in which fine particles of about 0.1 μm are aggregated tends to be obtained. Such a porous powder can be easily crushed,
A very fine spherical powder with good crystallinity is obtained.

【0009】熱分解の雰囲気は、酸化性雰囲気、還元性
雰囲気、または不活性雰囲気のいずれでもよく、目的に
応じて適宜選択される。本法においては雰囲気により、
蛍光の色調や残光性などの発光特性の制御を容易に行う
ことができる。例えば、母結晶にアルミン酸ストロンチ
ウム系の複合酸化物、賦活剤にユウロピウム、共賦活剤
にジスプロシウムを用いた場合は、酸化性雰囲気中で加
熱分解を行うと赤色の発光が得られるが、還元性雰囲気
または不活性雰囲気で加熱分解を行うと黄緑色から青緑
色の発光が得られる。
The thermal decomposition atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and an inert atmosphere, and is appropriately selected depending on the purpose. In this method, depending on the atmosphere,
It is possible to easily control the light emission characteristics such as the color tone of fluorescence and the afterglow. For example, when a strontium aluminate-based composite oxide is used for the mother crystal, europium is used for the activator, and dysprosium is used for the co-activator, red light emission is obtained when heat decomposition is performed in an oxidizing atmosphere. When heat decomposition is performed in an atmosphere or an inert atmosphere, yellow-green to blue-green light is obtained.

【0010】得られた粉末は、次いで高温で更に熱処理
を行う。この熱処理は、酸化性雰囲気、還元性雰囲気ま
たは不活性雰囲気中、好ましくは400℃〜1800℃
の温度で行う。この熱処理により、結晶性が向上すると
ともに賦活剤の価数が制御されると考えられ、目的に応
じて条件を適宜選択することにより発光強度が向上する
ほか、残光時間を延ばしたり、発光色調のコントロール
が可能になる。また本発明の方法では、生成粒子の組成
は基本的に溶液中の金属組成と一致するので、組成の制
御が容易である。また、組成も均一であり、特に賦活剤
の分散状態が極めて良好で、焼成法のように、賦活剤の
偏析はみられない。
[0010] The powder obtained is then subjected to a further heat treatment at a high temperature. This heat treatment is performed in an oxidizing atmosphere, a reducing atmosphere or an inert atmosphere, preferably at 400 ° C. to 1800 ° C.
At a temperature of It is thought that this heat treatment improves the crystallinity and controls the valence of the activator. In addition to improving the emission intensity by appropriately selecting the conditions according to the purpose, the afterglow time can be extended, and the emission color tone can be increased. Control becomes possible. Further, in the method of the present invention, the composition of the produced particles basically matches the metal composition in the solution, so that the composition can be easily controlled. Further, the composition is uniform, and the dispersion state of the activator is particularly excellent, and no segregation of the activator is observed unlike the firing method.

【0011】[0011]

【実施例】次に、実施例及び比較例により本発明を具体
的に説明する。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

【0012】実施例1 硝酸ストロンチウム、硝酸アルミニウム、硝酸ユウロピ
ウム、および硝酸ジスプロシウムを、表1に示される組
成比になるように混合し、金属の濃度が合計で30g/
lとなるように水に溶解し、原料溶液とした。この溶液
を超音波噴霧器を用いて微細な液滴とし、空気をキャリ
アガスとして、電気炉で1200℃に加熱されたセラミ
ック管中に供給した。液滴は加熱ゾーンを通って加熱分
解され、ユウロピウム、ジスプロシウムがドープされた
アルミン酸ストロンチウム粉末を生成した。得られた粉
末を4%の水素を含む窒素雰囲気中、1000℃で1時
間熱処理を行った。この粉末は平均粒径が1μm以下
で、形状は球状であった。(図1参照) 結晶構造をX線回折計で調べたところ、SrAl24
結晶が確認された。
Example 1 Strontium nitrate, aluminum nitrate, europium nitrate, and dysprosium nitrate were mixed at the composition ratio shown in Table 1, and the total metal concentration was 30 g / g.
1 was dissolved in water to obtain a raw material solution. This solution was made into fine droplets using an ultrasonic atomizer, and supplied into a ceramic tube heated to 1200 ° C. in an electric furnace using air as a carrier gas. The droplets were thermally decomposed through a heating zone to produce strontium aluminate powder doped with europium and dysprosium. The obtained powder was heat-treated at 1000 ° C. for 1 hour in a nitrogen atmosphere containing 4% of hydrogen. This powder had an average particle size of 1 μm or less and was spherical in shape. (See FIG. 1.) When the crystal structure was examined with an X-ray diffractometer, SrAl 2 O 4
Crystals were identified.

【0013】比較例1 熱処理を行わない以外は実施例1と同様にして得たユウ
ロピウム、ジスプロシウムがドープされたアルミン酸ス
トロンチウム粉末を製造した。実施例1および比較例1
の試料に254nm の波長の励起光を照射したところ、比較
例1では赤色の蛍光が得られたのみであったのに対し、
実施例1では緑色の蓄光が得られた。表1に励起直後の
発光の相対強度を示した。
Comparative Example 1 A strontium aluminate powder doped with europium and dysprosium obtained in the same manner as in Example 1 except that no heat treatment was performed. Example 1 and Comparative Example 1
When the sample No. was irradiated with excitation light having a wavelength of 254 nm, in Comparative Example 1, only red fluorescence was obtained.
In Example 1, green phosphorescence was obtained. Table 1 shows the relative intensity of light emission immediately after excitation.

【0014】実施例2 原料溶液の構成元素の組成比を表1のとおりとし、熱分
解を窒素中1500℃で、また熱処理を900℃で30
分行う以外は実施例1と同様にして、ユウロピウム、ジ
スプロシウム、硼素をドープしたアルミン酸ストロンチ
ウム系の粉末を得た。この粉末の形状、平均粒径、発光
特性および発光強度を表1に併せて示した。
Example 2 The composition ratio of the constituent elements of the raw material solution was as shown in Table 1, and thermal decomposition was performed at 1500 ° C. in nitrogen and heat treatment was performed at 900 ° C. for 30 minutes.
A strontium aluminate-based powder doped with europium, dysprosium, and boron was obtained in the same manner as in Example 1 except that the separation was performed separately. Table 1 also shows the shape, average particle size, emission characteristics and emission intensity of this powder.

【0015】実施例3〜4 硼素の原料として硼酸を使用し、熱分解の温度と雰囲
気、および熱処理の温度と雰囲気を表1のとおりにする
以外は実施例1と同様にして、それぞれ表1に示される
組成のユウロピウム、ジスプロシウム、硼素がドープさ
れたアルミン酸ストロンチウム系の粉末を得た。この粉
末の形状、平均粒径、発光特性および発光強度を表1に
併せて示した。
Examples 3 and 4 In the same manner as in Example 1 except that boric acid was used as a raw material for boron and the temperature and atmosphere for thermal decomposition and the temperature and atmosphere for heat treatment were as shown in Table 1, respectively. The strontium aluminate-based powder doped with europium, dysprosium, and boron having the composition shown in Table 1 was obtained. Table 1 also shows the shape, average particle size, emission characteristics and emission intensity of this powder.

【0016】実施例5〜6 硝酸カルシウム、硝酸ジルコニウム、および硝酸ユウロ
ピウムを、表1に示される組成比になるように混合し、
実施例1と同様にして、原料溶液を調製した。この溶液
を超音波噴霧器を用いて微細な液滴とし、空気をキャリ
アとして、電気炉で1200℃に加熱されたセラミック
管中に供給した。液滴は加熱ゾーンを通って加熱分解さ
れ、ユウロピウムがドープされたジルコン酸カルシウム
粉末を生成した。得られた粉末を表1に示される雰囲気
中、1000℃で1時間熱処理を行った。この粉末の形
状、平均粒径、発光特性および発光強度を表1に併せて
示した。
Examples 5 to 6 Calcium nitrate, zirconium nitrate, and europium nitrate were mixed so as to have a composition ratio shown in Table 1.
A raw material solution was prepared in the same manner as in Example 1. This solution was made into fine droplets using an ultrasonic atomizer, and supplied into a ceramic tube heated to 1200 ° C. in an electric furnace using air as a carrier. The droplets were pyrolyzed through a heating zone to produce europium-doped calcium zirconate powder. The obtained powder was heat-treated at 1000 ° C. for 1 hour in the atmosphere shown in Table 1. Table 1 also shows the shape, average particle size, emission characteristics and emission intensity of this powder.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明の方法によれば、結晶性が極めて
良好であり、微細でかつ蛍光強度、蓄光性等の発光特性
が極めて優れた、球状の蛍光体粉末を得ることができ
る。また本発明の方法では、組成の調整が容易であり、
均一な組成の蛍光体粉末が得られる。そして熱分解後、
更に熱処理を行うことにより、発光強度、残光時間、発
光色調等の発光特性の制御を容易に行うことができるも
のである。
According to the method of the present invention, it is possible to obtain a spherical phosphor powder which is extremely good in crystallinity, is fine and has extremely excellent emission characteristics such as fluorescence intensity and light storage property. In the method of the present invention, the composition can be easily adjusted,
A phosphor powder having a uniform composition can be obtained. And after pyrolysis,
Further, by performing the heat treatment, it is possible to easily control the emission characteristics such as the emission intensity, the afterglow time, and the emission color tone.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1によって得られた粉末の電子
顕微鏡写真である。
FIG. 1 is an electron micrograph of a powder obtained according to Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 峰人 東京都新宿区西新宿2丁目1番1号 昭栄 化学工業株式会社内 Fターム(参考) 4H001 CF01 XA08 XA13 XA30 XA38 XA40 XB21 YA15 YA22 YA23 YA24 YA30 YA40 YA41 YA42 YA50 YA57 YA58 YA65 YA66 YA72 YA73 YA74 YA83  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Minato Iwasaki, Inventor F-term (reference) 4H001 CF01 XA08 XA13 XA30 XA38 XA40 XB21 YA15 YA24 YA23 YA24 YA30 YA40 YA41 YA42 YA50 YA57 YA58 YA65 YA66 YA72 YA73 YA74 YA83

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも(A)アルミニウム化合物お
よび/またはジルコニウム化合物と、(B)2価金属化
合物とを含む金属化合物の混合溶液を微細な液滴とし、
その液滴を該金属化合物の分解温度より高い温度で加熱
して熱分解した後、得られた粉末を更に熱処理すること
を特徴とする、2価金属のアルミン酸塩および/または
ジルコン酸塩を母結晶とする蛍光体粉末の製造方法。
1. A mixed solution of a metal compound containing at least (A) an aluminum compound and / or a zirconium compound and (B) a divalent metal compound is formed into fine droplets.
The droplets are heated at a temperature higher than the decomposition temperature of the metal compound and pyrolyzed, and then the obtained powder is further subjected to a heat treatment, whereby a divalent metal aluminate and / or zirconate is obtained. A method for producing a phosphor powder as a mother crystal.
【請求項2】 500℃〜1800℃の温度で熱分解す
る請求項1に記載の蛍光体粉末の製造方法。
2. The method for producing a phosphor powder according to claim 1, wherein the pyrolysis is performed at a temperature of 500 ° C. to 1800 ° C.
【請求項3】 400℃〜1800℃の温度で熱処理す
る請求項1または請求項2に記載の蛍光体粉末の製造方
法。
3. The method for producing a phosphor powder according to claim 1, wherein the heat treatment is performed at a temperature of 400 ° C. to 1800 ° C.
【請求項4】 請求項1または請求項3のいずれかによ
って得られた粉末に、更に粉砕処理を施す蛍光体粉末の
製造方法。
4. A method for producing a phosphor powder, wherein the powder obtained according to claim 1 or 3 is further subjected to a pulverizing treatment.
JP28300099A 1999-10-04 1999-10-04 Production method phosphor powder Pending JP2001107038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28300099A JP2001107038A (en) 1999-10-04 1999-10-04 Production method phosphor powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28300099A JP2001107038A (en) 1999-10-04 1999-10-04 Production method phosphor powder

Publications (1)

Publication Number Publication Date
JP2001107038A true JP2001107038A (en) 2001-04-17

Family

ID=17659930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28300099A Pending JP2001107038A (en) 1999-10-04 1999-10-04 Production method phosphor powder

Country Status (1)

Country Link
JP (1) JP2001107038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088275A1 (en) * 2001-04-27 2002-11-07 Kasei Optonix, Ltd. Phosphor and production method therefor
US7001537B2 (en) 2001-04-27 2006-02-21 Kasei Optonix, Ltd. Phosphor and its production process
JP2007031503A (en) * 2005-07-25 2007-02-08 Mitsui Mining & Smelting Co Ltd Red fluorescent substance and white emission device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088275A1 (en) * 2001-04-27 2002-11-07 Kasei Optonix, Ltd. Phosphor and production method therefor
US6712993B2 (en) 2001-04-27 2004-03-30 Kasei Optonix, Ltd. Phosphor and its production process
US7001537B2 (en) 2001-04-27 2006-02-21 Kasei Optonix, Ltd. Phosphor and its production process
JP2007031503A (en) * 2005-07-25 2007-02-08 Mitsui Mining & Smelting Co Ltd Red fluorescent substance and white emission device

Similar Documents

Publication Publication Date Title
DE112005000930B4 (en) α-SiAlON powder and process for the preparation thereof
KR101219738B1 (en) Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
CN1318540C (en) Blue light-excitated white phosphor powder for LED and production method thereof
EP2474590A2 (en) Phosphor particles and making method
TWI417237B (en) Production of Inorganic Crystals
CN111808608B (en) Phosphor compound, preparation method and composition thereof
Wei et al. Recent progress in synthesis of lanthanide-based persistent luminescence nanoparticles
US7378038B2 (en) Process for producing phosphors
JP2004137482A (en) Method for coating particle surface
JP3699991B2 (en) Method for producing high-luminance luminescent material
Duan et al. Synthesis process dependent white LPL in Zn2GeO4 ceramic and the long afterglow mechanism
KR101230039B1 (en) Silicate-based oxide phosphor and method of preparating podwer of the same
KR101174104B1 (en) Magnetic phosphor complex and manufacturing method for the same
JP2001107038A (en) Production method phosphor powder
Yang et al. Tunable multicolor and white emission NaLuF4: Yb, Nd, Ln (Ln= Er, Tm, Er/Tm) microstructures
JP2001107042A (en) Production method of phosphor powder
KR101256626B1 (en) Long phosphorescent phosphors and method of preparating powders of the same
JP2001107044A (en) Phosphor and its production method
JP2003292949A (en) High-luminance luminescent material and method of producing the same
KR20120096221A (en) Phosphor powders and preparing method of the same
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
KR100417607B1 (en) Preparation of Phosphor Oxide by Pyrophoric Synthesis Method