JP2001105443A - Method for producing laminated sheet - Google Patents

Method for producing laminated sheet

Info

Publication number
JP2001105443A
JP2001105443A JP28688299A JP28688299A JP2001105443A JP 2001105443 A JP2001105443 A JP 2001105443A JP 28688299 A JP28688299 A JP 28688299A JP 28688299 A JP28688299 A JP 28688299A JP 2001105443 A JP2001105443 A JP 2001105443A
Authority
JP
Japan
Prior art keywords
laminate
resin
heating
liquid crystal
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28688299A
Other languages
Japanese (ja)
Inventor
Hideki Hiraoka
秀樹 平岡
Masao Takei
正雄 武井
Akira Washimi
章 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP28688299A priority Critical patent/JP2001105443A/en
Publication of JP2001105443A publication Critical patent/JP2001105443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated sheet for a printed wiring board using a liquid crystal polymeric fiber base material eliminating the point at issue of shrinkage and warpage, good in dimensional stability and having excellent electric characteristics such as a low dielectric constant or the like. SOLUTION: A liquid crystal polymeric fiber-containing laminate sheet is produced by heating an uncured curable resin to 220-300 deg.C to cure the same or heating the resin after curing to 220-300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶高分子繊維含有
積層板の製造方法に関するものであり、本製造方法によ
り製造された積層板は、軽量で寸法安定性が良く、誘電
率が低いという特長を有し、特にプリント配線板用銅張
積層板用途として優れているものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a laminate containing a liquid crystal polymer fiber, and the laminate produced by this method is lightweight, has good dimensional stability, and has a low dielectric constant. And is particularly excellent as a copper-clad laminate for printed wiring boards.

【0002】[0002]

【従来の技術】近年、プリント配線基板の多層化や表面
実装技術の発展に伴い、銅張積層板を構成する絶縁材料
には、耐熱性や絶縁性等の電気的信頼性が強く求められ
ている。また通信機器等の分野では信号の周波数領域が
ギガヘルツ帯に及ぶ機器が一般化してきており、特に誘
電率、誘電正接の低い絶縁材料が求められている。LS
I等の集積回路のパッケージング分野においては、シリ
コンチップの発熱や多ピン化によるパッケージ用基板の
高密度化等の点から高耐熱性を有し、かつ信号伝播速度
の遅延を低減する点から低誘電率、低誘電正接という両
特性を兼ね備えた絶縁材料が求められている。
2. Description of the Related Art In recent years, with the development of multilayered printed wiring boards and the development of surface mounting technology, electrical reliability such as heat resistance and insulation has been strongly required for insulating materials constituting copper-clad laminates. I have. In the field of communication equipment and the like, equipment in which the frequency range of a signal extends to the gigahertz band has become popular. In particular, an insulating material having a low dielectric constant and a low dielectric loss tangent has been required. LS
In the field of integrated circuit packaging such as I, it has high heat resistance in terms of heat generation of silicon chips and high density of package substrates due to the increase in the number of pins, and in order to reduce delay in signal propagation speed. There is a demand for an insulating material having both characteristics of a low dielectric constant and a low dielectric loss tangent.

【0003】現在の銅張積層板においては、構成する絶
縁材料としての樹脂の低誘電率化が多く検討されている
が、補強材となる基材は誘電率が高いガラス繊維が広く
用いられているために、積層板全体としては樹脂の電気
特性が有効に活用されていない。また近年ビルドアップ
法プリント配線板の加工方法として広まっているレーザ
ー照射を用いる場合、樹脂層のみの加工には有効である
がガラス繊維基材を含む積層板の穴加工は樹脂とガラス
の分解性が大きく異なるために極めて困難である。
In the current copper-clad laminates, many attempts have been made to lower the dielectric constant of resin as an insulating material. However, glass fibers having a high dielectric constant are widely used as a base material for a reinforcing material. Therefore, the electrical properties of the resin are not effectively utilized for the entire laminate. In addition, when using laser irradiation, which has become widespread in recent years as a processing method for build-up printed wiring boards, it is effective for processing only the resin layer, but the hole processing of the laminated board including the glass fiber base material is not easy to decompose the resin and glass. Are very difficult because they differ greatly.

【0004】これらを改善する方法として耐熱性が高
く、ガラスに比べて誘電率が低く軽量である液晶高分子
製有機繊維布を基材として用いることが近年行われるよ
うになった。その例としては特公平7−19962で開
示されたアラミド繊維布とエポキシ樹脂から製造される
配線板や特再平8−815306(国際公開番号WO9
6/15306)で開示される液晶ポリエステル不織布
を基材として用いた配線板等が挙げられる。
In recent years, as a method of improving these, a liquid crystal polymer organic fiber cloth having high heat resistance, a low dielectric constant as compared with glass, and a light weight is used as a base material. Examples thereof include a wiring board manufactured from aramid fiber cloth and epoxy resin disclosed in Japanese Patent Publication No. Hei 7-19962 and Japanese Patent Publication No. 8-815306 (International Publication No.
6/15306), and a wiring board using a liquid crystal polyester nonwoven fabric as a base material.

【0005】しかしながら液晶高分子繊維製基材は、は
んだリフロー工程等の二百数十℃に及ぶ高温域では繊維
長方向に収縮が起こるために、これを基材として用いた
プリント配線板では、上に設ける導体パターンを伸縮量
を見込んで設計する必要があり、また誤差のため導体パ
ターンを微細化することは困難で製造時の歩留まりが著
しく低下するという問題があった。また同様の原因と推
定される配線板の反りが発生し易くなり、そのような場
合は電子部品の実装ができなくなるという問題があっ
た。さらにこれらの問題点は使用する硬化性樹脂をエラ
ストマーで変成し、硬化物の弾性率を下げた場合に顕著
になる。従って、エラストマー変性樹脂と液晶高分子繊
維基材を組み合わせた積層板は低誘電率で耐衝撃性にも
強いという特長を有するにもかかわらずプリント配線板
への応用が困難であった。
However, since the liquid crystal polymer fiber base material shrinks in the fiber length direction in a high temperature range of over two hundred tens of degrees Celsius such as a solder reflow process, a printed wiring board using this as a base material is It is necessary to design the conductor pattern provided thereon in consideration of the amount of expansion and contraction, and it is difficult to miniaturize the conductor pattern due to an error, and there has been a problem that the production yield is significantly reduced. In addition, there is a problem that the wiring board is likely to be warped, which is presumed to be the same cause, and in such a case, it becomes impossible to mount electronic components. Further, these problems become remarkable when the curable resin to be used is modified with an elastomer to lower the elasticity of the cured product. Therefore, it has been difficult to apply the laminate to a printed wiring board, despite the fact that a laminate comprising an elastomer-modified resin and a liquid crystal polymer fiber base material has a low dielectric constant and a high impact resistance.

【0006】[0006]

【発明が解決しようとする課題】前記のように、収縮、
反りの問題点を解消し、寸法安定性が良く、かつ低い誘
電率等の優れた電気特性を併せ持つ、液晶高分子繊維製
基材を使用したプリント配線板用積層板が強く求められ
ていた。
As described above, shrinkage,
There has been a strong demand for a laminate for a printed wiring board using a liquid crystal polymer fiber base material which eliminates the problem of warpage, has good dimensional stability, and has excellent electrical properties such as a low dielectric constant.

【0007】本発明者等は、前記の課題を解決すべく鋭
意検討した結果、液晶高分子繊維製基材を使用した場合
においても、積層板製造工程において、樹脂硬化時ある
いは樹脂を硬化した後に、繊維基材の融点以下の温度で
積層板を短時間熱処理することにより、上記課題を解決
し得ることを見出して本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, even when a liquid crystal polymer fiber base material is used, in the laminate manufacturing process, the resin is cured or after the resin is cured. The inventors have found that the above-mentioned problems can be solved by performing a short-time heat treatment on the laminate at a temperature equal to or lower than the melting point of the fiber base material, and have completed the present invention.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、未硬化
の硬化性樹脂を220〜300℃の温度範囲で加熱硬化
させるか、硬化後の前記樹脂を前記温度範囲で加熱する
ことを特徴とする液晶高分子繊維含有積層板の製造方法
である。なお、本発明は表面に金属箔を張った金属張積
層板にも適用できるものである。
That is, the present invention is characterized in that an uncured curable resin is heat-cured in a temperature range of 220 to 300 ° C., or the cured resin is heated in the temperature range. Of manufacturing a liquid crystal polymer fiber-containing laminate. The present invention is also applicable to a metal-clad laminate having a metal foil on the surface.

【0009】[0009]

【発明の実施の形態】本発明において液晶性高分子繊維
基材として用いる液晶高分子は、高分子主鎖中にメソゲ
ン基を有する重合体であり、例えば芳香族ポリアミドや
芳香族ポリエステルが挙げられる。これらはメソゲン基
が繊維長方向に配列し易い性質を有するために高強度、
高弾性率の繊維が得られることが特長であり、またガラ
ス転移点以下の温度域においては熱膨張係数が小さいた
め近年プリント配線板用積層板等の基材として検討がさ
れているものである。これらの液晶高分子繊維の具体例
としては、ポリパラフェニレンテレフタルアミド(例え
ば米国デュポン社製:商品名ケブラー)、ポリメタフェ
ニレンイソフタルアミド(米国デュポン社製:商品名ノ
ーメックス)、p−ヒドロキシ安息香酸と6−ヒドロキ
シ−2−ナフトエ酸との共重合物((株)クラレ製商品
名:ベクトラン)およびポリビフェニレンテレフタレー
ト等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal polymer used as a liquid crystalline polymer fiber base material in the present invention is a polymer having a mesogen group in a polymer main chain, and examples thereof include aromatic polyamide and aromatic polyester. . These have high strength because mesogen groups have the property of being easily arranged in the fiber length direction,
It is characterized by the fact that a fiber with a high modulus of elasticity can be obtained, and has a small coefficient of thermal expansion in the temperature range below the glass transition point, and has recently been studied as a substrate for printed wiring board laminates. . Specific examples of these liquid crystal polymer fibers include polyparaphenylene terephthalamide (e.g., manufactured by DuPont, U.S.A .; trade name Kevlar), polymetaphenylene isophthalamide (manufactured by Dupont, U.S.A., trade name: Nomex), p-hydroxybenzoic acid And 6-hydroxy-2-naphthoic acid (trade name: Vectran, manufactured by Kuraray Co., Ltd.), polybiphenylene terephthalate, and the like.

【0010】本発明において用いる硬化性樹脂は加熱あ
るいは光、電子線のような活性エネルギー線の照射等の
手段によって三次元架橋する樹脂であれば特に限定はさ
れず、エポキシ樹脂、マレイミド樹脂、フェノール樹
脂、シリコーン樹脂、アクリル樹脂、不飽和ポリエステ
ル樹脂、ジアリルフタレート樹脂、フラン樹脂、ポリフ
ェニレンオキサイド樹脂等が挙げられる。これらの内、
マレイミド樹脂を用いると耐熱性が良く、高温時の銅箔
接着強度等が高くなり、エポキシ樹脂を用いると常温で
の接着強度が高いという特長があり、いずれも好まし
い。
The curable resin used in the present invention is not particularly limited as long as it is a resin capable of three-dimensionally cross-linking by heating or irradiation with an active energy ray such as light or an electron beam. Epoxy resin, maleimide resin, phenol Resins, silicone resins, acrylic resins, unsaturated polyester resins, diallyl phthalate resins, furan resins, polyphenylene oxide resins, and the like. Of these,
The use of a maleimide resin is advantageous in that the heat resistance is good and the adhesive strength of the copper foil at a high temperature is high, and the use of an epoxy resin is advantageous in that the adhesive strength at a normal temperature is high.

【0011】これらの硬化性樹脂には、フェノキシ樹
脂、ポリアミド、ポリエステル、ポリエーテルスルホ
ン、アクリロニトリルブタジエンポリマー、ポリシロキ
サン等の熱可塑性樹脂を全体の50%以下の量を配合し
て使用することができる。これらの中でもポリシロキサ
ン構造を含有するポリマーや、アクリロニトリルブタジ
エンポリマーのようなエラストマーを配合すると、プリ
プレグを取り扱う際の硬化性樹脂の脱落が少なく、また
熱処理後の積層板の耐衝撃性も向上するため好ましい。
また硬化性樹脂に無機フィラーを添加したものを用いた
場合であっても本発明の製造方法の適用は可能である。
In these curable resins, thermoplastic resins such as phenoxy resins, polyamides, polyesters, polyether sulfones, acrylonitrile butadiene polymers, and polysiloxanes can be blended and used in an amount of 50% or less of the whole. . Of these, when a polymer containing a polysiloxane structure or an elastomer such as an acrylonitrile-butadiene polymer is blended, the curable resin is less likely to fall off when the prepreg is handled, and the impact resistance of the laminate after heat treatment is also improved. preferable.
The production method of the present invention can be applied even when a curable resin obtained by adding an inorganic filler is used.

【0012】本発明における熱処理の温度は220℃以
上かつ300℃以下である。熱処理温度が220℃未満
の場合は、熱処理後の積層板を用いてはんだリフロー等
の加熱工程を行う際の該積層板の収縮および反りの低減
効果が十分ではない。また300℃を超えて熱処理を行
うと樹脂の熱分解物によって金属箔や積層板内に膨れが
生じる等の様々な不具合があり好ましくない。使用する
液晶高分子繊維が300℃以下で溶融する場合は溶融温
度未満で熱処理を行わないと、繊維が変形したりするた
めに熱処理後の積層板の強度が低下し好ましくない。ま
た液晶高分子繊維のガラス転移温度が300℃以下の場
合は、当該ガラス転移温度以上で行うと特に高い効果が
得られる。
The temperature of the heat treatment in the present invention is not lower than 220 ° C. and not higher than 300 ° C. If the heat treatment temperature is lower than 220 ° C., the effect of reducing the shrinkage and warpage of the laminated plate when performing a heating step such as solder reflow using the laminated plate after the heat treatment is not sufficient. Further, when the heat treatment is performed at a temperature higher than 300 ° C., various problems such as swelling in the metal foil or the laminate due to the thermal decomposition product of the resin are not preferable. If the liquid crystal polymer fiber to be used is melted at a temperature of 300 ° C. or lower, unless heat treatment is performed at a temperature lower than the melting temperature, the fiber may be deformed or the strength of the laminated plate after the heat treatment may be reduced, which is not preferable. Further, when the glass transition temperature of the liquid crystal polymer fiber is 300 ° C. or lower, a particularly high effect can be obtained when the temperature is higher than the glass transition temperature.

【0013】加熱時間は、加熱温度によって異なり一概
に決められないが、一般に前記温度範囲で5分〜2時間
が好ましい。低温で短時間では本発明の効果が発現しな
い可能性がある。一方あまり低温で長時間では経済的で
なく、高温で長時間では硬化性樹脂が劣化する恐れがあ
る。従って、この加熱時間の範囲で、高温で加熱する場
合は短時間で、比較的低温の場合は長時間とするよう適
宜調節するのが良い。
The heating time varies depending on the heating temperature and cannot be unconditionally determined, but is generally preferably 5 minutes to 2 hours within the above temperature range. The effect of the present invention may not be exhibited in a short time at a low temperature. On the other hand, if the temperature is too low at a long time, it is not economical, and if the temperature is high at a long time, the curable resin may be deteriorated. Therefore, within the range of the heating time, it is preferable to appropriately adjust the heating time to a short time when heating at a high temperature and a long time when heating at a relatively low temperature.

【0014】本発明における熱処理の方法は特に限定さ
れないが、加熱炉に投入する方法、熱プレスに挟んで加
熱する方法等が挙げられる。加熱炉に投入する場合は銅
箔等の金属箔表面が酸化されないように窒素ガス等の不
活性ガスを流しながら加熱処理を行うのが好ましい。熱
プレスによる加熱処理は金属箔表面の平滑性が高く、加
熱中に生じる恐れがある積層板の反りの発生も防止で
き、またプリプレグを積層して樹脂を硬化する工程と連
続して行うことができるため更に好ましい方法である。
The method of heat treatment in the present invention is not particularly limited, and examples thereof include a method in which the material is put into a heating furnace, a method in which the material is sandwiched between hot presses, and the like. When charged into a heating furnace, it is preferable to perform the heat treatment while flowing an inert gas such as a nitrogen gas so that the surface of a metal foil such as a copper foil is not oxidized. Heat treatment by hot pressing has high smoothness on the surface of the metal foil, can prevent the occurrence of warpage of the laminate that may occur during heating, and can be performed continuously with the process of laminating the prepreg and curing the resin. This is a more preferable method because it is possible.

【0015】熱プレスにより加圧する場合の圧力は、積
層板の厚み等により異なるが、30kg/cm2以下が
好ましい。30kg/cm2を超えると、加熱により樹
脂が軟らかくなるため積層板が押し潰されて熱処理後の
積層板の厚みが薄くなる恐れがあり、また銅箔が裂け易
くなり好ましくない。
The pressure applied by the hot press varies depending on the thickness of the laminate and the like, but is preferably 30 kg / cm 2 or less. If it exceeds 30 kg / cm 2 , the resin is softened by heating, so that the laminate may be crushed and the thickness of the laminate after heat treatment may be reduced, and the copper foil may be easily torn, which is not preferable.

【0016】[0016]

【作用】本発明の製造方法により製造したプリント配線
板用の積層板は、液晶高分子製繊維布を基材とした場合
に問題となっていたはんだリフロー等の加熱工程におけ
る積層板の寸法安定性の低下の問題を解決し、寸法安定
性、軽量性等に優れ、かつ低い誘電率等の優れた電気特
性を合わせ持っている。これらの特性が得られる理由
は、加熱時における液晶高分子繊維の収縮が不可逆的で
あるために、回路パターンを形成する前の段階で加熱処
理を行えば、再加熱しても収縮がほとんど起こらなくな
るためであると思われる。
The laminated board for a printed wiring board manufactured by the manufacturing method of the present invention has a dimensional stability of the laminated board in a heating step such as solder reflow, which has been a problem when using a liquid crystal polymer fiber cloth as a base material. It solves the problem of deterioration of the properties and has excellent electrical characteristics such as excellent dimensional stability and light weight and low dielectric constant. The reason that these characteristics are obtained is that, since the shrinkage of the liquid crystal polymer fibers during heating is irreversible, if the heat treatment is performed before the circuit pattern is formed, the shrinkage hardly occurs even when reheated. It seems to be gone.

【0017】[0017]

【実施例】(合成例1)(マレイミド樹脂変性用エラス
トマーとして用いるポリシロキサン含有ポリイミドの調
製) 温度計、攪拌機、リービッヒ還流冷却器、窒素吹き込み
管を備えた容量1リットルの4つ口フラスコに、2,2
−ビス(4−アミノフェニルオキシ−フェニル)プロパ
ン16.42g(0.04mol)、両末端1級アミン
のポリジメチルシロキサン(東芝シリコーン(株)製:
TSL9386、Mw約802)16.04g(0.0
2mol)、N−メチルピロリドン400gを加えて室
温下で溶解した。ここに4,4’−オキシジフタル酸無
水物(ODPA)17.99g(0.058mol)を
約30分かけて加え、さらに2時間攪拌した後、無水フ
タル酸0.59g(0.004mol)を加えて、さら
に2時間攪拌し、ポリアミック酸溶液とした。この反応
は窒素雰囲気下で行い、水浴を用いて反応系内の温度を
20〜25℃に保持しながら行った。続いて水浴をオイ
ルバスに交換し、還流冷却器をディーンシュタークトラ
ップに付け変え、反応系内にキシレン100gを加えて
攪拌しながら昇温し、150℃から160℃でキシレン
との共沸により水を系外に排出しながらアミック酸の脱
水環化を進め、6時間反応させた後に冷却し粘性のある
ポリイミド溶液を得た。得られたポリイミド溶液をメタ
ノールを貧溶媒として再沈精製し、沈殿したポリイミド
を減圧乾燥してポリジメチルシロキサンを含有するポリ
イミドを得た。
EXAMPLES (Synthesis Example 1) (Preparation of Polysiloxane-Containing Polyimide Used as Elastomer for Modifying Maleimide Resin) A 1-liter four-necked flask equipped with a thermometer, a stirrer, a Liebig reflux condenser, and a nitrogen inlet tube was prepared. 2,2
16.42 g (0.04 mol) of bis- (4-aminophenyloxy-phenyl) propane, polydimethylsiloxane having a primary amine at both ends (manufactured by Toshiba Silicone Co., Ltd .:
TSL9386, Mw about 802) 16.04 g (0.0
2 mol) and 400 g of N-methylpyrrolidone were added and dissolved at room temperature. To this, 17.99 g (0.058 mol) of 4,4'-oxydiphthalic anhydride (ODPA) was added over about 30 minutes, and after stirring for another 2 hours, 0.59 g (0.004 mol) of phthalic anhydride was added. Then, the mixture was further stirred for 2 hours to obtain a polyamic acid solution. This reaction was performed in a nitrogen atmosphere, and was performed while maintaining the temperature in the reaction system at 20 to 25 ° C. using a water bath. Subsequently, the water bath was replaced with an oil bath, the reflux condenser was replaced with a Dean-Stark trap, 100 g of xylene was added to the reaction system, and the temperature was raised while stirring, and water was azeotroped with xylene at 150 to 160 ° C. The dehydration cyclization of the amic acid was advanced while exhausting the mixture out of the system. After reacting for 6 hours, the mixture was cooled to obtain a viscous polyimide solution. The resulting polyimide solution was purified by reprecipitation using methanol as a poor solvent, and the precipitated polyimide was dried under reduced pressure to obtain a polyimide containing polydimethylsiloxane.

【0018】(積層板用ワニス1の調製)攪拌器、温度
計を備えたフラスコに4,4’−ビスマレイミドジフェ
ニルメタン(三井化学(株)製、商品名ビスマレイミ
ド)を200g、3,3’−ジメタリルビスフェノール
A150.2gおよび溶剤としてジメチルアセトアミド
150gを加え130℃で4時間撹拌して得た混合物
に、テトラヒドロフラン1033.5g、ジクミルパー
オキサイド(日本油脂(株)製:商品名パークミルD)
16部、臭素化ポリカーボネート(帝人化成(株)製フ
ァイヤーガード8500)61.5g、エラストマー成
分として合成例1で得られたポリジメチルシロキサンを
含有するポリイミド191.1gおよびシランカップリ
ング剤として2−(3,4−エポキシシクロヘキシル)
エチルトリメトキシシラン(日本ユニカー(株)製:商
品名A−186)17.5gを加えて撹拌し、固形分3
5%の樹脂ワニス(積層板用ワニス1)を調製した。
(Preparation of Laminate Varnish 1) A flask equipped with a stirrer and a thermometer was charged with 200 g of 4,4'-bismaleimidodiphenylmethane (trade name of bismaleimide, manufactured by Mitsui Chemicals, Inc.) and 3,3 ' To a mixture obtained by adding 150.2 g of dimethallyl bisphenol A and 150 g of dimethylacetamide as a solvent and stirring at 130 ° C. for 4 hours, 1033.5 g of tetrahydrofuran and dicumyl peroxide (trade name: Parkmill D, manufactured by NOF Corporation)
16 parts, 61.5 g of brominated polycarbonate (Fireguard 8500, manufactured by Teijin Chemicals Limited), 191.1 g of the polyimide containing polydimethylsiloxane obtained in Synthesis Example 1 as an elastomer component, and 2- (2-) as a silane coupling agent 3,4-epoxycyclohexyl)
17.5 g of ethyltrimethoxysilane (trade name: A-186, manufactured by Nippon Unicar Co., Ltd.) was added, and the mixture was stirred to obtain a solid content of 3%.
5% resin varnish (varnish 1 for laminate) was prepared.

【0019】(積層板用ワニス2の調製)攪拌器、温度
計を備えたフラスコに、臭素化エポキシ樹脂の固形分8
0%メチルエチルケトン(MEK)溶液(ダウケミカル
製、商品名DER514EK80)109gとクレゾー
ルノボラック型エポキシ樹脂の固形分75%MEK溶液
(大日本インキ化学工業(株)製:商品名エピクロンN
−690−75M)13.4gを加え、ここに予めジシ
アンジアミド2.78gをジメチルホルムアミド14.
9gに溶かしておいた溶液と2エチル4メチルイミダゾ
ール0.03g、メチルエチルケトン27.5g、メチ
ルセロソルブ12.36gを加えて70℃で2時間攪拌
した。この溶液にエラストマー成分としてカルボキシル
基末端アクリロニトリルブタジエンゴム(日本合成ゴム
(株)製:商品名PNR−1H)20gを加えて溶か
し、固形分60%のエラストマー変性エポキシ樹脂ワニ
ス(積層板用ワニス2)を得た。
(Preparation of Varnish 2 for Laminate Board) A flask equipped with a stirrer and a thermometer is charged with a solid content of brominated epoxy resin of 8%.
109 g of a 0% methyl ethyl ketone (MEK) solution (manufactured by Dow Chemical, trade name DER514EK80) and a 75% MEK solution of a cresol novolak type epoxy resin with a solid content of 75% (manufactured by Dainippon Ink and Chemicals, Inc .: Epicron N, trade name)
-690-75M), and 3.78 g of dicyandiamide was previously added to dimethylformamide.
A solution dissolved in 9 g, 2-ethyl 4-methylimidazole (0.03 g), methyl ethyl ketone (27.5 g) and methyl cellosolve (12.36 g) were added, and the mixture was stirred at 70 ° C. for 2 hours. 20 g of carboxyl-terminated acrylonitrile butadiene rubber (trade name: PNR-1H, manufactured by Nippon Synthetic Rubber Co., Ltd.) is added and dissolved as an elastomer component to the solution, and an elastomer-modified epoxy resin varnish having a solid content of 60% (varnish 2 for laminate) is added. I got

【0020】(積層板用ワニス3の調製)エラストマー
成分としてのポリジメチルシロキサンを含有するポリイ
ミドを配合しない以外は、積層板用ワニス1の調製と同
様にして、積層板用ワニス3を調製した(固形分60
%)。
(Preparation of Laminate Varnish 3) Laminate varnish 3 was prepared in the same manner as in the preparation of laminate varnish 1 except that polyimide containing polydimethylsiloxane as an elastomer component was not blended. Solid content 60
%).

【0021】(実施例1)前記積層板用ワニス1をガラ
ス転移温度約210℃、融点約280℃の液晶ポリエス
テル(クラレ(株)製:商品名ベクトラン)製不織布に
含浸させ、150℃で15分間乾燥させてプリプレグを
製造した。次に上記プリプレグを5枚重ね、最外層に銅
箔(福田金属箔粉工業(株)製:CF−T9、厚さ18
μm)を粗化面がプリプレグ側になるように重ね合わ
せ、熱プレス機を用いて130℃で1時間加圧加熱の
後、200℃2時間加圧加熱して樹脂を硬化させ、さら
にプレス機に挟んだままの状態で250℃で30分間加
圧加熱処理を行い、銅張積層板を製造した。
Example 1 The varnish 1 for a laminate was impregnated with a nonwoven fabric made of liquid crystal polyester (Vectran, trade name, manufactured by Kuraray Co., Ltd.) having a glass transition temperature of about 210.degree. C. and a melting point of about 280.degree. After drying for minutes, a prepreg was produced. Next, five prepregs were stacked, and a copper foil (CF-T9, manufactured by Fukuda Metal Foil & Powder Co., Ltd., thickness 18) was formed on the outermost layer.
μm) are overlapped so that the roughened surface is on the prepreg side, and after pressurizing and heating at 130 ° C. for 1 hour using a hot press machine, and then pressurizing and heating at 200 ° C. for 2 hours to cure the resin, and further press machine And pressurized and heated at 250 ° C. for 30 minutes to produce a copper-clad laminate.

【0022】(実施例2)実施例1と同様にプリプレグ
と銅箔を積層し、熱プレス機を用いて130℃で1時間
加圧加熱の後、200℃で2時間加圧加熱して樹脂を硬
化させてできた積層板を内部を窒素で置換したオーブン
に投入し230℃で40分間熱処理を行い、銅張積層板
を製造した。
(Example 2) A prepreg and a copper foil were laminated in the same manner as in Example 1, and heated under pressure at 130 ° C for 1 hour using a hot press machine, and then heated under pressure at 200 ° C for 2 hours. Was placed in an oven in which the interior was replaced with nitrogen, and heat-treated at 230 ° C. for 40 minutes to produce a copper-clad laminate.

【0023】(実施例3)前記積層板用ワニス1をアラ
ミド繊維(デュポン社製:商品名ケブラー、融点、ガラ
ス転移点>300℃)製不織布に含浸させ、150℃で
15分間乾燥させてプリプレグを製造した。次にこのプ
リプレグを5枚重ね、最外層に銅箔(福田金属箔粉工業
(株)製:CF−T9、厚さ18μm)を粗化面がプリ
プレグ側になるように重ね合わせ、熱プレス機を用いて
130℃で1時間加圧加熱の後、200℃2時間加圧加
熱して樹脂を硬化させ、さらにプレス機に挟んだままの
状態で250℃で30分間加圧加熱処理を行い、銅張積
層板を製造した。
Example 3 The varnish 1 for a laminate was impregnated with a non-woven fabric made of aramid fiber (manufactured by DuPont, trade name: Kevlar, melting point, glass transition point> 300 ° C.), dried at 150 ° C. for 15 minutes, and prepreg. Was manufactured. Next, five prepregs were stacked, and copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: CF-T9, thickness 18 μm) was stacked on the outermost layer so that the roughened surface was on the prepreg side, and a hot press machine was used. After pressurizing and heating at 130 ° C. for 1 hour using, the resin is cured by pressurizing and heating at 200 ° C. for 2 hours, and further subjected to pressurizing and heating at 250 ° C. for 30 minutes while being sandwiched between presses, A copper clad laminate was manufactured.

【0024】(実施例4)前記積層板用ワニス2をガラ
ス転移温度220℃、融点290℃の液晶ポリエステル
(クラレ(株)製:商品名ベクトラン)製不織布に含浸
させ、150℃で15分間乾燥させてプリプレグを製造
した。次に上記プリプレグを5枚重ね、最外層に銅箔
(福田金属箔粉工業(株)製:CF−T9、厚さ18μ
m)を粗化面がプリプレグ側になるように重ねあわせ、
熱プレス機を用いて130℃で1時間加圧加熱の後、1
80℃で2時間加圧加熱して樹脂を硬化させ、さらにプ
レス機に挟んだままの状態で230℃で20分間加圧加
熱処理を行い、銅張積層板を製造した。
Example 4 The varnish 2 for a laminate was impregnated with a non-woven fabric made of liquid crystal polyester (trade name: Vectran) having a glass transition temperature of 220 ° C. and a melting point of 290 ° C., and dried at 150 ° C. for 15 minutes. Then, a prepreg was produced. Next, five prepregs were stacked, and copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: CF-T9, thickness 18 μm) was formed on the outermost layer.
m), so that the roughened surface is on the prepreg side,
After heating under pressure at 130 ° C for 1 hour using a hot press machine,
The resin was cured by pressurizing and heating at 80 ° C. for 2 hours, and further subjected to pressurizing and heating treatment at 230 ° C. for 20 minutes while being sandwiched by a press to produce a copper-clad laminate.

【0025】(実施例5)積層板用ワニス3を用いた以
外は、実施例1と同様の操作で加圧加熱処理を行い、銅
張積層板を製造した。
(Example 5) A copper-clad laminate was manufactured by performing a pressure and heat treatment in the same manner as in Example 1 except that the varnish 3 for a laminate was used.

【0026】(実施例6)積層板用ワニス1をガラス転
移温度約210℃、融点約280℃の液晶ポリエステル
(クラレ(株)製:商品名ベクトラン)製不織布に含浸
させ、150℃で15分間乾燥させてプリプレグを製造
した。次に上記プリプレグを5枚重ね、最外層に銅箔
(福田金属箔粉工業(株)製:CF−T9、厚さ18μ
m)を粗化面がプリプレグ側になるように重ね合わせ、
熱プレス機を用いて130℃で1時間加圧加熱の後、2
00℃2時間加圧加熱して樹脂を硬化させた。得られた
積層板を一度、放冷した後、加圧せず250℃で30分
間加熱処理を行い、銅張積層板を製造した。
Example 6 A varnish 1 for a laminate was impregnated with a nonwoven fabric of liquid crystal polyester (Vectran, trade name, manufactured by Kuraray Co., Ltd.) having a glass transition temperature of about 210.degree. C. and a melting point of about 280.degree. It was dried to produce a prepreg. Next, five prepregs were stacked, and copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: CF-T9, thickness 18 μm) was formed on the outermost layer.
m) is overlapped so that the roughened surface is on the prepreg side,
After pressurizing and heating at 130 ° C for 1 hour using a heat press machine,
The resin was cured by heating under pressure at 00 ° C. for 2 hours. After the obtained laminated board was once allowed to cool, a heat treatment was performed at 250 ° C. for 30 minutes without applying pressure to produce a copper-clad laminated board.

【0027】(比較例1、2)積層板製造時200℃で
2時間樹脂を加圧加熱して硬化させた後の処理を行わな
いこと以外は実施例1、3と同様の方法で銅張積層板を
製造した。
(Comparative Examples 1 and 2) Copper-clad in the same manner as in Examples 1 and 3, except that no treatment was performed after the resin was cured by pressurizing and heating at 200 ° C. for 2 hours during the production of the laminated board. A laminate was produced.

【0028】(比較例3)実施例1と同様に積層成形を
行い、積層板製造時200℃で2時間樹脂を硬化させた
後さらにそのままの温度で1時間加熱加圧処理を行い銅
張積層板を製造した。
(Comparative Example 3) Lamination molding was carried out in the same manner as in Example 1. After the resin was cured at 200 ° C. for 2 hours at the time of production of the laminated board, it was further heated and pressed at the same temperature for 1 hour to form a copper-clad laminate. Boards were manufactured.

【0029】(比較例4)前記積層板用ワニス1をガラ
スクロス(旭シュエーベル(株)製:7628AS45
0)に含浸させ、150℃で15分間乾燥させてプリプ
レグを製造した。次に上記プリプレグを3枚重ね、最外
層に銅箔(福田金属箔粉工業(株)製:CF−T9、厚
さ18μm)を粗化面がプリプレグ側になるように重ね
合わせ、熱プレス機を用いて130℃で1時間加圧加熱
の後、200℃2時間加圧加熱して樹脂を硬化させ銅張
積層板を製造した。
Comparative Example 4 The varnish 1 for a laminate was made of a glass cloth (7628AS45, manufactured by Asahi Schwebel KK).
0) and dried at 150 ° C. for 15 minutes to produce a prepreg. Next, the above three prepregs are stacked, and copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: CF-T9, thickness 18 μm) is stacked on the outermost layer so that the roughened surface is on the prepreg side, and a hot press machine is used. After heating under pressure at 130 ° C. for 1 hour, the resin was cured by heating under pressure at 200 ° C. for 2 hours to produce a copper-clad laminate.

【0030】(比較例5)積層板製造時180℃で2時
間加圧加熱して樹脂を硬化させた後の230℃で20分
の加圧加熱処理を行わないこと以外は実施例4と同様の
方法で銅張積層板を製造した。
(Comparative Example 5) The same as Example 4 except that after the laminate was manufactured, the resin was cured by pressurizing and heating at 180 ° C. for 2 hours, followed by not subjecting to pressurizing and heating at 230 ° C. for 20 minutes. A copper-clad laminate was produced by the method described above.

【0031】(はんだフロート時における基板の反りの
判定)各実施例および比較例で得られた銅張積層板を5
cm角に切断し、はんだフロート時の反りが発生し易く
なるように片面の銅箔だけをエッチングして中心部に2
5mm角銅箔パターンを形成して図1のような両面の銅
箔残存量が異なるテストピースとした。該テストピース
を260℃のはんだ浴に25mm角パターンを下にして
5分間浮かべ、はんだフロート中の外観の観察およびは
んだ浴から取り出した後の反り量を測定した。反り量は
平滑なガラス板上に反りの生じたテストピースを図2の
ように凸部を下にして載せ、4角がガラス板から浮き上
がった距離を計測した。はんだフロート時はんだ面から
角が浮き上がるように反った場合は正の数値、角がはん
だに沈み込むように反りが生じた場合は負の数値でそれ
ぞれ区別した。
(Judgment of substrate warpage during solder float) The copper-clad laminate obtained in each of the Examples and Comparative Examples was tested for 5
Cut to 1 cm square and etch only one side of the copper foil so that warpage during solder float is easy to occur.
A 5 mm square copper foil pattern was formed to obtain test pieces having different amounts of copper foil remaining on both sides as shown in FIG. The test piece was floated on a solder bath at 260 ° C. with a 25 mm square pattern facing down for 5 minutes, the appearance of the solder float was observed, and the amount of warpage after removal from the solder bath was measured. As for the amount of warpage, a warped test piece was placed on a smooth glass plate with the protruding portion facing down as shown in FIG. 2, and the distance at which the four corners floated from the glass plate was measured. Positive numerical values were used to distinguish the corners from the solder surface when the solder floated, and negative numerical values were used to indicate that the corners were sinking into the solder.

【0032】(加熱後の基板の収縮の評価)各実施例お
よび比較例で得られた銅張積層板の銅箔をエッチングし
て取り除き、次に40cm角に切断して各辺および中心
線の長さを合計6点測定した。この積層板をソルダーレ
ジストの硬化やはんだリフロー等に、実際に積層板が履
歴を受けると思われる様々な加熱工程を想定して、18
0℃のオーブンに1時間放置後、230℃オーブンに更
に1時間放置して予め長さを測定した場所と同じ場所の
長さを測定し、加熱前後の寸法を比較した。
(Evaluation of Shrinkage of Substrate After Heating) The copper foil of the copper-clad laminate obtained in each of the examples and comparative examples was removed by etching, and then cut into 40 cm squares to cut each side and the center line. The length was measured at a total of six points. This laminate is subjected to various heating steps, such as curing of solder resist and solder reflow, which are assumed to actually receive a history of the laminate.
After leaving it in an oven at 0 ° C. for 1 hour, it was left in an oven at 230 ° C. for another 1 hour, the length of the same place as that previously measured was measured, and the dimensions before and after heating were compared.

【0033】(誘電率および誘電正接の測定)各実施例
および比較例で得られた銅張積層板の銅箔をエッチング
により除去し、120℃で5時間乾燥後に、(株)横川
ヒューレットパッカード社製Qメーター、モデル434
2Aを使用し、周波数1MHzで測定し求めた。以上、
各試験の結果を表1および表2に記す。
(Measurement of dielectric constant and dielectric loss tangent) The copper foil of the copper-clad laminate obtained in each of Examples and Comparative Examples was removed by etching, dried at 120 ° C for 5 hours, and then subjected to Yokokawa Hewlett-Packard Co., Ltd. Made Q meter, model 434
The measurement was performed at a frequency of 1 MHz using 2A. that's all,
Tables 1 and 2 show the results of each test.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】実施例1〜6と比較例1、2、3、5を比
較すると予め加熱処理を加えておくことにより、その後
の加熱工程における積層板の収縮および反りは大幅に改
善されたことがわかる。また比較例4のように基材にガ
ラスクロスを用いた場合は熱処理を行わなくても積層板
の収縮および反りは少ないが、誘電率は有機繊維を使用
した積層板よりも大きいことがわかる。
Comparing Examples 1 to 6 with Comparative Examples 1, 2, 3, and 5, it was found that by applying a heat treatment in advance, the shrinkage and warpage of the laminate in the subsequent heating step were significantly improved. Understand. In addition, when glass cloth is used as the base material as in Comparative Example 4, even though heat treatment is not performed, shrinkage and warpage of the laminate are small, but the dielectric constant is larger than that of the laminate using organic fibers.

【0037】[0037]

【発明の効果】液晶高分子繊維製基材を使用したプリン
ト配線板用金属張積層板は、低い誘電率等の優れた電気
特性を得ることができるものの、電子部品実装時におけ
る加熱などの熱履歴によって、基板の収縮や反りが発生
し易いという問題があった。これに対し本発明の製造方
法を用いて得られた積層板は上記の課題を解決し、液晶
高分子繊維製基材を使用した場合においても積層板の収
縮や反りをほとんど発生しない。しかも本製造方法は簡
便で電気特性などの諸物性を損なうことがない。本発明
で得られた積層板は、軽量で低誘電率という液晶高分子
繊維を基材とした軽量で低誘電率という特長を生かし
て、電子機器の軽量化、高性能化ができ、プリント配線
板用金属張積層板の用途として極めて有用なものであ
る。
The metal-clad laminate for a printed wiring board using a liquid crystal polymer fiber base material can obtain excellent electrical characteristics such as a low dielectric constant, but is not suitable for heat or the like during mounting of electronic parts. Due to the history, there has been a problem that the substrate is likely to contract or warp. On the other hand, the laminate obtained by the production method of the present invention solves the above-mentioned problems, and hardly causes shrinkage or warpage of the laminate even when a liquid crystal polymer fiber base material is used. In addition, the present manufacturing method is simple and does not impair various physical properties such as electric characteristics. The laminate obtained by the present invention makes it possible to reduce the weight and improve the performance of electronic devices by taking advantage of the features of light weight and low dielectric constant based on a liquid crystal polymer fiber having low weight and low dielectric constant. It is extremely useful as a metal-clad laminate for a board.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施例および比較例におけるはんだフローテ
スト用のテストピースを示した説明図である。
FIG. 1 is an explanatory diagram showing test pieces for a solder flow test in each of Examples and Comparative Examples.

【図2】はんだフローテスト後のテストピースの反り量
を測定する方法を示した断面説明図である。
FIG. 2 is an explanatory sectional view showing a method for measuring the amount of warpage of a test piece after a solder flow test.

【符号の説明】[Explanation of symbols]

1 銅箔 2 積層板 3 反りの生じたテストピース 4 ガラス等の平滑な板 DESCRIPTION OF SYMBOLS 1 Copper foil 2 Laminated board 3 Warped test piece 4 Smooth board of glass etc.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 9/02 C08L 9/02 35/00 35/00 63/00 63/00 A 83/04 83/04 // B29K 63:00 B29K 63:00 79:00 79:00 101:10 101:10 105:08 105:08 B29L 31:34 B29L 31:34 Fターム(参考) 4F072 AA04 AA07 AB05 AB06 AB29 AD27 AD45 AG03 AH02 AH22 AJ04 AK02 AK14 AL13 4F204 AA20J AA24 AA30 AA36 AA39 AA40J AA45 AC02 AD03 AD08 AD16 FA20 FB01 FB15 FB25 FE06 FF01 FG03 FG09 FH06 FJ30 FN11 FN17 FQ01 FQ19 FW06 FW16 FW26 FW33 4J002 AA021 AC072 BF051 BG001 BH021 CC031 CD001 CF002 CF163 CF211 CH071 CH082 CL002 CL063 CN032 CP031 CP032 FA043 GF00 GQ00──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C08L 9/02 C08L 9/02 35/00 35/00 63/00 63/00 A 83/04 83/04 // B29K 63:00 B29K 63:00 79:00 79:00 101: 10 101: 10 105: 08 105: 08 B29L 31:34 B29L 31:34 F-term (reference) 4F072 AA04 AA07 AB05 AB06 AB29 AD27 AD45 AG03 AH02 AH22 AJ04 AK02 AK14 AL13 4F204 AA20J AA24 AA30 AA36 AA39 AA40J AA45 AC02 AD03 AD08 AD16 FA20 FB01 FB15 FB25 FE06 FF01 FG03 FG09 FH06 FJ30 FN11 FN17 FQ01 F1619 FW12 FW1A CL063 CN032 CP031 CP032 FA043 GF00 GQ00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 未硬化の硬化性樹脂を220〜300℃
の温度範囲で加熱硬化させるか、硬化後の前記樹脂を前
記温度範囲で加熱することを特徴とする液晶高分子繊維
含有積層板の製造方法。
1. An uncured curable resin is heated to 220 to 300 ° C.
A method for producing a liquid crystal polymer fiber-containing laminate, wherein the resin is cured by heating in the above temperature range or the resin after curing is heated in the above temperature range.
【請求項2】 硬化性樹脂が、エラストマーを配合させ
たエポキシ樹脂もしくはマレイミド樹脂であることを特
徴とする請求項1の液晶高分子繊維含有積層板の製造方
法。
2. The method for producing a liquid crystal polymer fiber-containing laminate according to claim 1, wherein the curable resin is an epoxy resin or a maleimide resin mixed with an elastomer.
JP28688299A 1999-10-07 1999-10-07 Method for producing laminated sheet Pending JP2001105443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28688299A JP2001105443A (en) 1999-10-07 1999-10-07 Method for producing laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28688299A JP2001105443A (en) 1999-10-07 1999-10-07 Method for producing laminated sheet

Publications (1)

Publication Number Publication Date
JP2001105443A true JP2001105443A (en) 2001-04-17

Family

ID=17710231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28688299A Pending JP2001105443A (en) 1999-10-07 1999-10-07 Method for producing laminated sheet

Country Status (1)

Country Link
JP (1) JP2001105443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010672A1 (en) * 2009-07-24 2011-01-27 住友ベークライト株式会社 Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2019109595A1 (en) * 2017-12-05 2019-06-13 Ticona Llc Liquid crystalline polymer composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010672A1 (en) * 2009-07-24 2011-01-27 住友ベークライト株式会社 Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2019109595A1 (en) * 2017-12-05 2019-06-13 Ticona Llc Liquid crystalline polymer composition
US11578269B2 (en) 2017-12-05 2023-02-14 Ticona Llc Liquid crystalline polymer composition

Similar Documents

Publication Publication Date Title
CN106010421B (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper-clad laminate, wiring board, and printed wiring board
KR101289043B1 (en) Resin Composite Metal Foil, Laminate and Process for the Production of Printed Wiring Board Using the Laminate
US7115681B2 (en) Resin composition
CN109071854B (en) Prepreg, metal-clad laminate, and printed wiring board
JP2004182851A (en) Resin composition, prepreg, and printed wiring board therewith
JP4732001B2 (en) Thermosetting resin composition for buildup substrate interlayer insulation material, resin film, product with film, and interlayer insulation material for buildup substrate
JP2967555B2 (en) Thermosetting resin composition containing thermoplastic polymer dispersed in thermosetting resin
EP2371536B1 (en) Copper foil with resin
JP2003253018A (en) Prepreg and printed wiring board using the same
JPH01121356A (en) Thermosetting resin composition and prepreg and laminated board produced by using same
JPH08193139A (en) Prepreg for printed wiring board and metal-clad laminate using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
KR102475222B1 (en) Insulating dielectric film and its manufacturing method and multi-layer printed circuit board
JP2003213019A (en) Prepreg and printed wiring board using the same
JP2003073543A (en) Resin composition, prepreg and printed circuit board using the same
JP2001105443A (en) Method for producing laminated sheet
CN114958287A (en) Adhesive composition, cured product, adhesive sheet, copper foil with resin, copper-clad laminate, and printed wiring board
JP4390056B2 (en) B-stage resin composition sheet and method for producing copper-clad laminate using the same
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
JP2510065B2 (en) Manufacturing method of electronic circuit package
JP7352799B2 (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and printed wiring boards
JP2866661B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP2003096296A (en) Resin composition, prepreg and printed circuit board using the same
JP4390055B2 (en) Method for producing copper clad laminate
KR100644749B1 (en) Copper clad laminate and multi layer board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624