JP2001085745A - Light-emitting device - Google Patents

Light-emitting device

Info

Publication number
JP2001085745A
JP2001085745A JP26071299A JP26071299A JP2001085745A JP 2001085745 A JP2001085745 A JP 2001085745A JP 26071299 A JP26071299 A JP 26071299A JP 26071299 A JP26071299 A JP 26071299A JP 2001085745 A JP2001085745 A JP 2001085745A
Authority
JP
Japan
Prior art keywords
medium
light
light source
emitting device
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26071299A
Other languages
Japanese (ja)
Inventor
Toshio Obayashi
稔夫 尾林
Hisayuki Mihara
久幸 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26071299A priority Critical patent/JP2001085745A/en
Publication of JP2001085745A publication Critical patent/JP2001085745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve the using efficiency of light from an optical semiconductor device. SOLUTION: This light-emitting element is provided with a surface light source 100 in a light-diffusing type and a structure 102 formed near the outer periphery of the surface light source, so that an arbitrary space can be surrounded by reflecting faces, and the inside part is packed with a medium 103 having arbitrary refractivity in an arbitrary range, and when the refractivity of the medium 103 to be packed is defined as N, the size of the outgoing face of the medium is set so as to be not less than N/Nx(Nx: the refractivity of a medium brought into contact with the medium to be packed at the outgoing face) times as large as the size of the incident face of the medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光半導体素子を
用いた発光装置に関するものであり、またこの発光装置
を用いたカラー表示装置、投写型表示装置にも関わるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using an optical semiconductor element, and also relates to a color display device and a projection display device using the light emitting device.

【0002】[0002]

【従来の技術】従来のLEDなどは、光半導体素子と、
半導体素子からの光を集光するレンズとして働くモール
ド部材とを有する構成である。
2. Description of the Related Art Conventional LEDs and the like include an optical semiconductor element,
A mold member functioning as a lens for condensing light from the semiconductor element.

【0003】[0003]

【発明が解決しようとする課題】光半導体素子からの光
は、モールド部材のレンズ効果によって集光されて外部
に放出される。しかしモールド部材から外部に放出され
る光のうちモールド部材側面方向にも放出される光があ
り、光の利用効率が悪いという問題がある。また、この
ため、これらのLEDを表示器などに用いた場合、LE
Dの半値角からはずれると、光半導体素子から直接放出
されるわずかな光しか観測されず、急激に暗くなるな
り、LEDの一部が光っているだけで、表示が見づらく
なるという問題があった。
The light from the optical semiconductor device is condensed by the lens effect of the mold member and emitted to the outside. However, among the light emitted from the mold member to the outside, there is light emitted also in the side direction of the mold member, and there is a problem that light utilization efficiency is poor. For these reasons, when these LEDs are used in a display or the like, LE
When the angle deviates from the half-value angle of D, only a small amount of light directly emitted from the optical semiconductor element is observed, and the light becomes rapidly dark, and there is a problem that the display is difficult to see because only a part of the LED shines. .

【0004】本件発明者らは、特願平10−33284
6号において投写型ディスプレイの照明装置としてでは
あるが、光拡散タイプの面光源をカライドスコープで覆
うことにより、光源から光利用効率を向上し、高品位な
照明光を得られる照明装置を提案している。また、カラ
イドスコープ内に媒質を充填することも提案している。
[0004] The present inventors have filed a Japanese Patent Application No. 10-33284.
No. 6 proposes a lighting device that can improve the light utilization efficiency from the light source and obtain high-quality lighting by covering the light diffusion type surface light source with a kaleidoscope. are doing. It has also been proposed to fill the kaleidoscope with a medium.

【0005】しかし、媒質の屈折率・充填範囲によって
は、十分にその効果を得られないという問題があった。
However, there is a problem that the effect cannot be sufficiently obtained depending on the refractive index and the filling range of the medium.

【0006】[0006]

【課題を解決するための手段】そこで、本発明の目的
は、光半導体素子の外周部を反射面(カライドスコープ)
で覆いその内部を充填する媒質の最適な条件を求めるこ
とにより、光半導体素子からの光を有効に取り出し、光
の出射面を面発光にすることにより表示の見やすさを改
善し得る発光装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical semiconductor device having an outer peripheral portion provided with a reflecting surface (calliscope).
A light-emitting device that can effectively extract light from the optical semiconductor element by finding the optimum conditions for the medium that covers and fills the interior, and improves the visibility of the display by making the light emission surface surface-emitting. To provide.

【0007】この目的を実現するためにこの発明では、
光拡散タイプの面光源を有し、前記面光源の外周付近に
形成され、任意空間を反射面で囲む構造を有した発光装
置において、前記反射面で囲まれた内部を任意の範囲、
任意の屈折率の媒質にて充填し、充填される前記媒質の
屈折率をNとしたとき、媒質出射面サイズが入射面より
もN/N倍 (Nx:充填される媒質と出射面側で接
触する媒体の屈折率)以上としたものである。
In order to achieve this object, the present invention provides:
In a light emitting device having a light diffusion type surface light source, formed near the outer periphery of the surface light source, and having a structure surrounding an arbitrary space with a reflection surface, an interior surrounded by the reflection surface has an arbitrary range,
Filling in any of the refractive index of the medium, when the refractive index of the medium to be filled and the N, N / N x times than the medium exit surface size entrance surface (Nx: emission surface side and the medium to be filled ).

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1には本装置の概略の構成図を示す。図
2は本発明の構成の基本的な考え方を示す説明図であ
る。
FIG. 1 shows a schematic configuration diagram of the present apparatus. FIG. 2 is an explanatory diagram showing the basic concept of the configuration of the present invention.

【0010】100は面光源であり、101は照明野で
ある。面光源100の周囲と照明野の周囲の空間は、た
とえば、ミラー102(カライドスコープ)で囲まれて
いる。ミラーは、樹脂で型をつくり、表面にアルミ蒸着
し反射面を設けたものでもよいし、ロッドレンズ表面に
反射面を設けたようなものでもよい。
Reference numeral 100 denotes a surface light source, and 101 denotes an illumination field. The space around the surface light source 100 and the space around the illumination field are surrounded by, for example, a mirror 102 (callidescope). The mirror may be made of a resin and may have a reflective surface formed by evaporating aluminum on the surface, or may have a reflective surface provided on the rod lens surface.

【0011】面光源100は、たとえば、赤色発光の半
導体素子で、照明野101よりも縦横寸いずれも小さな
形状である。ミラー102内部は、屈折率Nの媒質10
3で充填されている。面光源100から発光した光は、
媒質103の入射面104(サイズa)に入射する。充
填された媒質103の出射面105(サイズb)の中央
部Pから、入射面104側を見るとと、入射面104に
擬似面光源が形成される。
The surface light source 100 is, for example, a semiconductor element that emits red light and has a shape smaller in both vertical and horizontal dimensions than the illumination field 101. Inside the mirror 102 is a medium 10 having a refractive index N.
3 filled. The light emitted from the surface light source 100 is
The light enters the incident surface 104 (size a) of the medium 103. When looking at the entrance surface 104 side from the central portion P of the exit surface 105 (size b) of the filled medium 103, a pseudo surface light source is formed on the entrance surface 104.

【0012】入射面104における擬似面光源像および
光源鏡像は、入射面104からミラー102の延長上交
点O点までの距離rを半径とする円上に並ぶ(図2参
照)。
The pseudo surface light source image and the light source mirror image on the incident surface 104 are arranged on a circle whose radius is the distance r from the incident surface 104 to the point O of extension of the mirror 102 (see FIG. 2).

【0013】照明距離dが十分確保されていれば鏡像は
円とみなすことが許容される。よって観測点Pに到達す
る最大入射角はPから円への接線が光軸106となす角
θであり、出射面105よりミラー102の延長上の交
点Oまでの距離をL、ミラー102の対光軸角をφとす
るとき、 r=d×a/(b−a)…(1) L=d×b/(b−a)…(2) φ=tan−1{(b−a)/(2d)}…(3) であるから照明角θは θ=sin−1(r/L)=sin−1(a/b) …(4) また、媒質103から、これに隣接する屈折率のN
媒体(大気ならN=1)に放出されるための臨界角θ
cは θc=sin−1(N/N) …(5) ここで媒質103と隣接する屈折率N媒体の界面透過
/反射効率を無視したときの、媒質103内部に入射し
た光が全て隣接する屈折率N媒体に出射される効率が
最大となるためには、照明角θが臨界角θc以下になれ
ばよい、よって b≧N/N・a …(6) となる。
If the illumination distance d is sufficiently ensured, the mirror image can be regarded as a circle. Therefore, the maximum incident angle that reaches the observation point P is the angle θ between the tangent from P to the circle and the optical axis 106, the distance from the exit surface 105 to the intersection O on the extension of the mirror 102 is L, When the optical axis angle is φ, r = d × a / (ba) (1) L = d × b / (ba) (2) φ = tan −1 b (ba) / (2d)} (3) Therefore, the illumination angle θ is θ = sin −1 (r / L) = sin −1 (a / b) (4) Also, the refraction from the medium 103 adjacent thereto is obtained. Critical angle θ for emission into a medium of rate N x (N x = 1 in air)
c is θc = sin −1 (N x / N) (5) Here, when the interface transmission / reflection efficiency of the refractive index N x medium adjacent to the medium 103 is neglected, all the light incident inside the medium 103 is In order to maximize the efficiency of emission to the adjacent refractive index Nx medium, the illumination angle θ needs to be equal to or less than the critical angle θc, and therefore b ≧ N / Nx · a (6).

【0014】またこのとき、図3に示すように、充填す
る媒質の高さHは、入射面104からの光300がミ
ラー102に反射するごとに、光軸106と成す角は小
さくなるので、一度もミラーにて反射されない直接光3
01の大気界面法線方向(光軸106)となす角θxが
臨界角以下になるように充填媒質の高さHLを選べよ
い。
At this time, as shown in FIG. 3, the height HL of the medium to be filled is such that the angle formed with the optical axis 106 becomes smaller each time the light 300 from the incident surface 104 is reflected on the mirror 102. , Direct light 3 that is never reflected by the mirror
The height HL of the filling medium may be selected so that the angle θx formed with the normal direction of the air interface (optical axis 106) of No. 01 is equal to or smaller than the critical angle.

【0015】入射面の対角をAとすれば、 H≧[A(N/N+N)cos{sin−1(N/N)}]/2…(7) である。If the diagonal of the incident surface is A, then HL ≧ [A (N 2 / N x + N) cos {sin −1 (N x / N)}] / 2 (7)

【0016】また、光半導体素子によっては図4(a)
のように光発散角に顕著な特性を有し、「θ」以上の
出射角は有効とは見なせない場合がある。
Further, depending on the optical semiconductor element, FIG.
As described above, the light divergence angle has a remarkable characteristic, and an emission angle equal to or more than “θ L ” may not be regarded as effective.

【0017】第5図を用いて有効出射角が与えられた場
合について説明する。
The case where the effective emission angle is given will be described with reference to FIG.

【0018】光半導体素子500の有効出射角が
「θ」で与えられ、光半導体素子500の屈折率N
0、充填した媒質501の屈折率Nとしたとき、半導体
素子500からの媒質501に放出される光の最大角が
臨界角θc0以下の場合、媒質の入射面502における
最大角θmaxは θmax=sin−1(N/N・sinθ) …(8) となり、媒質501の入射面502に新たに配光特性θ
maxをもった擬似光源が形成される。
The effective emission angle of the optical semiconductor element 500 is given by “θ L ”, and the refractive index N of the optical semiconductor element 500 is
0, when the refractive index N of the filled medium 501, if the maximum angle of light emitted to the medium 501 from the semiconductor device 500 is less than the critical angle theta c0, the maximum angle .theta.max at the incident surface 502 of the medium .theta.max = sin −1 (N 0 / N · sin θ L ) (8), and the light distribution characteristic θ is newly added to the incident surface 502 of the medium 501.
A pseudo light source having max is formed.

【0019】その他の条件は第2図を用いた前節と同条
件であるとする。ここでミラー503のなす角「φ」よ
りも、集光出射角範囲「θmax」が大きい場合、観測
点「P」よりみた光源像は前節同様ミラー503の延長
線交点を中心とする半径「r」の円上に存在する。
The other conditions are assumed to be the same as those in the previous section using FIG. Here, when the converging / emitting angle range “θ max ” is larger than the angle “φ” formed by the mirror 503, the light source image viewed from the observation point “P” has a radius “ r "on the circle.

【0020】円より「θmax」で発し、観測点「P」
に到達する円上の鏡像から発する光線が光軸と為す角
「θ」が、観測点「P」への照明最大角となる。
Emitted from the circle at “θ max ” and the observation point “P”
The angle “θ T ” formed by a light ray emitted from the mirror image on the circle reaching the optical axis is the maximum illumination angle to the observation point “P”.

【0021】従って鏡像と円中心「O」および光軸との
角度を「θ」とすれば、 θ=θ+θ …(9) rsinθ=(L−rcosθ)tanθ …(10) となる。
Therefore, assuming that the angle between the mirror image, the center of the circle “O” and the optical axis is “θ M ”, θ L = θ M + θ T (9) rsin θ M = (L−r cos θ M ) tan θ T ( 10) Becomes

【0022】また、媒質から隣接する屈折率N媒体
(大気ならN=1)に放出されるための臨界角θcは θc=sin−1(N/N) …(13) ここで媒質と大気中の界面透過/反射効率を無視したと
きの、媒質内部に入射した光が全て隣接する屈折率N
媒体に出射される効率が最大となるためには、照明角θ
が臨界角θc以下になればよい、よって b≧N/N・a・sinθmax …(14) となる。
Further, the critical angle .theta.c is θc = sin -1 (N x / N) for being released to the refractive index N x medium adjacent the medium (air if N x = 1) ... (13 ) where the medium When the transmission / reflection efficiency in the air and the interface in the atmosphere are neglected, all the light incident on the inside of the medium has an adjacent refractive index Nx.
In order to maximize the efficiency emitted to the medium, the illumination angle θ
Should be less than or equal to the critical angle θc, so that b ≧ N / N x · a · sin θ max (14)

【0023】また、図4(b)に示すように、充填する
樹脂の高さは、入射面502からの光はライドスコープ
に反射するごとに、光軸106と成す角は小さくなるの
で、一度もカライドスコープにて反射されない直接光4
02の大気界面法線方向(光軸106)と成す角θLが
臨界角以下になるように充填媒質の高さHLを選べよ
い。入射面の対角をAとすれば、 HL≧[A(N2/Nxsinθmax+N)cos{sin-1(Nx/N)}]/2 …(15) となる。
As shown in FIG. 4 (b), the height of the resin to be filled is determined by the fact that the angle formed with the optical axis 106 becomes smaller each time the light from the incident surface 502 is reflected by the ride scope. Light 4 not reflected by Kaleidoscope
The height HL of the filling medium may be selected so that the angle θL formed with the normal direction of the air interface (optical axis 106) of 02 is not more than the critical angle. Assuming that the diagonal of the incident surface is A, HL ≧ [A (N 2 / N x sin θ max + N) cos {sin −1 (N x / N)}] / 2 (15)

【0024】次に図6を用いて複数の屈折率の異なる媒
質を充填した場合を説明する。
Next, a case where a plurality of media having different refractive indexes are filled will be described with reference to FIG.

【0025】光源面600から1番目の媒質mに入射
した光は、これまでに述べたように、媒質mの入射面
601に擬似光源面を形成し、出射面602では式
(4)または(12)で表されるθという照明角度をも
ち、隣りの媒質mに入射し、媒質mの出射面604
から入射面603を見ると、入射面にあらたに擬似光源
面が形成され、同様に繰り返され、これまで述べたいず
れかの条件を満たす場合、光の利用効率がもっともよく
なる。
The light incident on the first medium m 1 from the light source surface 600 forms a pseudo light source surface on the incident surface 601 of the medium m 1 as described above, and the light exit surface 602 has the formula (4) Or, it has an illumination angle of θ represented by (12), enters the adjacent medium m 2 , and emits light 604 of the medium m 2.
When the incident surface 603 is viewed from above, a pseudo light source surface is newly formed on the incident surface, and the same is repeated. When any of the conditions described above is satisfied, the light use efficiency becomes the best.

【0026】さらに、媒質m−1と媒質m+1との間の
媒質mの屈折率Nmは Nm=Nm+1×√(Nm−1/Nm+1) のとき透過効率が最大となる。
Further, when the refractive index Nm of the medium m between the medium m-1 and the medium m + 1 is Nm = Nm + 1 × √ (Nm-1 / Nm + 1), the transmission efficiency becomes maximum.

【0027】図7にNm−1=3.6、Nm+1=1の
ときの透過効率を示す。
FIG. 7 shows the transmission efficiency when Nm-1 = 3.6 and Nm + 1 = 1.

【0028】 Nm=1×√(3.6/1)=1.897… のとき透過効率が最大になっていることが確認できる。When Nm = 1 × √ (3.6 / 1) = 1.897..., It can be confirmed that the transmission efficiency is maximized.

【0029】光源面600(屈折率N)から大気中ま
でを屈折率の異なるK個の媒質で充填する場合、 Nm=N ((k+1−m)/(k+1)) (m=1,2,…,k) とすると透過効率が最大となる。
When the space from the light source surface 600 (refractive index N 0 ) to the atmosphere is filled with K media having different refractive indexes, Nm = N 0 ((k + 1−m) / (k + 1)) (m = 1, 2,..., K), the transmission efficiency is maximized.

【0030】以上、光半導体素子一個にカライドスコー
プを一つ対応させた場合について述べたが、複数の光半
導体素子を一つの面光源として用いてもよいことは勿論
のことである。
Although the case where one kaleidoscope is associated with one optical semiconductor element has been described above, it is needless to say that a plurality of optical semiconductor elements may be used as one surface light source.

【0031】図8は本発明の発光装置を利用した表示装
置を模式的に書いた図である。
FIG. 8 is a diagram schematically illustrating a display device using the light emitting device of the present invention.

【0032】たえば、赤色、青色、緑色発光の半導体素
子1個づつで上述した発光装置801,802,80
3、…をつくり、3色で一画素を表示する。これによ
り、効率がよく明るく、どこから見ても見やすい表示装
置を提供できることになる。また、赤色、青色、緑色発
光の半導体素子の複数個に対して、1個のカライドスコ
ープを対応させて覆う構成でもよい。
For example, the above-described light emitting devices 801, 802, and 80 are each composed of one red, blue, and green light emitting semiconductor element.
, And one pixel is displayed in three colors. This makes it possible to provide a display device that is efficient, bright, and easy to see from anywhere. Further, a configuration may be adopted in which one kaleidoscope is associated with and covers a plurality of red, blue, and green light emitting semiconductor elements.

【0033】図9は投射型表示装置の概略構成図であ
る。
FIG. 9 is a schematic structural view of a projection type display device.

【0034】それぞれ複数の赤色発光の半導体素子90
0、緑色発光の半導体素子901、青色発光の半導体素
子902をカライドスコープ903,904,905で
覆い、屈折率N、N、Nの媒質M、M、M
を充填する。赤色発光の半導体素子900、青色発光の
半導体素子901、緑色発光の半導体素子902から発
光した光は、それぞれの色表示用の液晶パネル906,
907,908を通り、色合成プリズム909で合成さ
れ、投射レンズ910により、スクリーン911に表示
される。これにより、光半導体素子からの光を効率よく
取り出すことができ、明るい投射型表示装置を提供でき
る。
Each of the plurality of red-emitting semiconductor elements 90
0, green light-emitting semiconductor element 901, covering the semiconductor element 902 of the blue emission at a kaleidoscope 903, 904 and 905, the refractive index N R, N G, the medium M R of the N B, M G, M B
Fill. Light emitted from the red light emitting semiconductor element 900, the blue light emitting semiconductor element 901, and the green light emitting semiconductor element 902 is transmitted to a liquid crystal panel 906 for each color display.
The light passes through 907 and 908 and is synthesized by the color synthesis prism 909, and is displayed on the screen 911 by the projection lens 910. Accordingly, light from the optical semiconductor element can be efficiently extracted, and a bright projection display device can be provided.

【0035】[0035]

【発明の効果】以上説明したように、光半導体素子から
の光の利用効率の高い発光装置を提供でき、これを用
い、明るく見やすい表示装置、投射型表示装置を提供出
来る。
As described above, it is possible to provide a light-emitting device having a high use efficiency of light from an optical semiconductor element, and to provide a bright and easy-to-see display device and a projection display device using the light-emitting device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の基本構成を示す概略図。FIG. 1 is a schematic diagram showing a basic configuration of the present invention.

【図2】この発明の原理を説明するために示した説明
図。
FIG. 2 is an explanatory diagram for explaining the principle of the present invention.

【図3】この発明の装置の光利用効率向上の条件を説明
するために示した説明図。
FIG. 3 is an explanatory diagram for explaining conditions for improving the light use efficiency of the device of the present invention.

【図4】光源の配光特性を表す図及び光源が配光特性を
有する場合の機能説明図。
FIG. 4 is a diagram illustrating light distribution characteristics of a light source and a functional explanatory diagram in a case where the light source has light distribution characteristics.

【図5】光源が配光特性を有する場合の本発明装置の動
作原理を説明するために示した説明図。
FIG. 5 is an explanatory diagram for explaining the operation principle of the device of the present invention when the light source has light distribution characteristics.

【図6】この発明の他の実施の形態であり、充填媒質が
複数の場合の原理を説明するために示した説明図。
FIG. 6 is an explanatory view showing another embodiment of the present invention, for explaining the principle when a plurality of filling media are used.

【図7】充填媒質が複数の場合に、本発明の構成が有効
であることをグラフで示した説明図。
FIG. 7 is a graph showing that the configuration of the present invention is effective when there are a plurality of filling media.

【図8】本発明に係る表示装置を模式的に示した図。FIG. 8 is a diagram schematically showing a display device according to the present invention.

【図9】本発明に係る投射型表示装置を概略的に示した
図。
FIG. 9 is a diagram schematically showing a projection display device according to the present invention.

【符号の説明】[Explanation of symbols]

100…面光源、101…照明野、102…ミラー(カ
ライドスコープ)、104…入射面、103…媒質。
100: surface light source, 101: illumination field, 102: mirror (callidescope), 104: incident surface, 103: medium.

フロントページの続き Fターム(参考) 5C096 AA05 AA06 AA07 AA13 BA01 BA05 BC02 BC04 BC16 BC20 CB01 CB10 CC03 CC06 CC19 CC20 CC24 CD04 CD05 CD09 CD19 CD22 CD37 CD38 CD42 CD43 CE02 CE17 CE19 CH11 CJ13 DC03 DC04 DC05 EA02 5F041 DC07 DC83 EE23 FF06 FF16Continued on the front page F-term (reference) FF16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光拡散タイプの面光源を有し、前記面光
源の外周付近に形成され、任意空間を反射面で囲む構造
を有した発光装置において、 前記反射面で囲まれた内部を任意の範囲、任意の屈折率
の媒質にて充填し、充填される前記媒質の屈折率をNと
したとき、媒質出射面サイズが入射面よりもN/N
(Nx:充填される媒質と出射面側で接触する媒体の屈
折率)以上としたことを特徴とする発光装置。
1. A light emitting device having a light diffusion type surface light source, formed near an outer periphery of the surface light source, and having a structure surrounding an arbitrary space with a reflection surface, wherein an interior surrounded by the reflection surface is arbitrary. range, filling in any of the refractive index of the medium, when the refractive index of the medium to be filled and the N, N / N x times than the incident surface medium exit face size (Nx: the medium to be filled A light-emitting device having a refractive index of not less than the refractive index of a medium that contacts the light-emitting surface.
【請求項2】 請求項1で述べた発光装置において、光
源面対角をa、媒質充填範囲の光軸上の高さをhとした
とき h≧[a・(N/N+N)・cos{sin−1(N
N)}]/2 を満たすことを特徴とする発光装置。
2. The light-emitting device according to claim 1, wherein h is the diagonal of the light source surface and h is the height of the medium filling range on the optical axis. H ≧ [a · (N 2 / N x + N)・ Cos {sin -1 (N x /
N)}] / 2.
【請求項3】 請求項1で述べた発光装置において、 前記媒質に入射した光が、媒質の内部で最大角がθmax
であるとすると、媒質出射側サイズは光源よりも(N/
・sinθmax)倍以上であることを特徴とする発光装
置。
3. The light-emitting device according to claim 1, wherein the light incident on the medium has a maximum angle θ max inside the medium.
, The medium exit side size is larger than the light source by (N /
N x · sin θ max ) times or more.
【請求項4】 請求項3で述べた発光装置において、 光源面対角をa、媒質充填範囲の光軸上の高さをhとし
たとき h≧[a・(N/N・sinθmax+N)・cos{sin
−1(N/N)}]/2 を満たすことを特徴とする発光装置。
4. The light emitting device according to claim 3, wherein a is a light source surface diagonal and h is a height of the medium filling range on the optical axis. H ≧ [a · (N 2 / N x · sin θ) max + N) ・ cos {sin
−1 (N x / N)}] / 2.
【請求項5】 上記充填された媒質は、複数の屈折率の
異なる媒質であることを特徴とする請求項1乃至4記載
のいずれかの発光装置。
5. The light emitting device according to claim 1, wherein the filled medium is a plurality of media having different refractive indices.
【請求項6】 請求項5で述べた発光装置において、k
個の媒質を充填したとき、光源面(屈折率N)からm
番目における媒質の屈折率Nmが Nm≒N ((k+1−m)/(k+1)) (m=1,2,…,k) を満たすことを特徴とする発光装置。
6. The light emitting device according to claim 5, wherein k
When the medium is filled, the distance from the light source surface (refractive index N 0 )
The light emitting device according to claim 1, wherein the refractive index Nm of the medium satisfies Nm ≒ N 0 ((k + 1−m) / (k + 1)) (m = 1, 2,..., K).
【請求項7】 請求項1から請求項7で述べた発光装置
のいずれかを用いたことを特徴とするカラー表示装置。
7. A color display device using any one of the light-emitting devices described in claim 1.
【請求項8】 請求項1から請求項6で述べた発光装置
のいずれかを照明装置として用いることを特徴とする投
射型表示装置。
8. A projection type display device, wherein any one of the light emitting devices described in claim 1 is used as a lighting device.
JP26071299A 1999-09-14 1999-09-14 Light-emitting device Pending JP2001085745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26071299A JP2001085745A (en) 1999-09-14 1999-09-14 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26071299A JP2001085745A (en) 1999-09-14 1999-09-14 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2001085745A true JP2001085745A (en) 2001-03-30

Family

ID=17351720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26071299A Pending JP2001085745A (en) 1999-09-14 1999-09-14 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2001085745A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210132A (en) * 2004-01-26 2005-08-04 Lumileds Lighting Us Llc Led having optical system improving luminance by recycle of emitted light
JP2005234440A (en) * 2004-02-23 2005-09-02 Seiko Epson Corp Illuminator and projection type display device
JP2007013148A (en) * 2005-06-30 2007-01-18 Schott Ag Solid-state light source
JP2008509551A (en) * 2004-08-06 2008-03-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED lamp system
EP3331010A1 (en) * 2004-08-06 2018-06-06 Philips Lighting Holding B.V. Vehicle headlight system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307785A (en) * 1987-06-09 1988-12-15 Toshiba Corp Array of light-emitting device and manufacture thereof
JPH05317329A (en) * 1992-05-19 1993-12-03 I N R Kenkyusho:Kk Medical laser device
JPH05343766A (en) * 1992-06-10 1993-12-24 Nec Corp Laser beam equally supplying optical system
JPH08234109A (en) * 1994-06-28 1996-09-13 Corning Inc Uniform irradiation device of light valve
JPH09192860A (en) * 1996-01-19 1997-07-29 Komatsu Ltd Light intensity control method and light distribution device
JPH09199762A (en) * 1996-01-18 1997-07-31 Nichia Chem Ind Ltd Photoelectric device
JPH1065211A (en) * 1996-08-19 1998-03-06 Mitsubishi Chem Corp Light-emitting diode
JPH1083149A (en) * 1996-06-18 1998-03-31 Sony Corp Luminous display device
JPH10260327A (en) * 1997-03-17 1998-09-29 Mitsubishi Electric Corp Laser beam generating device
JPH10258383A (en) * 1997-03-14 1998-09-29 Mitsubishi Heavy Ind Ltd Linear laser beam optical system
JPH10269802A (en) * 1997-03-24 1998-10-09 Sony Corp Lighting system and image display unit
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JPH11177146A (en) * 1997-12-09 1999-07-02 Rohm Co Ltd Semiconductor light emitting element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307785A (en) * 1987-06-09 1988-12-15 Toshiba Corp Array of light-emitting device and manufacture thereof
JPH05317329A (en) * 1992-05-19 1993-12-03 I N R Kenkyusho:Kk Medical laser device
JPH05343766A (en) * 1992-06-10 1993-12-24 Nec Corp Laser beam equally supplying optical system
JPH08234109A (en) * 1994-06-28 1996-09-13 Corning Inc Uniform irradiation device of light valve
JPH09199762A (en) * 1996-01-18 1997-07-31 Nichia Chem Ind Ltd Photoelectric device
JPH09192860A (en) * 1996-01-19 1997-07-29 Komatsu Ltd Light intensity control method and light distribution device
JPH1083149A (en) * 1996-06-18 1998-03-31 Sony Corp Luminous display device
JPH1065211A (en) * 1996-08-19 1998-03-06 Mitsubishi Chem Corp Light-emitting diode
JPH10258383A (en) * 1997-03-14 1998-09-29 Mitsubishi Heavy Ind Ltd Linear laser beam optical system
JPH10260327A (en) * 1997-03-17 1998-09-29 Mitsubishi Electric Corp Laser beam generating device
JPH10269802A (en) * 1997-03-24 1998-10-09 Sony Corp Lighting system and image display unit
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JPH11177146A (en) * 1997-12-09 1999-07-02 Rohm Co Ltd Semiconductor light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210132A (en) * 2004-01-26 2005-08-04 Lumileds Lighting Us Llc Led having optical system improving luminance by recycle of emitted light
JP2005234440A (en) * 2004-02-23 2005-09-02 Seiko Epson Corp Illuminator and projection type display device
JP2008509551A (en) * 2004-08-06 2008-03-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED lamp system
EP3331010A1 (en) * 2004-08-06 2018-06-06 Philips Lighting Holding B.V. Vehicle headlight system
JP2007013148A (en) * 2005-06-30 2007-01-18 Schott Ag Solid-state light source

Similar Documents

Publication Publication Date Title
US7717599B2 (en) Integrating light source module
US6547400B1 (en) Light source device, optical device, and liquid-crystal display device
KR100697105B1 (en) Light modulating device and video display projector
CN110501818B (en) Stereoscopic display device
JP2005326855A (en) Projector having color channels separated by electrical switching system and angle
JPH10319873A (en) Light source unit and display device, display and illumination device using it
JP2005346109A (en) Lighting device and projection display apparatus
CN102132208B (en) Image projecting device and prism
JP2000231344A (en) Illuminator for projection type display device
US8979308B2 (en) LED illumination system with recycled light
JP2001085745A (en) Light-emitting device
JP2001127344A (en) Full color led display device
US6702447B2 (en) Projection display system
JP4815301B2 (en) Light source module and projection display device
JP2004138881A (en) Picture projection display device
JP4055237B2 (en) Image display device
JP2003098595A (en) Image display device, pixel image reducing method and pixel image reducing optical structure
JP5076447B2 (en) Light source device and image display device
JP2004151511A (en) Light guide body
JP2003295117A (en) Stereoscopic image display device using reflective liquid crystal display panel
JPH03186831A (en) Projection type display device
JP3747765B2 (en) Display device
TWI775069B (en) Head mounted display
US11947133B2 (en) Display switching device
JPH10133203A (en) Liquid crystal display element and liquid crystal projector provided with liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016